
Mach Learn (2018) 107:357–395

https://doi.org/10.1007/s10994-017-5648-2

Simple strategies for semi-supervised feature selection

Konstantinos Sechidis1
· Gavin Brown1

Received: 18 April 2016 / Accepted: 8 June 2017 / Published online: 17 July 2017

© The Author(s) 2017. This article is an open access publication

Abstract What is the simplest thing you can do to solve a problem? In the context of semi-

supervised feature selection, we tackle exactly this—how much we can gain from two simple

classifier-independent strategies. If we have some binary labelled data and some unlabelled,

we could assume the unlabelled data are all positives, or assume them all negatives. These

minimalist, seemingly naive, approaches have not previously been studied in depth. However,

with theoretical and empirical studies, we show they provide powerful results for feature

selection, via hypothesis testing and feature ranking. Combining them with some “soft”

prior knowledge of the domain, we derive two novel algorithms (Semi-JMI, Semi-IAMB)

that outperform significantly more complex competing methods, showing particularly good

performance when the labels are missing-not-at-random. We conclude that simple approaches

to this problem can work surprisingly well, and in many situations we can provably recover

the exact feature selection dynamics, as if we had labelled the entire dataset.

Keywords Semi-supervised · Positive unlabelled · Feature selection

1 Introduction

Many real-world applications have limited access to labelled data, but abundant access to

large amounts of unlabelled data. Our work focuses on two semi-supervised scenarios that

occur in binary problems: when the labelled set contains both positive and negative examples,

and, a more restricted version, when only positive examples are labelled (also known as
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positive-unlabelled learning). An important research direction is to transfer techniques and

methodologies from supervised learning over to such semi-supervised situations.

An easy solution is simply to ignore the unlabelled data; but this point, of when unla-

belled data in fact may help, is a controversial, and challenging question (Singh et al. 2009;

Li and Zhou 2015). Some studies in the literature focused on providing answers on how

unlabelled data are beneficial and guarantee improvements in solving classification prob-

lems (Sokolovska 2008; Balcan and Blum 2010; Krijthe and Loog 2015; Loog 2016). Our

work focuses on using unlabelled data to solve feature selection problems. We note that

there are two intimately related research questions, often conflated, and as we will see, it is

beneficial to disentangle them. These concern the testing and ranking of features, in relation

to the label.

Q1. Testing:“Is there a significant dependency between feature X and label Y ?”

Q2. Ranking:“Using a finite sample of data, can we recover a ranking of features, that

would be close to that we would obtain if we had access to the true distribution?”

We focus on filters for feature selection, allowing classifier-independent answers to these

questions—in particular with information theoretic methods. This is as opposed to classifier-

dependent wrapper/embedded methods (Guyon et al. 2006). Our goal is therefore: approaches

for semi-supervised information theoretic feature selection—as such, this can be seen as a

semi-supervised companion to Brown et al. (2012).

In terms of data, we tackle two semi-supervised scenarios—when the labels are missing

completely at random (MCAR), and a missing-not-at-random scenario (MAR-C) where

the class labels are missing according to a mechanism, dependent on the class label itself

(Moreno-Torres et al. 2012). The latter might occur for example when there is a social stigma

associated with reporting of a label, such as income levels or HIV incidence. Our aim is to

deeply understand two very simple (but commonly adopted) strategies that are inference-free.

They are simply: we assume all missing labels are in fact negative, or assume they are in fact

positives (Fig. 1). Either route results in a “surrogate” variable, Ỹ0 or Ỹ1, used in place of the

unobservable Y, after which we proceed with feature selection exactly as if we had a usual,

fully-supervised, scenario.

Clearly, both of these are highly likely to be false assumptions, but they are popular. For

example, Elkan and Noto (2008, Sect. 2) use them to learn classifiers from positive unlabelled

data, while Blanchard et al. (2010, Sect. 3) for semi-supervised novelty detection. What is

most surprising, is that these have very similar statistical properties to the (unobservable) full

label vector. We use these properties to derive novel feature selection algorithms, which turn

out to be highly competitive with significantly more complex procedures.

Y = { 1 0 1 0 1 0 1 1 }

Y = { 1 0 1 0 ? ? ? ? }

Y0 = { 1 0 1 0 0 0 0 0 } Y1 = { 1 0 1 0 1 1 1 1 }

Unobserved variable

Observed variable

Surrogate variables

S

Fig. 1 Illustration of the two simple strategies we investigate. From the (unobservable) true labels Y , we

assume an unknown process S which generates Ỹ , with missing values. Now, we have two simple (and clearly

incorrect) inference-free actions—assume all unlabelled objects are negative (left branch) or all positive (right

branch). The questions tackled in this paper concern what happens if we use Ỹ0 or Ỹ1 instead of Y , for

hypothesis testing or feature ranking
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1.1 Summary of results

We now present, in summary, the results of the work.

Results on Semi-Supervised Hypothesis Testing

For hypothesis testing, we use the G-test of independence—such a test is characterised by

its false positive rate (FPR) and false negative rate (FNR). The first contribution is in terms

of asking what happens to the FPR/FNR if we test with surrogate variables G(X; Ỹ0) or

G(X; Ỹ1), instead of the ideal (unobservable) G(X; Y )? In Sect. 3 we prove that the answer

to this question is:

– Both surrogate tests will have exactly the same FPR as the ideal test.

– Both surrogate tests will have a higher FNR than the ideal test.

This result turns out to be true regardless of the data missingness scenario: MCAR or

MAR-C. The higher FNR is clearly an undesirable consequence so we offer two solutions,

that become possible if the user is able to provide some belief over the true underlying class

probability p(y = 1).

The first solution, in case the user has the luxury of collecting more samples, is a “correction

factor” that specifies the minimum number of new samples necessary to achieve a desirable

FNR. In case this is not possible, the second solution is a simple “switching threshold”

(Definition 3) that tells the user which one of the two surrogates will have the lesser FNR.

If the user believes the true class probability is below the threshold, they should use Ỹ0, i.e.

assume all missing labels are negative, otherwise, they should use Ỹ1. In pseudocode:

Let p be the number of positive examples supplied.

Let n be the number of negative examples supplied.

Let m be the number of unlabelled examples supplied.

Let p̃(y = 1) be a user’s (point) belief for the class probability.

Let a =
√

p(p + m), and b =
√

n(n + m)

if p̃(y = 1) < a
a+b

,

use surrogate Ỹ0, i.e. set all missing values to 0.

else

use surrogate Ỹ1, i.e. set all missing values to 1.

Proceed as normal, with the surrogate in place of original labels.

Our proposal for semi-supervised feature selection is to apply the above procedure. In

the following sections we will show significant empirical evidence that this is a surprisingly

powerful approach. This can be used (for example) in the hypothesis testing phase of Markov

Blanket discovery, using the IAMB algorithm (Tsamardinos and Aliferis 2003), but with

semi-supervised nodes in the Bayesian network—we refer to this as Semi-IAMB.1

Results on Semi-Supervised Feature Ranking

Here the question we address is: if we were to rank features by their estimated mutual

information with a surrogate label, i.e. use Î (X; Ỹ0) or Î (X; Ỹ1), which one will provide a

closer feature ranking to that of the true unobservable Î (X; Y )?

A theoretical analysis in Sect. 4 shows the answer to this is:

– In the limit of large data, both surrogates produce exactly the same ranking as the unob-

servable Î (X; Y ).

1 The software related to this paper will be available at: https://github.com/sechidis.
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– With finite samples, the same switching threshold as before can be used to find which will

produce a closer ranking. If the user believes the class probability is below the threshold,

then they should rank features by Î (X; Ỹ0), otherwise they should use the other surrogate.

The same results apply to conditional mutual information terms, and hence to the various

information theoretic criteria reviewed in Brown et al. (2012). As before, we apply the

pseudocode as above to pick which surrogate we will use, then apply one of the selection

criteria. For example, one can apply the JMI feature selection criterion (Yang and Moody

1999) after our procedure, which we then refer to as Semi-JMI.

Sections 5 and 6 present extensive empirical studies (11 datasets, 7 competing methods),

and the proposed approach is shown to be competitive on several evaluation metrics. Fur-

thermore, in controlled experiments, by varying the missingness scenario smoothly from

MCAR to MARC (i.e. toward more label-biased data), we show that our method dominates

the others.

Parts of this article have been published in two previous conference papers: Sects. 3.4

and 5 in Sechidis and Brown (2015), while parts of Sect. 3.3 in Sechidis et al. (2014). Those

two previous works focused only on feature selection through hypothesis testing. Here we

demonstrate these results in a framework for information feature selection through testing

and ranking, by giving a more extended theoretical analysis (Sects. 3, 4) and additional results

for different semi-supervised scenarios with novel experiments (Sect. 6).

2 Background

In this section we will give the background material for our work. Firstly we will review

information theoretic feature selection, via hypothesis testing and ranking. Then we will

formally introduce the semi-supervised settings that we will focus on, and we will motivate

our approach to solve the feature selection problem in these settings. Throughout this work

we focus on information theoretic testing and estimation by exploring a known relationship

between the maximum likelihood estimator of the mutual information and the G-test of

independence. Appendix A provides a tutorial on hypothesis testing and estimation of mutual

information.

2.1 Feature selection by testing independence—Markov Blanket discovery

In fully-labelled scenarios we observe a sample dataset {xi , yi }N
i=1. The feature vector x =

[x1 . . . xd ] is a realization of the joint random variable X = X1 . . . Xd , and, without loss of

generality, we assume categorical features.2 With a slight abuse of notation, in the rest of our

work, we interchange the symbol for a set of variables and for their joint random variable.

Feature selection is a challenging problem, not only to solve, but also to define the concept

of “optimal” feature set—after all, one feature set may work well with one classifier, but

not with another. In the special case where the data can be assumed to be a sample from

an unknown Bayesian network, the optimal feature set is uniquely defined, and known as

the Markov Blanket (MB) of a target variable. Pearl (1988) formally defined the MB of a

variable Y as the set of features XMB with the property Y ⊥⊥ Z|XMB for every Z ⊆ X\XMB.

In probabilistic graphical models terminology, the target variable Y becomes conditionally

independent from the rest of the graph X\XMB given its MB XMB.

2 Section 6 shows how we can use our results in datasets with numerical features, while Sect. 7 suggests ways

of fully extending our framework to numerical data.
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Koller and Sahami (1996) showed that the MB of a target variable is the optimal set of

features to minimize the amount of predictive information lost during feature selection, since

it minimizes DK L (p(y|x)||p(y|xM B)). In this context, discovering the MB can be useful

for eliminating irrelevant features or features that are redundant in the context of others, and

as a result it plays a fundamental role in filter feature selection. There are many different

approaches to derive the MB from finite datasets. In our work we will will use the Incremental

Association Markov Blanket (IAMB) (Tsamardinos and Aliferis 2003) algorithm, which can

be seen in Algorithm 1. IAMB consists of two-stages: growing, where we add features to

the Candidate Markov Blanket (CMB) set until the remaining features become independent

of the target given the candidate blanket, and shrinkage, where we remove potential false

positives from the CMB.

Algorithm 1: Incremental Association Markov Blanket (IAMB)

Input : Labelled dataset {xi , yi }N
i=1. Significance level α.

Output: Discovered Markov Blanket: XCMB

1 Phase I: forward — growing

2 XCMB = ∅
3 while XCMB has changed do

4 Find X ∈ X\XCMB most strongly related with Y given XCMB

5 if X⊥⊥Y |XCMB using significance level α then

6 Add X to XCMB

7 end

8 end

9 Phase II: backward — shrinkage

10 foreach X ∈ XCMB do

11 if X ⊥⊥ Y |XCMB\X using significance level α then

12 Remove X from XCMB

13 end

14 end

Importantly, lines 5 and 11 in this algorithm involve hypothesis tests between feature node

X and label node Y . In our research, we are interested in how these tests would be if Y is a

semi-supervised node in the network. In the literature, there is currently only one inference-

free algorithm to derive the MB in this situation, the BAyesian Semi-SUpervised Method

(BASSUM), by Cai et al. (2011), which turns out to have some limitations, discussed later

in this section.

2.2 Feature selection by ranking—information theoretic methods

Feature selection using mutual information is an extremely popular approach—Brown et al.

(2012) surveyed over a dozen selection criteria published in various bodies of literature. In

these approaches, we rank the features according to a score measure, and select the ones that

have a higher score. For example, by ranking the features according to their estimated mutual

information with the target, we derive a ranking that takes into account the relevancy to the

class label. The score for feature Xk is:

JM I M (Xk) = Î (Xk; Y ). (1)

This does not, however, take into account the redundancy between the features. By using

more advanced techniques, we can take into account both the relevancy and the redundancy
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between the features themselves. For example, a popular criterion is mRMR (Peng et al.

2005), which ranks the features according to the score:

Jm RM R(Xk) = Î (Xk; Y ) − 1

|Xθ |
∑

X j ∈Xθ

Î (Xk; X j ), (2)

where Xθ is the set of the features already selected. Whilst this is popular, in an extensive

empirical study Brown et al. (2012) found it to be quite unstable, in that the chosen set of

features can vary wildly with small variations in the training data. Instead, they suggest the

use the Joint Mutual Information (JMI) criterion (Yang and Moody 1999), where the score

is conditional on the set already chosen:

JJ M I (Xk) =
∑

X j ∈Xθ

Î (Xk; Y |X j ). (3)

The framework of Brown et al. (2012) focused only on fully-supervised data—our work,

by using surrogate variables in an informed way, naturally extends this to semi-supervised

scenarios.

In the semi-supervised literature there is one recent work on information theoretic methods,

by He et al. (2016)—their proposal is MINT, a semi-supervised method based on mRMR.

The main limitation of MINT is that it makes the traditional semi-supervised assumption, that

the labelled set is an unbiased sample. To aid in understanding this further, in the next section

we survey the various possible sampling assumptions in the semi-supervised literature.

2.3 Semi-supervised learning

A semi-supervised dataset D = {DL ∪DU } can be seen as a combination of two samples: the

labelled DL and the unlabelled DU . We will assume that we have N examples, out of which

NL belong to the labelled set, while NU to the unlabelled. For the labelled set we have the

class labels DL = {xi , yi }NL

i=1, while for the unlabelled set we record only the feature vector

DU = {xNL+i }NU

i=1.

In our analysis we will follow a data scenario known as “single-training set” (Elkan and

Noto 2008). Here we assume that firstly we sample the whole dataset D, and then we label

some examples to form the labelled set DL , and the remaining examples form the unlabelled

set DU . A convenient way to analyse this scenario is to introduce a binary random variable S

in order to describe if an example is labelled, where s = 1 or unlabelled, where s = 0. The

training data D are imagined to be drawn from p(X, Y, S)—for each observation {x, y, s},
the values of {x, s} are recorded. But, we only record the value of y when s = 1, otherwise it

is labelled as “missing”. So what we actually can observe is not Y , but a “surrogate” variable

Ỹ , taking on the true label value, y, when s = 1, and a token “?” when s = 0. In this way,

the labelled set DL comes from the joint distribution p(x, y|s = 1), while the unlabelled set

DU from the distribution p(x|s = 0).

The key variable here then, is S, and the underlying (hidden) mechanism deciding whether

a data sample is labelled, or not. This underlying mechanism could take several forms, and

the exact form turns out to be very important for feature selection. To represent this, we adopt

the formalism of m-graphs (Mohan et al. 2013), shown in Fig. 2.
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X Y

S Y

X, Y S

p(s|x, y) = p(s)
p(x, y|s) = p(x, y)

X Y

S Y

X S|Y
p(s|x, y) = p(s|y)
p(x|y, s) = p(x|y)

(a) (b)

Fig. 2 Graphical representation of the different semi-supervised scenarios: a the missingness mechanism

S does not depend directly on features X or on class Y (MCAR: Traditional semi-supervised) and b the

missingness mechanism S depends directly on the class Y . Solid nodes represent fully observed variables, while

a dashed node is partially observed (i.e. with missing values) (MAR-C: Class-prior-change semi-supervised).

Nodes with a dot ⊙ are fully observed variables Ỹ —taking the value of Y for the labelled examples and

the token “?” for unlabelled examples—we refer to this as a surrogate. The dashed line between X and Y

indicates there may or may not be a correlation between two variables. a MCAR: Traditional semi-supervised.

b MAR-C: Class-prior-change semi-supervised

Traditional semi-supervised scenario (or MCAR)

In Fig. 2a, we see the MCAR assumption (Little and Rubin 2002). Here, the S node is

disconnected from both X and Y , so data samples are labelled purely at random. As a result,

we have no selection bias in the labelled set, which turns out to be a useful property. According

to Smith and Elkan (2007) this is the assumption that most semi-supervised learning methods

use, including the very earliest work (Seeger 2002).

Class-prior-change semi-supervised scenario (or MAR-C)

In Fig. 2b, we see the MAR-C assumption, where S is a function of the true (unobservable)

class label. In the missing data literature (Little and Rubin 2002), this scenario is classified as

missing-not-at-random, and, since the missingness depends only in the class, Moreno-Torres

et al. (2012) name it as missing-completely-at-random class dependent (MAR-C). We can

connect the two semi-supervised scenarios further, with the following observation: MCAR

can be seen as a special case of MAR-C. When MAR-C holds we have p(s = 1|x, y) =
p(s = 1|y), while we can derive MCAR if we furthermore assume p(s = 1|y) = p(s) for

each x ∈ X and y ∈ Y .

The MAR-C scenario is important to understand, as it corresponds to a very practical

semi-supervised situation, where there exists some bias in the labelling—certain classes of

object may be more likely to receive a label than others. In the following paragraphs, we

discuss this and the related literature.

Plessis and Sugiyama (2012) defined the scenario of class-prior-change, which occurs

when the class balance in the labelled set does not reflect the population: p(y = 1|s = 1) 	=
p(y = 1). For example, as discussed in the introduction, this might occur in survey data

when there is some stigma associated with reporting the true value of Y . A more restricted

version of this, where we observe examples only from the positive class, generates positive-

unlabelled data under the widely used selected completely at random assumption (Elkan and

Noto 2008). In this case, there is conditional independence at the event level: X ⊥⊥ S|y = 1,

while there are no negatively labelled examples p(s = 1|y = 0) = 0. A common approach

to solve this problem is to simply assume unlabelled examples are negatives. This approach

has been shown to be powerful in the literature of positive-unlabelled learning (Elkan and

Noto 2008, Sect. 2) and in semi-supervised novelty detection (Blanchard et al. 2010, Sect. 3).
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Exploring how this simple strategy performs in terms of feature selection is the main focus

of our work.

Furthermore, it is interesting to mention that in the MAR-C scenario it is not possible

to consistently estimate p(y) directly from the observed data, without further modelling

assumptions. However, if we have some prior knowledge of p(y), the bias introduced by this

sampling mechanism can be corrected (Hein 2009). Our work explores how we can use this

prior knowledge to decide which is the optimal simple strategy for semi-supervised feature

selection.

2.4 Motivating an inference-free approach and related work

In the literature there are two main methods for handling missing data (Allison 2001): (1)

inference-free methods (a.k.a. model-independent) such as listwise deletion or dummy vari-

able adjustment methods, and (2) inference-based methods (a.k.a. model-dependent) such as

expectation maximization or single/multiple imputation.

For the task of feature selection, in order to be consistent with the filter principle (Guyon

et al. 2006), we need to follow a model-independent approach. Two simple assumptions with

nice theoretical properties we can make are to assume the unlabelled examples positive, or

assume them negative. With our work we will explore the consequences of these assumptions

in feature selection through hypothesis testing (Sect. 3) and ranking (Sect. 4).

Apart from being consistent with the filter assumption, inference-free approaches have

other important advantages. Van den Broeck et al. (2015) present some of them in the context

of estimating the parameters of a Bayesian network. The most important is that inference-free

methods are efficient: expressed in closed-form, requiring only a single pass over the data.

This is a significant computational advantage over inference-based methods.

Cai et al. (2011) suggest an inference-free algorithm for semi-supervised feature selec-

tion using a modified test of independence. This algorithm implicitly makes the traditional

semi-supervised assumption that the labelled set is an unbiased sample from the overall

population—it makes use of the unlabelled examples to improve the reliability of condi-

tional independence tests. For example, to estimate the G-statistic, Eq. (7) in Appendix A,

it uses both labelled and unlabelled data for the observed counts o.,.,z and ox,.,z. This tech-

nique is known in statistics as available case analysis or pairwise deletion. The problem

with pairwise deletion is the resultant ambiguity over the definition of the overall sample

size, which is crucial for deriving standard errors and sampling distributions; the interested

reader can find more details in Allison (2001, page 8). This can lead to unpredictable results,

for example there are no guarantees that the G-statistic will follow a χ2-distribution after this

substitution. Another weakness of BASSUM is that it cannot be applied in restricted semi-

supervised environments where we have labelled examples only from one class, which is the

case for positive-unlabelled learning. Our work (Sect. 3) suggests ways for deriving the MB

around of any kind of semi-supervised node (i.e. semi-supervised with class-prior-change,

or positive-unlabelled). The main idea is to explore the consequences of testing conditional

independence (i.e. Algorithm 1—Lines 5 and 11) by using the surrogate approaches: assume

the unlabelled data are all positives or assume are all negatives. The result of our analysis

is a new algorithm, Semi-IAMB (Algorithm 2), and Sect. 5 presents applications on how it

performs in different semi-supervised scenarios.

Finally, He et al. (2016) suggest MINT, an extension of a popular information theoretic

feature ranking criterion, the mRMR criterion (Peng et al. 2005), for inference-free semi-

supervised feature selection. MINT uses only the labelled set to estimate the relevancy, i.e.

the first term on the RHS of Eq. (2), and both labelled and unlabelled examples for estimating
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the redundancy, i.e. the second term. The main limitation of this approach is that it makes

the MCAR assumption. Our work (Sect. 4) suggests a generic method for extending any

feature ranking criterion suggested in fully-labelled scenarios (Brown et al. 2012) to semi-

supervised scenarios. Our analysis is based on using surrogate fully observable variables in

place of the semi-supervised target, and explore how these surrogates perform on MCAR and

MAR-C semi-supervised scenarios. The result of our analysis is a new algorithm, Semi-JMI

(Algorithm 3), and Sect. 6 presents the empirical performance of this approach in several

semi-supervised datasets.

3 Hypothesis testing in semi-supervised scenarios

In this section we examine the theoretical/empirical properties of semi-supervised hypothesis

testing with surrogate variables.

3.1 Surrogate approaches for hypothesis testing

As discussed in the previous sections, the two surrogates we study are Ỹ0, where we assume

all unlabelled examples are negative, and Ỹ1, where we assume all unlabelled examples are

positive. In addition, we examine a “default” option—to just ignore the unlabelled examples

and use only the labelled set DL . This is the baseline for any semi-supervised learning, and it

is equivalent to standard supervised learning but with smaller sample size. To the best of our

knowledge, our work is the first that explores the theoretical properties and consequences of

ignoring unlabelled data, for information theoretic feature selection. Thus, in the rest of our

analysis we will theoretically and empirically analyse the following three approaches:

Surrogate 1 (DL): Ignore unlabelled examples, i.e. use only DL .

Surrogate 2 (Ỹ0): Assume unlabelled examples are negative, i.e. use surrogate Ỹ0.

Surrogate 3 (Ỹ1): Assume unlabelled examples are positive, i.e. use surrogate Ỹ1.

As we saw in Sect. 2.1, the test of independence plays a crucial role in feature selection

through MB discovery. Therefore it is important to analyse theoretically the consequences

of testing independence by using surrogate approaches instead of the unobservable fully-

supervised target variable Y. The two factors that characterise a hypothesis test are: the false

positive rate (FPR or type-I error), and the false negative rate (FNR or type-II error). The

FPR is the probability of falsely stating a dependency exists X − Y , when in fact there is

none. The FNR is the opposite, falsely stating there is no dependency. If a surrogate test has

the same FPR and FNR as the ideal test, then (in the context of feature selection) the exact

same features will be selected, despite the missing labels. The challenge is therefore to prove

what the FPR/FNR will be for each surrogate, with different sampling assumptions (more

details about these two types of error can be found on the tutorial of hypothesis testing in

Appendix A).

In IAMB (Algorithm 1), the probability of a false positive (α) is a user specified input

parameter, thus, we need to identify surrogates that are consistent with this user specification.

If we have more than two approaches that are consistent, the more desirable will be that

which performs better in terms of the FNR. Now we will formally define these two desirable

properties.

Given a fully observed feature X , a partially observed Y , and a fully observed surrogate

Ỹ , we define two properties that Ỹ may possess, validity and informedness, concerning the
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false positive and the false negative rate of the test of independence when Ỹ is used instead

of Y.

Definition 1 (Valid surrogate) The surrogate Ỹ is valid for a hypothesis test if, and only if,

it has the same FPR as the ideal test using Y :

X ⊥⊥ Ỹ ⇔ X ⊥⊥ Y

If X is independent of Ỹ , then X is also independent of Y , and vice versa.

Definition 2 (Informed surrogate) The surrogate Ỹ is informed for a hypothesis test if, and

only if, the following conditions hold:

1. it has the same FPR, i.e. is a valid surrogate (see Definition 1)

2. the test can be corrected to have the same FNR as the ideal test, by increasing the number

of samples by a factor κ , calculated from user-supplied knowledge of the class probability.

Thus, when a surrogate is informed, we can use it for hypothesis testing as a perfect surrogate

for Y , since we know that (if we can find sufficient extra samples) the FPR and FNR will be

identical to that of the ideal (unobservable) test. In the following, we will present results of

theory work proving the validity/informedness of various semi-supervised hypothesis testing

and ranking scenarios.

3.2 Testing: labels missing completely at random (MCAR)

In order to use any of the three surrogate approaches we should first explore if they are valid

for testing the null hypothesis of independence. Or in other words, we ensure that following

a surrogate approach, the probability of a type I error (α) will be the same as if we had used

the (unobservable) fully-supervised test between X and Y. The following theorem presents

our first findings.

Theorem 1 (MCAR: Which surrogate tests are valid for testing X ⊥⊥ Y ?) Under the MCAR

assumption, all three surrogates are valid:

Surrogate 1 (DL) : X ⊥⊥ Y ⇔ X ⊥⊥ Y |s = 1,

Surrogate 2 (Ỹ0) : X ⊥⊥ Y ⇔ X ⊥⊥ Ỹ0,

Surrogate 3 (Ỹ1) : X ⊥⊥ Y ⇔ X ⊥⊥ Ỹ1.

Proof Sketches for each of these situations can be found in Appendix B.1. ⊓⊔

While Theorem 1 tells us that the surrogate tests are equivalent to the unobservable test for

detecting independencies, it says nothing about how well the surrogate approaches perform

when the null hypothesis is false. In that case we should compare the tests in terms of their

power to detect a given effect. The effect size that our work uses is the mutual information—

I (X; Y )—which quantifies the dependency between the random variables, and it is the natural

effect for the G-test of independence (Appendix A).

We will now explore the power of surrogate G-tests of independence in order to detect

effects expressed in terms of I (X; Y ). To do so we will re-express the non-centrality param-

eters of the surrogate tests in terms of the non-centrality parameter of the unobservable

test—λG(X;Y ) = 2N I (X; Y ). With the following theorem we show that the non-centrality

parameters of the surrogate tests can be written in terms of the non-centrality parameter of

the unobservable test as λG(X;Ỹ ) = κλG(X;Y ), and we derive the three κ correction factors.
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Theorem 2 (MCAR: Informed surrogate approaches) Under the MCAR assumption, all

three surrogate are informed, with correction factors:

Surrogate 1 (DL) : κ1 = p(s = 1),

Surrogate 2 (Ỹ0) : κ2 = 1 − p(y = 1)

1 − p(y = 1)p(s = 1)
p(s = 1),

Surrogate 3 (Ỹ1) : κ3 = 1 − p(y = 0)

1 − p(y = 0)p(s = 1)
p(s = 1).

Proof Can be found in Appendix B.2. ⊓⊔

Since all three correction factors are smaller than one, we conclude that all three surrogate tests

have smaller non-centrality parameters than the fully-supervised test, and as a result smaller

power. The loss in power, which is captured by the correction factors, depends on p(y = 1)

and p(s = 1). We can have an unbiased estimate for the first probability from the labelled

set, while, by the number of labelled examples, we can calculate and control the second

probability. Furthermore we have that: λG(X;Y |s=1) > λG(X;Ỹ0) and λG(X;Y |s=1) > λG(X;Ỹ1)
,

and since all of these three tests have the same degrees of freedom we can derive the following

corollary.

Corollary 1 (MCAR: Comparing the power of the surrogate tests) In MCAR the most

statistically powerful of the three surrogate approaches is Surrogate 1, that is, to simply

ignore the unlabelled data.

To add experimental support to our theoretical results, we generate synthetic random

variables X and Y with different degrees of dependency and we plot figures similar to the

figures in Gretton and Györfi (2010). To create the data, firstly we generate the values of

Y , by taking N samples from a Bernoulli distribution with p(y = 1). Then, we randomly

choose the parameters p(x |y) that guarantee the desired degree of dependency expressed

in terms of I (X; Y ) and we use these parameters to sample the values of X . In the x-axis

of the figures we have different effect sizes in terms of the mutual information between X

and Y, while in the y-axis we have the acceptance rate of the null hypothesis H0 (over 1000

independent generations of the data). The y-intercept represents 1—False Positive Rate, and

should be close to 1 − α in order for the tests to be valid, while elsewhere the plots indicate

the False Negative Rate. Figure 3 verifies Theorem 1, by showing that the surrogate tests are

valid, since all lines have the same intercept at 1−α = 0.90 and as a result the surrogate tests

have the same false positive rate. Furthermore, all of the surrogate approaches lead to tests
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Fig. 3 MCAR: Comparing the False Positive and False Negative rate. For all figures we have α = 0.10, while

to generate the semi-supervised dataset we used p(s = 1) = 0.25. a N = 500 and |X | = 2. b N = 1000 and

|X | = 5
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with higher false negative rate—this verifies Theorem 2 that the three tests have less power

than the unobservable test. Finally, from the same figure we observe that the most powerful

surrogate approach is to ignore the unlabelled examples, which verifies Corollary 1.

3.3 Testing: labels missing at random class dependent (MAR-C)

When the labels are MAR-C we prove with the following theorem that we have the same

valid tests as in the MCAR scenario (Sect. 3.2).

Theorem 3 (MAR-C: Which surrogate tests are valid for testing X ⊥⊥ Y ?) Under the

MAR-C assumption, all three surrogates are valid.

Surrogate 1 (DL) : X ⊥⊥ Y ⇔ X ⊥⊥ Y |s = 1,

Surrogate 2 (Ỹ0) : X ⊥⊥ Y ⇔ X ⊥⊥ Ỹ0,

Surrogate 3 (Ỹ1) : X ⊥⊥ Y ⇔ X ⊥⊥ Ỹ1.

Proof Sketches for each of these situations can be found in Appendix B.3. ⊓⊔
All three surrogates are valid—in the following we determine whether they are also

informed. To do this, we re-express the non-centrality parameters of the two valid surrogate

tests, G(X; Ỹ0) and G(X; Ỹ1), in terms of the non centrality parameter of the unobservable

fully-supervised test, G(X; Y ).

Theorem 4 (MAR-C: Informed surrogate approaches) In MAR-C only two of the

surrogates—Surrogate 2 and Surrogate 3—are also informed, with the following correction

factors:

Surrogate 2 (Ỹ0) : κỸ0
= 1 − p(y = 1)

p(y = 1)

p(ỹ0 = 1)

1 − p(ỹ0 = 1)
,

Surrogate 3 (Ỹ1) : κỸ1
= 1 − p(y = 0)

p(y = 0)

p(ỹ1 = 0)

1 − p(ỹ1 = 0)
.

Proof Can be found in Appendix B.4. ⊓⊔
The probabilities p(ỹ0 = 1) and p(ỹ1 = 0) can be calculated and controlled through the

examples that are labelled as positives and negatives. But, as we mentioned in Sect. 2.3, when

the labels are MAR-C we cannot use the labelled set to consistently estimate the probability

p(y = 1). From the above theorem, we observe that by using “exact” prior knowledge over

p(y = 1), we can quantify the power of these two surrogate approaches. As a result we can

use the G(X; Ỹ0) and/or G(X; Ỹ1) instead of the G(X; Y ) for power analysis and sample

size determination. Taking advantage of the extra degree of freedom in p(ỹ0 = 1) and/or

p(ỹ1 = 0), we can also determine the required level of supervision (i.e. number of labelled

examples) needed, following the same procedure as in sample size determination. In our pre-

vious work (Sechidis et al. 2014), we presented a complete methodology for sample/labelled

size determination in positive-unlabelled scenarios by using the κỸ0
correction factor and

surrogate Ỹ0.

Interestingly, to decide which of these two tests is more powerful we do not need exact

prior knowledge, but we can do so by using some “soft” prior knowledge expressed in terms

of inequality. Before presenting this result, let us define first the following threshold:

Definition 3 (Switching threshold) The switching threshold value (φ) is

φ = 1

1 +
√

(1−p(ỹ0=1))p(ỹ1=0)
p(ỹ0=1)(1−p(ỹ1=0))

.
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This threshold can be estimated using the values of the observed variables Ỹ0 and Ỹ1. Let p be

the number of positively labelled examples, n be the number of negatively labelled examples,

and m the number of unlabelled examples. Then a consistent estimator of p(ỹ0 = 1) is

p/(p + n + m), while p(ỹ1 = 0) as n/(p + n + m). With some straightforward algebra

the estimated threshold can be written as: a/(a + b), where and a =
√

p(p + m), and

b =
√

n(n + m).

Using this threshold and some user-specified “soft” prior knowledge over p(y = 1) we

can decide the most powerful option by the following theorem.

Theorem 5 (MAR-C: Comparing the power of the two surrogate tests) Under the MAR-

C assumption, if the following inequality holds, the most statistically powerful option (i.e.

lowest false negative rate) is Surrogate 2.

p(y = 1) < φ (4)

When the opposing inequality holds, the most powerful choice is Surrogate 3. When equality

holds, both approaches are equivalent.

The proof of this theorem is straightforward. G(X; Ỹ0) is more powerful than G(X; Ỹ1)

when κỸ0
> κỸ1

, which results in the inequality p(y = 1) < φ. When the opposing inequality

holds, the most powerful choice is G(X; Ỹ1). When equality holds, both approaches are

equivalent, since they have the same correction factors, and as a result the same non-centrality

parameters.

Unfortunately a conclusion for the “ignore unlabelled” strategy seems intractable, since it

involves expressing the non-centrality parameter, λG(X;Y |s=1), in terms of the non-centrality

parameter of the unobservable fully-supervised test, λG(X;Y ). Combining our findings on the

MAR-C scenario with our findings on the MCAR scenario (Sect. 3.2), we can consider the

following conjecture:

Conjecture 1 (MAR-C: Comparing the power of the tests) The closer we are to the MCAR,

i.e. DK L(p(y)||p(y|s = 1)) ≈ 0, then Surrogate 1, G(X; Y |s = 1), will have the

highest statistical power. In contrast, the closer we are to extreme MAR-C scenarios, i.e.

DK L (p(y)||p(y|s = 1)) ≫ 0, then either Surrogate 2 or 3, that is G(X; Ỹ0) or G(X; Ỹ1),

will have the highest power. In this latter scenario we can identify which of the two will be

most powerful using Theorem 5.

A theoretical justification for this conjecture, requires all three surrogate tests to be

informed in both MCAR and MAR-C scenarios. As we mentioned this seems to be intractable,

since in MAR-C, is highly non-trivial exercise to derive a closed form relationship between

λG(X;Y |s=1) and λG(X;Y ). An intuitive justification can come from our observation in Sect. 2.3

that MCAR is as a restricted version of MAR-C. Now we will provide empirical evidence.

Figure 4 verifies Theorem 3 by showing that any of the three surrogate tests is a valid

approach, since all of the lines have the same intercept (at 1 − α) and as a result the tests

have the same false positive rate. Furthermore, we can verify Theorem 5 by incorporating

“soft” prior knowledge over p(y = 1) and using inequality (4) to decide which of the two

tests, G(X; Ỹ0) or G(X; Ỹ1), is more powerful. For the first setting (Fig. 4a, b) we have

p(ỹ0 = 1) = p(ỹ1 = 0) = 0.125, so the RHS of inequality (4) is equal to 0.50. And by

using “soft” knowledge that p(y = 1) is less than this value we can conclude that G(X; Ỹ0)

is more powerful than G(X; Ỹ1) and Fig. 4a, b verify this conclusion. The same also holds

for the second setting (Fig. 4c, d) where we have p(ỹ0 = 1) = 0.05 and p(ỹ1 = 0) = 0.15

and the RHS of the inequality (4) becomes 0.35. Again, by using “soft” knowledge over

p(y = 1), we can conclude that G(X; Ỹ0) is more powerful than G(X; Ỹ1).
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Fig. 4 MAR-C: Comparing the False Positive and False Negative rate. For all figures we have α = 0.10 and

p(y = 1) = 0.20. In the first row, figures (a) and (b), we label the data such that p(y = 1|s = 1) = 0.50—

an extreme MAR-C scenario since DK L (p(y)||p(y|s = 1)) = 0.19. While in the second row, figures (c)

and (d), we label the data such that p(y = 1|s = 1) = 0.25—a MAR-C scenario close to MCAR since

DK L (p(y)||p(y|s = 1)) = 0.01. a |X | = 2, N = 500 and p(s = 1) = 0.25. b |X | = 5, N = 1000 and

p(s = 1) = 0.25. c |X | = 2, N = 500 and p(s = 1) = 0.20. d |X | = 5, N = 1000 and p(s = 1) = 0.20

By comparing the first setting (first row Fig. 4a, b) with the second setting (second row

Fig. 4c, d), we can verify Conjecture 1. In the first setting, the MAR-C is more extreme. So, in

this scenario, using the unlabelled examples assuming that they belong to the negative class

outperforms the other approaches. While in the second setting we are closer to the MCAR

assumption. As a result, in this scenario we can see that ignoring the unlabelled examples is

more powerful option.

An interesting point to mention is that our analysis in this section can be also used when

we have labelled examples from one class, such us the positive-unlabelled setting. Under

the positive-unlabelled constraint the surrogate variable of assuming all unlabelled exam-

ples being negative (Ỹ0) is valid and it is also informed by incorporating prior knowledge

over p(y = 1). As a result we can use the G(X; Ỹ0)-test for experimental design activities,

such as sample size determination. This application of our work was presented in Sechidis

et al. (2014), where we also explored how we to incorporate uncertain prior knowledge over

p(y = 1).

3.4 Conditional independence tests in semi-supervised learning

The results that we proved for testing in MCAR (Sect. 3.2) and MAR-C (Sect. 3.3) can

be extended to conditional tests. The MCAR extension is straightforward, because of the

unconditional independence presented in Fig. 2a. Deriving the results in MAR-C is more

challenging and this is the focus of the current section. Firstly we will show that testing con-

ditional independence by assuming the unlabelled examples to be either positive or negative

is a valid approach.
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Theorem 6 (MAR-C: Which surrogate tests are valid for testing X ⊥⊥ Y |Z ?) In MAR-C

we can test conditional independence by these three surrogate approaches:

Surrogate 1 (DL) : X ⊥⊥ Y |Z ⇔ X ⊥⊥ Y |s = 1, Z,

Surrogate 2 (Ỹ0) : X ⊥⊥ Y |Z ⇔ X ⊥⊥ Ỹ0|Z,

Surrogate 3 (Ỹ1) : X ⊥⊥ Y |Z ⇔ X ⊥⊥ Ỹ1|Z.

Proof Sketches can be found in Appendix B.5. ⊓⊔

The consequence of this theorem is that the derived conditional tests of independence are

valid, but it does not tell us anything about what is happening when the alternative hypothesis

holds. To explore that, we will quantify the amount of power that we are losing by assuming

all unlabelled examples are negative (i.e. using Ỹ0) or positive (i.e. using Ỹ1).

Theorem 7 (MAR-C: Informed surrogates for the conditional test) In MAR-C only two

valid tests—Surrogate 2 and 3—are also informed with the same correction factors as the

ones for the unconditional tests presented in Theorem 4.

Proof Can be found in Appendix B.6. ⊓⊔

The correction factors in the non-centrality parameters of the unconditional tests (Theorem

4) are the same as the ones of the conditional tests (Theorem 7), thus we can use inequality (4)

and incorporate “soft” prior knowledge to decide which surrogate approach is most powerful.

Section 5.1 presents an experimental verification of the correctness of these factors in the

context of MB discovery, and we show how we can use them to derive the MB of positive-

unlabelled and semi-supervised target nodes using “exact” and “soft” prior knowledge.

3.5 The switching procedure applied to Markov Blanket discovery—Semi-IAMB

We now define an algorithm based on the observations of this section, Semi-IAMB (Algorithm

2). While IAMB decides the optimal feature set around fully-supervised targets Y by testing

conditional independence, in the semi-supervised scenarios we can use Theorem 7 and “soft”

prior knowledge to decide the most powerful surrogate choice between Ỹ0 and Ỹ1. If inequality

(4) holds we should choose Ỹ0 instead of Ỹ1, and when the opposing inequality holds the most

powerful choice is Ỹ1—when equality holds, both approaches are equivalent. After deciding

which is the most powerful option, we use IAMB (Algorithm 1) with this surrogate variable.

Section 5 compares the performance of Semi-IAMB against other semi-supervised

approaches. Before that, in the following section, we will show how to use surrogates to

derive feature rankings in semi-supervised scenarios.

4 Ranking features in semi-supervised scenarios

In the previous section we studied hypothesis testing in semi-supervised data—in some

situations we may not be so interested in a yes/no hypothesis test, but instead in a full

ranking of all features, in relation to the label.

4.1 Surrogate approaches for feature ranking

The main question we answer in this section is to decide which surrogate variable to use

in order to rank the features, as close as possible to the population ranking that would be
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Algorithm 2: Semi-IAMB

Input : Semi-supervised data {xi , ỹi }N
i=1

.

Significance level α.

User supplied belief over class probability, p̃(y = 1)

Output: Discovered Markov Blanket: XMB

1 Step 1: Initialise

2 n =
∑N

i=1 I

[
ỹi = 0

]
% number of negatives supplied with labels in ỹ

3 p =
∑N

i=1 I

[
ỹi = 1

]
% number of positives supplied with labels in ỹ

4 m =
∑N

i=1 I

[
ỹi =?

]
% number of missing labels in ỹ

5 Step 2: Create surrogate variables

6 Set ỹ0 = ỹ and ỹ1 = ỹ

7 Replace missing values in ỹ0 with 0

8 Replace missing values in ỹ1 with 1

9 Step 3: Calculate switching threshold

10 a =
√

p(p + m)

11 b =
√

n(n + m)

12 φ = a
a+b

13 Step 4: Decide optimal surrogate (Theorem 8) and use it in IAMB to derive MB

14 if p̃(y = 1) < φ then

15 y ← ỹ0
16 else

17 y ← ỹ1

18 XMB ←IAMB
(
{xi , yi }N

i=1

)
% Proceed as normal using y as a fully labelled set.

achieved if we could use the (unobservable) target Y . To do so we will build on the results in

the previous section, and suggest efficient ways for feature ranking under the two different

missingness scenarios. Before that we should give a formal definition on the equivalence

between rankings derived using different approaches.

Definition 4 (Ranking equivalence) Assume that we have a set of features X = {X1, . . . , Xd}
and we use two different approaches to rank them, e.g. J Y which uses the mutual informa-

tion between the features and the unobservable variable Y , and J Ỹ which uses the mutual

information between the features and the surrogate Ỹ . We say that the two approaches J Y

and J Ỹ are ranking equivalent, J Y R= J Ỹ , if ∀ i, j it holds that:

J Y (X i ) < J Y (X j ) ⇔ J Ỹ (X i ) < J Ỹ (X j ),

where J Y (X i ) and J Ỹ (X i ) represent the score of the feature X i estimated by the two different

approaches.

For example, assume that we have a set of features X, two random variables Y and Ỹ , and

we use J Y = I (X i ; Y ) the mutual information (MIM) scoring criterion. If it were to hold

that I (X i ; Y ) = κ I (X i ; Ỹ ) ∀ X i ∈ X, with κ ∈ R
+ is constant with respect to the X ’s,

then we know they are ranking equivalent: J Y
M I M

R= J Ỹ
M I M .

4.2 Ranking: labels missing completely at random (MCAR)

With straightforward algebra (see proof of Theorem 2) we can derive the following:

Surrogate 1 (DL) : I (X; Y |s = 1) = I (X; Y ),
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Table 1 Characteristics of synthetic dataset used to observe the ranking performance

# Features Population values of the effects

between the features and the target

Class prob. p(y = 1)

100 I (X1; Y ) = 0.0351, I (X2; Y ) = 0.0352, . . . , I (X100; Y ) = 0.0450 0.20

The arity of features is chosen randomly between the following values |X | = 2, 5, 10 and 20

Surrogate 2 (Ỹ0) : I2(X; Ỹ0) = p(s = 1) − p(s = 1)p(y = 1)

1 − p(y = 1)p(s = 1)
I2(X; Y ),

Surrogate 3 (Ỹ1) : I2(X; Ỹ1) = p(s = 1) − p(s = 1)p(y = 0)

1 − p(y = 0)p(s = 1)
I2(X; Y ).

where I2(X; Y ) is the squared-loss mutual information (Sugiyama 2012), which is asymp-

totically equivalent to I (X; Y ) (more details in Appendix A).

We see that all of the mutual information quantities of the LHS can be written as κ times

the mutual information derived by using the unobservable variable Y, where the factor κ

is independent of the characteristics of the feature X . So a direct consequence of these

relationships is that we can use the surrogate approaches to rank the features, and the ranking

will be the same as if we had used the unobservable target Y.

Deciding which of the above approximate rankings is preferable in finite sample has to

do with the accuracy of the estimators. There is a natural relationship between testing and

estimation, and as Loftus (1991) mentions “The more power you have, the smaller are your

confidence intervals, i.e., the better your knowledge of where population means are”. So

by exploring the power of tests, we can derive estimators with higher accuracy, which will

result to rankings that are closer to the population one. In Sect. 3.2, we showed that the

most powerful option to test independence is to ignore the unlabelled examples, and thus this

surrogate will result to a ranking that is closer to the population one. The above results are

summarised in the following corollary.

Corollary 2 (MCAR: Ranking) In MCAR the rankings derived by the all three surro-

gates are ranking equivalent to the population ranking: J Y
M I M

R= J
DL

M I M , J Y
M I M

R= J
Ỹ0

M I M and

J Y
M I M

R= J
Ỹ1

M I M . In finite datasets Surrogate 1 is the optimal choice.

To verify Corollary 2 we will compare the rankings derived by using the different esti-

mators against the population ranking. To check the similarity between the rankings we use

Spearman’s ρ correlation coefficient (Kalousis et al. 2007). The range of values that this

coefficient takes is [−1, 1], where 1 means that the two rankings are identical, 0 means that

there is no correlation between them. Since, to assess this, we need to have knowledge of the

population ranking we will use a synthetic dataset—Table 1 presents the characteristics. This

dataset is extremely challenging in terms of predicting the population ranking, because the

stepwise increase in the population values of the mutual information is 0.0001. We sample

various different dataset sizes (N ) from 2500 (2.5k) to 500000 (500k) examples to observe

the performance when the sample size increases.

Figure 5a verifies the results of this section. Ignoring the unlabelled examples outperforms

the other surrogate approaches. Furthermore we see that by increasing the sample size all of

the estimators improve their rankings, and they are closer to the population ranking, this is a

verification of the fact that all of the approaches converge to the population ranking.
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Fig. 5 “Extremely Challenging” dataset—difference between relevant/irrelevant features is of the order

10−4 nats. Plot shows Spearman’s ρ (average over 10 repetitions) between population ranking and ranking

derived through different surrogate approaches. For each repetition we average over 30 semi-supervised

versions with p(s = 1) = 0.25 and sampled by: a MCAR and b MAR-C with p(y = 1|s = 1) = 0.50. To

help the visibility, we plot only the most powerful option between surrogates 2 and 3, which in both scenarios

is surrogate 2. a MCAR. b MAR-C

4.3 Ranking: labels are missing at random class dependent (MAR-C)

In this scenario it is impossible to derive relationships for Surrogate 1 (i.e. ignore the unla-

belled examples), but only for the following two surrogate approaches (see proof of Theorem

4):

Surrogate 2 (Ỹ0) : I2(X; Ỹ0) = 1 − p(y = 1)

p(y = 1)

p(ỹ0 = 1)

1 − p(ỹ0 = 1)
I2(X; Y ),

Surrogate 3 (Ỹ1) : I2(X; Ỹ1) = 1 − p(y = 0)

p(y = 0)

p(ỹ1 = 0)

1 − p(ỹ1 = 0)
I2(X; Y ).

Again, we observe that all of the mutual information quantities of the LHS can be written

as κ times the mutual information derived by using the unobservable variable Y, where

the factor κ is independent of the characteristics of the feature X . A consequence of these

relationships is that the mutual information quantities of the LHS can be used to rank the

features, and the ranking will be the same as if we had used the unobservable variable Y.

Another interesting consequence is that we can rank the features without an exact prior

knowledge over the p(y = 1) by simply using Surrogate 2 or 3. Deciding the optimal choice

between these two surrogates has to do with the accuracy of the estimators, which can be

answered by using our findings in hypothesis testing (Sect. 3.3), since the most powerful test

leads to more accurate estimators (Loftus 1991). Thus we can suggest the following theorem.

Theorem 8 (MAR-C: Ranking by using “soft” prior knowledge) In MAR-C the rankings

derived by Surrogate 2 or Surrogate 3 are ranking equivalent to the population ranking:

J Y
M I M

R= J
Ỹ0

M I M and J Y
M I M

R= J
Ỹ1

M I M . Furthermore, when p(y = 1) < φ holds the the optimal

choice is Surrogate 2 (Ỹ0) while when the opposing inequality holds, the most optimal choice

is Surrogate 3 (Ỹ1). When equality holds, both approaches are equivalent.

Proving this theorem is straightforward, by using Theorem 5 and the fact that the most

powerful way for testing will result in the most accurate estimator (Loftus 1991), and as a

result a ranking that is closer to the ideal unobservable ranking. Figure 5b verifies the results

of this section. To generate the semi-supervised data again we used the same methodology as

in Sect. 3.3. When we have “soft” prior knowledge we can decide the optimal choice between
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Î (X; Ỹ0) and Î (X; Ỹ1). In this setting, since p(ỹ0 = 1) = p(ỹ1 = 0) = 0.125, the RHS of

the inequality (4) becomes 0.50, which is larger than 0.20 and as result the ranking derived

through Î (X; Ỹ0) will be closer to the population ranking than the one derived by Î (X; Ỹ1).

4.4 Extending to higher order criteria

Throughout this section we analysed rankings derived through MIM criterion, which at each

feature selection step ranks the features by simple estimating I (Xk; Y ). More advanced

criteria rank the features using higher-order conditional mutual information terms, i.e. JMI

ranks the features by estimating
∑

X j ∈Xθ
I (Xk; Y |X j ). When the labels are MCAR or MAR-

C, our results can be directly extended to these higher order rankings, because of independence

and conditional independence assumptions presented in Fig. 2a, b, respectively. This can be

formally proved by using same reasoning as in the proof of Theorem 7.

4.5 The switching procedure applied to feature ranking—Semi-MIM, Semi-JMI

We now define two algorithms based on the observations of this section, Semi-MIM and Semi-

JMI (Algorithm 3). Under our analysis we can use “soft” prior knowledge to decide which is

the optimal surrogate to be used in order to rank the features. If inequality (4) holds we chose

Ỹ0 instead of Ỹ1. When the opposing inequality holds the most powerful choice is Ỹ1. When

equality holds, both approaches are equivalent. After deciding which is the most powerful

surrogate, we can use MIM or JMI criterion with this variable instead of the unobservable

target Y, we name these methods as Semi-MIM or Semi-JMI respectively. Section 6 compares

the performance of our suggested methods with other state-of-the-art semi-supervised feature

selection methods. Before that in the next section we present applications of our work in the

area of semi-supervised MB discovery.

5 Application 1: Semi-supervised Markov Blanket discovery

Now we will explore how to derive the MB of semi-supervised nodes. This application of

our work was first presented in Sechidis and Brown (2015). Firstly, we will show how we

can use surrogate variables to derive the MB of positive-unlabelled nodes, a scenario where

BASSUM cannot be applied. Then we will compare the performance of our suggested method

Semi-IAMB against a baseline method and BASSUM.

5.1 MB discovery in positive-unlabelled learning

In this section we present how we can use our methods for testing conditional independence in

PU data to derive MB despite the labelling restriction. In the PU setting, the surrogate variable

Ỹ0 is fully observed and it is identical to the labelling variable S. Using this surrogate instead

of Y is a valid (in the sense of Definition 1) approach to test conditional independence,

because of Theorem 6. This will result in the same number of false positive errors for the

two tests, or in MB context using the surrogate variable Ỹ0 instead of the unobservable Y

will result in the same number of nodes falsely added to the blanket.

Now we will verify the consequences of this theorem in the context of MB discovery.

We use four widely used standard benchmark networks for Markov blanket discovery taken

from the Bayesian network repository.3 Table 2 presents the summary of these networks. For

3 Downloaded from http://www.bnlearn.com/bnrepository/.
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Algorithm 3: Semi-JMI

Input : Semi-supervised data {xi , ỹi }N
i=1

User supplied belief over class probability, p̃(y = 1)

Output: JMI ranking of the features: XJMI

1 Step 1: Initialise

2 n =
∑N

i=1 I

[
ỹi = 0

]
% number of negatives supplied with labels in ỹ

3 p =
∑N

i=1 I

[
ỹi = 1

]
% number of positives supplied with labels in ỹ

4 m =
∑N

i=1 I

[
ỹi =?

]
% number of missing labels in ỹ

5 Step 2: Create surrogate variables

6 Set ỹ0 = ỹ and ỹ1 = ỹ

7 Replace missing values in ỹ0 with 0

8 Replace missing values in ỹ1 with 1

9 Step 3: Calculate switching threshold

10 a =
√

p(p + m)

11 b =
√

n(n + m)

12 φ = a
a+b

13 Step 4: Decide optimal surrogate (Theorem 8) and use it in IAMB to derive MB

14 if p̃(y = 1) < φ then

15 y ← ỹ0
16 else

17 y ← ỹ1

18 XJMI ←JMI
(
{xi , yi }N

i=1

)
% Proceed as normal using y as a fully labelled set.

Table 2 Networks used in Markov blanket discovery experiments

Network Number of target nodes Total number of nodes Average MB length of target nodes

Alarm 5 37 5.6

Insurance 10 27 6.2

Barley 10 48 5.6

Hailfinder 20 56 4.9

target variables we used nodes that have at least one child, one parent and one spouse in their

Markov blanket. Multi-class target nodes were transformed to binary by keeping the examples

with value 1 as positives and the rest of the examples formed the negative class. Furthermore,

we kept the nodes that the positive class is the minority with minimum probability of 0.15.

For these networks we know the true Markov blankets around each target variable and we

compare them with the discovered blankets through the IAMB algorithm. For the supervised

scenarios (i.e. when we used the variable Y ) we perform 10 trials of size N = 2000 and 5000.

For each trial we sample 30 different partially labelled datasets, and the overall outcome of

the partially labelled approaches was the most frequently derived Markov blanket.

As we observe from Fig. 6 using Ỹ0 instead of Y in the IAMB algorithm does not result

in a statistically significant difference in the false positive rate, or in MB terminology the

blankets derived from these two approaches are similar in terms of the variables that were

falsely added to the blanket.
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Fig. 6 Verification of Theorem 6. This illustrates the average number of variables falsely added in MB and the

95% confidence intervals over 10 trials when we use IAMB with Y and Ỹ0. a for total sample size N = 2000

out of which we label only 100 positive examples and b for total sample size N = 5000 out of which we label

only 250 positives. a N = 2000, p(ỹ0 = 1) = 0.05. b N = 5000, p(ỹ0 = 1) = 0.05

5.1.1 Incorporating “exact” prior knowledge in sample size determination

While the surrogate approach guarantees the same number of false positive errors, a direct

consequence of Theorem 7 is that using Ỹ0 instead of Y results in a higher number of

false negative errors. By using the correction factor κỸ0
and “exact” prior knowledge over

the p(y = 1) we can use the surrogate test for sample size determination, and decide the

amount of data that we need in order to have similar performance with the unobservable

fully-supervised test in terms of false negatives.

In the MB discovery context this will result in a larger number of variables falsely not

added to the predicted blanket, since we assumed that the variables were independent when in

fact they were dependent. In order to verify experimentally this conclusion we will compare

again the discovered blankets using Ỹ0 instead of Y. As we see in Fig. 7, the number of

variables that were falsely not added is higher when we are using Ỹ0. This figure also verifies

Theorem 7, where we see that the number of variables falsely removed when using the

surrogate test G(X; Ỹ0|Z) with increased sample size N/κỸ0
is the same as when using the

unobservable test G(X; Y |Z) with N data.

5.1.2 Evaluation of MB discovery in PU data

For an overall evaluation of the derived blankets using Ỹ0 instead of Y we will use the

F-measure, which is the harmonic mean of precision and recall, against the ground truth.

In Fig. 8, we observe that the assumption of all unlabelled examples to be negative gives
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Fig. 7 Verification of Theorem 7. This illustrates the average number of variables falsely not added to the

MB and the 95% confidence intervals over 10 trials when we use IAMB with Y and Ỹ0. a for total sample size

N = 2000 and b for total sample size N = 5000. In all the scenarios we label 5% of the total examples as

positives. a N = 2000, p(ỹ0 = 1) = 0.05. b N = 5000, p(ỹ0 = 1) = 0.05
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Fig. 8 Comparing the performance in terms of F-measure when we use IAMB with Y and Ỹ0. a For total

sample size N = 2000 and b for total sample size N = 5000. In all the scenarios we label 5% of the total

examples as positives. a N = 2000, p(ỹ0 = 1) = 0.05. b N = 5000, p(ỹ0 = 1) = 0.05

worse results than the fully-supervised scenario, and that the difference between the two

approaches gets smaller as we increase sample size. Furthermore, using the correction factor

κỸ0
to increase the sample size of the surrogate approach makes the two techniques perform

similar.

5.2 MB discovery in semi-supervised learning under class-prior-change

In this section, we will present how our approach performs in a real world problem where the

class balance in the labelled set does not reflect the balance over the overall population; such

situation is known as class-prior-change (Plessis and Sugiyama 2012), Sect. 2.3 gives more

details about the assumptions behind this scenario. We compare our approach (Semi-IAMB)

with the following two approaches: ignoring the unlabelled examples, a procedure known in

statistic as listwise deletion (Allison 2001), or using the unlabelled data to have more reliable

estimates for the marginal counts of the features, a procedure known in statistics as available

case analysis or pairwise deletion (Allison 2001). The latter is followed in BASSUM (Cai

et al. 2011); Sect. 2.1 gives more details about this approach and its limitations. We call the

other two approaches as Listwise-IAMB and Pairwise-IAMB respectively.

Firstly, let us assume that the semi-supervised data are generated under the “traditional

semi-supervised” scenario, where the labelled set is an unbiased sample from the overall

population, or in other words the labels are MCAR. As a result, the class-ratio in the labelled

set is the same to the population class-ratio:
p(y=1|s=1)
p(y=0|s=1)

= p(y=1)
p(y=0)

, where the lhs is the class-

ratio in the labelled set and in RHS the population class-ratio. As we observe in Fig. 9, our

approach (Semi-IAMB) performs similarly with ignoring completely the unlabelled examples

(Listwise-IAMB). As was expected, using the semi-supervised data with pairwise deletion

(Pairwise-IAMB) has unpredictable performance and often performs much worse than using

only the labelled examples.

Now, let us assume we have semi-supervised data under the class-prior-change scenario

(for more details see Sect. 2.3), or in other words the labels are MAR-C. In our simulation

we sample the labelled data in order to have a class ratio in the labelled set inverse than the

population ratio:
p(y=1|s=1)
p(y=0|s=1)

=
(

p(y=1)
p(y=0)

)−1
, where the lhs is the class-ratio in the labelled set

and in RHS the inverse of the population class-ratio. As we observe in Fig. 10, Semi-IAMB

performs statistically better than ignoring the unlabelled examples (Listwise-IAMB). Our

approach performs better on average than the pairwise deletion, while the latter performs

comparably to the listwise deletion in many settings.
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Fig. 9 Traditional semi-supervised (MCAR) scenario: Comparing the performance in terms of F-measure

when we have the same class-ratio in the labelled-set as in the overall population. a For sample size N = 2000

out of which we label only 200 examples and b N = 5000 out of which we label only 250 examples. a

N = 2000, Ns=1 = 200. b N = 5000, Ns=1 = 250
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Fig. 10 Class-prior-change semi-supervised (MAR-C) scenario: Comparing the performance in terms of

F-measure when we have inverse class-ratio in the labelled-set than in the overall population. a For sample

size N = 2000 out of which we label only 200 examples and b N = 5000 out of which we label only 250

examples. a N = 2000, Ns=1 = 200. b N = 5000, Ns=1 = 250

Furthermore, our approach can be applied in scenarios where we have labelled examples

only from one class, which cannot be handled with the other two approaches. Also, with our

approach, we can control the power of our tests, which is not the case in pairwise deletion

procedure. In the following section we will present the application of our work, in the area

of information theoretic feature selection.

6 Application 2: Semi-supervised filter feature selection

In this section we explore the performance of the Semi-JMI suggested in Sect. 4. Firstly, we

will compare it against other information theoretic methods, and then we the state-of-the-art.

6.1 Comparing information theoretic feature selection approaches

Firstly we will explore the performance of our suggested criteria with other information the-

oretic methods. We will focus on three criteria (MIM/mRMR/JMI) and their semi-supervised

versions. By following Surrogate 1, or in other words using only in the labelled data DL we

rank the features using the following scores:

• MIM using DL : J
DL

M I M (Xk) = Î (Xk; Y |s = 1).

• JMI using DL : J
DL

J M I (Xk) =
∑

X j ∈Xθ

Î (Xk; Y |X j , s = 1).
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Table 3 Datasets used in the

feature selection experiments
Dataset # Examples # Features p̂(y = 1)

krvskp 3196 36 0.52

landsat 6435 36 0.24

musk2 6598 166 0.15

semeion 1593 256 0.50

spambase 4601 57 0.39

splice 3175 60 0.24

waveform 5000 40 0.34

• mRMR using DL :J
DL

m RM R(Xk) = Î (Xk; Y |s = 1) − 1
|Xθ |

∑
X j ∈Xθ

Î (Xk; X j |s = 1).

In Sect. 4.5 we suggested two semi-supervised versions of MIM and JMI:

• Semi-MIM: J
Ỹ0/Ỹ1

M I M (Xk) = Î (Xk; Ỹ0) or Î (Xk; Ỹ1).

• Semi-JMI: J
Ỹ0/Ỹ1

J M I (Xk) =
∑

X j ∈Xθ

Î (Xk; Ỹ0|X j ) or
∑

X j ∈Xθ

Î (Xk; Ỹ1|X j ).

To decide between Ỹ0 and Ỹ1 we use prior knowledge and Theorem 8.

These two approaches can be also used when we have labelled information only from one

class (i.e. positive-unlabelled).

In the information theoretic feature selection literature (Sect. 2.2) there is only one work

for semi-supervised scenarios, MINT (He et al. 2016), which is a semi-supervised version

of the mRMR criterion. Thus, we will explore how our suggested approaches behave in

comparison with the following mRMR based method:

• MINT: J M I N T
m RM R (Xk) = Î (Xk; Y |s = 1) − 1

|Xθ |
∑

X j ∈Xθ

Î (Xk; X j ).

6.1.1 Exploring the consistency of the selected subsets

An interesting question to explore is “how do the features selected through the semi-

supervised approaches differ from the ones that we would have by using the unobservable

target variable Y ?” To evaluate the performance of the different approaches, we will mea-

sure the similarity between the top-ten features that are returned by the semi-supervised

approaches and the features that we would have if we had a full supervision over the target.

If the consistency is high it indicates that the selected set is similar. We will measure this

similarity by Kuncheva’s consistency index (Kuncheva 2007), which recently has been shown

to have several nice properties (Nogueira and Brown 2016).

Table 3 gives details over the seven datasets that we use in our experiments. Multi-class

datasets transformed to binary by 1-vs-all. The features within each data set have a variety of

types some categorical, and some numerical. In the information theoretic feature selection

step, numeric features were discretized into five bins using an equal-width strategy. These

are fully-supervised datasets and we sample them to generate semi-supervised versions by

labeling 25% of the examples.

Firstly, we sample the labelled set under the traditional semi-supervised scenario MCAR.

Figure 11 shows that the approaches that use both labelled and unlabelled data—MINT,

Semi-MIM, Semi-JMI—perform very similar with the approaches that use only the labelled

data –J
DL

m RM R/J
DL

M I M/J
DL

J M I .
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Fig. 11 MCAR: Kuncheva’s Consistency index between the feature subsets returned through fully-supervised

mRMR/MIM/JMI and the ones returned by using the partially labelled approaches. In this graph we present

box plots and expected values (diamonds) across the seven datasets, while in each dataset we average the index

over 30 semi-supervised versions. a mRMR. b MIM. c JMI
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Fig. 12 MAR-C: Kuncheva’s Consistency index between the feature subsets returned through fully-

supervised mRMR/MIM/JMI and the ones returned by using the partially labelled approaches. In this graph

we present box plots and expected values (diamonds) across the seven datasets, while in each dataset we

average the index over 30 semi-supervised versions. a mRMR. b MIM. c JMI

Then, we generate semi-supervised datasets with class-prior-change where the labels are

MAR-C. We label the examples in such a way that in the labelled set we have two times more

positive than negative examples. Figure 12 shows that the approaches that use both labelled

and unlabelled data—MINT, Semi-MIM, Semi-JMI—outperform the approaches that use

only the labelled set –J
DL

m RM R/J
DL

M I M/J
DL

J M I . This trend is more obvious in our suggested

semi-supervised criteria, Semi-MIM and Semi-JMI, than in MINT. This result verifies the

fact that our suggested method are suitable for both MCAR and MAR-C semi-supervised

scenarios, while MINT is only for MCAR.

6.1.2 Exploring the misclassification error

In this section we will explore the performance of the semi-supervised criteria in terms of

their misclassification error. We used 10 train/test splits with 50% of the data used for training

and 50% for testing. To generate the semi-supervised data we labelled 25% of the training

examples—p(s = 1) = 0.25. We select the five most important features using different

semi-supervised criteria. Then we use the selected features and the training data to build a

k-nearest neighbor classifier (k = 3), since this classifier does not make any probabilistic

assumptions (Brown et al. 2012), and we measure the accuracy of the classifiers in the testing

data.

Firstly, we will examine under the traditional semi-supervised scenario where the labelled

set is an unbiased sample from the overall population. Table 4 presents the misclassification
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Table 4 Comparisons of the misclassification error using features derived from different information theo-

retic semi-supervised criteria when the labels are MCAR

Dataset MINT (He et al. 2016) Semi-MIM (our approach) Semi-JMI (our approach)

krvskp 0.078 ± 0.019 0.080 ± 0.021 0.072 ± 0.020

landsat 0.042 ± 0.004 0.101 ± 0.072 0.023 ± 0.003

musk2 0.097 ± 0.008 0.080 ± 0.005 0.078 ± 0.012

semeion 0.149 ± 0.018 0.185 ± 0.108 0.145 ± 0.017

spambase 0.179 ± 0.018 0.198 ± 0.023 0.200 ± 0.022

splice 0.044 ± 0.004 0.044 ± 0.004 0.044 ± 0.004

waveform 0.214 ± 0.009 0.191 ± 0.007 0.182 ± 0.006

For each dataset we present the average error and the standard deviation over the 10 trials, while bold indicates

the lowest average error

Table 5 Comparisons of the misclassification error using features derived from different information theo-

retic semi-supervised criteria when the labels are MAR-C

Dataset MINT (He et al. 2016) Semi-MIM (our approach) Semi-JMI (our approach)

krvskp 0.108 ± 0.067 0.082 ± 0.020 0.079 ± 0.021

landsat 0.044 ± 0.004 0.102 ± 0.078 0.023 ± 0.004

musk2 0.099 ± 0.008 0.085 ± 0.006 0.082 ± 0.006

semeion 0.168 ± 0.040 0.147 ± 0.013 0.142 ± 0.012

spambase 0.171 ± 0.018 0.185 ± 0.020 0.185 ± 0.019

splice 0.065 ± 0.012 0.049 ± 0.011 0.044 ± 0.004

waveform 0.217 ± 0.005 0.191 ± 0.009 0.178 ± 0.008

For each dataset we present the average error and the standard deviation over the 10 trials, while bold indicates

the lowest average error

error over the 10 train/test splits. As we observe, there was no clear winner, but on average

our suggested semi-supervised criterion Semi-JMI achieves better performance. To explore

the statistical significance of our results we analysed the ranks of the three methods by using

a Friedman test with the Nemenyi post-hoc test. Figure 13a presents the critical difference

diagrams, introduced by Demšar (2006), where groups of methods that are not significantly

different (at α = 0.10) are connected. As this figure shows, Semi-JMI performs better on

average but with no statistical significance.

Then, we generate semi-supervised datasets under the class-prior-change scenario by

randomly under or over-sampling the positive class, such that the probability of a labelled

example being positive—p(y = 1|s = 1)—to be 0.5 × p(y = 1) or 1.5 × p(y = 1) respec-

tively. Table 5 presents the average misclassification error and the 95% confidence intervals.

As we observe our suggested approach, Semi-JMI, which takes into account relevancy, redun-

dancy and redundancy, outperforms all the other approaches. Furthermore, Fig. 13c shows

that the difference between Semi-JMI and MINT is statistically significant.

Figure 13 shows the performance of the three semi-supervised feature selection methods

for different labelling scenarios from MCAR in Fig. 13a to extreme MAR-C in Fig. 13d. Our

semi-supervised JMI version always outperforms on average the rest of the methods, and

this trend is more obvious and statistically significant when we have strong class-dependent
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Fig. 13 Critical diagrams: Comparison of information theoretic semi-supervised feature selection methods

for different semi-supervised scenarios. We generate the semi-supervised datasets under the class-prior-change

scenario by randomly under or over-sampling the positive class, such that the probability of a labelled example

being positive—p(y = 1|s = 1)—to be (1 − c) × p(y = 1) or (1 + c) × p(y = 1) respectively. a MCAR

(which means c = 0), b MAR-C with c = 0.25, c MAR-C with c = 0.50 and d the most extreme MAR-C

with c = 0.75. For the Nemenyi post-hoc test we set the significance level to be 0.10. a MCAR ≡ (MAR-C

with c = 0). b MAR-C with c = 0.25. c MAR-C with c = 0.50. d MAR-C with c = 0.75

labelling, or in other words the class ratio in the labelled set is much different than the

population class ratio.

6.2 Comparison with state-of-the-art semi-supervised feature selection methods

In this section we compare our best performing proposed method (Semi-JMI) with state-of-

the-art methods in the semi-supervised feature selection (Ang et al. 2016). The comparison

will be in terms of misclassification error (using 3-nearest neighbour classifier) and the

experimental setting is the same as in Sect. 6.1.2.

Zhao and Liu (2007) proposed sSelect, one of the earliest algorithms for semi-supervised

feature selection, based on spectral graph theory. There is a great amount of literature dedi-

cated to methods motivated by different perspectives; for instance Sheikhpour et al. (2017)

have recently published a thorough survey that summarises all of these methods. For our

experiments we considered methods as technically diverse as possible, here we provide a

short description:

FW-SemiFS (Ren et al. 2008): A wrapper forward semi-supervised feature selection,

which uses the unlabeled examples to extend the initial labeled training set in a process

is similar to “co-training”. For the co-training we used a 3-nearest neighbour classifier.

CLS (Benabdeslem and Hindawi 2011): A method based on a semi-supervised version

of the Laplacian score. This approach has a graph based formulation, which has been

the basis of other feature selection methods, such as sSelect. One key assumption behind

this approach is that both labelled and unlabelled examples are sampled from the same

distribution, which only holds in MCAR.

SemiFS (Liu et al. 2013): A noise insensitive trace ratio criterion for selecting relevant

features using both labeled and unlabeled data. CLS and SemiFS are more suitable for

numerical features.

MINT (He et al. 2016): A semi-supervised version of mRMR, details in Sect. 6.1.
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RRPC (Xu et al. 2016): A max-relevance and min-redundancy criterion based on Pear-

son’s correlation (RRPC) coefficient. One advantage of this coefficient is that it can be

used to measure the correlation between numerical features, but the main disadvantage

is that it detects only linear correlations.

Firstly, we compare the performance of the algorithms when the labelled set is an unbiased

sample (MCAR). Table 6 shows that there is no clear winner, but on average our suggested

semi-supervised criterion Semi-JMI seems to have better performance on average. This can

be seen in the critical differences diagram in Fig. 14a.

Then, we generate the semi-supervised data with biased labelled set under the class-

prior-change scenario (MAR-C). Table 7 presents the average misclassification error. As we

observe our suggested semi-supervised Semi-JMI outperforms the other approaches in most

of the datasets. Figure 14c verifies this since our method is ranked first.

Finally, Fig. 14 shows the performance of the methods for different labelling scenarios

from MCAR in Fig. 14a to extreme MAR-C in Fig. 14d. Our proposed method, Semi-JMI,

always ranked first, and this trend is more obvious when we have strong class-dependent

labelling, or in other words the probability of the class in the labelled p(y = 1|s = 1) set is

very different from the actual class probability p(y = 1).

Table 6 Comparisons of the average misclassification error using features derived from different semi-

supervised feature selection methods when the labels are MCAR

Dataset FW-SemiFS CLS SemiFS RRPC MINT Semi-JMI

krvskp 0.366 0.473 0.118 0.358 0.078 0.072

landsat 0.182 0.248 0.023 0.074 0.042 0.023

musk2 0.064 0.061 0.093 0.079 0.097 0.078

semeion 0.201 0.141 0.141 0.188 0.149 0.145

spambase 0.143 0.299 0.212 0.145 0.179 0.200

splice 0.167 0.258 0.065 0.117 0.044 0.044

waveform 0.194 0.424 0.194 0.237 0.214 0.182

Experimental setting same as for Table 4

Table 7 Comparisons of the misclassification error using features derived from different semi-supervised

feature selection methods when the labels are MAR-C

Dataset FW-SemiFS CLS SemiFS RRPC MINT Semi-JMI

krvskp 0.373 0.471 0.119 0.368 0.108 0.079

landsat 0.129 0.224 0.024 0.068 0.044 0.023

musk2 0.067 0.060 0.093 0.080 0.099 0.082

semeion 0.146 0.147 0.184 0.197 0.168 0.142

spambase 0.141 0.278 0.218 0.150 0.171 0.185

splice 0.278 0.268 0.097 0.122 0.065 0.044

waveform 0.197 0.423 0.192 0.245 0.217 0.178

Experimental setting same as for Table 5
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Fig. 14 Critical diagrams: Comparison of semi-supervised feature selection methods for different semi-

supervised scenarios. Experimental setting same as for Fig. 13. a MCAR ≡ (MAR-C with c = 0). b MAR-C

with c = 0.25. c MAR-C with c = 0.50. d MAR-C with c = 0.75

7 Conclusions and future work

We presented a study of two extremely simple inference-free approaches to information

theoretic feature selection in semi-supervised scenarios.

7.1 Summary of contributions

In the beginning of this work, we posed two tangled questions on testing and ranking of

features. To give sensible answers in semi-supervised scenarios, we modelled the underlying

mechanism of missing labels with the two main assumptions used in the literature: MCAR and

MAR-C. To answer our questions in an entirely classifier-independent manner, we derived

from the observed data two surrogate approaches and we analysed what the consequences

would be of using these surrogates instead of the unobservable target labels in the different

partially labelled scenarios. We had the following contributions:

1. We derived ways for performing valid and informed hypothesis testing in semi-supervised

environments (Sect. 3). The outcome of our analysis is a methodology that enables

to incorporate some “soft” knowledge in order to decide which surrogate approach is

optimal.

2. Building upon our theoretical results for semi-supervised hypothesis testing we proposed

a novel Markov blanket discovery algorithm Semi-IAMB. Section 5 showed how to use

this algorithm for discovering the MB around positive-unlabelled and semi-supervised

targets.

3. We derived ways to use surrogate variables in order to rank the features as if we had fully

supervised data (Sect. 4).

4. Using our theoretical findings, we proposed an algorithm for semi-supervised feature

ranking, Semi-JMI, with several nice properties (i.e. captures relevancy, redundancy

and conditional redundancy). Section 6 showed experimentally that our algorithm

outperforms previously suggested approaches, especially when the labels are missing-

not-at-random.
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7.2 Future work

There are two interesting research directions:

Extending to numerical features All of the theoretical results about ranking, Sect. 4,

hold also for numerical features. From our findings in Sect. 3 the results about the

validity (Theorems 1, 3 and 6) hold also for numerical features. One possible way to

extend our results about the informedness (Theorems 2, 4 and 7) to numerical features

is the following. In our work we exploited the relationship between G-test and mutual

information, when the features are numerical, and under some assumptions, there is

a relationship between the unpaired t-test and the point-biserial correlation coefficient

(Rosenthal et al. 2000). Exploiting this connection, it may be useful step in order to

completely extend our methodology to numerical features.

Extending to other types of missingness A future research direction could be to explore

how we can use our methodology to other types of missingness. For example another

assumption used in the semi-supervised learning is when the missingness mechanism

depends directly only on the features or in other words the labelling of an example is

conditionally independent of the class, given the feature values. This scenario is known

in missing data literature as missing at random (MAR) (Moreno-Torres et al. 2012). The

importance of this assumption is also presented in the framework of semi-supervised

regression by Lafferty and Wasserman (2007). Another possible direction is to explore

under which assumptions over the model and what type of prior knowledge do we need

in order to perform feature selection when the labels are MNAR. In this scenario the

missingness mechanism depends directly on both the features and the target variable—

one possible strategy can be to decompose the problem into MAR-C and MAR sub-

problems. Furthermore, we can explore ways to deal with missing data both in features

and in labels. One way is to combine our work with a recently suggested framework for

feature selection when we have missing or misclassified features (Sechidis et al. 2017).
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A Tutorial on information theoretic testing and estimation

In filter feature selection, the features X are ranked by choosing those that share the most

information with the class label Y. In machine learning the two main ways to measure this

information is by using Shannon’s Mutual Information (MI) (Cover and Thomas 2006) or

Squared-loss Mutual Information (SMI) (Sugiyama 2012). The MI is the Kullback-Leibler

divergence between the joint p(x, y) and the product of the marginals p(x)p(y), I (X; Y ) =
DK L (p(x, y)||p(x)p(y)), while the SMI is the Pearson divergence between the joint and
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the product of the marginals. These two quantities can be estimated from sample data using

the following maximum-likelihood estimators:

Î (X; Y ) =
∑

x∈X ,y∈Y

p̂(x, y) ln
p̂(x, y)

p̂(x) p̂(y)
, (5)

Î2(X; Y ) =
∑

x∈X ,y∈Y

(
p̂(x, y) − p̂(x) p̂(y)

)2

2 p̂(x) p̂(y)
. (6)

where p̂(x, y) is the maximum-likelihood estimate of the probability that the random variable

X takes on the value x from its alphabet X and Y takes on y ∈ Y , while p̂(x) and p̂(y) the

estimates for the marginal probabilities. It can be proved that the SMI I2(X; Y ) is a second

order Taylor series approximation of Shannon’s MI I (X; Y ).

The estimates of the mutual information can be seen as measures of effect size when we

want to quantify the dependency between random variables, and have several nice properties.

Firstly, they are non-negative quantities which take their minimum zero value when the

random variables are independent. Furthermore, MI can be associated with both upper and

lower bounds on the Bayes error. Brown et al. (2012) present an extensive discussion of this

in the context of feature selection, including various heuristics which provide approximations

for high dimensional data, resulting in a unifying theoretical framework derived from a simple

probabilistic model. A crucial term in this framework is the conditional MI:

Î (X; Y |Z) =
∑

z∈Z

p̂(z) Î (X; Y |z) =
∑

z∈Z,x∈X ,y∈Y

p̂(x, y, z) ln
p̂(x, y|z)

p̂(x |z) p̂(y|z) .

This can be thought of as the information shared between X and Y after the values of a subset

of features Z ⊆ X\X , are revealed. As we will show in Sect. 2.2, using the unconditional

mutual information captures only the relevancy with the target, while using conditional mutual

information we can capture also the redundancy between the features (Brown et al. 2012).

Answering whether two random variables are independent or not requires us to threshold

the value of the estimated mutual information. To derive such a threshold we will use the

asymptotic distribution of the estimator and a hypothesis testing procedure. By following

this procedure we will have an informed decision and a control over the two possible errors:

concluding independence where in fact there is a dependence (a false negative, or type-II

error), or the opposite, concluding dependence where in fact there is none (a false positive,

or type-I error). In our work, we will focus on the Neyman-Pearson procedure for hypothesis

testing (Berger 2003) and we will explore two widely used tests of independence in categorical

data: the G-test and the χ2-test (Cressie and Read 1989). Both of them have been widely

used in machine learning, for example in structure learning of Bayesian networks (Spirtes

et al. 2001).

The G-test is a generalised likelihood ratio test, where the test statistic can be calculated

from data counts arranged in a contingency table. We denote by ox,y,z the observed count

of the number of times the random variable X takes on the value x ∈ X , Y takes on y ∈ Y

and Z takes on z ∈ Z , where z is a vector of values when we condition on more than

one variable. Furthermore, ox,.,z, o.,y,z and o.,.,z denote the observed marginal counts. The

estimated expected frequency of (x, y, z), assuming X, Y are conditionally independent given

Z, is given by ex,y,z = ox,.,zo.,y,z

o.,.,z
= p̂(x |z) p̂(y|z)o.,.,z. To calculate the G-statistic we use the
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formula:

G(X; Y |Z) = 2
∑

z∈Z,x∈X ,y∈Y

ox,y,z ln
ox,y,z

ex,y,z

= 2
∑

z∈Z,x∈X ,y∈Y

ox,y,z ln
o.,.,zox,y,z

ox,.,zo.,y,z

= 2N
∑

z∈Z,x∈X ,y∈Y

p̂(x, y, z) ln
p̂(x, y|z)

p̂(x |z) p̂(y|z) = 2N Î (X; Y |Z).

(7)

From this expression we see the relationship between the G-statistic and MI, and the latter

can be seen as the natural unit of effect size for the G-test (Rosenthal et al. 2000). Under

the null hypothesis (H0) that X and Y are statistically independent given Z, the G-statistic

is known to be asymptotically χ2-distributed, with ν = (|X | − 1)(|Y| − 1)|Z| degrees of

freedom (Agresti 2013). For a given dataset, we calculate (7) and then the p-value, which

is 1 − F(G(X; Y |Z)), where F is the CDF of the χ2-distribution. The p-value represents

the probability of obtaining a test statistic equal or more extreme than the observed one,

given that the null hypothesis holds. After calculating this value, we check to see whether it

exceeds a user specified significance level α. If p-value ≤ α, we reject the null hypothesis

of independence.

While the user specified significance level defines the probability of type I error (α),

in order to explore the probability of type II error (β), we should perform a power analysis

(Cohen 1988). The power of a test is the probability that the test will reject the null hypothesis

when the alternative hypothesis is true—or in practical machine learning terms, the proba-

bility of correctly selecting a relevant feature. This is also known as the true positive rate,

or the probability of not committing a type II error. One important usage of a-priori power

analysis is sample size determination. In this prospective procedure we specify the probabil-

ity of type I error (e.g. α = 0.05), the desired probability of type II error (e.g. β = 0.01 or

power = 0.99) and the desired effect size that we want to observe (i.e. expressed in terms

of I (X; Y ) for the G-test), and we can determine the minimum number of examples (N ) that

we need to detect that effect. However, to do this we need a test statistic with a known dis-

tribution under the alternative hypothesis. It is known that the G-statistic has a large-sample

non-central χ2 distribution under the alternative hypothesis (Agresti 2013, Section 6.6.4),

with the same degrees of freedom as in the null distribution. The non-centrality parame-

ter –λG(X;Y |Z)—has the same form as the G-statistic, but with sample values replaced by

population values, λG(X;Y |Z) = 2N I (X; Y |Z).

The other popular way to test independence between categorical random variables

is by using the χ2-test (Cressie and Read 1989), where we calculate the χ2-statistic

as χ2(X; Y |Z) = 2N Î2(X; Y |Z). This test is closely associated with the G-test, since

the χ2-statistic is the second order approximation of the G-statistic, making the G and
χ2-test asymptotically equivalent (Agresti 2013). The closer we are to independence, or—

equivalently—when the effects are small, the better the approximation will be. These are

the effects of main interest, since when we have larger effects differentiating between rele-

vant/irrelevant features is more trivial. In our analysis, we will make use of the asymptotic

equivalence between the two versions for testing independence and the for estimating mutual

information. Both of these two versions will turn out to be particularly important in the con-

text of hypothesis testing and feature ranking in partially labelled data. More details about

the relationship between hypothesis testing and feature selection can be found in Sechidis

(2015).
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B Proofs and sketches of proofs

B.1 Theorem 1

When the labels are MCAR, the following equations hold, which are useful for our proofs.

p(x, y|s = 1) = p(x, y), (8)

p(x |s = 1) = p(x), (9)

p(y|s = 1) = p(y). (10)

Surrogate 1 (DL): To prove X ⊥⊥ Y ⇔ X ⊥⊥ Y |s = 1, we need to prove:

p(x, y|s = 1) = p(x |s = 1)p(y|s = 1) ⇔ p(x, y) = p(x)p(y) ∀ x ∈ X and y ∈ Y.

The proof is straightforward:

p(x, y|s = 1) = p(x |s = 1)p(y|s = 1)
(8),(9),(10)⇔ p(x, y) = p(x)p(y).

Surrogate 2 (Ỹ0) and Surrogate 3 (Ỹ1): We can prove that these surrogate approaches are

valid by following the same methodology, or we can read that the independence relationships

hold from the m-graph of MCAR in Fig. 2a. ⊓⊔

B.2 Theorem 2

Surrogate 1 (DL): The non-centrality parameter of this surrogate test is equal to

λG(X;Y |s=1) = 2Ns=1 I (X; Y |s = 1), where Ns=1 represents the size of the labelled set.

With straightforward calculus, and using Eqs. (8)–(10), we can show that when the labels are

MCAR it holds I (X; Y |s = 1) = I (X; Y ). We can write the non-centrality parameter of the

surrogate approach as:

λG(X;Y |s=1) = 2Ns=1 I (X; Y ) ⇔ λG(X;Y |s=1) = Ns=1

N
2N I (X; Y )

The fraction Ns=1

N
represents the probability of labelling an example p(s = 1), while

2N I (X; Y ) is the non-centrality parameter of the unobservable test. Thus λG(X;Y |s=1) =
p(s = 1)λG(X;Y ), and the correction factor is κ = p(s = 1).

Surrogate 2 (Ỹ0): In order to prove that relationship we will use the result of Shelby (1974)

that when we assume local alternatives the X2 and the G-test have the same asymptotic power

(Shelby 1974, p. 109), in other words their non-centrality parameters converge to a common

value as N → ∞ (Agresti 2013, Section 16.3.5). So instead of exploring the relationship of

the non-centrality parameters for the G-tests between X, Ỹ0 and X, Y , we can explore the

relationship between the non-centrality parameters of the X2-tests between X, Ỹ0 and X, Y .

The non-centrality parameter of this X2 surrogate test is equal to λX2(X;Ỹ0) = 2N I2(X; Ỹ0).

With straightforward calculus and using Eqs. (8)–(10), we can show that when the labels

are MCAR it holds I2(X; Ỹ0) = 1−p(y=1)
1−p(y=1)p(s=1)

p(s = 1)I2(X; Y ). We can write the non-

centrality parameter of the surrogate approach as:

λX2(X;Ỹ0) = 1 − p(y = 1)

1 − p(y = 1)p(s = 1)
p(s = 1)2N I2(X; Y ) ⇔

λX2(X;Ỹ0) = 1 − p(y = 1)

1 − p(y = 1)p(s = 1)
p(s = 1)λX2(X;Y )
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By using the result that the non-centrality parameters for the X2 and G-test converge to a

common value, we can re-write the above relationship using the non-centrality parameter of

the G-test

λG(X;Ỹ0) = 1 − p(y = 1)

1 − p(y = 1)p(s = 1)
p(s = 1)λG(X;Y )

Thus the correction factor is κ = 1−p(y=1)
1−p(y=1)p(s=1)

p(s = 1).

Surrogate 3 (Ỹ1): We can prove this correction factor by following the same methodology

as for Ỹ0. This time it holds I2(X; Ỹ1) = 1−p(y=0)
1−p(y=0)p(s=1)

p(s = 1)I2(X; Y ), and as a result

the correction factor is κ = 1−p(y=0)
1−p(y=0)p(s=1)

p(s = 1). ⊓⊔

B.3 Theorem 3

When the labels are MAR-C, the following equations hold, which are useful for our proofs.

p(x |y, s = 1) = p(x |y), (11)

p(x |̃y0 = 1) = p(x |y = 1), (12)

p(x |̃y1 = 0) = p(x |y = 0). (13)

Surrogate 1 (DL): To prove X ⊥⊥ Y ⇔ X ⊥⊥ Y |s = 1, we need to prove:

p(x, y|s = 1) = p(x |s = 1)p(y|s = 1) ⇔ p(x, y) = p(x)p(y) ∀ x ∈ X and y ∈ Y.

The proof is straightforward by using Eq. (11) and Dawid’s (1979) definition of independence,

Eq. (IIb) in Dawid (1979). A similar proof is given for the conditional independence by

Didelez et al. (2010, Theorem 6).

Surrogate 2 (Ỹ0) and Surrogate 3 (Ỹ1): We can prove that these surrogates are valid by

following the same methodology, or we can read that the independence relationships hold

from the m-graph of MARC in Fig. 2b. For completeness we will give the analytical proof

for one scenario, i.e. the Surrogate 2. To prove X ⊥⊥ Y ⇔ X ⊥⊥ Ỹ0, we need to prove that

p(x, ỹ0) = p(x)p(ỹ0) ⇔ p(x, y) = p(x)p(y) ∀ x ∈ X , y ∈ Y and ỹ0 ∈ Ỹ0.

Since the random variable Y is binary it is sufficient to prove this for the two classes. So for

the first class we have

p(x, ỹ0 = 1) = p(x)p(ỹ0 = 1) ⇔ p(x |̃y0 = 1) = p(x)
(12)⇔

p(x |y = 1) = p(x) ⇔ p(x, y = 1) = p(x)p(y = 1).

Using the above result for the first class, we will prove it also for the second class

p(x, ỹ0 = 0) = p(x)p(ỹ0 = 0) ⇔ p(x) − p(x, ỹ0 = 1) = p(x)(1 − p(ỹ0 = 1)) ⇔
p(x, ỹ0 = 1) = p(x)p(ỹ0 = 1) ⇔ p(x, y = 1) = p(x)p(y = 1) ⇔
p(x) − p(x, y = 0) = p(x)(1 − p(y = 0)) ⇔ p(x, y = 0) = p(x)p(y = 0).

⊓⊔

B.4 Theorem 4

Surrogate 1 (DL): In order to prove that this test is informed we need to re-express the non-

centrality parameter of the unobservable test λG(X;Y ) as κλG(X;Y |s=1). To do so, we need
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to re-express I (X; Y ) as κ I (X; Y |s = 1), or to re-express I2(X; Y ) as κ I2(X; Y |s = 1).

But this is not possible when the labels are MAR-C. Surrogate 2 (Ỹ0): In order to prove

this relationship, we will use again the result that when we assume local alternatives the X2

and the G-test have the same asymptotic power. So instead of exploring the relationship of

the non-centrality parameters for the G-tests between X, Ỹ0 and X, Y , we can explore the

relationship between the non-centrality parameters of the X2-tests between X, Ỹ0 and X, Y .

The non-centrality parameter of this X2 surrogate test is equal to λX2(X;Ỹ0) = 2N I2(X; Ỹ0).

With straightforward calculus, and using Eq. (12), we can show that when the labels are

MAR-C it holds I2(X; Ỹ0) = 1−p(y=1)
p(y=1)

p(ỹ0=1)
1−p(ỹ0=1)

I2(X; Y ). We can write the non-centrality

parameter of the surrogate approach as:

λX2(X;Ỹ0) = 1 − p(y = 1)

p(y = 1)

p(ỹ0 = 1)

1 − p(ỹ0 = 1)
2N I2(X; Y ) ⇔

λX2(X;Ỹ0) = 1 − p(y = 1)

p(y = 1)

p(ỹ0 = 1)

1 − p(ỹ0 = 1)
λX2(X;Y ).

By using the result that the non-centrality parameters for the X2 and G-test converge to a

common value, we can re-write the above relationship using the non-centrality parameter of

the G-test

λG(X;Ỹ0) = 1 − p(y = 1)

p(y = 1)

p(ỹ0 = 1)

1 − p(ỹ0 = 1)
p(s = 1)λG(X;Y ).

Thus the correction factor is κỸ0
= 1−p(y=1)

p(y=1)
p(ỹ0=1)

1−p(ỹ0=1)
.

Surrogate 3 (Ỹ1): We can prove this correction factor by following the same methodology as

for Ỹ0. This time, by Eq. (13), we can prove that I2(X; Ỹ1) = 1−p(y=0)
p(y=0)

p(ỹ1=0)
1−p(ỹ1=0)

I2(X; Y ),

and as a result the correction factor is κỸ1
= 1−p(y=0)

p(y=0)
p(ỹ1=0)

1−p(ỹ1=0)
. ⊓⊔

B.5 Theorem 6

Surrogate 1 (DL): A proof can be found in Didelez et al. (2010, Theorem 6).

Surrogate 2 (Ỹ0): To prove this theorem, we will use the following useful lemma.

Lemma 1 When the labels are MAR-C, the following equations hold, for any subset of

features z ∈ Z

p(x |y = 1, z) = p(x |̃y0 = 1, z) ∀ z ∈ Z,

Proof To prove this Lemma we will start from the RHS of the desired equation:

p(x |̃y0 = 1, z)
when ỹ0=1 then y=1�������������� p(x |̃y0 = 1, y = 1, z)

Then by using the Bayes theorem and the chain rule we get:

p(x |̃y0 = 1, y = 1, z)
Bayes theorem���������� p(x, ỹ0 = 1|y = 1, z)

p(ỹ0 = 1|y = 1, z)

Chain rule�������

= p(ỹ0 = 1|x, y = 1, z)p(x |y = 1, z)

p(ỹ0 = 1|y = 1, z)

Because of MAR-C assumption:

p(ỹ0 = 1|y = 1, x, z) = p(ỹ0 = 1|y = 1, z) (14)
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As a result the last expression becomes:

p(ỹ0 = 1|x, y = 1, z)p(x |y = 1, z)

p(ỹ0 = 1|y = 1, z)

Eq. (14)������� p(x |y = 1, z)

This finishes the proof of this lemma, since we derived the lhs of the desired equation. An

interesting point to clarify is that Eq. (14) holds for any subset of features. To show that,

without loss of generality, let us assume that the entire set of features x consists of the

variables x, z and w, where x is a single variable and z, w sets of variables. The x, z and w

can be created by any feature combination as long their intersection is the empty set and their

union is the entire feature space. Now we can re-write the MAR-C assumption as:

p(ỹ0 = 1|y = 1, x) = p(ỹ0 = 1|y = 1) ⇔
p(ỹ0 = 1|y = 1, x, z, w) = p(ỹ0 = 1|y = 1) ⇔
p(ỹ0 = 1, x, z, w|y = 1) = p(ỹ0 = 1|y = 1)p(x, z, w|y = 1).

Now marginalising out the variable w we get:

∑

w∈W

p(ỹ0 = 1, x, z, w|y = 1) = p(ỹ0 = 1|y = 1)
∑

w∈W

p(x, z, w|y = 1) ⇔

p(ỹ0 = 1, x, z|y = 1) = p(ỹ0 = 1|y = 1)p(x, z|y = 1) ⇔ (15)

p(ỹ0 = 1|y = 1, x, z) = p(ỹ0 = 1|y = 1) (16)

Furthermore in Eq. (15) by marginalising out the variable x we get:

∑

x∈X

p(ỹ0 = 1, x, z|y = 1) = p(ỹ0 = 1|y = 1)
∑

x∈X

p(x, z|y = 1) ⇔

p(ỹ0 = 1, z|y = 1) = p(ỹ0 = 1|y = 1)p(z|y = 1) ⇔
p(ỹ0 = 1|y = 1, z) = p(ỹ0 = 1|y = 1) (17)

Thus from Eqs. (16) and (17) we can derive Eq. (14). ⊓⊔

To prove X ⊥⊥ Y |Z ⇔ X ⊥⊥ Ỹ0|Z we need to prove that

p(x, ỹ0|z) = p(x |z)p(ỹ0|z) ⇔ p(x, y|z)
= p(x |z)p(y|z)∀x ∈ X , y ∈ Y, ỹ0 ∈ Ỹ0 and z ∈ Z

Since the random variables Ỹ0 and Y are binary it is sufficient to prove this for the two classes.

For the first class we have:

p(x, ỹ0 = 1|z) = p(x |z)p(ỹ0 = 1|z) ⇔ p(x |̃y0 = 1, z) = p(x |z) Lemma 1⇔
p(x |̃y0 = 1, z) = p(x |z) ⇔ p(x, y = 1|z) = p(x |z)p(y = 1|z)

Using the above result for the first class, we will prove it for the second:

p(x, ỹ0 = 0|z) = p(x |z)p(ỹ0 = 0|z) ⇔ p(x |z) − p(x, ỹ0 = 1|z) = p(x |z)(1 − p(ỹ0 = 1|z)) ⇔
p(x, ỹ0 = 1|z) = p(x |z)p(ỹ0 = 1|z) ⇔ p(x, y = 1|z) = p(x |z)p(y = 1|z) ⇔
p(x |z) − p(x, y = 0|z) = p(x |z)(1 − p(y = 0|z)) ⇔ p(x, y = 0|z) = p(x |z)p(y = 0|z)

Surrogate 3 (Ỹ1): Following the same methodology as we did for surrogate 2. ⊓⊔
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B.6 Theorem 7

Surrogate 2 (Ỹ0): By using the chain rule of the mutual information (Cover and Thomas

2006) the non-centrality parameter can be written as:

λG(X;Ỹ0|Z) = 2N I (X; Ỹ0|Z) = 2N I (XZ; Ỹ0) − 2N I (Z; Ỹ0) = λG(XZ;Ỹ0) − λG(Z;Ỹ0).

Using Theorem 4, we can associate the non-centrality parameters of the G-tests X, Ỹ0 and

X, Y , so we have:

λG(X;Ỹ0|Z) = κỸ0
λG(XZ;Y ) − κỸ0

λG(Z;Y ) =
= κỸ0

2N I (XZ; Y ) − κỸ0
2N I (Z; Y ) = κỸ0

2N (I (XZ; Y ) − I (Z; Y )).

And, by using again the chain rule, the last expression can be written as:

λG(X;Ỹ0|Z) = κỸ0
2N I (X; Y |Z) = κỸ0

λG(X;Y |Z).

Surrogate 3 (Ỹ1): Following the same methodology as we did for surrogate 2. ⊓⊔
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