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Abstract. This paper discusses some conditional versions of matrix grammars. It

establishes several characterizations of the family of the recursively enumerable lan-
guages based on these grammars. In fact, making use of the Geffert Normal forms,
the present paper demonstrates these characterizations based on matrix grammars
with conditions of a limited length, a reduced number of nonterminals, and a re-
duced number and size of matrices.
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1 INTRODUCTION

Regulated grammars are significantly more powerful than ordinary context-free
grammars, and this increase of the generative power represents their indisputable
advantage. However, this advantage is achieved by an additional regulating mecha-
nism. It is thus more than natural to reduce this regulating mechanism without any
decrease of the generative power. The present paper discusses this reduction in terms
of matrix grammars, which belong to the very basic types of regulated grammars.
More specifically, it introduces simple-semi-conditional versions of these grammars
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and reduces their regulating mechanism. In these versions, a production may have
an attached word, called a context condition, and its application requires that the
attached condition occurs in the rewritten sentential form or, on the contrary, does
not occur there.

Unfortunately, with the conditions of length one, these grammars do not increase
their power at all as follows from Theorems 6.3.1 and 6.3.2 in [1]. As these grammars
define only a proper subfamily of the family of recursively enumerable languages (see
Theorem 2.12 on page 129 in [8]), the matrix grammars with context conditions of
length one cannot define this family either, so they are hardly of any interest.

However, this paper considers simple-semi-conditional versions of matrix gram-
mars with conditions longer than one and demonstrates that they increase their
generative power. Indeed, the resulting conditional matrix grammars characterize
the entire family of recursively enumerable languages. This paper presents several
characterizations of this family by simple-semi-conditional versions of matrix gram-
mars that have only one condition attached to their productions or matrices. As
a matter of fact, these characterizations are achieved based on reduced versions of
these grammars. This reduction consists in simultaneously bounding

1. number and length of conditions

2. number of nonterminals

3. number and size of matrices.

More specifically, Section 3 introduces matrix simple-semi-conditional grammars
in whose every production has no more than one attached condition. It demonstrates
that any recursively enumerable language can be described by a matrix simple-semi-
conditional grammar with a single matrix containing six rules having conditions of
length three while all the other rules are context-free in the grammar. Section 4 in-
troduces simple-semi-conditional matrix grammars in which conditions are attached
to matrices rather than productions. It proves that seven-nonterminal simple-semi-
conditional matrix grammars define the family of recursively enumerable languages
with two matrices having context conditions of length three. Section 5 compares
the achieved results and proposes some open-problem areas.

2 DEFINITIONS

We assume that the reader is familiar with the language theory (see [5]).
Let V be an alphabet. The cardinality of V is denoted by #V . V ∗ represents

the free monoid generated by V under the operation of concatenation. The unit of
V is denoted by ε. Set V + = V ∗ −{ε}; algebraically, V + is thus the free semigroup
generated by V under the operation of concatenation. For a word, w ∈ V ∗, |w|,
alph(w), and reversal(w) denote the length of w, the set of letters occurring in w, and
the reversal of w, respectively. For every symbol X ∈ V,#Xw denotes the number
of occurrences of X in w. For a language, L ⊆ V ∗, we set alph(L) = {a: a ∈ alph(w)
for some w ∈ L}, and reversal(L) = {reversal(w):w ∈ L}.
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A context-free grammar is a quadruple, G = (V, T, P, S), where V is an alphabet,
T ⊂ V , and S ∈ V − T . P is a finite set of productions of the form A → x, where
A ∈ V − T and x ∈ V ∗. If A → x ∈ P and u, v ∈ V ∗, then uAv ⇒G uxv in G.
Let ⇒∗

G denote the transitive-reflexive closure of ⇒G. The language of G, L(G), is
defined as L(G) = {y:S ⇒∗

G y, y ∈ T ∗}.
Next, we recall the definition of matrix grammars. (In the theory of regulated

grammars, there also exist these grammars with appearance checking; these versions,
however, are not discussed in this paper.)

A matrix grammar (see [1]) is a quadruple, G = (V, T,M, S), where V is an
alphabet, T ⊆ V , and S ∈ V − T . M is a finite set of sequences of the form
(A1 → x1, . . . , An → xn), where Ai ∈ V − T and xi ∈ V ∗ for some n ≥ 1; (A1 →
x1, . . . , An → xn) is called a matrix, and its members are called productions. If
(A1 → x1, . . . , An → xn) ∈ M, z1, . . . , zn+1 ∈ V ∗ for some n ≥ 1, zj = ujAjvj and
zj+1 = ujxjvj for some uj , vj ∈ V ∗, 1 ≤ j ≤ n, then z1 ⇒G zn+1[(A1 → x1, . . . , An →
xn)] in G or, simply, z1 ⇒G zn+1. Let ⇒∗

G denote the reflexive-transitive closure of
⇒G. The language of G, L(G), is defined as L(G) = {y:S ⇒∗

G y, y ∈ T ∗}. A matrix
of the form (A → x1, . . . , A → xn) with n ≥ 2 is called a multi-production matrix ; a
matrix of the form (A → x) is a one-production matrix. Observe that the application
of any one-production matrix (A → x) is made in an ordinary context-free way; for
simplicity, instead of (A → x), we hereafter write A → x.

Let M and RE denote the families of matrix and recursively enumerable lan-
guages, respectively. Recall that M ⊂ RE (see Theorem 2.12 on page 129 in [8]).

3 MATRIX SIMPLE-SEMI-CONDITIONAL GRAMMARS

3.1 Definitions

A matrix simple-semi-conditional grammar (mssc-grammar for short) represents a
combination of simple-semi-conditional grammars (see [6]) and matrix grammars
(see [1]).

Formally, a mssc-grammar is a quadruple G = (V, T,M, S) where V, T and S

have the same meaning as in a matrix grammar and M is a finite set of sequences
of the form

((A1 → x1, Q1, R1), . . . , (An → xn, Qn, Rn)),

where n ≥ 1, Ai ∈ V − T, xi ∈ V ∗, Qi, Ri ∈ V + ∪ {0} so that Qi = 0 or Ri = 0 for
1 ≤ i ≤ n. The Qs and Rs above are called the permitting and forbidding conditions,
respectively; 0 is a special symbol, 0 6∈ V , meaning that a condition is missing. The
length of the longest condition represents the degree of G; if all conditions are 0,
then G’s degree is zero. The sequences in M are called ssc-matrices, and they
are divided into one-production ssc-matrices and multi-production ssc-matrices by
analogy with ordinary matrices. For brevity we simplify ((A → X, 0, 0)) to A → x

hereafter. If m: ((A1 → x1, Q1, R1), . . . , (An → xn, Qn, Rn)) ∈ M, z1, . . . , zn+1 ∈ V ∗

for some n ≥ 1, zj = ujAjvj, zj+1 = ujxjvj for some uj, vj ∈ V ∗, Qj ∈ ujAjvj
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or Qj = 0, Rj 6∈ ujAjvj or Rj = 0, for 1 ≤ j ≤ n, then z1 ⇒G zn+1[((A1 →
x1, Q1, R1), (A2,→ x2, Q2, R2), . . . , (An → xn, Qn, Rn))] or, simply, z1 ⇒G zn+1; to
express z1 ⇒G zn+1 as the n consecutive applications of the productions in matrix
m, write:

z1 1−m⇒G z2 [m: (A1 → x1, Q1, R1)]

2−m⇒G z3 [m: (A2 → x2, Q2, R2)]
...

n−m⇒G zn+1 [m: (An → xn, Qn, Rn)].

Let ⇒
∗
denote the transitive and reflexive closure of ⇒. The language of G, L(G),

is defined as L(G) = {y:S ⇒∗

G, y ∈ T ∗}.

3.2 Matrix Simple-Semi-Conditional Grammars of Degree 3

Theorem 1. For every recursively enumerable language L, there exists a mssc-
grammar G′ of degree 3 satisfying the following conditions:

1. L = L(G′).

2. G′ contains only one multi-productionmatrix with no more than six productions;
all the other matrices are one-production matrices without any condition.

3. G′ contains no more than seven nonterminals.

Proof. Let L ∈ RE. Without any loss of generality, we assume that L is generated
by a grammar G of the form G = (V, T, P ∪ {ABC → ε}, S) such that P contains
only context-free productions and V − T = {S,A,B, C} (see [4]). Next, we define

the mssc-grammar G′ = (V ′, T, P ′, S), where V ′ = V ∪ {Ã, B̃, C̃} (assume that

{Ã, B̃, C̃} ∩W = ∅), and P ′ is constructed in the following way:

1. if H → α ∈ P , H ∈ V − T , α ∈ V ∗, then add (H → α, 0, 0) to P ′;

2. add the following matrix to P ′: m: {(A → Ã, 0, Ã), (B → B̃, 0, B̃), (C →

C̃, 0, C̃), (Ã → ε, ÃB̃C̃, 0), (B̃ → ε, 0, 0), (C̃ → ε, 0, 0)}.

Next, we prove that L(G′) = L(G).

Basic idea: Productions of matrix m simulates the application of ABC → ε in
G′ as follows. First, one occurrence of A, B and C are rewritten with Ã, B̃ and C̃,
respectively. Then, we check that the marked letters form a subword ÃB̃C̃ by the
fourth production of m. If so, G′ erases these three consecutive symbols; otherwise,
G′ cannot complete this matrix.

Formal proof: To establish L(G) = L(G′) formally, we first prove the following
claim.

Claim 1. S ⇒∗

G′ x′ implies #X̃x
′ ≤ 1 for each X̃ ∈ {Ã, B̃, C̃}, where x′ ∈ (V ′)∗.
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Proof. By inspection of productions in P ′, the only production that can generate
X̃ is of the form (X → X̃, 0, X̃). This production can be applied only when no X̃

occurs in the rewritten sentential form. Thus, it is impossible to derive x′ from S

such that #X̃x
′ ≥ 2. �

Let g be a finite substitution from (V ′)∗ to V ∗ defined as follows:

1. for all X ∈ V : g(X) = {X};

2. g(Ã) = {A},

g(B̃) = {B,AB},

g(C̃) = {C,ABC}.

Claim 2. S ⇒∗

G x if and only if S ⇒∗

G′ x′ for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Proof. The claim is proved by induction on the length of derivations.

Only if : We prove that

S ⇒m
G x implies S ⇒∗

G′ x,

where m ≥ 0, x ∈ V ∗. This is established by induction on m.

Basis : Let m = 0. That is S ⇒0
G S. Clearly, S ⇒0

G′ S.

Induction Hypothesis : Suppose that the claim holds for all derivations of length m

or less, for some m ≥ 0.

Induction Step: Let us consider S ⇒m+1

G x, x ∈ V ∗. Since m+1 ≥ 1, there is some
y ∈ V + and p ∈ P ∪ {ABC → ε} such that S ⇒m

G y ⇒G x [p]. By the induction
hypothesis, there is a derivation S ⇒∗

G′ y.

There are two cases that cover all possible forms of p:

(i) p = H → y2 ∈ P, H ∈ V −T, y2 ∈ V ∗. Then y = y1Hy3 and x = y1y2y3, y1, y3 ∈
V ∗. Because (H → y2, 0, 0) ∈ P ′, we have S ⇒∗

G′ y1Hy3 ⇒G′ y1y2y3 [(H →
y2, 0, 0)] and y1y2y3 = x.

(ii) p = ABC → ε. Then y = y1ABCy3 and x = y1y3, y1, y3 ∈ V ∗. In this case,
there is the following derivation which uses matrix m:

S ⇒∗

G′ y1ABCy3

1−m⇒G′ y1ÃBCy3 [m: (A → Ã, 0, Ã)]

2−m⇒G′ y1ÃB̃Cy3 [m: (B → B̃, 0, B̃)]

3−m⇒G′ y1ÃB̃C̃y3 [m: (C → C̃, 0, C̃)]

4−m⇒G′ y1B̃C̃y3 [m: (Ã → ε, ÃB̃C̃, 0)]

5−m⇒G′ y1C̃y3 [m: (B̃ → ε, 0, 0)]

6−m⇒G′ y1y3 [m: (C̃ → ε, 0, 0)].
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If : By induction on n, we prove that

S ⇒n
G′ x

′ implies S ⇒∗

G x

for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Basis : Let n = 0. That is, S ⇒0
G′ S. It is obvious that S ⇒0

G S and S ∈ g(S).

Induction Hypothesis : Assume that the claim holds for all derivations of length n

or less for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1

G′ x′, x′ ∈ (V ′)∗. Since n+1 ≥ 1, there
is some y′ ∈ (V ′)+ and p′ ∈ P ′ such that S ⇒n

G′ y′ ⇒G′ x′ [p′] and by the induction
hypothesis there is also a derivation S ⇒∗

G y such that y ∈ g(y′).
By inspection of P ′ the following cases (i) through (xi) covers all possible forms

of p′:

(i) p′ = (H → y2, 0, 0) ∈ P ′, H ∈ V − T, y2 ∈ V ∗. Then y′ = y′1Hy′3, x
′ = y′1y2y

′

3,
y′1, y

′

3 ∈ (V ′)∗ and y has the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3)
and Z ∈ g(H). Because for all X ∈ V − T such that g(X) = {X}, the only
Z is H and thus y = y1Hy3. By the definition of P ′ (see (1)), there exists
a production p = H → y2 in P and we can construct the derivation S ⇒∗

G

y1Hy3 ⇒G y1y2y3 [p] such that y1y2y3 = x, x ∈ g(x′).

(ii) p′ = m: (A → Ã, 0, Ã). Then y′ = y′1Ay
′

3, x′ = y′1Ãy
′

3, y′1, y
′

3 ∈ (V ′)∗ and
y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(A). Because g(A) = {A}
the only Z is A, so we can express y = y1Ay3. Having the derivation S ⇒∗

G y

such that y ∈ g(y′), it is easy to see that also y ∈ g(x′) because A ∈ g(Ã).

(iii) p′ = m: (B → B̃, 0, B̃). By analogy with (ii), y′ = y′1By′3, x
′ = y′1B̃y′3, y = y1By3,

where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3); thus y ∈ g(x′) because B ∈ g(B̃).

(iv) p′ = m: (C → C̃, 0, C̃). By analogy with (ii), y′ = y′1Cy′3, x
′ = y′1C̃y′3, y = y1Cy3,

where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3); thus y ∈ g(x′) because C ∈ g(C̃).

(v) p′ = m: (Ã → ε, ÃB̃C̃, 0). By the permitting condition of this production string

ÃB̃C̃ surely occurs in y′. By Claim 1 no more than one Ã occurs in y′. Therefore,
y′ must be of form y′ = y′1ÃB̃C̃y′3, where y′1, y

′

3 ∈ (V ′)∗ and Ã 6∈ sub(y′1y
′

3).

Then x′ = y′1B̃C̃y′3 and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3)

and Z ∈ g(B̃C̃). Because g(B̃C̃) = {BC,ABC,BABC,ABABC} we obtain
y = y1ABCy3. By the induction hypothesis we have a derivation S ⇒∗

G y such

that y ∈ g(y′). According to definition of g, y ∈ g(x′) as well because AB ∈ g(B̃)

and C ∈ g(C̃).

(vi) p′ = m: (B̃ → ε, 0, 0). By the definition of mssc-grammar and Claim 1, the
only sentential form in which we can use this production is that G′ obtains from
the previous sentential form. That means y′ = y′1B̃C̃y′3, where y′1, y3 ∈ (V ′)∗

and B̃ 6∈ sub(y′1y
′

3). Then x′ = y′1C̃y′3 and y is of the form y = y1Zy3, where

y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(C̃). Because g(C̃) = {C,ABC}, we obtain
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y = y1ABCy3. By the induction hypothesis, we have a derivation S ⇒∗

G y

such that y ∈ g(y′). According to definition of g, y ∈ g(x′) as well because

ABC ∈ g(C̃).

(vii) p′ = m: (C̃ → ε, 0, 0). Then, y′ = y′1C̃y′3 and x′ = y′1y
′

3, where y′1, y
′

3 ∈ (V ′)∗.

Express y = y1Zy3 so that y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(C̃), where g(C̃) =
{C,ABC}. Let Z = ABC. Then, y = y1ABCy3 and there exists the derivation
S ⇒∗

G y1ABCy3 ⇒G y1y3[ABC → ε], where y1y3 = x, x ∈ g(x′).

We have completed the proof and established Claim 2 by the principle of induc-
tion. �

Observe that L(G) = L(G′) follows from Claim 2. Indeed, according to the
definition of g, we have g(a) = {a} for all a ∈ T . Thus, from Claim 2, we have for
any x ∈ T ∗:

S ⇒∗

G x if and only if S ⇒∗

G′ x.

Consequently L(G) = L(G′), so the first part of the theorem holds.
The rest of the theorem follows from the construction of G′. �

3.3 Matrix Simple-Semi-Conditional Grammars of Degree 2

Theorem 2. For every recursively enumerable language L, there exists a mssc-
grammar G′ of degree two satisfying the following conditions:

1. L = L(G′).

2. G′ contains only two multi-production matrices with no more than four pro-
ductions in them; the other matrices are one-production matrices without any
condition.

3. G′ contains no more than six nonterminals.

Proof. Let L be a recursively enumerable language. From [4], we can assume that
L is generated by a grammar G of the form

G = (V, T, P ∪ {AB → ε, CC → ε}, S)

such that P contains only context-free productions and

V − T = {S,A,B, C}.

We construct an mssc-grammar G′ as follows:

G′ = (V ′, T, P ′, S), where
V ′ = V ∪W,

W = {X̃, Ỹ }, V ∩W = ∅.

The set of productions P ′ is defined in the following way:
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1. if H → α ∈ P , H ∈ V − T , α ∈ V ∗, then add (H → α, 0, 0) to P ′;

2. add the following matrices to P ′:

m1: { (A → X̃, 0, X̃),

(B → Ỹ , 0, Ỹ ),

(X̃ → ε, X̃Ỹ , 0),

(Ỹ → ε, 0, 0)}

m2: { (C → X̃, 0, X̃),

(C → Ỹ , 0, Ỹ ),

(X̃ → ε, X̃Ỹ , 0),

(Ỹ → ε, 0, 0)}.

Next we prove that L(G′) = L(G).

Basic idea: Notice that G′ contains only two matrices, m1 and m2, with three
conditional productions and one context-free production. These matrices simulate
the application of AB → ε and CC → ε as follows. Consider m1. First, one
occurrence of A and one occurrence of B are rewritten with X̃ and Ỹ , respectively.
Then, m1 checks whether the marked letters form a substring X̃Ỹ . If so, G′ erases
these consecutive symbols; otherwise, G′ cannot complete this matrix. CC → ε is
simulated in a similar way by using the other matrix.

Formal proof: To establish L(G) = L(G′) formally, we first prove the following
claim.

Claim 3. S ⇒∗

G′ x′ implies #Q̃x
′ ≤ 1 for each Q̃ ∈ {X̃, Ỹ }, where x′ ∈ (V ′)∗.

Proof. By inspection of productions in P ′, the only production that can generate
Q̃ is of the form (Q → Q̃, 0, Q̃). This production can be applied only when no Q̃

occurs in the rewritten sentential form. Thus, it is impossible to derive x′ from S

such that #Q̃x
′ ≥ 2. �

Let g be a finite substitution from (V ′)∗ to V ∗ defined as follows:

1. for all X ∈ V : g(X) = {X};

2. g(X̃) = {A,C},

g(Ỹ ) = {B,AB,C, CC}.

Claim 4. S ⇒∗

G x if and only if S ⇒∗

G′ x′ for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Proof. This claim is proved by induction on the length of derivations.

Only if : We prove that

S ⇒m
G x implies S ⇒∗

G′ x,

where m ≥ 0, x ∈ V ∗. This is established by induction on m.

Basis : Let m = 0. That is S ⇒0
G S. Clearly, S ⇒0

G′ S.
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Induction Hypothesis : Suppose that the claim holds for all derivations of length m

or less for some m ≥ 0.

Induction Step: Let us consider a derivation S ⇒m+1

G x, x ∈ V ∗. Since m + 1 ≥ 1,
there is some y ∈ V + and p ∈ P ∪ {AB → ε, CC → ε} such that S ⇒m

G y ⇒G x [p].
By the induction hypothesis there is a derivation S ⇒∗

G′ y.
There are three cases that cover all possible forms of the production p:

(i) p = H → y2 ∈ P, H ∈ V −T, y2 ∈ V ∗. Then y = y1Hy3 and x = y1y2y3, y1, y3 ∈
V ∗. Because we have (H → y2, 0, 0) ∈ P ′, S ⇒∗

G′ y1Hy3 ⇒G′ y1y2y3 [(H →
y2, 0, 0)] and y1y2y3 = x.

(ii) p = AB → ε. Then y = y1ABy3 and x = y1y3, y1, y3 ∈ V ∗. In this case there is
the following derivation which uses matrix m:

S ⇒∗

G′ y1ABy3

1−m1
⇒G′ y1X̃By3 [m1: (A → X̃, 0, X̃)]

2−m1
⇒G′ y1X̃Ỹ y3 [m1: (B → Ỹ , 0, Ỹ )]

3−m1
⇒G′ y1Ỹ y3 [m1: (X̃ → ε, X̃Ỹ , 0)]

4−m1
⇒G′ y1y3 [m1: (Ỹ → ε, 0, 0)]

(iii) p = CC → ε. Then y = y1CCy3 and x = y1y3, y1, y3 ∈ V ∗. In this case there is
the following derivation which uses matrix m:

S ⇒∗

G′ y1CCy3

1−m2
⇒G′ y1X̃Cy3 [m2: (C → X̃, 0, X̃)]

2−m2
⇒G′ y1X̃Ỹ y3 [m2: (C → Ỹ , 0, Ỹ )]

3−m2
⇒G′ y1Ỹ y3 [m2: (X̃ → ε, X̃Ỹ , 0)]

4−m2
⇒G′ y1y3 [m2: (Ỹ → ε, 0, 0)]

If : By induction on n ≥ 0, we prove that

S ⇒n
G′ x

′ implies S ⇒∗

G x

for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Basis : Let n = 0. That is, S ⇒0
G′ S. It is obvious that S ⇒0

G S and S ∈ g(S).

Induction Hypothesis : Assume that the claim holds for all derivations of length n

or less, for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1

G′ x′, x′ ∈ (V ′)∗. Since n+1 ≥ 1, there
is some y′ ∈ (V ′)+ and p′ ∈ P ′ such that S ⇒n

G′ y′ ⇒G′ x′ [p′] and by the induction
hypothesis there is also a derivation S ⇒∗

G y such that y ∈ g(y′).
By inspection of P ′ the following cases (i) through (xi) cover all possible forms

of p′:
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(i) p′ = (H → y2, 0, 0) ∈ P ′, H ∈ V − T, y2 ∈ V ∗. Then y′ = y′1Hy′3, x
′ = y′1y2y

′

3,
y′1, y

′

3 ∈ (V ′)∗ and y has the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and
Z ∈ g(H). Because for all X ∈ V − T such that g(X) = {X}, the only Z is H
and thus y = y1Hy3. By the definition of P ′ (see (1)) there exists a production
p = H → y2 in P and we can construct the derivation S ⇒∗

G y1Hy3 ⇒G

y1y2y3 [p] such that y1y2y3 = x, x ∈ g(x′).

(ii) p′ = m1: (A → X̃, 0, X̃). Then y′ = y′1Ay
′

3, x
′ = y′1X̃y′3, y

′

1, y
′

3 ∈ (V ′)∗ and
y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(A). Because g(A) = {A}
the only Z is A, so we can express y = y1Ay3. Having the derivation S ⇒∗

G y

such that y ∈ g(y′) it is easy to see that also y ∈ g(x′) because A ∈ g(X̃).

(iii) p′ = m1: (B → Ỹ , 0, Ỹ ). By analogy with (ii), y′ = y′1By′3, x
′ = y′1Ỹ y′3, y =

y1By3, where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because

B ∈ g(Ỹ ).

(iv) p′ = m1: (X̃ → ε, X̃Ỹ , 0). By the permitting condition of this production string

X̃Ỹ surely occurs in y′. By Claim 3 no more than one X̃ occurs in y′. Therefore,
y′ must be of form y′ = y′1X̃Ỹ y′3, where y

′

1, y
′

3 ∈ (V ′)∗ and X̃ 6∈ sub(y′1y
′

3). Then

x′ = y′1B̃y′3 and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3)

and Z ∈ g(Ỹ ). Because g(Ỹ ) = {B,AB,C, CC} we obtain y = y1ABy3. By
the induction hypothesis we have a derivation S ⇒∗

G y such that y ∈ g(y′).

According to definition of g, y ∈ g(x′) as well because AB ∈ g(Ỹ ).

(v) p′ = m1: (Ỹ → ε, 0, 0). Then, y′ = y′1Ỹ y′3 and x′ = y′1y
′

3, where y′1, y
′

3 ∈ (V ′)∗.

Express y = y1Zy3 so that y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(Ỹ ), where

g(Ỹ ) = {B,AB,C, CC}. Let Z = AB. Then, y = y1ABy3 and there exists
the derivation S ⇒∗

G y1ABy3 ⇒G y1y3[AB → ε], where y1y3 = x, x ∈ g(x′).

(vi) p′ = m2: (C → X̃, 0, X̃). By analogy with (ii), y′ = y′1Cy′3, x
′ = y′1X̃y′3, y =

y1Cy3, where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because

C ∈ g(X̃).

(vii) p′ = m2: (C → Ỹ , 0, Ỹ ). By analogy with (ii), y′ = y′1Cy′3, x
′ = y′1Ỹ y′3, y =

y1Cy3, where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because

C ∈ g(Ỹ ).

(viii) p′ = m2: (X̃ → ε, X̃Ỹ , 0). By the permitting condition of this production string

X̃Ỹ surely occurs in y′. By Claim 3 no more than one X̃ occurs in y′. Therefore,
y′ must be of form y′ = y′1X̃Ỹ y′3, where y

′

1, y
′

3 ∈ (V ′)∗ and X̃ 6∈ sub(y′1y
′

3). Then

x′ = y′1Ỹ y′3 and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3)

and Z ∈ g(Ỹ ). Because g(Ỹ ) = {B,AB,C, CC} we obtain y = y1CCy3. By
the induction hypothesis we have a derivation S ⇒∗

G y such that y ∈ g(y′).

According to definition of g, y ∈ g(x′) as well because CC ∈ g(Ỹ ).

(ix) p′ = m2: (Ỹ → ε, 0, 0). Then, y′ = y′1Ỹ y′3 and x′ = y′1y
′

3, where y′1, y
′

3 ∈ (V ′)∗.

Express y = y1Zy3 so that y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(Ỹ ), where
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g(Ỹ ) = {B,AB,C, CC}. Let Z = CC. Then, y = y1CCy3 and there exists
the derivation S ⇒∗

G y1CCy3 ⇒G y1y3[CC → ε], where y1y3 = x, x ∈ g(x′).

We have completed the proof and established Claim 4 by the principle of induc-
tion. �

Observe that L(G) = L(G′) follows from Claim 4. Indeed, according to the
definition of g, we have g(a) = {a} for all a ∈ T . Thus, from Claim 4, we have for
each x ∈ T ∗:

S ⇒∗

G x if and only if S ⇒∗

G′ x.

Consequently, L(G) = L(G′). The rest of this theorem follows from the construction
of G′. �

4 SIMPLE-SEMI-CONDITIONAL MATRIX GRAMMARS

4.1 Definitions

A simple-semi-conditional matrix grammar (sscm-grammar for short) is another
combination of matrix grammars (see [1]) and simple-semi-conditional grammars
(see [6]).

A sscm-grammar is a quadruple G = (V, T, P, S), where V, T , and S are defined
as in Section 2. P is a finite set of matrices with context conditions of the form

(((A1 → x1), . . . , (An → xn)), Q, R)

where n ≥ 1, Ai → x is a context-free production and Q,R ∈ V ∗∪{0}, (0 means that
condition is missing, 0 6∈ V ). According to the matrix of the above form, G makes
a derivation step u ⇒G v, where u, v ∈ V ∗ if Q ∈ alph(y1Ay2), R 6∈ alph(y1Ay2),
and u directly derives v according to A1 → x1, . . . , An → xn in an ordinary matrix-
grammar way (see Section 3). The language of G, L(G), is defined as usual. The
length of the longest condition in G represents the degree of G.

A matrix of the form ((A → x), 0, 0) is simplified to A → x hereafter.

4.2 Simple-Semi-Conditional Matrix Grammars of Degree 3

Theorem 3. Every recursively enumerable language, L, can be defined by sscm-
grammar G′ satisfying the following conditions:

1. L = L(G′)

2. G′ contains no more than two matrices with context conditions

3. G′ contains no more than seven nonterminals.

Proof. Let L be a recursively enumerable language. From [4], we can assume that
L is generated by a grammar G of the form

G = (V, T, P ∪ {ABC → ε}, S)
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such that P contains only context-free productions and

V − T = {S,A,B, C}.

We construct an sscm-grammar G′ as follows:

G′ = (V ′, T, P ′, S)
V ′ = V ∪W

W = {Ã, B̃, C̃}
V ∩W = ∅.

The set of productions, P ′, is defined in the following way:

1. if H → α ∈ P , H ∈ V − T , α ∈ V ∗, then add ((H → α), 0, 0) to P ′;

2. add the following matrices to P ′:

m1: ({(A → Ã), (B → B̃), (C → C̃)}, 0, Ã),

m2: ({(Ã → ε), (B̃ → ε), (C̃ → ε)}, ÃB̃C̃, 0).

Next we prove that L(G′) = L(G).

Basic idea: Matrices m1 and m2 simulate the application of ABC → ε in G′ as
follows. First, A, B and C are rewritten with Ã, B̃ and C̃, respectively. Then, G′

checks whether the marked letters form a substring ÃB̃C̃. If so, G′ erases these
consecutive symbols by m2; otherwise, G

′ cannot complete this matrix.

Formal proof: To establish L(G) = L(G′) formally, we first prove the following
claim.

Claim 5. S ⇒∗

G′ x′ implies #x̃x
′ ≤ 1 for all x̃ ∈ {Ã, B̃, C̃}, where x′ ∈ (V ′)∗.

Proof. By inspection of productions in P ′, the only way of generating x̃ is by using
m1. This matrix can be applied only when no Ã occurs in the rewritten sentential
form. Because the only way of rewriting x̃s is by using m2, it is impossible to derive
x′ from S such that #x̃x

′ ≥ 2. �

Let g be a finite substitution from (V ′)∗ to V ∗ defined as follows:

1. for all X ∈ V : g(X) = {X};

2. g(Ã) = {A},

g(B̃) = {B},

g(C̃) = {C}.

Claim 6. S ⇒∗

G x if and only if S ⇒∗

G′ x′ for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.
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Proof. The claim is proved by induction on the length of derivations.

Only if : We prove that

S ⇒m
G x implies S ⇒∗

G′ x,

where m ≥ 0, x ∈ V ∗. This is established by induction on m.

Basis : Let m = 0. That is S ⇒0
G S. Clearly, S ⇒0

G′ S.

Induction Hypothesis : Suppose that the claim holds for all derivations of length m

or less, for some m ≥ 0.

Induction Step: Let us consider a derivation S ⇒m+1

G x, x ∈ V ∗. Since m + 1 ≥ 1,
there is some y ∈ V + and p ∈ P ∪{ABC → ε} such that S ⇒m

G y ⇒G x [p]. By the
induction hypothesis, there is a derivation S ⇒∗

G′ y.
There are two cases that cover all possible forms of production p:

(i) p = H → y2 ∈ P, H ∈ V −T, y2 ∈ V ∗. Then y = y1Hy3 and x = y1y2y3, y1, y3 ∈
V ∗. Because we have (H → y2, 0, 0) ∈ P ′, S ⇒∗

G′ y1Hy3 ⇒G′ y1y2y3 [(H →
y2, 0, 0)] and y1y2y3 = x.

(ii) p = ABC → ε. Then y = y1ABCy3 and x = y1y3, y1, y3 ∈ V ∗. In this case,
there is the following derivation that uses matrix m:

S ⇒∗

G′ y1ABCy3

⇒G′ y1ÃB̃C̃y3 [m1: ({(A → Ã), (B → B̃), (C → C̃)}, 0, Ã)]

⇒G′ y1y3 [m2: ({(Ã → ε), (B̃ → ε), (C̃ → ε)}, ÃB̃C̃, 0)].

If : By induction on n ≥ 0, we prove that

S ⇒n
G′ x

′ implies S ⇒∗

G x

for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Basis : Let n = 0. That is, S ⇒0
G′ S. It is obvious that S ⇒0

G S and S ∈ g(S).

Induction Hypothesis : Assume that the claim holds for all derivations of length n

or less, for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1

G′ x′, x′ ∈ (V ′)∗. Since n+1 ≥ 1, there
is some y′ ∈ (V ′)+ and p′ ∈ P ′ such that S ⇒n

G′ y′ ⇒G′ x′ [p′] and, by the induction
hypothesis, there is also a derivation S ⇒∗

G y such that y ∈ g(y′).
By inspection of P ′, the following cases (i) through (v) cover all possible forms

of p′:

(i) p′ = (H → y2, 0, 0) ∈ P ′, H ∈ V − T, y2 ∈ V ∗. Then y′ = y′1Hy′3, x
′ = y′1y2y

′

3,
y′1, y

′

3 ∈ (V ′)∗ and y has the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and
Z ∈ g(H). Because for all X ∈ V − T such that g(X) = {X}, the only Z is H
and thus y = y1Hy3. By the definition of P ′ (see (1)), there exists a production
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p = H → y2 in P , and we can construct the derivation S ⇒∗

G y1Hy3 ⇒G

y1y2y3 [p] such that y1y2y3 = x, x ∈ g(x′).

(ii) p′ = m1: ({(A → Ã), (B → B̃), (C → C̃)}, 0, Ã). Next, we examine each pro-
duction contained in this matrix.

(a) p′ = (A → Ã) Then y′ = y′1Ay
′

3, x
′ = y′1Ãy

′

3, y
′

1, y
′

3 ∈ (V ′)∗ and y = y1Zy3,
where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(A). Because g(A) = {A} the only Z

is A, so we can express y = y1Ay3. Having the derivation S ⇒∗

G y such that

y ∈ g(y′) it is easy to see that also y ∈ g(x′) because A ∈ g(Ã).

(b) p′ = (B → B̃). By analogy with (a), y′ = y′1By′3, x
′ = y′1B̃y′3, y = y1By3,

where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because

B ∈ g(B̃).

(c) p′ = (C → C̃). By analogy with (a), y′ = y′1Cy′3, x
′ = y′1C̃y′3, y = y1Cy3,

where y′1, y
′

3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because

C ∈ g(C̃).

(iii) p′ = m4: ({(Ã → ε), (B̃ → ε), (C̃ → ε)}, ÃB̃C̃, 0). By the permitting condition

of this production string ÃB̃C̃ surely occurs in y′. By Claim 5 no more than one
Ã, B̃ and C̃ occurs in y′. Therefore, y′ must be of form y′ = y′1ÃB̃C̃y′3, where

y′1, y
′

3 ∈ (V ′)∗ and Ã, B̃, C̃ 6∈ sub(y′1y
′

3). Then x′ = y′1y
′

3 and y is of the form
y = y1y3, where y1 ∈ g(y′1) and y3 ∈ g(y′3). By the induction hypothesis we have
a derivation S ⇒∗

G y such that y ∈ g(y′). According to definition of g, y ∈ g(x′)

as well because A ∈ g(Ã), B ∈ g(B̃) and C ∈ g(C̃).

We have completed the proof and established Claim 6 by the principle of induc-
tion. �

Observe that L(G) = L(G′) follows from Claim 6. Indeed, according to the
definition of g, we have g(a) = {a} for all a ∈ T . Thus, from Claim 6, we have for
each x ∈ T ∗:

S ⇒∗

G x if and only if S ⇒∗

G′ x.

Consequently, L(G) = L(G′). The rest of this theorem follows directly from the
construction of G′. �

5 SUMMARY

This paper proves that family RE is characterized by these grammars:

1. seven-nonterminal mssc-grammar of degree three with only 1 multi-production
matrix;

2. seven-nonterminal mssc-grammar of degree two with only 2 multi-production
matrices;
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3. seven-nonterminal sscm-grammar of degree three with only 2 multi-production
matrices.

In all these cases, we thus obtain the characterization of RE based on reduced
ssc-versions of matrix grammars. These results are of some interest because ordinary
matrix grammars do not characterize RE even if they are not reduced at all as
already stated in Section 1.
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