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Abstract

It is proved that the diffeomorphism type of the minimal sym-
plectic fillings of the link of a simple singularity is unique. In
the proof, the uniqueness of the diffeomorphism type of CP 2 \D,
where D is a pseudo holomorphic rational curve with one (2, 3)-
cusp, is discussed.

0. Introduction

The link L of an isolated singularity O on an algebraic variety V car-
ries a natural contact structure given by the maximal complex tangency
ξ. Associated to (V,O), we have two kinds of objects. One is a resolu-
tion of the singularity (V,O) and the other is so-called the Milnor fiber,
which exists when (V,O) has a smoothing. Both of them provide ex-
amples of compact manifolds bounding L. From symplectic viewpoint,
their boundaries are “symplectically convex”. Such manifolds are called
symplectic fillings of (L, ξ). In general, the two symplectic fillings pro-
duced by the minimal resolution and the Milnor fiber (if it exists) of an
isolated singularity on a complex surface have different topologies. In a
previous paper [27], we studied topological constraints for minimal sym-
plectic fillings of links of simple singularities on complex surfaces. Here
“minimal” means that the symplectic 4-manifold does not contain any
symplectically embedded sphere of self-intersection number −1, which
we may call a symplectic (−1)-curve. For simple singularities, Brieskorn
[3, 4, 5] proved that the minimal resolution and the Milnor fiber are
diffeomorphic as a consequence of existence of simultaneous resolution.
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Of course, we note that they are not isomorphic as complex manifolds.
This result suggests to us that, in these cases, the diffeomorphism type
of minimal symplectic fillings should be unique. The goal of this pa-
per is to prove the following uniqueness theorem for the diffeomorphism
type of minimal symplectic fillings of the link of simple singularities in
complex dimension 2.

Main Theorem. Let X be any minimal symplectic filling of the
link of a simple singularity. Then, the diffeomorphism type of X is
unique. Hence, it must be diffeomorphic to the Milnor fiber. Moreover,
the symplectic deformation type of X is unique.

This theorem implies the following result of Brieskorn mentioned
above.

Corollary. The minimal resolution of a simple singularity is diffeo-
morphic to the Milnor fiber of the singularity.

For other classes of isolated singularities in a complex surface, we
cannot, in general, expect the uniqueness result on the diffeomorphism
type of the minimal symplectic fillings of the link of the singularities.
But, for the class of simple elliptic singularities, we can determine the
diffeomorphism types of the minimal symplectic fillings of the link of
these singularities [28]. McDuff [23] also obtained uniqueness result
for another type of cyclic quotient singularities. After finishing this
work, there appeared a preprint “On Lens Spaces and Their Symplectic
Fillings” by P. Lisca, which announces the classification of symplectic
fillings of lens spaces up to diffeomorphisms. We also noticed the follow-
ing theorem as a biproduct of our uniqueness result of the symplectic
filling. The proof will appear in the sequential paper [29].

Theorem. Let M be a closed symplectic 4-manifold containing a
pseudo-holomorphic rational curve C with a (2, 3)-cusp point. Suppose
that C is non-singular away from the (2, 3)-cusp point. If the self-
intersection number C2 of C is positive, then M must be a rational
symplectic 4-manifold and C2 is at most 9.

1. Preliminaries

Firstly, we recall the notion of simple singularities and prepare some
notations. Let Γ ⊂ SU2 be a finite subgroup of SU2. It is well known
that Γ is classified by the Dynkin diagrams of type An (n ≥ 1), Dn

(n ≥ 4), E6, E7 and E8. According to these types, Γ is isomorphic
to the cyclic group Z/(n + 1)Z, the binary dihedral group D∗

2(n−2),
the binary tetrahedral group T∗, the binary octahedral group O∗ and
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the binary icosahedral group I∗, respectively. The Dynkin diagrams of
above types are diagrams with three branches of length p, q and r. The
numbers p, q and r are listed in Table 1 below, while the rank of the
Cartan matrix corresponding to Γ is given by p + q + r − 2 (see also
Table 1).

Since Γ acts on C2 holomorphically, the quotient space C2/Γ is a
complex surface with a quotient singularity at the origin, which is called
a simple singularity. The simple singularities can be also realized as
isolated hypersurface singularities in C3 as follows. Let fΓ(x, y, z) be
the polynomial in the following table (see [32], for example).

Table 1.

Group Γ Polynomial fΓ(x, y, z) (p, q, r) rank Γ
An xn+1 + yz (1, k, l) n
Dn x2y + yn−1 + z2 (2, 2, n − 2) n
E6 x4 + y3 + z2 (2, 3, 3) 6
E7 x3y + y3 + z2 (2, 3, 4) 7
E8 x5 + y3 + z2 (2, 3, 5) 8

Here, (k, l) in the An-case is an arbitrary pair of positive integers sat-
isfying k + l = n+ 1. The polynomial fΓ generates the ideal RΓ in the
polynomial ring C[x, y, z]. It turns out that C[x, y, z]/RΓ is isomorphic
to the ring of Γ-invariant polynomials on C2. Thus, the simple singu-
larity of type Γ can be realized as an isolated singularity at the origin
on the surface defined by fΓ(x, y, z) = 0.

The link L of a simple singularity is defined by

L = {(x, y, z) ∈ C3 | fΓ(x, y, z) = 0, |x|2 + |y|2 + |z|2 = ε},
where ε is a small positive real number. We define the contact distrib-
ution ξ on L by

ξ = {v ∈ TL | J0v ∈ TL},
where J0 is the standard complex structure on C3. Note that ξ carries
a globally defined contact form λ, i.e., ξ = ker λ. A compact symplectic
4-manifold (X,ω) is called a weak symplectic filling of (L, ξ), if the
following conditions are satisfied:

(1) L is the boundary of X as oriented manifolds, where L is oriented
by λ ∧ dλ and X is oriented by ω2,

(2) ω is positively proportional to dλ on ξ.

Moreover, if there exists an extension λ̃ of λ on a collar neighborhood
of L = ∂X such that ω = dλ̃, we call (X,ω) a strong symplectic filling
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of (L, ξ). If ω is exact, e.g., L is a rational homology sphere, the sym-
plectic form ω of a weak symplectic filling can be modified to another
symplectic form such that X becomes a strong symplectic filling (see
e.g., Proposition 3.1 in [7], Lemma 2.1 in [27]). Hence, for the link of a
simple singularity, we may assume that our symplectic filling is a strong
symplectic filling. If we replace the condition (1) above by (1−) below,
we get a notion of “(strong) concave fillings”.
(1−) L is the boundary ofX and the orientations induced by the contact

structure and the symplectic structure, respectively, are opposite.
If (X,ω) is a strong symplectic filling of (L, ξ), a collar neighborhood

of ∂X can be embedded in the symplectization of (L, ξ) such that the
outward normal vector of X points to the positive side. For strong
concave fillings, we have a similar embedding, but the outward normal
vector points to the negative side. Hence, we can glue a strong symplec-
tic filling X and a strong concave filling Y to get a closed symplectic
manifold possibly after modifying the symplectic structures.

2. Outline of the proof of Main Theorem

In this section, we give the outline of our argument and the orga-
nization of this paper. Roughly speaking, the proof of Main Theorem
consists of two parts.

The first part is that the symplectic filling X is embedded into a
certain smooth closed symplectic 4-manifold Z(Γ), which will be called
a compactification of X. This is similar to the one in [27], but we
investigate the situation more precisely. Namely, we will determine
Z(Γ) and the compactifying divisor explicitly in Section 3. Let MΓ be
the Milnor fiber defined by {(x, y, z) ∈ C3 | fΓ(x, y, z) = 1}, where
fΓ(x, y, z) is the polynomial in Table 1. We regard fΓ(x, y, z) as a
weighted homogeneous polynomial. The weights and degrees are given
by the following table.

Table 2.

Group Γ Weights (a, b, c) degree h
An (1, k, l) n+ 1
Dn (n− 2, 2, n − 1) 2(n− 1)
E6 (3, 4, 6) 12
E7 (4, 6, 9) 18
E8 (6, 10, 15) 30

We recall a compactification of the Milnor fiber of a simple sin-
gularity after Saito. For more information, see [31]. Consider the
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weighted projective space P(a, b, c, 1) = (C4\0)/ ∼, where (x, y, z, w) ∼
(tax, tby, tcz, tw) for t ∈ C∗. By a map ι from C3 to P(a, b, c, 1) defined
by ι(x, y, z) = [x, y, z, 1], C3 can be embedded as an open dense subset
so that P(a, b, c, 1) = C3 ∪ P(a, b, c). Here, P(a, b, c) = {[x, y, z, 0] ∈
P(a, b, c, 1)}. Denote by MΓ the closure of ι(MΓ) in P(a, b, c, 1), which
is the hypersurface defined by fΓ(x, y, z) = wh in P(a, b, c, 1). It is sin-
gular, when Γ is not of the A1-type. The singular points of MΓ lie on
C = MΓ \ ι(MΓ) = MΓ ∩ P(a, b, c), which is a smooth rational curve.
These singularities turn out to be cyclic quotient singularities of type
An,1, where n = p, q, r. Taking the minimal resolution π : M̃Γ → MΓ,
we have a compact projective smooth surface M̃Γ, which contains the
Milnor fiber MΓ as an open dense subset.

A little modification is necessary for An-singularities. The equations
of type An in Table 1 are different from what Saito used in [31], but the
same argument works. The reason why we use xn+1 + yz is two-fold.
Firstly, we discuss cases both for n even and odd, while the cases with
even n are not discussed in [31]. Secondly, it seems more convenient in
the argument in Section 3 with this equation and we choose the weights
(1, k, l) = (1, 2, n − 1) when n ≥ 2. Anyway, in the An-case, some of
p, q, r in Table 1 are 1 and the number of singularities on MΓ is less
than 3. To deal with all the cases systematically, in the An-case, we
also blow-up at an appropriate number of non-singular points on C and
denote the result by M̃Γ. This gives the following configuration of the
compactifying divisor for any Γ.

−p

Ep

−q

Eq

−r

Er

C̃ −1

Figure 1.

We denote by C̃ the proper transform of C, which has the self-
intersection number −1 and by Ep, Eq and Er the exceptional set for
the resolution or blow-up with the self-intersection number E2

n = −n
for n = p, q, r respectively. Here, the integers p, q and r are given by
Table 1. Each of the curves Ep, Eq and Er intersects with C̃ at one
point transversely. Saito also showed that
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(2.1) K
�MΓ

= −(2C̃ + Ep + Eq + Er).

In particular, −K
�MΓ

is an effective divisor. Write

Mout
Γ = M̃Γ \ ι(MΓ ∩B6),

which is a regular neighborhood of C̃∪Ep∪Eq∪Er. Here, B6 is the closed
unit disc around the origin in C3. Note that Mout

Γ is a strong concave
filling in the sense of Section 1. Thus, we can glue the symplectic filling
X and Mout

Γ to obtain a closed symplectic manifold (Z(Γ), ω):

(2.2) Z(Γ) := X ∪S3/Γ M
out
Γ ,

which we call a compactification of the fillingX. We apply the following
theorem in [26] to Z(Γ), which was independently proved in [21], see
also [19].

Theorem 2.3. Let (M,ω) be a closed symplectic 4-manifold such
that ∫

M
c1(M) ∧ ω > 0.

Then, M is a rational or ruled symplectic 4-manifold up to blow-up and
down.

We briefly recall the argument in [26]. Using Taubes’ result, we find
a symplectically embedded 2-sphere with non-negative self-intersection
number in (M,ω). Then, a theorem by McDuff [23] states that (M,ω)
must be a rational or ruled symplectic 4-manifold, the symplectic de-
formation type of which is also uniquely determined. (As for classifi-
cation of symplectic structures on such manifolds, see [11], [23], [17].)
Namely, after blowing-down a family of disjoint symplectic (−1)-curves,
we get a minimal symplectic 4-manifold, which is symplectic deforma-
tion equivalent either to the complex projective plane or to a minimal
ruled symplectic 4-manifold. In fact, we will describe, in Section 3, the
diffeomorphism type of Z(Γ) explicitly (Theorem 3.1). The symplectic
filling X is the complement of a regular neighborhood of the compacti-
fying divisor, as in Figure 1, in Z(Γ).

The second part of the proof of Main Theorem is to determine how the
compactifying divisor C̃∪Ep∪Eq∪Er is embedded in Z(Γ). We will show
that the complement of the compactifying divisor is diffeomorphic to a
certain standard one which corresponds to the case whenX is the Milnor
fiber. Here, we give an outline of our argument in the case of En. Some
modification is needed in the cases of An and Dn (see Sections 4.2 and
5.2.) After preparing some fundamental lemmas in Section 4.1, we make
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blow-up and down operations on Z(Γ) and reduce the problem to the one
concerning the image D of the compactifying divisor in CP 2. We will
see that D is a pseudo-holomorphic curve, of degree 3, with one (2, 3)-
cusp singularity in CP 2 with respect to a certain tame almost com-
plex structure (Section 4.2), which we shall call a pseudo-holomorphic
cuspidal cubic curve. Here, a singular point of a pseudo-holomorphic
curve is called a (2, 3)-cusp point if its parametrization around the
singular point has the form (z2, z3) + O(4) (see [24]). Similarly, a
pseudo-holomorphic curve in CP 1×CP 1 is called a pseudo-holomorphic
cuspidal curve of bidegree (2, 2), if it is a pseudo-holomorphic curve
with one (2, 3)-cusp singularity, which represents the class [2, 2], i.e.,
2[CP 1 × {pt}] + 2[{pt} ×CP 1]. By the adjunction formula, a pseudo-
holomorphic rational curve representing the class 3[CP 1] (resp. [2, 2]) in
CP 2 (resp. CP 1×CP 1) must have exactly one singular point, which is
either a node or a non-immersed point of multiplicity 2. In Sections 4.2
and 5.2, we always assume that the singular point is fixed at p and
the almost complex structure around p is integrable. So, the Taylor
expansion above is the usual description of a holomorphic map germ.

Then, we will show a uniqueness result for the diffeomorphism type of
the complements CP 2 \D (Section 5.2). This is an analog of symplectic
isotopy problem for singular pseudo-holomorphic curves. In general, the
uniqueness of symplectic isotopy types of singular pseudo-holomorphic
curves does not hold. For example, it is classically known that there ex-
ist pairs of algebraic curves of degree 6 with 6 cusp points in CP 2 which
are not isotopic. ([36], see also [30]). The degree of the curve, types
of the singular points and the number of the singular points strongly
affect the nature of this problem. In this paper, we will achieve unique-
ness for pseudo-holomorphic cuspidal cubic curves in CP 2. Namely,
the degree of our curve is 3 and the number of cusp point is 1. The
(2, 3)-cusp singularity has a nice special feature as follows. Although a
map germ (C, O) → (C2, O) may be perturbed to another map germ,
which is not equivalent to the initial one in general, by adding higher
order terms [6], the map germ of f(z) = (z2, z3) +O(4) is equivalent to
f0(z) = (z2, z3). This point will be discussed in Section 5.3. Moreover,
Theorem 5.8 proved in Section 5.1 is another important ingredient to
prove the uniqueness. This is derived from a cobordism argument which
is related to transversality and compactness properties. Here, the con-
ditions on the degree and the number of cusp points are essentially used.
Since this kind of statement does not hold for Zariski’s example as we
mentioned above, we cannot expect the uniqueness in that case.
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Combining the description of the symplectic filling X as a comple-
ment of the compactifying divisor in Z(Γ) (Section 4) and the unique-
ness result in Section 5, we will complete the proof of Main theorem in
Section 6.

3. Description of the compactification Z(Γ)

In this section, we show the following:

Theorem 3.1. The compactification Z(Γ) is a rational or ruled sym-
plectic 4-manifold up to blow up and down. More explicitly, Z(Γ) is
symplectomorphic to an n + 3-point blow-up of the complex projective
plane with an appropriate Kähler form. In particular, it is diffeomor-
phic to the following rational symplectic 4-manifold in Table 3 according
to the type of Γ.

Table 3.

Type of Γ Diffeomorphism type of Z(Γ)
An CP 2#(3 + n)CP 2

Dn CP 2#(3 + n)CP 2

E6 CP 2#9CP 2

E7 CP 2#10CP 2

E8 CP 2#11CP 2

Proof. To prove the first part of Theorem 3.1, it suffices to show that
Z(Γ) satisfies the assumption in Theorem 2.3. Recall that 2C̃ + Ep +
Eq +Er is an anti-canonical divisor of M̃Γ, which is contained in Mout

Γ .
On the other hand, Theorem 2 in [27] and Theorem 10.1 in [15] state
that the canonical bundle KX of any minimal symplectic filling X of
S3/Γ with the quotient contact structure is trivial. Since S3/Γ is a
rational homology 3-sphere, we conclude that 2C̃+Ep +Eq +Er is also
an anti-canonical divisor of Z(Γ). Note that it is written as a positive
combination of symplectically embedded surfaces. Hence, we have

∫
Z(Γ)

c1(TZ(Γ)) ∧ ω = 2
∫
�C
ω +

∫
Ep

ω +
∫

Eq

ω +
∫

Er

ω > 0.

This is the inequality in the assumption of Theorem 2.3.
Next, we shall prove the second part. To do this, we need more

detailed information on the topology of the symplectic filling X. The
following proposition is an improvement of a result in [27].



SIMPLE SINGULARITIES AND SYMPLECTIC FILLINGS 9

Proposition 3.2. Let X be any minimal symplectic filling of the link
of the simple singularity of type Γ. Then, the intersection form of X is
negative definite and b−2 (X) = rank Γ. Here, rankΓ is the rank of the
Cartan matrix corresponding to the Dynkin diagram of Γ.

Remark 3.3. The fact that X is negative definite is the conclusion
of Theorem 1 in [27] (see also Theorem 1.4 in [20]). Moreover, from
Theorem 2 in [27] and Theorem 10.1 in [15], we know that the canonical
bundle KX is always trivial. In particular, X is a spin manifold. Then,
using Froyshov’s result [8], we obtain the following estimate

(3.4) b−2 (X) ≤ rank Γ.

This estimate was already obtained in [27]. What we want to show
here is that the equality exactly holds in (3.4). We would also like to
mention that we do not use Froyshov’s result to prove it in this paper.

We prepare a couple of lemmas.

Lemma 3.5. We have b1(Mout
Γ ) = 0.

Proof. Note that Mout
Γ is a regular neighborhood of the configuration

of rational curves as in Figure 1. Then, the conclusion is obvious. q.e.d.

Next, we prove the following:

Lemma 3.6. For any symplectic filling X of the link of the simple
singularity of type Γ, we have b1(X) = 0.

Proof. Suppose that b1(X) 
= 0, then we have a non-trivial abelian
covering p : X̃ → X of any degree d > 1. Let us take d bigger than the
order of Γ, which is certainly isomorphic to the fundamental group of
∂X. Then, the boundary ∂X̃ consists of at least two connected com-
ponents, each of which is isomorphic to S3/Γ′

i for some finite subgroup
Γ′ ⊂ SU2. By pulling back the symplectic from ω on X to X̃ by p, X̃
is also a symplectic 4-manifold with disconnected boundary

⊔
i S

3/Γ′
i.

But Theorem 3 in [27] (also Theorem 1.4 in [20]) claims that ∂X̃ should
be connected, which is a contradiction. q.e.d.

Now, we show the following:

Lemma 3.7. For the closed symplectic 4-manifold Z(Γ) in (2.2), we
have b1(Z(Γ)) = 0.

Proof. We apply the Mayer–Vietoris exact sequence (over Q-coeffici-
ents) to the decomposition in (2.2). Then, by Lemmas 3.5 and 3.6,
imply Lemma 3.7. q.e.d.
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Proof of Proposition 3.2. From the formula (2.1) and the fact that KX

= 0 for the minimal symplectic filling X, we have

c21(KZ(Γ)) = c21(KMout
Γ

) = c21(K�MΓ
) = 8− (p+ q + r).

On the other hand, we have b2(Z(Γ)) = b2(X) + 4, and σ(Z(Γ)) =
σ(X) + σ(Mout

Γ ) = σ(X) − 2 (Novikov additivity for signatures). It
follows that

2χ(Z(Γ)) + 3σ(Z(Γ)) = 6− 4b1(Z(Γ)) + 5b+2 (X)− b−2 (X).

Since b+2 (X) = 0 and b1(Z(Γ)) = 0 by Lemma 3.7, we obtain the fol-
lowing equality

2χ(Z(Γ)) + 3σ(Z(Γ)) = 6− b−2 (X).

Note that c21(KZ(Γ)) = 2χ(Z(Γ)) + 3σ(Z(Γ)). Combining these equali-
ties, b−2 (X) can be calculated as

b−2 (X) = p+ q + r − 2.

Hence, we obtain Proposition 3.2 (with values p, q, r in Table 1). q.e.d.

Proof of Theorem 3.1, continued. Now, Lemma 3.7 excludes the case
that Z(Γ) is diffeomorphic to any ruled surface over a Riemann surface
of genus ≥ 1. There are two symplectic deformation types of mini-
mal rational or rationally ruled symplectic 4-manifolds, i.e., CP 2 and
CP 1 ×CP 1. Note that the one point blow-up of CP 1 ×CP 1 has the
same symplectic deformation type as the two point blow-up of CP 2.
Furthermore, we have b+2 (Z(Γ)) = b+2 (Mout

Γ ) = 1 and

b−2 (Z(Γ)) = b−2 (X) + b−2 (Mout
Γ ) = p+ q + r + 1.

Hence, we can determine the diffeomorphism types of Z(Γ), which com-
pletes the proof of Theorem 3.1. q.e.d.

4. Contraction of exceptional rational curves

In this section, we make blow-up and down operations on the sym-
plectic 4-manifold Z(Γ) constructed in section 3 to transform the com-
pactifying divisor C̃ ∪ Ep ∪ Eq ∪ Er to a pseudo holomorphic singular
curve in a rational symplectic 4-manifold. We shall describe the singular
curve explicitly.
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4.1. Some lemmas. First of all, we prove a fundamental lemma about
pseudo holomorphicity of the image of a pseudo holomorphic curve by
the contraction of pseudo holomorphic (−1)-curves. In section 4.2, we
frequently use Lemma 4.1 combined with Lemma 4.4 below. Our proof
is based on Lemma 3.2 in [23]. Take and fix a tame almost complex
structure J on a symplectic 4-manifold (M,ω) and E a J-holomorphic
(−1)-curve. We denote by π : M → M the contraction of E in C∞-
category. Note that M is diffeomorphic to the symplectic blown down
manifold along E. Denote by ω the symplectic form on M as in Lemma
3.2 in [23].

Lemma 4.1. Let S be a J-holomorphic curve in (M,ω), which in-
tersects E transversely at non-singular points on S. Then, there exists
a tame almost complex structure J on the blown-down manifold (M,ω)
so that π(S) is J-holomorphic.

Proof. Firstly, we take a tame almost complex structure J ′ on (M,ω)
satisfying the following properties:

(4.2.1) J ′ is integrable in a neighborhood U of E.
(4.2.2) J ′ coincides with J along E, i.e., J ′|E = J |E : TM |E → TM |E .
(4.2.3) J ′ coincides with J outside of a neighborhood V of E, where U ⊂

V .
(4.2.4) Each component of S ∩ U is J ′-holomorphic.

In fact, such a J ′ can be found as follows. Pick a J-invariant subbundle
N , which is complementary to TE in TM |E . Obviously, N is a complex
line bundle. Pick a hermitian connection ∇ on N . Since E is a Riemann
surface, N becomes a holomorphic line bundle by ∂ = ∇0,1. With
respect to this complex structure, N is a complex manifold and E is a
complex submanifold. Denote by V a suitable tubular neighborhood of
E in M and by D(N) a disk bundle in N . Here, we take V so that V ∩S
is in the smooth part of S. Pick a diffeomorphism φ : D(N) → V in
such a way that the image of each fiber is J-holomorphic at the origin in
the fiber, and φ|E is the identity. Hence, we get an integrable complex
structure J0 on V so that J0 coincides with J along E. Note that S is
J-holomorphic, hence the tangent spaces of S at intersection points of
S and E are J0-holomorphic. Since S intersects E transversely, we can
assume that φ maps the union of some fibers onto S ∩ V .

Clearly, J0 is ω-tame on a small neighborhood U ⊂ V of E. Then, we
can deform J0 and J on V \U through ω-tame almost complex structures
to get a desired J ′ on M . Moreover, we can choose the deformation Jt

from J0 to J on V \ U so that S ∩ (V \ U) is pseudo-holomorphic with
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respect to each Jt, since S ∩ (V \ U) is a properly embedded pseudo-
holomorphic curve with respect to J0 and J . In particular, S is J ′-
holomorphic.

Now, we are going to prove Lemma 4.1. Denote by π : M → M the
contraction of E. Lemma 3.2 in [23] assures existence of a symplectic
structure ω on M so that ω coincides π∗ω outside of U and an ω-tame
almost complex structure J on M such that J ◦ π∗ = π∗ ◦ J ′.

Since S is J ′-holomorphic, hence π(S) is J-holomorphic. q.e.d.

There are several choices in the proof of Lemma 4.1, e.g., choices of
N , the hermitian metric and the hermitian connection on N , and J ′ in
(4.2). However, we remark that all of them are chosen in contractible
families. Therefore, we also get the following:

Lemma 4.3. Let Jt be a family of tame almost complex structures
on (M,ω) and Et a family of Jt-holomorphic (−1)-curves. Denote by
πt : M →M the contraction of Et. Let St be a family of Jt-holomorphic
curves in (M,ω), which intersects Et transversely at non-singular points
on St. Then, there exists a family of tame almost complex structures Jt

on (M,ωt) so that πt(St) is Jt-holomorphic for each t.

We call a 2-dimensional homology class e a symplectic (−1)-class,
if e contains a symplectic (−1)-curve, i.e., a symplectically embedded
sphere of self-intersection number −1.

We show the following useful lemma.

Lemma 4.4. Let D be an irreducible J-holomorphic curve in a sym-
plectic 4-manifold M . Suppose that D represents the anti-canonical
class, i.e., the homology class [D] is the Poincaré dual of the first Chern
class c1(M). Then, there exists a tame almost complex structure J ′ such
that J ′ coincides with J in a neighborhood of D and any symplectic
(−1)-class e is represented by a unique J ′-holomorphic embedded rep-
resentative E. Moreover, E intersects D at exactly one regular point
transversely.

Remark 4.5. It is shown in [23] that any symplectic (−1)-class is
represented by a J-holomorphic embedded sphere for a generic tame al-
most complex structure J . In Lemma 4.4, the almost complex structure
J ′ is not generic in the whole space of tame almost complex structures,
since J ′ is prescribed in a neighborhood of D. Since we only need prop-
erties (1) and (2) in the proof of Lemma 4.4, we can find J ′ arbitrary
close to J .

Proof. We pick a tame almost complex structure J ′ satisfying the
following conditions:



SIMPLE SINGULARITIES AND SYMPLECTIC FILLINGS 13

(1) J ′ coincides with J in a neighborhood of D, in particular, D is
J ′-holomorphic,

(2) there are no J ′-holomorphic spheres with self-intersection number
less than −1, except possibly D, in particular, there are no em-
bedded J ′-holomorphic spheres with self-intersection number less
than −1.

This is possible, since the virtual dimension of the moduli space of
pseudo-holomorphic curves as in (2) is negative.

Note that the class e has a unique pseudo-holomorphic representa-
tive for a generic tame almost complex structure, which is necessarily
embedded. We pick a sequence {Jn} of generic tame almost complex
structures converging to J ′. Denote by En the Jn-holomorphic repre-
sentative of the class e.

Suppose that En converges to some J ′-holomorphic sphere E. Since
the self-intersection number of e is −1, E is not multiply covered. Then,
the fact that the virtual genus of the class e is 0 implies that E is an
embedded J ′-holomorphic sphere representing the class e, which is the
desired J ′-holomorphic (−1)-curve. (Here, we call the number (e · e −
c1(M) · e+ 2)/2 the virtual genus of the class e.)

Suppose that En converges as stable maps to f : ∪CP 1
(i) → M con-

sisting of at least two components and write f(CP 1
(i)) = Bi. We may

assume that at least one of Bi is a multiple of D (possibly D itself).
Otherwise, the genericity argument by McDuff [23] guarantees existence
of J ′-holomorphically embedded 2-sphere representing the class e. We
denote by k[D] the sum of all homology classes [Bi], which are mul-
tiples of [D]. For other Bi, we write Bi = liCi with li ≥ 1 and Ci

being the images of simple (i.e., not multiply covered) J ′-holomorphic
maps. Since no Ci is contained in a neighborhood of D, the generic-
ity of J ′ assures transversality for somewhere injective J ′-holomorphic
spheres Ci. Hence, for a sufficiently large n, the homology classes {Ci}
are represented by Jn-holomorphic spheres Ci,n. This implies that the
intersection numbers Ci · e = Ci,n · En are non-negative:

Ci ·
(∑

liCi + kD
)
≥ 0.

On the other hand, e is a symplectic (−1)-class, hence, we have c1(M)e =
1. Since D represents the anti-canonical class of M , we find

D ·
(∑

liCi + kD
)

= 1.

Since k and li are positive integers, these two inequalities imply that

e2 =
(∑

liCi + kD
)2

> 0,
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which contradicts to e2 = −1.
Let E be the J ′-holomorphic (−1)-sphere representing the class e.

Since D · E = 1 and E and D are J ′-holomorphic curves, E and D
intersects exactly at one point transversely. q.e.d.

Remark 4.6. Under the assumption of Lemma 4.4, the image D
of D by the blow-down is an anti-canonical divisor of the blow-down
manifold. Pseudo-holomorphicity of D is guaranteed by Lemma 4.1.

4.2. Contraction of exceptional curves in Z(Γ). Throughout this
Section 4.2, we pick a tame almost complex structure on Z(Γ), which is
integrable near the compactifying divisor.

Case: En with (p, q, r) = (2, 3, n − 3), n = 6, 7, 8.
We recall that we have the (−1)-curve C̃ in Mout

En
⊂ Z(En). We can

blow down Z(En) along C̃ to get the 4-manifold Z(En)(1). Then, the
curve Ep becomes the (−1)-curve E′

p. We contract the (−1)-curve E′
p

to get the 4-manifold Z(En)(2). Then, we can see that the (−1)-curve
E′′

q and the (−n + 5)-curve E′′
r , (note that −r + 2 = −n+ 5), intersect

as in the following picture.

−2

Ep

−3

Eq

Z(En)

−r

Er

C̃ −1

Z(En)(1)

�

�
�

�
�

�
�

−2

E′
q

�
�

�
�

�
�

−1

E′
p

−r + 1 E′
r

Z(En)(2)

�

−1

E′′
q

−n+ 5

E′′
r

Figure 2.

Furthermore, we contract E′′
q to get the 4-manifold Z(En)(3) which

contains the singular curve E′′′
r . Its self-intersection number is −n+ 9.

From Theorem 3.1, it is easy to see that Z(En)(3) is symplectic defor-
mation equivalent to CP 2#nCP 2. Thus, we can blow down Z(En)(3)
along further n (−1)-curves to get CP 2. It is, however, necessary to
know how E′′′

r is transformed under the blow-down process. For this
purpose, we use Lemma 4.4 to make exceptional curves of the blow-
down process and E′′′

r pseudo-holomorphic, with respect to a common
tame almost complex structure, simultaneously. Note that E′′′

r repre-
sents the anti-canonical class. Up to this stage Z(En)(3), the blow-down



SIMPLE SINGULARITIES AND SYMPLECTIC FILLINGS 15

is carried out also as complex blow-down and the complex structure near
the compactifying divisor descends to the one in a neighborhood of the
(2, 3)-cusp point of E′′′

r in Z(En)(3). Hence, we may assume that the
almost complex structure is integrable in a neighborhood of E′′′

r , the ef-
fect to E′′′

r under these blow-down is the same as in complex geometry.
Note also that McDuff showed that any closed symplectic 4-manifold
becomes minimal by blow-down a maximal family of disjoint symplectic
(−1)-curves simultaneously [23].

More precisely, we show the following:

Proposition 4.7. Let εj , j = 1, . . . , n, be a maximal family of
disjoint (−1)-rational curves in Z(En)(3), which is diffeomorphic to
CP 2#nCP 2. Let π : Z(En)(3) → CP 2 be a smooth mapping corre-
sponding to the blowing down along the εj ’s. Then, π(E′′′

r ) is represented
by a pseudo holomorphic cuspidal cubic curve.

Proof. Choose a maximal family of disjoint symplectic (−1)-curves
in Z(Γ) to get CP 2. Applying Lemma 4.4 with D = E′′′

r , then we
may assume that εj and E′′′

r are pseudo-holomorphic with respect to a
common almost complex structure. Moreover, εj and E′′′

r intersect only
at one point and transversely. Therefore, the only singularity of π(E′′′

r )
is the image of the one in E′′′

r . Since we choose our almost complex
structure integrable near this curve, the type of the singularity is the
same as in complex geometry, i.e., a (2, 3)-cusp. We also find that the
self-intersection number of π(E′′′

r ) must be (−n + 9) + n = 9, which
implies that its homology class is 3[CP 1] ∈ H2(CP 2). Thus, we get the
conclusion. q.e.d.

Case: Dn with (p, q, r) = (2, 2, n − 2).
We recall the compactification in section 2 (also Figure 1) and blow-

down (−1)-curves in it. We first contract the central (−1)-curve C̃ and
then contract the image E′

q of Eq (see the first two steps in Figure 3).
We denote the blown down manifold at this stage by Z(Dn)(2). (One
rational curve E′′

p with self-intersection number 0 and the other rational
curve E′′

r with self-intersection number −n + 4, which are tangents to
each other).

We blow up at a point on E′′
p , which becomes a (−1)-curve Ẽ′′

p . We
contract Ẽ′′

p next (see the last three steps in Figure 3). We denote the

manifold at this stage by Z(Dn)(1)(3). The compactifying divisor C̃ ∪Ep∪
Eq ∪ Er is transformed to A ∪ D, where A = e′1 is a rational curve of
self-intersection number 0 and D = E′′′

r is a cuspidal rational curve of
self-intersection number −n+ 8. They intersect at the cusp point of D.
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�

0

E′′
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E′′
r

←−

−1
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−1
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E′′
r

Z(Dn)(1)(2) Z(Dn)(1)(3)

�

0

A = e′1

−n+ 8

D = E′′′
r

Figure 3.

Finally, we contract a maximal family of disjoint (−1)-curves away
from A. We shall show the following:

Proposition 4.8. There is a family of disjoint (−1)-curves in
Z(Dn)(1)(3) such that Z(Dn)(1)(3) becomes CP 1×CP 1 after contracting those
(−1)-curves and A is identified with CP 1 × {pt}.

Proof. We pick J ′ as in Lemma 4.4. We may assume that J ′ is a
small perturbation of J . Then, the J-holomorphic curve A is smoothly
deformed to a J ′-holomorphic curve A′ passing through the (2, 3)-cusp
point via a small isotopy. Hereafter, we denote by A the deformed curve.
(In the later argument, we will consider the diffeomorphism type of the
complement of a certain divisor containing A. Since A is deformed by a
small isotopy, it does not effect the argument to deal with A′ instead of
A. The same remark is valid for the curve B in Theorem 4.13 below.)
Then, we contract a maximal family of disjoint (−1)-curves εk, which
do not intersect A. Here, εk are J ′-holomorphic curves guaranteed by
Lemma 4.4.

Then, the resulting manifold is a ruled symplectic 4-manifold with A,
a fiber of the ruling structure (see [23]). Since the first Betti number is
0, the base of the fibration must be a 2-sphere. There are two symplectic
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deformation types. They are CP 1×CP 1 and F1, the Hirzebruch surface
of degree 1, which is diffeomorphic to CP 2#CP 2. Both has the second
Betti number 2, hence, we find that the number of contracted (−1)-
curves is n, which is positive. (Recall that b2(Z(Dn)(1)(3)) = n+ 2.) If it
is CP 1 × CP 1, we get the conclusion of the proposition. Otherwise,
it is F1. Pick one of (−1)-curves, say ε1, which is contracted to a
point p. We make a blowing-up at the point p. Then, the proper
transform f̃p of the fiber fp passing through the point p is a (−1)-
curve, which is disjoint from A and other (−1)-curves {εk}2≤k≤n. So,
{f̃p}∪{εk}2≤k≤n is a disjoint family of symplectic (−1)-curves. Blowing
down these symplectic (−1)-curves, we arrive at CP 1 ×CP 1. Since f̃p

and εk are disjoint from A, a tubular neighborhood of A is not affected
by the blowing-down process. Hence, A has self-intersection number 0
in CP 1 ×CP 1 and it is a fiber of a ruling structure. q.e.d.

Remark 4.9. The process of blowing up at p and blowing down f̃p

is called an elementary transformation in algebraic geometry.

Theorem 4.10. The image of the divisor A ∪ D in CP 1 × CP 1

consists of CP 1×{pt} and a pseudo holomorphic cuspidal rational curve
of bidegree (2, 2), i.e., representing the homology class [2, 2]. Moreover,
they intersect at the cusp point.

Proof. In a previous proposition, we described the blown-down mani-
fold. Note that the singular curve D represents the anti-canonical class.
Thus, Lemma 4.4 implies that each contracted (−1)-curve intersects D
at a regular point transversely. Hence, the image of D has the self-
intersection number −n+8+n = 8. Since the intersection number with
A = CP 1 × {pt} is 2, we conclude that the image of D represents the
homology class [2, 2]. q.e.d.

Case: An with (p, q, r) = (1, 1, 1) for n = 1 and (p, q, r) = (1, 2,
n− 1) else.

We discuss the A1-case separately. In this case, we contract three
(−1)-curves Ep, Eq, Er. Then the central curve C̃ becomes a non-
singular rational curve C of self-intersection number 2. See Figure 4.

Since there are no (−1)-curves in the complement of C, a result of
McDuff [23] asserts that the manifold is CP 1 ×CP 1 and C is isotopic
to the diagonal. Hence, X is diffeomorphic to a disk bundle over the
2-sphere with Euler number −2.
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−1

Ep

−1

Eq

Z(A1)

−1

Er

C̃ −1

Z(A1)(3) = CP 1 ×CP 1

� C +2

Figure 4.

Remark 4.11. The anti-canonical class is represented by 2C, hence
the manifold is spin. This also leads to the assertion that the manifold is
CP 1×CP 1, since it is the only symplectic deformation type of rational
symplectic 4-manifolds, which are spin.

We next consider the case of An with n ≥ 2. We use the result in
section 2 with (p, q, r) = (1, 2, n − 1). Firstly, we contract the central
(−1)-curve C̃ and then, contract the image E′

q of Eq. The configura-
tion consists of a rational curve E′′

p of self-intersection number 1 and a
rational curve of self-intersection number −n + 3, which are tangents
to each other. Denote by Z(An)(2) the blown-down manifold at this
stage. We blow-up Z(An)(2) at two points on E′′

p and, then, blow-down
the proper transform Ẽ′′

p of E′′
p . Then, E′′

r becomes a singular ratio-
nal curve D = E′′′

r of one (2, 3)-cusp point and self-intersection number
−n+7, and two exceptional curves e1 and e2 become two symplectically
embedded spheres A = e′1 and B = e′2 with self-intersection number 0,
which intersect transversely at the cusp point of D. We denote by
Z(An)(2)(3) the ambient manifold at this stage. See Figure 5.

Next, we contract a maximal family of disjoint (−1)-curves away
from A. The following proposition is proved in a way similar to that of
Proposition 4.8.

Proposition 4.12. There is a family of disjoint (−1)-curves in
Z(An)(2)(3) such that Z(An)(2)(3) becomes a ruled symplectic 4-manifold over
a 2-sphere and A a fiber of the ruling structure.

In this process, the contracted (−1)-curves εk may intersect the other
rational curve B. However, changing the family of disjoint (−1)-curves,
we have the following:
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Theorem 4.13. There is a family of disjoint (−1)-curves such that
after blowing down those (−1)-curves Z(An)(2)(3) becomes CP 1 × CP 1

with A and B being identified with CP 1 ×{pt} and {pt} ×CP 1 respec-
tively. Moreover, the image of D is a singular cuspidal rational curve
of bidegree (2, 2).

Proof. From Proposition 4.12, after blowing-down a certain family of
(−1)-curves εk, Z(An)(2)(3) becomes a ruled symplectic 4-manifold N over
a 2-sphere.

We note the following:

Lemma 4.14. For any εk, B and εk are disjoint or they intersect
transversely at one point.

Proof. Since A maps down to one of the fibers of the ruling structure,
the intersection number of any fiber and the image of B is +1. Hence,
the image of B has no singular points, which means that εk intersects
B at most once counting with multiplicity. q.e.d.

We return to the proof of Theorem 4.13. Suppose that some of εk
intersect B. By a small smooth perturbation of the ruling structure,
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we may assume that the images of all intersection points of B and
∪εk lie on distinct fibers on N . Then, we blow-up these intersection
points and blow-down the proper transforms {f̃∗} of the fibers {f∗}
passing those points. As in the previous theorem, this corresponds to
changing a family of disjoint (−1)-curves. After blowing-down the new
family of (−1)-curves which do not intersect A and B at all, A and B
become symplectically embedded spheres of self-intersection number 0 in
a ruled symplectic 4-manifold. This implies that the ambient manifold
is CP 1×CP 1 and A and B are CP 1×{pt} and {pt}×CP 1 respectively.
See Figure 6 below.

The description of the image of D can be obtained in a similar way
as in Theorem 4.10. q.e.d.

5. Diffeomorphism type of CP 2 \D
For symplectically embedded surfaces in CP 2 with small degrees,

there are uniqueness results on symplectic isotopy types. (See [11] for
degree 1 and 2 cases, [34] for the degree 3 case and [14] for more in-
vestigation. See also [1] for a related result.) Recently, Siebert and
Tian proved uniqueness of symplectic isotopy type for symplectically
embedded surfaces up to degree 17 [33]. We need a similar uniqueness
result for pseudo holomorphic cuspidal cubic singular curves where the
number of the cusp points is just 1. (See Section 3 for the definition of
the pseudo holomorphic cuspidal cubic curve.)

It is necessary to discuss compactness properties for pseudo holomor-
phic cuspidal cubic curves in order to show the uniqueness of isotopy
type of such pseudo-holomorphic curves. We give a description of stable
map compactification and prove transversality on a stratum containing
pseudo-holomorphic cuspidal cubic curves. Barraud proved local mani-
fold structure for moduli spaces of singular pseudo holomorphic curves
under certain conditions [2]. Here, we only need to show transversality
for the pseudo holomorphic curve equation for a restricted class of sta-
ble maps and give a rather straightforward proof of transversality for
reader’s convenience.

Let D0 be a singular cuspidal cubic curve in CP 2 with respect to the
standard complex structure J0. Let J1 be a tame almost complex struc-
ture on CP 2 and D1 a J1-holomorphic cuspidal cubic curve. We assume
that J1 is integrable near the cusp point p on D1. The integrability con-
dition on J1 will be used to guarantee pseudo-holomorphicity of proper
transforms of pseudo-holomorphic curves and exceptional curves, when
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we blow up CP 2 at the cusp point in the proof of Theorem 5.1 (Sec-
tion 5.2). By a projective transformation on CP 2 if necessary, we may
assume, without loss of generality, that the cusp point on D0 coincides
with p. The main goal of this section is to show the following:

Theorem 5.1. Let D0 and D1 be as above. Then, CP 2 \ D1 is
diffeomorphic to CP 2 \D0.

Similarly, we will prove the following:

Theorem 5.2. Let J ′
0 be the standard complex structure on CP 1 ×

CP 1 and D′
0 a J ′

0-holomorphic cuspidal rational curve of bidegree (2, 2)
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in CP 1 × CP 1. Let D′
1 be a J ′

1-holomorphic cuspidal rational curve,
which represents the same class. Here, J ′

1 is a tame almost complex
structure which is integrable near the cusp point on D′

1. Then, CP 1 ×
CP 1 \D′

1 is diffeomorphic to CP 1 ×CP 1 \D′
0. In particular, the dif-

feomorphism type is unique.

To prove Theorem 5.1, we first pick a one-parameter family of tame
almost complex structures on CP 2 joining the tame almost complex
structure J1 and the standard J0 and will show that there exists a one-
parameter family of Jt-holomorphic cuspidal curves with singularities
of multiplicity 2 (in fact, (2, 3)-cusp singularities, see Lemma 5.3 and
Lemma 5.10). By using this, we will prove Theorems 5.1 and 5.2 in
Section 5.2.

5.1. A family of Jt-holomorphic singular cubic curves. Let J1 be
an ω-tame almost complex structure on CP 2 and D1 a J1-holomorphic
cuspidal cubic curve. Throughout this Section 5.1, we do not assume
any integrability condition on J1. So, we consider a slightly general
situation in this Section. Pick a one-parameter family {Jt} of ω-tame
almost complex structures joining the standard J0 and J1. For any such
family {Jt}, we will prove in Theorem 5.8 that there exists a family of
Jt-holomorphic cubic curves Dt with non-immersed points of multiplic-
ity 2, joining D0 and D1. This is a main result in this Section 5.1. To
find such a one-parameter family Dt, we use the continuation method.
The openness for t ∈ [0, 1] follows from transversality of the linearized
operator. In dimension 4, Hofer, Lizan and Sikorav [12] established
that, when the pseudo holomorphic curve is immersed, transversality
only depends on the topological type of the normal bundle. We extend
the argument to a singular curve case as in [14], but with a smaller
domain of the linearization operator. Since we need a family of Jt-
holomorphic curves with the prescribed type of singularities, we con-
sider the transversality problem in the space of mappings with a certain
condition on the differential at a fixed point (see below). The closedness
for t ∈ [0, 1] concerns compactness. For example, a sequence of cuspidal
cubic curves may converge to a multiple covered curve, possibly with
bubbling components. Therefore, we have to consider all possible de-
generations. For this purpose, we use the stable map compactification.
(For detailed discussion on stable maps, see e.g., [9]. In particular, see
(12.1) in [9] for the linearized operator of the stable map.)

LetM0(3, J) be the moduli space of J-stable maps of genus 0 repre-
senting the class 3[CP 1] in CP 2. (Here, J is an ω-tame almost complex
structure on CP 2.) A stable map of genus 0 means that the domain
semi-stable curve is of genus 0. (Note that non-singular cubic curve is
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of genus 1. Singular cubic curves can be also seen as stable maps of
genus 1. But, we do not treat them in that way.)

We stratify M0(3, J) according to the following types.

(1) The image of the pseudo holomorphic map from the Riemann
sphere is irreducible.

(1-1) It is an immersion with one double point;
(1-2) It is not an immersion and a simple pseudo holomorphic map from

the Riemann sphere;
(1-3) It is not an immersion and an image of a triple covered pseudo

holomorphic map from the Riemann sphere;
(2) The image of the stable map from the semi-stable curve of genus

0 consists of two irreducible components, whose degrees are 1 and
2 respectively.

(2-1) Both components are simple, that is, embedded;
(2-2) The degree 2 component is a double cover of a degree 1 curve;

(3) The image of the stable map from the semi-stable curve of genus
0 consists of at most three irreducible components, whose degrees
are 1.

(3-1) The domain of the stable map consists of three copies of the Rie-
mann sphere;

(3-2) The domain of the stable map consists of four copies of the Rie-
mann sphere.

In type (2-1), there are two possibilities.

(2-1-1) The degree 2 component and the degree 1 component intersects
transversely at two points (One of them corresponds to the node
in the domain of the stable map.);

(2-1-2) The degree 2 component and the degree 1 component are tangent
to each other at a point.

In type (3), the domain of the stable map is a semi-stable curve
of genus 0, i.e., a tree of copies of the Riemann sphere. The stabil-
ity condition implies that the holomorphic map is not constant on the
components corresponding to the exterior vertices of the tree. Hence,
there are at most three exterior vertices. In case (3), there are two pos-
sibilities. Namely, (3-1) and (3-2). We remark that the stable maps
of type (3-2) are ones from the semi-stable curve consisting of four
irreducible components of genus 0 (see Figure 7), three curves of de-
gree 1 meet, in the image, at a common point, to which the central
fourth component is mapped constantly. Further, we remark that in
type (1-1) the number of the double points is necessarily one, because
the adjunction formula implies that the virtual genus of the image is
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1, which is bigger than the genus of the domain of the stable map by
just 1.
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Figure 7.

Although, we can introduce a finer stratification on M0(3, J), the
stratification above is enough for our purpose. We note that the pseudo
holomorphic cuspidal cubic curve in CP 2, which we are interested in,
belongs to the stratum of type (1-2) by the following lemma.

Lemma 5.3. The image of the pseudo holomorphic map of type (1-2)
has only one singular point with multiplicity 2.

Proof. We denote the image by D. Since it is not an immersion, it
has a singular point. Since the virtual genus of D is 1 and the genus of
the domain of the pseudo holomorphic map is 0, we find that D has only
one singular point p. To prove the lemma, it is enough to show that

min
l
{l ·p D | l is a pseudo holomorphic line in CP 2 through p} = 2,

where l ·p D is the intersection number of l and D at p. Since the inter-
section number of two pseudo holomorphic curves in an almost complex
4-manifold is always positive [24], we find that the number in the left
hand side above is at most 3. On the other hand, l ·pD = 1 implies that
l and D intersect transversely at p by [24]. This contradicts to that p
is the singular point. If it is 3, then l ·p D = 3 for all pseudo holomor-
phic lines l through p. We pick a point q on D which is different from
the singular point p. By Gromov’s theorem [11], there exists a pseudo
holomorphic line l through p and q. In this case, we have l · D ≥ 4,
which is a contradiction. Thus, Lemma 5.3 is proved. q.e.d.

Although, we have to deal with the stratum of type (1-2) only, there is
no guarantee that the closure of this stratum is a nice topological space
such as an orbifold. Therefore, we firstly list up the strata appearing
the closure of the stratum of type (1-2) in the moduli space M0(3, J).
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Obviously, the closure of the stratum of type (1-2) does not inter-
sect the stratum of type (1-1). If the image of the stable map in the
stratum (3-1) consists of distinct three lines, the three components in
the domain are mapped to three pseudo holomorphic lines with three
double points. Hence, after smoothing two of three double points, the
glued pseudo holomorphic curve must have one double point, which
never occurs in type (1-2). Thus, the closure of the stratum of type
(1-2) intersects the stratum of type (3-1) along the locus, where the
image consists of at most two pseudo holomorphic lines. Similarly, the
closure of the stratum of type (1-2) does not intersect the strata of types
(2-1-1). Hence, the closure of the stratum of type (1-2) is contained in
the union of the strata of types (1-2), (1-3), (2-1-2), (2-2), (3-1) and
(3-2) (see examples below). We will impose some further constraints on
the pseudo holomorphic curves in M0(3, J) to exclude the possibilities
that a sequence of pseudo holomorphic curves in the stratum of type
(1-2) converges to any element in the union of the strata of types (1-3),
(2-1-2), (2-2), (3-1), (3-2). It is clear that the closure of the stratum
of type (1-2) intersects the strata of type (1-3) and type (2-2). For the
strata of type (2-1-2) and type (3-2), see the following:

Example 5.4.

(1) Consider a one-parameter family of cuspidal cubic curves y2z −
x2y − εx3 = 0 with ε 
= 0. Each of them has a (2, 3)-cusp singu-
larity at [0, 0, 1]. As ε tends to 0, the limit curve splits into the
union of y = 0 and yz − x2 = 0. Thus, the closure of the stratum
of type (1-2) intersects the stratum of type (2-1-2).

(2) Consider a one-parameter family of cuspidal cubic curves x3 −
xy2 − εy2z = 0 with ε 
= 0. Each of them has a (2, 3)-cusp singu-
larity at [0, 0, 1]. As ε tends to zero, the limit consists of three lines
x = 0, x + y = 0 and x − y = 0. As a stable map, there appears
another rational component, which is mapped to [0, 0, 1]. Thus,
the closure of the stratum of type (1-2) intersects the stratum of
type (3-2).

Pick distinct 6 points p = q1, . . . , q6 on CP 2. We consider the moduli
space

M0(3, J ; p; q2, . . . , q6)

of J-holomorphic rational cubic curves with a non-immersed point at
p = q1 and passing through q2, . . . , q6. To do so, we consider the moduli
space M0,6(3, J) of stable maps of genus zero, with 6 marked points
z1, . . . , z6 and of degree 3. Throughout this Section 5.1, we arrange z1, z2
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and z3 at [1, 0], [0, 1], [1, 1], respectively, by Aut(CP 1). Let e be a non-
zero tangent vector at z1. We consider the following evaluation map:

ev :M0,6(3, J)→ TCP 2 ×CP 2 × · · · ×CP 2

given by (φ, (z1, z2, . . . , z6)) �→ (dφ(e), φ(z2), . . . , φ(z6)). Then we have

M0(3, J ; p; q2, . . . , q6) = ev−1((p, 0), q2, . . . , q6).

For any (φ, (z1, . . . , z6)) ∈ M0(3, J ; p; q2, . . . , q6) with φ : CP 1 → CP 2

of type 1-2), we have the following:

Proposition 5.5. The moduli space M0(3, J ; p; q2, . . . , q6) is an ori-
ented smooth 0-dimensional manifold around (φ, (z1, . . . , z6)).

Proof. We consider the space of singular cubic pseudo holomorphic
curves with a non-immersed point at p = q1 and passing through q2, . . . ,
q6. We adapt the framework in [18] to deal with non-immersed pseudo
holomorphic curves. Pick p > 2 and consider the W 2,p completion
X of the space of quadruples (φ, z4, z5, z6), where φ : CP 1 → CP 2

is a smooth map representing the homology class 3[CP 1] such that
φ(zi) = qi, i = 1, . . . , 6, dφ(e) = 0. Note that dφ vanishes at z1,
if φ in this space is a pseudo holomorphic curve. The tangent space
of X at (φ, (z4, z5, z6)) is the space of quadruples (ξ, v4, v5, v6), where
ξ ∈ Γ(φ∗TCP 2) and vi ∈ TziCP

1, such that ξ(zi) = 0 for i = 1, 2, 3,
ξ(zi) + dφ(vi) = 0 for i = 4, 5, 6 and ∇eξ = 0.

Let (φ, (z4, z5, z6)) be a J-holomorphic cubic curve with a non-immer-
sed point at p = q1 and passing through qi. By the adjunction formula,
each rational cubic pseudo holomorphic curve has either a unique double
point (node) or a unique non-immersed point of multiplicity 2, which
implies that φ is an immersion near z2, . . . , z6. Thus, the linearization
of the pseudo holomorphic curve equation in this setting is

D∂ : W →W 1,p(Ω0,1(CP 1, φ∗TCP 2)),

where W is the W 2,p-completion of the space of ξ ∈ Γ(φ∗TCP 2) such
that ∇eξ = 0, ξ(zi) = 0, i = 1, 2, 3 and ξ(zi) ∈ dφ(TziCP

1), i = 4, 5, 6.
D∂ is a first order partial differential operator with the same principal
symbol as the Dolbeault operator with coefficients in φ∗TCP 2.

Since φ is not an immersion, the image of TCP 1 by dφ is not a sub-
bundle of φ∗TCP 2. However, we can extend the image of dφ to a subline
bundle of φ∗TCP 2 as follows. Firstly, pick a complex linear connection
∇ on TCP 2 such that N = 8T , where N is the Nijenhuis tensor of J
and T is the torsion tensor of ∇. (See [16] Theorem 3.4 in Chapter
IX). Since the base space is a Riemann surface, the pull-back connec-
tion induces a structure of a holomorphic vector bundle. Now, we show
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the following lemma. (A similar result is well-known for harmonic maps
between Kähler manifolds.)

Lemma 5.6. The (1, 0)-part ∂φ of the differential dφ is a holomor-
phic section of Λ1,0(CP 1;φ∗TCP 2), if φ is J-holomorphic.

Proof. We take the standard connection, i.e., a torsion free unitary
connection on CP 1. Denote by j the complex structure on CP 1. For
each point z ∈ CP 1, we choose a local unit vector field e such that
∇e(z) = 0. Then, (e, je) is a unitary frame field on CP 1, whose covari-
ant derivatives vanishes at z. Write ε = e∗ +

√−1(je∗). Then, we have

∂φ = (dφ(e) −√−1dφ(je)) ⊗ ε.
Compute the (0, 1)-part of the covariant derivative of ∂φ.

∇0,1∂φ = (∇e +
√−1∇je)∂φ⊗ ε.

Note that T (dφ(e), dφ(je)) = T (dφ(e), Jdφ(e)) = N(dφ(e), Jdφ(e))/8,
the last quantity of which is identically zero. Hence, we have∇edφ(je) =
∇jedφ(e) at z, since [e, je] vanishes at z. Using this equality and iden-
tifying T ∗CP 1(1,0)⊗T ∗CP 1(0,1) with T ∗CP 1(0,1)⊗T ∗CP 1(1,0), we have

∇0,1∂φ = ∇1,0∂φ.

The right hand side vanishes, since φ is J-holomorphic. q.e.d.

We consider the invertible sheaf defined by the image of

∂φ : O(TCP 1)→ O(φ∗TCP 2).

We extend it to a holomorphic subline bundle. Note that the non-
constant simple pseudo holomorphic map φ : CP 1 → CP 2 can be lo-
cally expanded around the singular point in the following form:

φ(z) = (zk, zm) +O(m+ 1),

where m > k, k does not divide m and O(m + 1) denotes a function
of z and z which vanishes to order m. (See Proposition 2.6 in [24].)
Therefore, Lemma 5.3 implies that the order of φ at the singular point
is 2, thus the order of dφ at the singular point is 1. Then, the argument
in page 516 in [10] implies that φ∗TCP 2 contains the line bundle L1 =
TCP 1 ⊗O(z1) of degree 3 with a quotient line bundle L2 of degree 6:

0→ L1 → φ∗TCP 2 → L2 → 0.

(See also [35], which deals with a similar situation arising from holo-
morphic maps.)

Note that, for ξ ∈W 2,p(L1), D∂ξ ∈W 1,p(Ω0,1(CP 1, L1)). Therefore,
it is enough to show surjectivity of the following two maps:
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(a) D∂ : W ∩W 2,p(L1)→W 1,p(Ω0,1(CP 1, L1)).
(b) The composition W∩W 2,p(L2)→W→W 1,p(Ω0,1(CP 1, φ∗TCP 2))
→ W 1,p(Ω0,1(CP 1, L2)), where the first map is the inclusion, the
second is D∂ and the last is the one induced by the projection
φ∗TCP 2 → L2.

In order to prove surjectivity for these operators, it is enough to prove
the following:

Lemma 5.7. Let L be a holomorphic line bundle over CP 1 with
c1(L) ≥ k and D a first order differential operator with the same sym-
bol as the Dolbeault operator. Let z1, . . . , zk be distinct points on CP 1

and e a non-zero tangent vector at z1. Then, D is surjective from
{ξ ∈ Γ(L) | ξ(zi) = 0, i = 1, . . . , k, and ∇eξ = 0} to Ω0,1(L).

We remark that in the case (a), we have the restriction on the domain
such that ∇eξ = 0, ξ(zi) = 0, i = 1, 2, 3, and in the case (b), we have
∇eξ = 0, ξ(zi) = 0, i = 1, . . . , 6. Thus, the surjectivity of these maps
follows from above lemma for k = 3 and 6, respectively.

Proof of Lemma 5.7. Let ξ be a solution of Dξ = 0 such that ξ(z1) = 0
and ∇eξ = 0. Note that these conditions imply that the 1-jet of ξ
vanishes at z1.

Pick a complex linear connection on L and write the operator D as

D = ∂ +Bl +Ba,

where Bl and Ba are the complex linear part and the anti-complex linear
part of the 0-th order operator D − ∂, respectively.

We shall show that the local intersection index of ξ with the zero
section at p is at least 2. Denote by w a local holomorphic coordinate
of CP 1 with w(z1) = 0. Since the difference of D and the Dolbeault
operator is a 0-th order operator, we have ∂ξ vanishes at z1. Hence, ξ/w
is locally a W 1,p-function. Write η = ξ/w, which satisfies the following
differential equation.

∂η +Bl(η) +
w

w
Ba(η) = 0

Note that w/w is locally L∞. Therefore, we can apply the Carleman
similarity principle (Appendix A.6 in [13]) to this situation and conclude
that the intersection index of η and the zero section at z1 is positive, if
η(z1) = 0. Recall that the 1-jet of ξ vanishes at z1, hence η vanishes at
z1. This implies that the intersection index of ξ, which equals wη near
z1, and the zero section at z1 must be at least 2.

Since the index of the real Fredholm operator D from

{ξ ∈ Γ(L) | ξ(zi) = 0, i = 1, . . . , k, and ∇eξ = 0}
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to Ω0,1(L) is 2c1(L)− 2k, it is sufficient to show that the dimension of
the kernel does not exceed 2c1(L)− 2k.

Let us assume the contrary. Pick d = c1(L) − k distinct points
w1, . . . , wd on CP 1 \ {zi}. By assumption, there are at least 2d+ 1 lin-
early independent sections s1, . . . , s2d+1 satisfying Dsi = 0, si(zj) = 0,
j = 1, . . . , k and∇esi = 0. Then, we can find real numbers λ1, . . . , λ2d+1,
which contains non-zero numbers, such that the linear combination
s =

∑
λisi vanishes at w1, . . . , wd as well as zi. Note that s is a non-zero

section and all zeros contribute positively to the intersection number of
s and the zero section [12]. Since we have shown that the intersection
index at z1 is at least 2, the self-intersection number, which is c1(L)
must be at least d+ k + 1 = c1(L) + 1. This is a contradiction. q.e.d.

We have proved that the moduli space M0(3, J ; p; q2, . . . , q6) is a
smooth manifold. Since the family of linearization operators are defor-
med to a family of complex linear Fredholm operators, the moduli space
carries a natural orientation. The index computation shows that its di-
mension is 0. We have finished the proof of Proposition 5.5. q.e.d.

Now, we are going to state and prove the main theorem in this Sec-
tion 5.1. Recall that D1 is a J1-holomorphic cuspidal cubic curve and
D0 is a cuspidal cubic curve with respect to the standard complex struc-
ture J0 on CP 2. We do not assume any integrability condition on J1

here. We denote by p the cusp point on D1. We may assume that the
cusp point on D0 coincides with p. By Lemma 5.2, they belong to the
stratum of type (1-2).

Theorem 5.8. Let D1 and D0 be pseudo holomorphic curves as
above. Pick a one-parameter family {Jt} of ω-tame almost complex
structures joining J0 and J1. Then, there is a one-parameter family of
singular cubic pseudo-holomorphic curves Dt joining D0 and D1 such
that for each t, Dt has only one non-immersed point of multiplicity 2
and it is fixed at p in CP 2.

Proof. We show the following:

Lemma 5.9. Let {Jt} be as in Theorem 5.8. Then, we can choose
p = q1, q2, . . . , q6 on CP 2 so that the following three conditions are sat-
isfied for each t ∈ [0, 1].

(1) There is no collection of three Jt-holomorphic curves of degree 1
with a triple intersection point, whose union contains q1, . . . , q6,
especially, these six points do not lie on a line or the union of two
lines.
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(2) There is no pair of a Jt-holomorphic curve of degree 1 and a Jt-
holomorphic curve of degree 2, which are tangents at p = q1 and
contain q2, . . . , q6.

(3) There is a J0-holomorphic cuspidal cubic curve with a cusp at p
and passing through q2, . . . , q6.

We complete the proof of Theorem 5.8 assuming Lemma 5.9. Firstly,
we note that

⋃
0≤t≤1{t} × M0(3, Jt; p; q2, . . . , q6) is compact. Assume

the contrary and {(tj , φj , z4,j , z5,j , z6,j)} is not convergent in⋃
0≤t≤1

{t} ×M0(3, Jt; p; q2, . . . , q6).

We may assume that tj converges to t0. After taking a suitable sub-
sequence, φj converges, as stable maps, to an element φ0 in one of
the stratum strata (1-3), (2-1-2), (2-2), (3-1), (3-2) passing through qi.
Moreover, we can see the following:

(1) If φ0 is in the stratum of type (2-1-2), p is the point, where two
components of φ0 are tangent;

(2) If φ0 is in the stratum of type (3-1), the image of φ0 consists of at
most two Jt0 -holomorphic lines.

(3) If φ0 is in the stratum of type (3-2), p is the common intersection
point of three components of φ0.

By Lemma 5.9, we can exclude these possibilities. If φ0 is in one
of the stratum of type (1-3), (2-2), the six points qi must lie on the
union of at most two Jt-holomorphic curves of degree 1, hence these
possibilities are also excluded by Lemma 5.9. Therefore,

⋃
0≤t≤1{t} ×

M0(3, Jt; p; q2, . . . , q6) is compact. Proposition 5.5 and its proof imply
that it is a 1-dimensional manifold and the first factor projection to
[0, 1] is submersive, i.e., the rank of its differential is 1 everywhere, if it
is not empty. In other words,

⋃
0≤t≤1{t} ×M0(3, Jt; p; q2, . . . , q6) is a

product cobordism.
Finally, we claim that it is not empty. The third condition in

Lemma 5.9 guarantees that M0(3, J0; p; q2, . . . , q6) is not empty. Since
J0 is an integrable complex structure, transversality (Proposition 5.5)
implies that all elements in M0(3, J0; p; q2, . . . , q6) have positive sign
with respect to the natural orientation. Therefore, it is not null oriented-
cobordant and

⋃
0≤t≤1{t} ×M0(3, Jt; p; q2, . . . , q6) is non-trivial.

Moreover, any two cuspidal cubic curves with respect to the standard
complex structure J0 are projectively equivalent (see, for example, [25]
p.128). Thus, we can further deform the cuspidal cubic curve to a stan-
dard one, e.g., {x3 + y2z = 0} in CP 2. Thus, this gives a smooth one
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parameter family joining D1 and D0 through pseudo-holomorphic cubic
curves with non-immersed points of multiplicity 2. q.e.d.

Proof of Lemma 5.9. Denote by
⋃

1≤t≤1{t}×M0,6(33−2, Jt) the moduli
space of Jt-stable maps in the stratum (3-2) with 6 marked points. The
real dimension of this space is 23. Thus, the set of {q1, . . . , q6} lying
on the union of three Jt-holomorphic curves of degree 1 for some t is a
23-dimensional subspace of the product of 6 copies of CP 2. The eval-
uation map at z1 is easily seen to be a submersion. Hence we get a
19-dimensional subspace of the product of 5 copies of CP 2, when the
condition that q1 = p is required.

We next consider the stratum (2-1-2). To do this, we denote by
M0,1∗(1, J) (resp. M0,1∗(2, J)) the moduli space of genus 0 J-holomor-
phic curves of degree 1 (resp. degree 2) with a marked point z ∈ CP 1

and a non-zero tangent vector e ∈ TzCP 1. Let evi (i = 1, 2) be the
evaluation map evi(φ, z, e) = dφ(e) for each of them. The transversality
forM0,1∗(1, J) andM0,1∗(2, J) is well-known by [11]. Here,M1∗(2, J)
is the moduli space before taking the stable map compactification. Sim-
ilarly, we can show that the evaluation maps evi are of maximal rank.
We take the fiber product of M0,1∗(1, J) and M0,1∗(2, J) over TCP 2.
The fiber product is real 14-dimensional. Note that C∗ acts on each of
M0,1∗(i, J) (i = 1, 2) by complex multiplication to v ∈ TzCP 1. Note
also that pseudo holomorphic curves in M0,1∗(i, J) (i = 1, 2) are em-
bedded, C∗ acts freely on the fiber product. Thus, it has a C∗-bundle
structure so that its quotient by the C∗ action is the moduli space of
configuration of two Jt-holomorphic curves of degree 1 and 2, which
are tangents to each other. After adding 5 marked points z2, . . . , z6,
the moduli space becomes real 22 dimensional. (Note that the “first”
marked point is automatically determined as the tangent point.) Now,
we vary t ∈ [0, 1]. Then, we have the moduli space of real 23-dimensions.
Thus, the set of {q1, . . . , q6} lying on the union of two Jt-holomorphic
curves of degree 1 and 2, which are tangents at q1, for some t is a 23-
dimensional subspace of the product of 6 copies of CP 2. Again, by
requiring the condition that q1 = p, we get a 19 dimensional subspace
of the product of 5 copies of CP 2.

Pick a cuspidal cubic curve with a cusp at p with respect to the stan-
dard complex structure J0 and 5 distinct points q2, . . . , q6 on it. Denote
by M0,1+5(31−2, J0) the moduli space of cuspidal cubic curves with 6
marked point {z1, . . . , z6} such that z1 is the unique singular point.
Note that transversality established in the proof of Proposition 5.5 im-
plies that the evaluation map

ev :M0,1+5(31−2, J0)→ TCP 2 ×CP 2 × · · · ×CP 2
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is of maximal rank (24 over reals). When we require the condition that
q1 = p, we get a 20 dimensional family of {q2, . . . , q6} in the product
of 5 copies of CP 2. Comparing dimensions of the image of evaluation
maps, we can choose {q1, . . . , q6}, which satisfies three conditions in
Lemma 5.9. q.e.d.

5.2. Proofs of Theorems 5.1 and 5.2. By using Theorem 5.8 in
Section 5.1, we will prove Theorems 5.1 and 5.2. In fact, we will prove
Theorems 5.12 and 5.13, which can be regarded as their refinement.

Firstly, we recall that in Section 4.2 we take the tame almost complex
structure on the compactification Z(Γ) such that it is integrable near
the compactifying divisor. Corresponding to this, we take a tame almost
complex structure J1 on CP 2 so that D1 is a J1-holomorphic cuspidal
cubic curve and J1 is integrable near the cusp point p, throughout this
Section 5.2. In this situation, we note that the singular point in the
image of the pseudo holomorphic map of type (1-2) has not only mul-
tiplicity 2 (Lemma 5.3), but is also a (2, 3)-cusp singularity as follows.

Lemma 5.10. Around the singular point P , the pseudo holomorphic
map of type (1-2) can be written as z �→ (z2, z3) +O(4).

Proof. By Lemma 5.3 and Proposition 2.6 in [24], we can write the
map germ around the cusp point as z �→ (u, v) = (z2, zk) +O(k+ 1) for
some k ≥ 3. Suppose that k > 3. Since there exists a pseudo holomor-
phic line L passing through P , whose tangent space at P is the u-axis
[11]. If the almost complex structure is integrable near P , the local
intersection number of L and D at P is k > 3. This contradicts the fact
that D · L = 3. q.e.d.

Now, to prove Theorem 5.1, we recall the following elementary fact.

Lemma 5.11. Let S1(t), . . . , Sk(t) be smooth one-parameter fami-
lies of closed embedded submanifolds in a smooth compact manifold M .
Suppose that Si(t) and Sj(t) have at most transversal double points
for i 
= j. Then, there exists an ambient isotopy Ψt on M such that
Sj(t) = Ψt(Sj(0)) for j = 1, . . . , k.

Proof of Theorem 5.1. We take a one-parameter family {Jt} of ω-tame
almost complex structures joining J0 and J1 such that Jt is integrable
near the cusp point p for each t. Then, for such a family {Jt}, Theo-
rem 5.8 shows that there is a one-parameter family of singular pseudo-
holomorphic cubic curves Dt joining D0 and D1 such that the singular
points on Dt are the fixed point p in CP 2.
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We blow-up CP 2 at p. Since Jt is integrable near the point p, the
Jt-holomorphic curves Dt can be lifted to pseudo holomorphic curves
D′

t for some almost complex structure J̃t, which are integrable in a
neighborhood of the exceptional divisor Et. Note that Et and D′

t are
tangents to each other. After making a blow-up at the point p′, where
Et and D′

t are tangents to each other, the proper transforms of those
curves intersect transversely at a point p′′. Then, we get a configuration
of four embedded spheres intersecting each other transversely with at
most double points. We denote by D̃t the proper transform of Dt, and
E1,t, E2,t and E3,t are (proper transforms of) exceptional divisors with
self-intersection number −1, −2 and −3, respectively.
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Figure 8.

Note that E1,t, E2,t and E3,t depend smoothly on t. Therefore, by
Lemma 5.11, we can find an isotopy Ψt of the three times blown-up
manifold M̃ such that Ψt(D̃0) = D̃t and Ψt(Ei,0) = Ei,t, (i = 1, 2, 3).
Restricting (Ψt)−1 to M̃ \ (D̃t ∪E1,t∪E2,t∪E3,t), we get a one parame-
ter family of diffeomorphisms from CP 2 \D0 to CP 2 \Dt. This proves
Theorem 5.1. q.e.d.

In the proof above, we actually proved the following:

Theorem 5.12. Let M̃, D̃t and Ei,t be as in the proof of Theo-
rem 5.1. Then, the pair (M̃, D̃1 ∪E1,1 ∪E2,1 ∪E3,1) is ambient isotopic
to (M̃ , D̃0 ∪E1,0 ∪E2,0 ∪E3,0). Moreover, there exists a one-parameter



34 H. OHTA & K. ONO

family {ωt} of symplectic forms such that D̃t, E1,t, E2,t and E3,t are
symplectic submanifolds with respect to ωt.

Proof. We only need to show the last statement. Note that the almost
complex structures Jt are integrable around p and E1,t∪E2,t∪E3,t is the
exceptional divisor of the three times blow-up in the sense of complex
geometry. We can construct the symplectic form ωt compatible with J̃t

as in [22]. q.e.d.

Next, we will prove Theorem 5.2. In the case of CP 1 × CP 1 \ D′
1,

we similarly blow up CP 1 ×CP 1 three times to get a configuration of
four embedded spheres intersecting each other transversely with at most
double points. We denote by D̃′

1 the proper transform of D′
1, and by

E′
1, E

′
2 and E′

3 the (proper transforms of) exceptional divisors with self-
intersection number −1, −2 and −3, respectively. The self-intersection
number of D̃′

1 is 2 in this case. (See Figure 9 below.) In addition, we
consider pseudo holomorphic rational curves A and B in CP 1 × CP 1

which represent the homology classes CP 1 × {pt} and {pt} ×CP 1, re-
spectively, and pass through the (2, 3)-cusp point q. We denote by Ã

and B̃ the proper transforms of A and B, respectively.
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Theorem 5.13. Let M̃ ′ be the three times blown-up manifold of
CP 1×CP 1, and D̃′

1, E
′
i (i = 1, 2, 3) and Ã, B̃ as above. Then the am-

bient isotopy type of the pair (M̃ ′, D̃′
1∪E′

1∪E′
2∪E′

3∪ Ã∪ B̃) is uniquely
determined. Moreover, the ambient isotopy can be chosen in such a way
that the divisors D̃′

1, E
′
1, E

′
2, E

′
3, Ã, and B̃ are symplectic submanifolds

with respect to a certain one-parameter family of symplectic structures.

Proof. First of all, we modify the almost complex structure J1 away
from D′

1 so that J1 is integrable in a neighborhood U of A ∪ B and
D′

1 ∪A∪B is J1-holomorphic. (By abuse of notations, we use the same
J1.) Pick a point r on a non-singular part of D′

1 ∩ U and denote by
f1 and f2 the fibers, passing through r, with respect to the two ruling
structures on the product CP 1 ×CP 1. We blow up CP 1 ×CP 1 at r
and blow down the proper transforms f̃1 and f̃2 of f1 and f2. From now
on, we pick the point r in a small neighborhood of the cusp point q of
D′

1 in CP 1 ×CP 1 so that f1 and f2 are contained in U and the other
intersection point p′1 (resp. p′2) of f1 (resp. f2) with D′

1 is also close
to q. In particular, we can blow down f̃1 and f̃2 in complex category.
Denote by p1 and p2 the contracted images of f̃1 and f̃2, respectively.
(Note that p1 (resp. p2) is the image of p′1 (resp. p′2) under the bira-
tional transformation.) Then, we get CP 2 with a pseudo-holomorphic
cuspidal cubic curve D′′

1 with one (2, 3)-cusp point p. By Theorem 5.8,
there is a one-parameter family of Jt-holomorphic cuspidal cubic curves
D′′

t joining D′′
0 = D0 and D′′

1 , such that the cusp point on D′′
t is the

fixed point p in CP 2. Here, D0 is a cuspidal cubic curve with respect
to the standard complex structure. We pick a one-parameter family
of two points p1,t and p2,t on D′′

t such that pi,1 = pi, (i = 1, 2), and
p1,t and p2,t are contained in a neighborhood of p, where the almost
complex structures Jt are integrable. We blow-up CP 2 at p1,t and p2,t.
Then, the proper transforms of the degree one Jt-holomorphic curves
passing through p1,t and p2,t are pseudo-holomorphic (−1)-curves. We
blow-down them to get CP 1 ×CP 1 and the one parameter family D′′

t

is transformed to a one parameter family of J ′
t-holomorphic curves D′

t

for some one parameter family J ′
t. Here, we used Lemma 4.3.

Denote by At and Bt the J ′
t-holomorphic rational curves passing

through q representing the class [A] and [B], which depend smoothly
on t. After blowing-up CP 1 ×CP 1 successively three times (as in the
proof of Theorem 5.1), we get smooth one parameter families of em-
bedded surfaces D̃′

t, Ẽ′
i,t, (i = 1, 2, 3), Ãt and B̃t in M̃ ′. Note that the

homological intersection number of D′
t and At (resp. Bt) is 2 and q is

a (2, 3)-cusp point on D′
t (Lemma 5.10). Hence, for each t, Ãt and B̃t
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intersect Ẽ′
3,t transversely and are disjoint from D̃′

t, Ẽ′
1,t and Ẽ′

2,t. In
other words, the configuration as in Figure 9 moves smoothly in t pre-
serving the intersection pattern. Thus, the first part of Theorem 5.13
follows from Lemma 5.11. The last part is proved as in the proof of
Theorem 5.12. q.e.d.

Since the complement of D̃′
1∪E′

1∪E′
2∪E′

3∪Ã∪B̃ (resp. D̃′
1∪E′

1∪E′
2∪

E′
3∪ Ã, D̃′

1∪E′
1∪E′

2∪E′
3) in M̃ ′ is diffeomorphic to the complement of

D′
1 ∪A∪B (resp. D′

1 ∪A, D′
1) in CP 1×CP 1, we obtain the following:

Corollary 5.14.

(1) The diffeomorphism type of the complement of D′
1 ∪ A ∪ B in

CP 1 ×CP 1 is uniquely determined.
(2) The diffeomorphism type of the complement of D′

1 ∪A in CP 1 ×
CP 1 is also uniquely determined.

(3) The diffeomorphism type of the complement of D′
1 in CP 1×CP 1

is also uniquely determined.

Corollary 5.14 (3) is nothing but Theorem 5.2.

5.3. An alternative proof of Theorem 5.1. When we proved The-
orem 5.1 in Section 5.2, we used three times blow-up operations to get
the configuration of four rational curves in Figure 8 and reduced the
problem to Lemma 5.11. But we can prove Theorem 5.1 more directly
by using a special feature of cuspidal curves with (2, 3)-cusps instead
of considering blow-ups. (We will also use Theorem 5.8 here.) Firstly,
we recall the following proposition, which is well-known in singularity
theory. For the sake of convenience, we give a proof of it.

Proposition 5.15. The holomorphic map germ of z �→ (u, v) =
(z2, z3) +O(4) is right-left equivalent to z �→ (u, v) = (z2, z3).

Proof. Write

u(z) =
∑
i≥2

aiz
i, v(z) =

∑
i≥3

biz
i

with a2 = 1 and b3 = 1. By a suitable coordinate change of z variable
in the domain at germ level, we may assume that u(z) = z2. Next, we
take new coordinates of the target by

(u1, v1) =


u, v −∑

k≥2

b2ku
k
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so that the map germ is transformed to

(u1(z), v1(z)) =


z2,

∑
k≥1

b2k+1z
2k+1


 .

Consider a function defined by

g(z) =




∑
k≥2

b2k+1z
2k+1




/ 


∑
k≥1

b2k+1z
2k+1


 .

Note that g(z) is an even function. Hence, we can write g(z) = h(z2)
with some holomorphic function h of one variable. Since b3 
= 0, which
implies that g is a germ of a holomorphic function such that g(0) = 0.
Now, we make another coordinate change of the target by

(u2, v2) = (u1, v1(1− h(u1))).

Then, the map germ is transformed to (u2, v2) = (z2, z3). q.e.d.

Remark 5.16. For a C∞-one parameter family of map germs with
(2, 3)-cusp singularities, the argument above can produce a germ of an
ambient isotopy of (C2, O) so that the deformation of a (2, 3)-cusp curve
extends to an isotopy in a neighborhood of the origin.

We show the following:

Theorem 5.17. Let D1 be a pseudo-holomorphic cuspidal cubic curve
in CP 2 as in Theorem 5.1 and D0 a singular rational cubic curve de-
fined by x3 + y2z = 0. Then, the pair (CP 2,D1) is ambient isotopic to
the pair (CP 2,D0).

Proof. By Theorem 5.8, there is a one-parameter family of singular
pseudo-holomorphic curves Dt joining D0 and D1. We may assume that
the singular points are fixed at p, and that the almost complex struc-
tures are integrable near p. Lemma 5.10 guarantees that each Dt is
a pseudo-holomorphic cuspidal cubic curve. By Proposition 5.15 and
Remark 5.16, there is a one-parameter family of holomorphic embed-
dings φt of a ball B in C2 so that the germ of Dt at p is described as
φt(B,D′

0 ∩ B), where D′
0 is the affine part of D0, i.e., {x2 + y3 = 0}.

In other words, there is a family of neighborhoods Bt = φt(B) of p
and a family of local diffeomorphisms ψt = φt ◦ φ−1

1 so that ψt maps
(B1,D1 ∩B1) to (Bt,Dt ∩Bt) diffeomorphically. Pick a family of collar
neighborhoods Ut of ∂Bt. Write B′

t = Bt \ Ut. Since {Dt \Dt ∩ B′
t} is

a family of embedded surfaces with boundary, we can extend ψt|Ut to
an ambient isotopy ρt : CP 2 \ B′

1 → CP 2 \ B′
t so that ψt and ρt are
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glued to an ambient isotopy ft of CP 2 satisfying ft(D1) = Dt. Thus,
the pairs (CP 2,D1) and (CP 2,D0) are ambient isotopic. q.e.d.

6. Proof of Main Theorem

Recall that the minimal symplectic filling is the complement of C̃ ∪
Ep∪Eq∪Er in Z(Γ). Therefore, it is diffeomorphic to the complement of
a regular neighborhood of E′′′

r ∪A∪B, E′′′
r ∪A, E′′′

r , in Z(An)(2)(3), Z(Dn)(1)(3)

and Z(En)(3), respectively. After these stages, we started contracting
a disjoint family of (−1)-curves {εi}. By Lemma 4.1, we modified the
tame almost complex structure so that it is integrable around any εi.
Let pi be the contracted image of εi by the complex blow-down, see
Proposition 4.7 (En-case), Theorem 4.10 (Dn-case) and Theorem 4.13
(An-case).

Firstly, we consider the case of type En. Write D1 = π(E′′′
r ) ⊂ CP 2 in

Proposition 4.7. As in the proof of Theorem 5.1, we blow-up CP 2 three
times to get a closed symplectic 4-manifold M̃ and the proper transform
D̃1 of D1. Denote by p̃i on D̃1 corresponding to pi. We choose smooth
families p̃i(t) on D̃t \ {p}, which are mutually disjoint. By modifying
the smooth family of tame almost complex structures Jt around p̃i(t),
we may assume that Jt is integrable in a neighborhood of p̃i(t), while
keeping that D̃t is Jt-holomorphic. We blow-up (M̃, Jt) at p̃i(t) in com-
plex sense to get a smooth family of closed symplectic 4-manifolds Z̃t.
When t = 1, we find that Z̃1 is symplectic deformation equivalent to
Z(En). When t = 0, Z̃0 is nothing but Saito’s compactification M̃Γ of
the Milnor fiber, where Γ = En, see Section 2. Applying Lemma 5.11 to
the proper transform of D̃t∪E1,t∪E2,t∪E3,t (see Theorem 5.12), we get
an isotopy of the pair of Z(En) and C̃ ∪ Ep ∪ Eq ∪ Er to M̃En and the
compactifying divisor arising from the compactification of the Milnor
fiber (Figure 1). This proves Main Theorem for the case of type En.

In the case of type An (resp. Dn), we contract Ãt and B̃t (resp.
Ãt) in Z̃ to recover Z(An) (resp. Z(Dn)). The rest of the argument
goes in a similar way using Theorem 5.13 and Corollary 5.14 instead of
Theorem 5.12.

Finally, we prove uniqueness of the symplectic deformation type of X.
In the proof up to now, we made various choices and perturbations. We
will note that the symplectic deformation type does not depend on them.

The symplectic blow-down operation depends on the choice of the
normal form around the symplectic (−1)-curve, but the symplectic dif-
feomorphism type, hence, the symplectic deformation type does not
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depend on such a choice. Although the symplectic blow-up operation
depends on the choice of the Darboux chart and the radius of the Dar-
boux ball, the symplectic deformation type does not depend on these
choices. Hence, the symplectic deformation type of Z(Γ) is uniquely
determined [23].

We have shown that (Z(Γ), C̃ ∪ Ep ∪ Eq ∪ Er) is isotopic to the
standard model, i.e., the compactification of the Milnor fiber and the
compactifying divisor. We firstly consider the case that Γ = En. In
general, they are not necessarily ambient symplectically isotopic, but
Ψt(C̃ ∪ Ep ∪ Eq ∪Er) is non-degenerate with respect to the symplectic
structure. Here, Ψt is the isotopy in the proof of Theorems 5.1 and
5.12. A similar statement holds in the case that Γ = An,Dn, based
on Theorem 5.13 instead of Theorem 5.12. The last task is to show
that their regular neighborhoods are chosen so that the boundary is
always symplectically concave. For this purpose, we choose the regular
neighborhood as follows. We contract Ep, Eq and Er to cyclic quo-
tient singularities. The ambient space is a V -manifold with an almost
complex structure, which is integrable near the image D of C̃. Pick a
Hermitian metric near D and denote by N(D) a tubular neighborhood
of D with the radius δ > 0. Since the Euler number of the normal
bundle of D, as a complex V -vector bundle, is positive, the boundary of
the disk bundle is symplectically concave. The inverse image of N(D)
by the contraction map is a regular neighborhood of the compactifying
divisor. We can use N(D) as the strong concave filling of the link L.
This argument works also for the image of divisors under the isotopy.
Note also that if we change the radius of the tubular neighborhood, we
get a smooth family of symplectic forms on X with respect to which
the boundary ∂X is strongly symplectically convex. Therefore, we get
uniqueness of the symplectic deformation type of X.

Remark 6.1. We treat cases of An, Dn and En in a similar way
based on Theorem 5.1 and Corollary 5.14. Here, we would like to com-
ment other approaches for cases of An and Dn. For An-case, we can
contract a maximal family of symplectic (−1)-curves in Z(An)(2), which
are disjoint from E′′

p to get the complex projective plane. The compact-
ifying divisor is transformed to the union of a pseudo holomorphic line
and a pseudo holomorphic conic, which are tangential to each other. For
Dn case, we can contract a maximal family of symplectic (−1)-curves in
Z(Dn)(2), which are disjoint from E′′

p to get the product of two copies of
the complex projective line. The compactifying divisor is transformed to
the union of two pseudo holomorphic spheres of bidegree (1, 0) and (1, 2),
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respectively, which are tangential to each other. The rest of the argu-
ment is based on uniqueness of isotopy type of these divisors in the pro-
jective plane or the product of two copies of the complex projective line.
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