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Abstract 

We present a first step towards generalizing the work of Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory to 

arbitrary gauge groups. Specifically, we propose a particular sequence of hyperelliptic genus n - 1 Riemann surfaces to underly 
the quantum moduli space of W(n) N = 2 supersymmetric gauge theory. These curves have an obvious generalization to 
arbitrary simply laced gauge groups, which involves the A-D-E type simple singularities. To support our proposal, we argue 
that the monodromy in the semiclassical regime is correctly reproduced. We also give some remarks on a possible relation 
to string theory. 

1. Introduction 

In two beautiful papers [ 1,2], Seiberg and Witten 

have investigated N = 2 supersymmetric SU( 2) gauge 
theories and solved for their exact nonperturbative low 
energy effective action. For an arbitrary gauge group 
G, such supersymmetric theories are characterized by 
having flat directions for the Higgs vacuum expecta- 
tion values, along which the gauge group is generically 
broken to the Cartan subalgebra. Thus, the effective 
theories contain r = rank(G) abelian N = 2 vector su- 
permultiplets, which can be decomposed into I- N = 1 
chiral multiplets A’ plus r N = 1 vector multiplets WL. 
The N = 2 supersymmetry implies that the effective 
theory depends only on a single holomorphic prepo- 
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tential F(A). More precisely, the effective lagrangian 
in N = 1 superspace is 

(1) 

The holomorphic function F determines the quantum 
moduli space and, in particular, its metric. This space 
has singularities at points or surfaces where additional 
fields become massless, that is, where the effective 
action description breaks down. A crucial insight is 
that the electric and magnetic quantum numbers of the 
fields that become massless at a given singularity are 
determined by the eigenvalue- ( + 1) eigenvectors of 
the monodromy matrix associated with the singularity. 

For G = SU( 2) considered in [ 1,2], besides the 
point at u = cc there are singularities at u = &A’, 
where A is the dynamically generated scale of the the- 
ory, and u = f (u’), where a zz Ale*. (On the other 
hand, u = 0 is not singular in the exact quantum the- 
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ory, which means that, in contrast to the classical the- 
ory, no massless non-abelian gauge bosons arise here). 

One of these points corresponds to a massless, purely 

magnetically charged monopole, and the other to a 

massless dyon. The parameter region near u = 0;) de- 
scribes the semiclassical, perturbative regime, which 

is governed by the one-loop beta function [ 3,4]. It 
gives rise to a non-trivial monodromy as well (arising 

from the logarithm in the one-loop beta function), but 

there are no massless states associated with it. 

The singularity structure and knowledgeof the mon- 

odromies allow to completely determine the holomor- 
phic prepotential7. The monodromy group is I( 2) c 

SL(2, Z) consisting of all matrices congruent to ll 
modulo 2. The matrices act on the vector (~;a)‘, 

where a~ is the magnetic dual of a, that is, an G !?a$ . 
The quantum moduli space, namely the u-plane punc- 

tured at &A2 and co, can thus be thought of W/I( 2)) 

where IHI is the upper half-plane. 
The basic idea [ 1 ] in solving for the effective theory 

is to consider the following family of holomorphic 

curves parametrized by W/I( 2) : 

Y2=(X-Ah2)(X+h2)(X-*). (2) 

These curves represent a double cover of the x-plane 
with branch points at 0, &A* and co, and describe 
a genus one Riemann surface. That is, the quantum 
moduli space of the SU (2) super Yang-Mills theory 

coincides with the moduli space of a particular torus; 

this torus becomes singular when two branch points 

in (2) coincide. The derivatives of the electric and 

magnetic coordinates (a~; a)’ with respect of u are 

just given by the periods. Computing the period inte- 
grals (related to the two homology cycles) thus yields, 

upon integration, the dependence of a, aD in terms of 
u, and integrating aD finally determines the prepoten- 
tial3(a). 

In the present paper, we make a first step towards 
generalizing the work of Seiberg and Witten to (pure) 
super Yang-Mills theory with SU( n) gauge group (we 
also will hint at how it might work for arbitrary sim- 
ply laced groups). More precisely, we will propose 
what we think the appropriate curves are, and give 
circumstantial evidence to the fact that our choice is 

correct. We will present a more detailed analysis of 
the monodromies and period integrals in a follow-up 

paper [51. 

2. Semiclassical wgime 

To be specific, we will consider mainly the gauge 

group G = SU( 3), but from our setup it will be clear 

that all of our arguments immediately generalize to 
arbitrary SU( n) . We will denote the gauge invariant 

order parameters (Casimirs) by 

u=iTr(4*), u=fTr(4’), (3) 

where we can always take the scalar superfield com- 

ponent to be 4 = diag( cr, /I - (Y, -p), such that, clas- 
sically, u = (Y* + /?* - cup, IJ = cup(a - p). The 

residual global ‘& symmetry act as u ---f e *vi/3 u, v --f 

--o. For generic eigenvalues of 4, the N(3) gauge 
symmetry is broken to U( 1) x U( l), whereas if any 

two eigenvalues are equal, the unbroken symmetry is 

SU( 2) x U( 1). These classical symmetry properties 

are encoded in the following, gauge and globally & 

invariant discriminant: 

A,=4~~-27v*=(cu+/?)*(2a(-/3)*((r-2~)* . 

(4) 

The lines Au = 0 in (u, u) space correspond to un- 
broken SU(2) x U(l), and have a cusp singularity 
at the origin, where the W(3) symmetry is restored. 

As we will see, in the full quantum theory the cusp 
is smoothed out, Au + An = 4u3 - 27u* + O( A3), 
which, in particular, prohibits a phase with massless 

non-abelian gluons. 

It is straightforward to compute the prepotential F 

in the perturbative regime, with the result 

'<J 

Here, ei denote the roots of the equation 

WA*(X,U,U) ~x3-ux-~=0, (6) 

whose bifurcation set is given by Au in (4). Whenever 
two roots coincide, the discriminant vanishes. In terms 
of the variables (Y, p we have 

et -e2 = (cz+p) 

er -ej = (2cu-p) 

e2 - es = (a - 2/?) (7) 



A. Klemm et al. /Physics Letters B 344 (I 995) 169-I 75 111 

and thus, accordingly 

%z(x,a,p) = (x-a)(x-- (-p))(x- (p-a)). 

(8) 

The Casimirs U, u are gauge invariant and, in particu- 

lar, invariant under the Weyl group W of SU( 3). This 
group is generated by any two of the reflections 

71 : (&PI -+ (P- wp> 

r2: C&P> -+ (a,cr-/a 

13 : C&P> + (-P,-a). (9) 

Due to the multi-valuedness of the inverse map 

(u, v) + ((Y, p), paths in (u, u) space will in general 

not close in (cy, p) space, but will in general close 
only up to Weyl transformations. Such a monodromy 

will be non-trivial if a given path encircles a singu- 

larity in (u, u) space - in our case, the singularities 
will be at “infinity” and along the lines where the 

discriminant vanishes. 

It is indeed well-known [6] that the monodromy 

group of the simple singularity of type A:! (6) is 

given by the Weyl group of SU( 3)) and acts as Galois 
group on the ei (and analogously for WA,,_, related to 

SU( n) ). This will be the starting point for our gener- 
alization. 

What we are interested in, of course, is not just 

the monodromy acting on ( CX, p) , but the monodromy 
acting on (ao;t, aD;2; a, /?)‘, where 

Performing the Weyl reflection rt on (a, p) ‘, we eas- 
ily find 

(11) 

The winding number N that arises from the logarithms 
is not determined by the finite, “classical” Weyl trans- 
formation acting on the ai, but depends on the cho- 
sen path in (u, u) space. We note that for large Z = 
4u3 - 27u2, which corresponds to the semiclassical 
limit, the prepotential behaves like 

3 class - u log [ $1 7 (12) 

from which we can read off the winding number for 
any given path in the semiclassical regime. We find 
that by choosing appropriate paths, one can have N 
jump by even integers, and that the minimal winding 
number is N = 1. (An example for such a closed 

100pisgivenby (u(ai(t)),u(ai(t)) fort=O,...,l, 

where al(r) = eiT’ul + i( 1 - e’*‘)u2, u2( t) = UT.) 
Therefore, the matrix representation of rt acting on 

(aD;l,aD;2; a,p)' is 

where rilass is the “classical” Weyl reflection (given 

by the block diagonal part of YI ), and T the “quantum 

monodromy” 

where C=(Jl ,‘> (14) 

is the Cartan matrix of SU( 3). The other Weyl reflec- 

tions are given analogously by Ti = ryass T-l. The Yi 

are related to each other by conjugation, and, in par- 
ticular, rotate into each other via the Coxeter element, 
rclass = rclassrclass 
COX 12. 

3. The curves for W(n) 

Our aim is now to find a sequence of curves C that 
reproduces the quantum moduli space of supersym- 

metric SU(n) Yang-Mills theories. Since we do not 

know how to derive these curves from first principles, 

we will make a proposal for the curves that is consis- 
tent with various requirements, and subsequently ver- 

ify that at least the monodromies at “infinity” repro- 

duce the above matrices ri. This will be our only non- 
trivial consistency check for the time being. To really 
show that the choice of curves is correct physicswise, 
requires in addition to check the various other mon- 

odromies, which correspond to the condensation of 
monopoles and dyons. A detailed discussion of these 

matters will be presented elsewhere [ 51. 
Let us now list the requirements that we impose 

on the curves C. First, we seek surfaces with 2n peri- 
ods (corresponding to (ao;i; Ui) ) , whose period ma- 
trices are positive definite. It will be pointed out below 
that this condition can be satisfied by choosing genus 
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n - 1 Riemann surfaces, in direct generalization of 
[ I]. Secondly, we require that for A -+ 0 the clas- 

sical situation is recovered. That is, the discriminant 

of C should have, for A = 0, a factor of A0 given 

in (4). This means that for A = 0 the curves should 

have the form ym = C(x) = WA,_, x (. . .) for some 

m. This then also implies that the monodromy groups 
will have something to do with the Weyl groups of 

SU(n), and this is what we want as well. Thirdly, the 

curves must behave properly under the cyclic global 

transformations acting on the Casimirs {cz, c3, . . .} E 

{ u, v, . . . }; in other words, there should be a natural 
dependence on Casimirs, for all groups. Finally, from 

[2] we know that A should appear in C(X) with a 
power that corresponds to the charge violation of the 

one-instanton process. 

Taking these requirements together suggests the sur- 

faces for XI(n) Yang-Mills theory to be the follow- 
ing, genus g = n - 1 hyperelliptic curves: 

Y* = C,(x) = (WA,,_, (x, ci))* - A*“, (15) 

where 

n Returning to SU( n) , it is useful to write 

w,,,_, (x,ci) = X” - c ci xn-i 
C,(x) = (K,l_, ( ~9 ci) + A”) (WA._, (X, ci) - A”) i=2 

are the A-type simple singularities related to SU( n) . 
Morally speaking, the square of W reflects having both 
electric and magnetic degrees of freedom. Since there 

is a general relationship [ 61 between Arnold’s simple 

A-D-E singularities, perturbations by Casimirs, mon- 
odromy and Weyl groups, we conjecture that (15) 
describes surfaces for the other simply laced gauge 

groups G as well, by simply replacing WA._, (x, Ci> by 
the corresponding D- or E-type singularity, and A*” 

by A2h, where h is the corresponding Coxeter number. 
Note in passing that even though C2( x) does not 

have the form as one of the curves given in [ 1,2], 
it is equivalent to the TO(~) modular curve given in 

[ 21, since the modular invariants 3 coincide: j(u) = 

A-. Note also that the points u* = A4 and 

u = 0;) are exchanged for the two curves in [ 1,2], i.e., 
the parameters of the r( 2) and TO (4) modular curves 
are related as follows: 

3 Obtained by transforming to the Weierstrass normal form. 

Fig. 1. Branched x-plane with cuts linking pairs of roots of C3 = 0. 
We depicted our choice of basis for the homology cycles. Con- 
densation of monopoles or dyons occurs when two branch points 
approach each other. The monodromy of the corresponding van- 
ishing cycle then determines the electric and magnetic quantum 
numbers. 

U(4) = J-&#. (17) 

= rI ” (x-e+>(X-eZ:). (18) 
i=l 

Critical surfaces occur whenever two roots of C(x) 
coincide, that is, whenever the discriminant AA = 

&i(eZk - ef)* vanishes. Physicswise we expect 
when this happens, monopoles or dyons condense 
whose quantum numbers are determined by the cor- 
responding monodromy matrices. For example, for 
G = SU( 3) the quantum discriminant is 

A,, = A’*A+A- A A’ A; =4~~-27(vfA~)~. (19) 

By construction, the hyperelliptic curves (15) are 
represented by branched covers over the x-plane. More 

precisely, we have n 22 cuts, each linking a pair of 
roots ef and e,:, i = 1,. . . ,n. As an example, we 
present the picture for G = SU(3) in Fig. 1. In the 
classical theory, where A ---) 0, the branch lines shrink 
to n doubly degenerate points: eI: -+ e+ = ei. These 
points, given for SU( 3) in Eq. (7), correspond to the 
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weights of the n-dimensional fundamental represen- 
tation (the picture represents a deformed projection 
of the weights onto the unique Coxeter eigenspace 

with Z,, action). This means that the branched x-plane 
transforms naturally under the finite “classical” Weyl 

group that permutes the points. This finite Weyl group 

is all there is in the classical theory, and is just the 
usual monodromy group of the A,_1 singularity al- 

luded to earlier. In the quantum theory, where the de- 

generate dots are resolved into branch lines, there are 

in addition possibilities for “quantum monodromy”, 

which involves braiding of the cuts. 

4. Periods and monodromies for G = W(3) 

What we are interested in is the monodromy at in- 

finity, which happens to be an “unstable” situation in 

that more than two points collide simultaneously. This 

would in principle require to find an appropriate com- 
pactification of the moduli space to make the degen- 

eration stable. 4 However, instead of trying to resolve 

this subtle problem, we will rather employ a trick to 

get at the monodromy at infinity in a more direct way. 

Specifically, we will use the fact the the monodromy 
factors into a classical and a quantum part, just as in 
( 13) for SU( 3). From the above it is quite clear that 

the classical part of the monodromy is obtained by 
simply permuting the branches in the x-plane. This is 

easily implemented by choosing appropriate paths just 
like the one above Eq. (13). 

The quantum part is associated with the logarithm 
in ( 12). The crucial observation is that we can mimic 

the effect of looping around in the Z-plane (where 

Z = 4u3 - 270*), by formally rotating 

7: A6 --+ e2Tirh6) t = 0,. . . ,1 ) (20) 

along a small cycle around the origin. Such a rota- 
tion of a singularity @ = Wa + E, E = e2Vir, is indeed 
well-known in the mathematical literature [ 61, where 
it is, ironically, called “classical monodromy”. For the 

4 For G = N(2), one can do this by just fixing three points on 
the x-plane. Doing this has the effect that u = fAz and u = 00 

get exchanged, precisely according to the reparametrization ( 17). 

Thus, what one might call monodromy at infinity gets exchanged 

with what one might call monodromy at u = A*. The monodromy 

matrices, however, are essentially the same (up to conjugation and 

inversion), so the difference does not seem to matter. 

A-D-E simple singularities it corresponds to the Cox- 
eter element of the Weyl group, whereas in the present 
context, it gives the quantum monodromy in the semi- 

classical regime. 
Now what I does on the x-plane is to transform 

the e’ and e; into each other - this is obvious from 

( 18). Therefore, the quantum monodromy is given by 
the product of all the monodromy matrices associated 

with the vanishing cycles around the branch cuts in 

the x-plane. So what needs to be done is to determine 

the precise form of these matrices. 

Clearly, the monodromy matrices must reflect the 
action of braiding and permuting the cuts on the vector 

(ao;i; ai)‘. This action is expressed in terms of the 

action on the homology cycles via 

(21) 

where ai, fij is some symplectic homology basis with 

(ai*Pj) = -(pi, Qi) = &j, (ai,aj) = (Pi,Pj) = 03 

i,j= 1,. . . , g. From the theory of Riemann surfaces it 

is clear that the monodromy group must be contained 

inSp(2g,Z) =Sp(2n_2,Z).ForG=SU(3),we 

have depicted our choice of homology basis in Fig. 1. 

In (2 1) , A denotes a suitably chosen meromorphic 
differential. The holomorphic differentials on a genus 

g = n - 1 hyperelliptic curve are given by wi = xi-’ “;“, 

i= 1,. . . , g. They give rise to the period matrices as 

Aij = S,,Oi and Bij = sP,wi, which are related to 

(an;i, Ui) as fOllOWS: 

A = Jai(u) dab(u) 
0 -, Bij=- 

dUj ihj . 

(22) 

This represents a non-trivial integrability condition, 
and this is what determines A in (21). Specifically, 

we can have that wi = g if we (formally) choose, 
for example, the differential as follows: 

A = -&log] -WA,,_, - J( WA,,_,)* - A*“] . (23) 

Note that due to the identification (22), the second 
Riemann bilinear relation, Im(A-‘B) > 0, ensures 
the positivity of the metric: 

ET 

(ds)* = Im -$&da’& = Im C da* idii’ , (24) 
i=l 
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similar as for genus one [ 11. 
The action of braiding the branch points on the ho- 

mology can be obtained elementarily by tracing the 

deformations of the cycles induced by the movement 

of the branch points. Somewhat easier and more el- 

egant is however to use the Picard-Lefshetz formula 

[ 61. Denoting by Yij the vanishing cycle that vanishes 
as one moves the i’th branch point along a specified 

path y to the j’th point, the action on any cycle of 
the counter-clockwise braiding of the two points along 

that path is given by 

&,,Y = Y + (Y9 vij)vij T (25) 

where (y, Vij) denotes the intersection of the two cy- 

cles. (For the A-D-E simple singularities, this formula 

coincides with the well-known formula for Weyl re- 

flections.) 

Specifically, the effect of braiding the cut between 

e: and e; on our homology basis, defined in Fig. 1, 

comes out to be as follows: 

There is no additional sign since the forms oi are 
invariant for this particular braid. Similarly, 

/l 0 -1 o\ 

According to what we said above, the quantum mon- 
odromy is then given by the product of these matrices, 

and it indeed coincides with ( 14) : 

B,~, ?- Be+ p- Be; ,,, = T-’ . 
1’ I 2’2 ’ 

The classical monodromy depends on the particular 
path, and is trivially given by the corresponding clas- 
sical Weyl group element. For example, for the path 
given above Eq. (13), the branches 1 and 2 in Fig. 1 
are exchanged, and the action of this braid on the ho- 
mology is given by $‘ass. Hence, the full monodromy 

is rt = r, “assT-‘, in accordance with Eq. ( 13). We be- 
lieve that this is a non-trivial verification of our pro- 
posal for the hyperelliptic curves. 

Obtaining the monodromies around the other van- 

ishing cycles is harder, and is deferred to the future 

[5]. However, we can make an easy guess of what 

the monodromies corresponding to the purely mag- 

netically charged monopoles might be (possibly up to 
conjugation), namely by considering 

rTmasf = fl r;tassT& = (+)f , 
I 

i= 1,2,3, (27) 

where 

is the symplectic metric. These matrices would look 

like 

(mas) _ 
r1 - 

-1 1 0 0 

0 100 
2 -1 -1 0 

-1 -1 1 1 1 , etc. 

According to [ 1,2], the magnetic charges of the 

monopoles that become massless at the correspond- 
ing singularities are given by the eigenvalue-( $1) 

eigenvectors of the monodromy matrices. Specifically, 

for the matrices (27) we find the following (mag- 

netic;electric) charges for the massless monopoles, 

(ma!& . 
r1 . (0, 1; o,o> 

(mag) . 
r2 . (l,O;O,O) 

(wz) . 
r3 (-l,l;O,O) , (28) 

which is something one would expect in accordance 
with semiclassical stability [ 71. 

5. Remarks about a relation to string theory 

The A-D-E singularities play also a well-known role 
in string theory [ 81. They give rise to exactly solv- 
able d = 2 N = 2 supersymmetric Landau-Ginzburg 
models, whose tensor products can be used to repre- 
sent Calabi-Yau string compactifications. We can in- 
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deed relate our curves as well to LG models, by sim- 
ply going to homogenous coordinates. The LG super- 

potentials are of the form WLG = y2 + x2” + (AZ ) 2n + 

C2X2”-2Z2+. . .) where ci are now dimensionless mod- 

uli, and A is an irrelevant, non-zero number. These 

potentials describe tensor products of two N = 2 min- 

imal models of type Azn_i. 
As is well-known [ 91, such N = 2 theories, when 

viewed as topological field theories, are characterized 

by prepotentials 3Lo (ai), where ai are the flat coordi- 

nates corresponding to the LG moduli ci, The point is 

that the computation of 3Lo is, essentially, the same 
as the computation that leads to 3 in ( l), and there- 

fore these two prepotentials are very closely related. 

Therefore, if we consider type IIB string compactifi- 

cation with N = 2 space-time supersymmetry in d = 

4, on a superconformal background that contains one 

of the above LG models as a tensor product piece of 
it, the string effective action [ 10,l I] contains a piece 

that is very similar to the the N = 2 Yang-Mills ef- 

fective action ( 1). It might be possible that, upon de- 

coupling the gravitational sector (“rigid special geom- 

etry” [ 1,121) and appropriately freezing the various 
other fields, the effective actions do coincide. It is in- 

deed well-known that the abelian gauge group in the 

RR-sector of a type II string compactification never en- 

larges to a non-abelian group, and this may be thought 

as a reflection of what happens for quantum N = 2 
Yang-Mills theory. 

Does this potentially mean that a low-energy ob- 
server cannot distinguish between this subsector of 

the type IIB string compact&cation and the effective 

Yang-Mills theory? The answer could be related to the 

conjecture [ 131 about the equivalence of string the- 
ory with its effective field theory, when all solitons of 
the effective theory are taken into account. The above 

would also imply that the complex functional depen- 
dence of a given 3 on the moduli a could be attributed 
either to world-sheet instantoneffects, or, equally well, 
to space-time non-perturbative effects, and this rela- 

tion would seem to be quite non-trivial. 

We believe that these matters urgently deserve fur- 

ther study. 
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