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Simple Surface Modification of 
Poly(dimethylsiloxane) via Surface 
Segregating Smart Polymers for 
Biomicrofluidics
Aslıhan Gökaltun1,2,3, Young Bok (Abraham) Kang  

1, Martin L. Yarmush1,4, O. Berk Usta  
1
 & 

Ayse Asatekin2

Poly(dimethylsiloxane) (PDMS) is likely the most popular material for microfluidic devices in lab-on-a-
chip and other biomedical applications. However, the hydrophobicity of PDMS leads to non-specific 
adsorption of proteins and other molecules such as therapeutic drugs, limiting its broader use. Here, we 
introduce a simple method for preparing PDMS materials to improve hydrophilicity and decrease non-
specific protein adsorption while retaining cellular biocompatibility, transparency, and good mechanical 
properties without the need for any post-cure surface treatment. This approach utilizes smart 
copolymers comprised of poly(ethylene glycol) (PEG) and PDMS segments (PDMS-PEG) that, when 
blended with PDMS during device manufacture, spontaneously segregate to surfaces in contact with 
aqueous solutions and reduce the hydrophobicity without any added manufacturing steps. PDMS-PEG-
modified PDMS samples showed contact angles as low as 23.6° ± 1° and retained this hydrophilicity 
for at least twenty months. Their improved wettability was confirmed using capillary flow experiments. 
Modified devices exhibited considerably reduced non-specific adsorption of albumin, lysozyme, and 
immunoglobulin G. The modified PDMS was biocompatible, displaying no adverse effects when used in 
a simple liver-on-a-chip model using primary rat hepatocytes. This PDMS modification method can be 
further applied in analytical separations, biosensing, cell studies, and drug-related studies.

�e micro�uidics industry encompasses a $2–4 billion market1,2, expected to grow by ~18%/year to $10–20 bil-
lion by the 2020s1. Academic interest in this �eld is growing at a similarly fast pace, with the number of publica-
tions on micro�uidics doubling every 15 months2. �is growth is driven mainly by biomicro�uidics such as point 
of care devices, drug manufacturing micro-reactors, toxicity screening with organs-on-chips, and microneedles/
pumps for drug delivery3. However, choosing the right materials is critical for avoiding artefacts and reduced 
sensitivity in biomedical and diagnostic applications, including those that can arise from the adsorption of com-
pounds of interest onto surfaces.

Poly(dimethylsiloxane) (PDMS) and other silicone elastomers o�er a range of favorable properties for biomi-
cro�uidics applications, including: (1) simple fabrication by replica molding, (2) good mechanical properties, 
(3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas 
permeability4. Despite these merits, the hydrophobicity of PDMS (water contact angle ~108° ± 7°)5 o�en lim-
its its applications where solutions comprising of biological samples are concerned. �e hydrophobicity of the 
PDMS surface results in undesired non-speci�c adsorption of proteins, which in turn a�ects analyte transport 
and reduces separation performance and detection sensitivity6. �e hydrophobicity of PDMS microchannels also 
makes it di�cult to introduce aqueous solutions or mixtures of aqueous and organic solutions7. Since most of 
the work in micro�uidics relies on using polar liquids, this causes a signi�cant obstacle in many applications. 
�is has led many groups to develop approaches to render the PDMS surface hydrophilic and resistant to protein 
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adsorption8. �ese strategies include the use of high-energy treatments in the form of O2 plasma, UV/ozone treat-
ments, and corona discharges to oxidize PDMS surfaces and to introduce alkoxy- or chloro-silanes for surface 
functionalization later on, coating of PDMS surfaces with polar functionalities using charged surfactants, polye-
lectrolyte multilayers (PEMs), chemical vapor deposition, silanization, phospholipid bilayers, and more recently, 
by attaching hydrophilic polymer brushes to the surface of PDMS via gra�ing-from and gra�ing-to approaches, 
hydrosilylation and click chemistry8.

While these interventions have proved successful in improving surface hydrophilicity, their broader use was 
o�en limited by chemical stability, the need for special equipment and/or hazardous routes9, and/or the length 
and complexity of their process for fabrication that is restrictive for large-scale implementation. In addition, many 
of these methods lead to loss of transparency, change in mechanical properties, surface cracking and increased 
roughness10,11. Finally, most of these methods do not provide a hydrophilic surface long term. Due to the mobility 
of PDMS chains, the surface becomes hydrophobic again over time, negating the initial bene�ts of treatment12,13 
(Table 1). �ese issues curtail the bene�ts of these PDMS surface modi�cation methods and emphasize the need 
for a new approach.

An alternative approach for creating more hydrophilic and fouling-resistant surfaces involves the use of 
surface-segregating smart copolymers. In this approach, an amphiphilic copolymer additive is blended with the 
base polymer before the manufacture of the �nal component. �e hydrophilic sections of the copolymer drive it 
to the polymer/water interface, leading to surface segregation. When successful, this results in increased surface 
hydrophilicity, but only minor changes in bulk properties. �is approach has been previously used in other �elds 
and base materials. For instance, it enabled the preparation of �ltration membranes with excellent, complete foul-
ing resistance made of polyacrylonitrile (PAN)14–16 and poly(vinylidene �uoride) (PVDF)17. It was also used to 
prevent non-speci�c adsorption and cell adhesion on poly(methyl methacrylate) (PMMA) surfaces18,19.

Similarly, the use of amphiphilic or hydrophilic additives to PDMS during the manufacture of devices can lead 
to improved hydrophilicity. �is approach is simple, o�en requiring no additional steps. If designed well, it can 
potentially lead to mechanical and optical properties similar to unmodi�ed PDMS. Yet, to our knowledge, there 
are only a few studies20–25 that have focused on functionalizing the PDMS surface through a pre-mixing method, 
where functional additives are added to the liquid PDMS pre-polymer before curing. In some cases, the objective 
of such studies was not to improve hydrophilicity but to introduce speci�c functional groups on the surface. For 
example, Zare et al.24 added a biotinylated phospholipid to PDMS prepolymer to enable protein immobilization. 
Another study introduced charged groups to PDMS micro�uidic channels by adding undecylenic acid to the 
pre-polymer prior to curing25. �is led to increased electroosmotic �ow (EOF) in PDMS microchannels, improv-
ing the separation e�ciency and reducing the peak broadening in PDMS micro�uidic devices. In both studies, 
the use of the additive did not lead to any changes in surface hydrophobicity. Other researchers have tested addi-
tives to improve surface hydrophilicity (Table 1). For instance, Zhou et al. added vinyl-terminated polyethylene 
glycol (PEG) chains to PDMS before curing22, showing a slight decrease in the water contact angle (WCA) from 
112° to about 78°, accompanied by improved resistance to non-speci�c adsorption of a protein. In another study, 
PDMS microchips were prepared via adding a poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) amphiphilic 
diblock copolymer before curing20. �ese microchips exhibited reduced myoglobin adsorption, and slightly lower 
WCAs of 84° and 73° for 1.5 and 2% mass ratio of PLA–PEG to PDMS, respectively. �e amphiphilic triblock 
copolymer Pluronic (PEG-b-poly(propylene oxide)-b-PEG) was also used as a similar additive21. Upon �lling 
the PDMS micro�uidic channel with water, Pluronic embedded in PDMS segregated towards the water/PDMS 
interface. �e static contact angle of modi�ed PDMS surface changed from 98.6° to 63° a�er soaking the sample 
in water for 24 hours, whereas that of the additive-free PDMS remained around 103°. Furthermore, thanks to the 
improved hydrophilicity, the modi�ed surface exhibited lower non-speci�c adsorption of Immunoglobulin G 
(IgG) compared to native PDMS. However, the limited compatibility of the hydrophobic poly(propylene oxide) 
segments with PDMS can limit the success of this approach. Indeed, the researchers observed samples became 
cloudy with as little as 0.16% Pluronic. Furthermore, the Pluronic surfactant is water soluble, which led to some 
leaching during use. �is may lead to the degradation of surface hydrophilicity in time, and a�ect cell viability.

An alternative copolymer additive that has better compatibility with PDMS and can be integrated into the 
PDMS network during the preparation of the microchip would be bene�cial. �ere is only one preliminary study 

Approach WCA (°) �roughput/Scalability Shelf Life (Longevity) Biocompatibility Optical/mechanical e�ects

Plasma treatment10,11 50–60 Current process Low (<3 days) High Cracking possible

Gra�ing-to (e.g. plasma, silanization)28,58,59 <10–100 Low-medium (2–7 added steps) Medium (14–47 days) Not reported Likely not a�ected

Gra�ing-from (e.g. SI-ATRP)60,61 10–80 Very low (many added steps) Medium-high (up to 3 months) Not reported Likely not a�ected

Physisorption62–65 15–90 Low (one-many added steps) Typically low Not reported Likely not a�ected

Past studies with block copolymer (BCP) 
addition or other prepolymer additives20–22 63–104 Very high; no added steps

Not reported; BCP or other 
additives dependent

Not reported
Reduced optical clarity for low 
WCA in studies reported to date

A past study using PDMS-b-PEO 
addition23 21.5–80.9 Very high; no added steps 2 months Not reported

Compromised mechanical 
properties at higher 
concentrations that yield 
hydrophilic surfaces

Current study -Addition of a PDMS-PEG 
BCP with optimized processing

<10–20 Very high; no added steps Very high (up to 20 months) High None when well-designed

Table 1. Comparison of PDMS modi�cation strategies with the approach described in this manuscript, the 
addition of a PDMS-PEG BCP with optimized processing.
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that utilizes a PDMS-based additive, a PDMS-PEG block copolymer. �is study shows that the addition of this 
PDMS-PEG block copolymer improved surface hydrophilicity of PDMS when used at concentrations between 
1–1.9% (w/w), reducing the contact angle to 21.5–80.9°23. �ese results indicate that PDMS-PEG copolymers may 
be a promising initial direction for improving the surface properties of PDMS, motivating the work described 
here. However, this study also leaves a lot of questions open regarding the e�ectiveness of PDMS-PEG additives 
in biomicro�uidic applications, and their true performance gains. Importantly, both this study and most others 
in the literature study surfaces prepared upon blending PDMS with the additive but do not account for the e�ect 
of common processes used in the manufacture of actual micro�uidic devices such as plasma treatment on the 
eventual surface chemistry. �is is a crucial short-coming for understanding the applicability of this work to 
practical systems. Furthermore, the work mentions compromised mechanical properties at high concentrations 
of this additive but does not quantify it. Importantly, no studies that utilize PDMS-based additives characterize 
non-speci�c protein adsorption, or how the surface hydrophilicity changes with time or upon exposure to com-
mon processes used in manufacturing micro�uidic devices. Finally, none of the studies that focus on surface 
modi�cation using additives, PDMS-based or not, tested their materials for biocompatibility. It should be noted 
that these additives are typically surfactants that are water-soluble and can cause cell rupture. �erefore, it is cru-
cial to test any such new approaches for biocompatibility to ensure its usability in realistic systems in contact with 
cells, such as organs-on-chips.

In this study, we focus on a practical and simple approach to improve the hydrophilicity of PDMS surfaces by 
adding a PDMS-PEG block copolymer (BCP) to the PDMS prepolymer before curing at concentrations between 
0.25–2%, with the rest of the device manufacture process being conducted with no further changes, enabling 
this surface modi�cation approach to be directly plugged into existing protocols. While a similar copolymer was 
previously used to improve the hydrophilicity of PDMS surfaces23, the experiments reported did not accurately 
address several key questions relevant to optimizing the overall biomicro�uidic device manufacturing process or 
the use of these devices in realistic applications. �ese results also implied compromised optical and mechanical 
properties at additive concentrations needed to improve hydrophilicity. Here, we seek to holistically study the 
use of a similar PDMS-PEG copolymer as an additive, with a focus on building a comprehensive understanding 
of how the overall device manufacture process, including alcohol soak and plasma treatment steps and exposure 
to cells, a�ects the surface chemistry and performance of devices prepared by this approach. We also seek to 
understand the capabilities of this approach in biomicro�uidic device applications, including the creation of 
devices with high optical clarity and mechanical properties. Importantly, we show that by tuning these manufac-
turing parameters and leveraging manufacturing steps already used for biomicro�uidic devices, we can achieve 
signi�cantly enhanced hydrophilicity that is stable over at least 20 months, longer than all past reports, including 
those using more complex methods (Table 1). Compared to other additives that have been explored to date20–

25, the utilization of this PDMS-PEG block copolymer provides better compatibility between the additive and 
PDMS, keeping the device optically clear at concentrations up to 0.25%. �rough dynamic water contact angle 
(WCA) measurements, we show the PDMS-PEG copolymer segregates to the surface when exposed to water/
aqueous solutions, which renders the surface more hydrophilic than all past studies using additives (Table 1). 
�is approach also reduces non-speci�c adsorption of proteins (albumin, lysozyme and immunoglobulin G), 
as indicated by both �uorescent protein adsorption experiments on slabs and by quantitative experiments on 
fabricated micro�uidic devices. �e PDMS monolith and PDMS segments in block copolymers interact through 
van der Waals and hydrophobic interactions that improve the stability of the PEG layer on the PDMS surface26. 
Furthermore, the PDMS chains in the BCP can potentially be cross-linked with the chains of the monolith during 
the plasma treatment stage, further improving the stability of the hydrophilic surface. Indeed, we show that the 
hydrophilicity of PDMS modi�ed with this copolymer is retained for at least twenty months, longer than all past 
reports, even a�er exposure to isopropanol (IPA) soaking and plasma treatment, crucial manufacturing steps that 
were not considered in previous studies. Mechanical properties are preserved at PDMS-PEG concentrations up 
to 1.0%, whereas optical clarity is retained at concentrations up to 0.25%. Unlike previous publications, this is the 
�rst report where the biocompatibility of PDMS modi�ed with PDMS-PEG BCP was tested by culturing primary 
rat hepatocytes in glass-(PDMS-PEG BCP modi�ed) PDMS micro�uidic tissue culture devices. �e PDMS-PEG 
modi�ed devices performed just as well as unmodi�ed PDMS devices and presented no adverse e�ects. �ese 
results demonstrate that the addition of this PDMS-PEG BCP to PDMS before the manufacture and curing of 
biomicro�uidic devices results in a durable increase in hydrophilicity and resistance to non-speci�c adsorption 
without sacri�cing mechanical properties, optical clarity, or biocompatibility. �erefore, this method promises to 
be a very simple, rapid, and cost-e�ective approach to generate hydrophilic and protein repellent PDMS elasto-
mer for micro�uidic devices as well as other uses such as tubing and sealants.

Results and Discussion
Surface modification of PDMS with PDMS-PEG BCP additives. We selected a PDMS-PEG BCP 
as the smart copolymer additive for hydrophilizing the PDMS surface. �is copolymer, a commercially avail-
able surfactant (Gelest, product code DBE-712), includes a hydrophobic PDMS segment compatible with the 
base elastomer (e.g. PDMS) and a hydrophilic, fouling resistant PEG block. Its molar mass is 600, and contains 
60–70% PEG. �e PDMS segment solubilizes the additive within the elastomer matrix during preparation and 
then anchors the additive in the cured PDMS. It can also be linked with the base PDMS during the plasma treat-
ment used for bonding the device together, improving the longevity of the surface modi�cation. �e short chain 
length and BCP architecture of the additive leads to its segregation to the sample surface18,27. When the sample 
surface is exposed to water (e.g. when the micro�uidic channel is �lled with aqueous media), the copolymer 
self-organizes at the PDMS/water interface to expose the PEG segments to the aqueous solution and create a sta-
ble hydrophilic surface that prevents the adsorption of proteins and other bio-macromolecules (Fig. 1) without 
using any additional steps or changing the manufacturing process.
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To date, most approaches, to reduce hydrophobicity of PDMS, were developed using post-treatment meth-
ods8,23,28–31 that add several new, cumbersome steps to the micro-device manufacturing process, o�en requiring 
special equipment and/or hazardous routes9. �is renders them unfavorable for large-scale fabrication and for 
adoption by a wide user base. Further, they cannot be adapted to the manufacture of other silicone-based elasto-
mers (e.g. tubing, seals). �is limits their impact. �e approach we present here is di�erentiated by its simplicity 
during use, compared with other approaches that rely on coatings or post-processing (Table 1).

While a handful of studies have utilized surface-segregating amphiphilic copolymers to improve the sur-
face hydrophilicity of PDMS, none have demonstrated high degrees of hydrophilicity without loss in mechan-
ical properties and/or optical clarity (Table 1). Furthermore, these studies have almost exclusively focused on 
characterizing surfaces that have not been subjected to the full slew of processes involved in micro�uidic device 
manufacture, including an alcohol soak for disinfection and plasma treatment for bonding of the device. �ese 
processes can leach these additives and/or signi�cantly alter surface chemistry. In addition, none of the past stud-
ies characterize the viability of cells upon exposure to these PDMS blends. �ese amphiphilic additives may leach 
into the feed going through a biomicro�uidic device, killing cells and thus rendering these approaches moot in 
practical settings. �us, there is a signi�cant knowledge gap in not only developing novel additives for PDMS for 
surface modi�cation but also in better understanding their behavior throughout the life cycle of a biomicro�uidic 
device.

Hydrophilicity and wettability of PDMS with PDMS-PEG BCP additives. To test our hypothesis 
that the PDMS-PEG BCP additive would lead to increased hydrophilicity that remains stable over long timescales, 
we measured sessile drop water contact angles (WCA) on PDMS-PEG BCP modi�ed PDMS surfaces and com-
pared them to the unmodi�ed PDMS over a 20-month duration. We used dynamic contact angle measurements, 
which are useful for evaluating the wettability and hydrophilicity of modi�ed PDMS surfaces32,33. Figure 2a shows 
the variation of the WCA of PDMS samples prepared with varying amounts of PDMS-PEG BCP additive in time. 
�e initial contact angles of all samples (except the one containing 2% PDMS-PEG BCP additive) were quite 
high, between 94–106°. �is indicates that in air, the sample surface is mostly covered with hydrophobic PDMS 
segments. However, while the WCA of PDMS with no PDMS-PEG BCP remained steady above 101° during the 
45-minute experiments, the WCA of all PDMS with PDMS-PEG BCP additives decreased in time. Furthermore, 
this decrease was generally proportional to the concentration of PDMS-PEG BCP additives. A�er 45 minutes of 
exposure to water, the PDMS-PEG BCP additive containing sample surfaces became signi�cantly more hydro-
philic than additive-free PDMS. As little as 0.125% PDMS-PEG BCP additive led to a �nal contact angle of 69.6° 
(Supporting Information Fig. S1), comparable with the lowest contact angles reported for other additive-modi�ed 
PDMS systems20–22. �e highest BCP containing samples (1.5% and 2% PDMS-PEG BCP) were fully wetted 
(WCA ≈ 0°) in our dynamic measurements. Nevertheless, it is important to note that increasing BCP concentra-
tion for reducing hydrophobicity is not the only requirement for successful and stable surface modi�cation. We 

Figure 1. Schematic diagram of the PDMS surface modi�cation method. PDMS and the PDMS-PEG BCP 
additives are blended, and the device is fabricated following usual processes (no added steps). �e copolymers 
segregate to the PDMS surface in air. When in contact with water, surface rearrangement creates a surface 
covered with PEG groups that prevent non-speci�c adsorption of proteins and allows the �ow of polar liquids.
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encountered bonding problems on glass slides during oxygen plasma treatment at higher copolymer concentra-
tions (1.5 and 2 (w/w %)), so we eliminated these concentrations for further experiments.

�ese results con�rm that upon exposure to water, the PDMS-PEG BCP additive self-assembles at the inter-
face to create a hydrophilic PEG layer, and indicate that this rearrangement occurs faster and more e�ectively 
with increasing PDMS-PEG BCP content. Furthermore, this approach can lead to �nal WCA values much below 
previous reports for additive-modi�ed PDMS materials, which range between 84° and 63°20,21.

In practical applications, PDMS is not used directly a�er molding. PDMS devices are typically sterilized by 
immersion into an alcohol such as IPA, which may leach out additives. �en, they are treated with O2 plasma and 
bonded to glass, a silicon wafer, or another piece of PDMS. It is critical for the improved surface hydrophilicity to 
be stable during these processing steps. Furthermore, micro�uidic devices are not necessarily used directly a�er 
manufacture. �erefore, the modi�ed surface needs to be stable over long time periods.

To test these parameters, we �rst established the soaking time of PDMS with and without PDMS-PEG BCP 
additives in IPA. We measured the WCA of PDMS without PDMS-PEG and of PDMS with 0.5% PDMS-PEG 
BCP additive a�er soaking in IPA for 6, 12 and 24 hours (Supporting Information Fig. S2). �e hydrophilicity 
of samples a�er 6 hours of IPA soaking was higher compared with that of samples with 12 hours and 24 hours of 
soaking. We believe that during soaking in IPA, the lower molar mass fractions of the PDMS-PEG BCP di�used 
out21. �is resulted in a decrease in copolymer concentration in the PDMS and a signi�cant increase in the con-
tact angle. We observed that 12 hours of IPA soaking was su�cient to remove all the lower mass fractions of the 
BCP because no signi�cant change in hydrophilicity was observed between 12 hours and 24 hours IPA soaking. 
Still, some PDMS-PEG BCP remained in the PDMS as the �nal contact angles were still much lower than that of 
PDMS with no PDMS-PEG BCP. �e remaining PDMS-PEG BCP molecules were likely of higher molar mass, 
which improved the long-term stability of the layer. Furthermore, this decreased the risk of the additive, particu-
larly low molar mass fractions likely to act as cytotoxic surfactants, leaching out of the PDMS during operation, 
which could negatively impact cell viability. Nonetheless, we selected 24 h IPA soaking for experimental practi-
cality and to ensure consistent results in further experiments (samples labeled AS).

�e improved surface hydrophilicity of IPA-soaked samples was stable for at least 20 months (Fig. S3). Some 
of the samples were then treated with O2 plasma (samples labeled AS + PT) (Fig. 2b). A day a�er O2 plasma treat-
ment (AS + PT 1 d), the hydrophobicities of PDMS samples both with and without PDMS-PEG BCP additives 
were signi�cantly reduced (Fig. 2b). �e WCA of PDMS with no PDMS-PEG BCP became 63.3°.

Figure 2. PDMS with PDMS-PEG BCP additives dramatically reduces hydrophobicity. (a) �e change in 
WCA with time for various additive ratios (0.125–2%), showing polymer reorganization. (b) WCA of PDMS 
with/without PDMS-PEG BCP additives a�er soaking them IPA for 24 hours (AS) and treating them with 
O2 plasma (AS + PT) at di�erent time intervals. (c) Final (t = 45 min) WCAs for di�erent PDMS-PEG BCP 
additive ratios a�er 20 months of storage (with/without plasma treatment) show the stability of the modi�ed 
materials, indicating that the samples prepared with PDMS-PEG BCP additives do not lose their hydrophilic 
characteristics for a long period. �e data are shown as the mean ± SD (n = 3).
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It has previously been reported that PDMS surfaces exposed to plasma exhibit increased oxygen content and 
possibly silicon (Si) atoms are bonded to three or four oxygen atoms and that this reduces hyrophobicity34. �e 
main challenge posed by the plasma oxidation is the eventual hydrophobic recovery. �is is a result of the reori-
entation of pre-existing oligomers from the bulk to the surface35. Indeed, 3 days a�er plasma treatment (AS + PT 
3 d), the WCA of the PDMS with no PDMS-PEG BCP additive returned to its initial value of 102°. PDMS with 
PDMS-PEG BCP additives also exhibited an increase in hydrophilicity upon O2 plasma treatment. �e surfaces 
became fully wettable a day a�er plasma treatment with WCA values around 0°. As seen in Fig. 2b, although a 
minor increase in wettability was observed, all PDMS with PDMS-PEG BCP additives maintained their hydro-
philicity, with WCA values between 54.2° ± 2.7° and 25.7° ± 2°. �ese values are signi�cantly lower than previous 
reports20–22. We believe that the existence of PEG on the modi�ed PDMS surface enhances Si-O bonding and 
as a result, more SiOx-rich layer and more hydrophilic surfaces can be obtained as compared to PDMS with no 
PDMS-PEG BCP. Importantly, this enhanced surface hydrophilicity was stable for at least twenty months. �e 
increased surface hydrophilicity may have enhanced the surface segregation of the PDMS-PEG BCP by creating 
a local gradient, drawing the copolymer to the surface even before exposure to water. �e increased degree and 
stability of surface hydrophilicity may also be linked with the complex and competing etching, deposition and 
reaction processes that occur during plasma treatment. During the O2 plasma treatment, PDMS repeat units are 
partially etched on the surface, losing their methyl groups and forming silica. �e plasma treatment may also 
cause cross-linking, but this e�ect is relatively limited in PDMS36. In contrast, oxygen-containing polymers such 
as PEO tend to undergo atomic re-arrangement reactions such as cross-linking as opposed to etching37. �is 
implies that the plasma treatment may preferentially etch the hydrophobic methyl groups from PDMS chains on 
the surface, exposing PEG segments that were right below. �e plasma treatment can also chemically cross-link 
the PDMS-PEG BCP additive to the PDMS network. Furthermore, it may lead to cross-linking between PEO 
chains on the surface. �is may anchor the PDMS-PEG BCP speci�cally on the top surface of the sample, improv-
ing the longevity of surface modi�cation. Additionally, PDMS samples with di�erent PDMS-PEG BCP preserved 
their hydrophilic characteristics even a�er 20 months of storage (with/without plasma treatment) indicating that 
samples prepared with PDMS-PEG BCP additives are stable for a long period (Fig. 2c).

Characterization of the physical properties of PDMS with PDMS-PEG BCP additives.  
Transparency. Micro�uidic devices are commonly used together with bright �eld and �uorescence microscopy 
for imaging cells38 to monitor their health and motility. �erefore, materials used for manufacturing such devices 
must be transparent. Blue light [460–500 nm] excitation is commonly used to image green �uorescent protein 
(GFP) and Calcein AM, and green light [528–553 nm] excitation is useful for imaging red �uorophores38.

Accordingly, we assessed the optical clarity of PDMS with and without PDMS-PEG BCP additives by meas-
uring light transmittance through 8 mm thick slabs between 400–600 nm wavelengths in the UV-visible range 
before and a�er an IPA soak (Supporting Information Fig. S4) a�er the fabrication. Transmittance values for the 
center wavelengths of blue light (480 nm) and green light (540 nm) are given in Table 2. Before soaking in IPA 
(Fig. S4(a)), transparency values for PDMS with up to 0.5% PDMS-PEG BCP were comparable to additive free 
PDMS, with all transmittance values above 96%. �e transparency of the PDMS sample with 1% PDMS-PEG 
was slightly lower, with transmittance values in the 80–88% range. �is may arise from the formation of micelles 
or similar aggregates of the PDMS-PEG BCP surfactant within the bulk PDMS at these higher concentrations, 
as observed in other studies20,21. A�er soaking in IPA (Fig. S4(b)), samples modi�ed with 0.125% and 0.25% 
PDMS-PEG BCP additives exhibited approximately the same optical clarity as unmodi�ed PDMS. However, 
the optical clarity of modi�ed PDMS with 0.5% and 1% PDMS-PEG BCP decreased, with transmittance values 
around 75% and 50%, respectively. PDMS samples containing 0.25% PDMS-PEG BCP successfully combined 
high optical clarity with a hydrophilic surface.

Surface Characterization. We used X-ray photoelectron spectroscopy (XPS) to gain a better understanding of 
the changes in surface chemistry during the manufacture of biomicro�uidic devices from PDMS with and with-
out the PDMS-PEG BCP additive. In this study, we focused on PDMS with 0.25% PDMS-PEG BCP, selected 
according to the criteria described above, and PDMS with no PDMS-PEG BCP. We analyzed their surface chem-
istry at each stage of the micro�uidic device manufacture process. �e elemental surface compositions of both 
the PDMS with no PDMS-PEG and 0.25% PDMS-PEG, determined by the survey scan, remained essentially 

(PDMS-PEG) 
(w/w %)

Transmittance (%) BS/
AS (480 nm)

Transmittance (%) BS/AS 
(540 nm)

Young’s Modulus 
BS/20 mo (MPa)

Compressive 
Modulus BS/20 mo 
(MPa)

No PDMS-PEGa 100 ± 0.03/100 ± 0.02 100 ± 0.02/100 ± 0.03 1.3 ± 0.10 187 ± 5

No PDMS-PEG 100 ± 0.01/100 ± 0.01 100 ± 0.02/100 ± 0.02 1.2 ± 0.10/1.2 ± 0.2 217 ± 3/212 ± 5

0.125 100 ± 0.02/100 ± 0.01 100 ± 0.01/100 ± 0.01 1.3 ± 0.03/1.2 ± 0.1 218 ± 3/221 ± 3

0.25 100 ± 0.02/99 ± 0.01 100 ± 0.02/99 ± 0.02 1.4 ± 0.02/1.2 ± 0.2 203 ± 5/213 ± 7

0.5 97 ± 0.01/78 ± 0.01 98 ± 0.01/76 ± 0.01 1.3 ± 0.02/1.3 ± 0.05 201 ± 8/210 ± 3

1.0 84 ± 0.04/57 ± 0.03 87 ± 0.03/55 ± 0.04 1.2 ± 0.10/1.3 ± 0.2 219 ± 1/225 ± 3

Table 2. Optical and mechanical properties of PDMS with PDMS-PEG BCP additives. aYoung’s modulus and 
compressive modulus of PDMS with no PDMS-PEG BPC from literature40. BS: Before IPA Soaking, AS: A�er 
IPA Soaking, 20 mo: 20 mo storage without any IPA soak or O2 plasma treatment. �e data are shown as the 
mean ± SD (n = 3).
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unchanged a�er soaking in IPA (Supporting Information Fig. S5). A�er plasma treatment, survey scans of PDMS 
with and without PDMS-PEG BCP additives both indicate an increase in carbon and oxygen content and a cor-
responding decrease in silicon content (Supporting Information Fig. S6). High-resolution scans of C1s spectra 
were used to gain deeper insight into the chemical changes that occurred during these processes (Fig. 3(a,b)).

PDMS with no PDMS-PEG spectra featured only one peak, at 284.2 eV, corresponding to C-Si bonds. �is was 
unchanged upon soaking in IPA. Upon plasma treatment, peaks appeared at 286.3 eV and 289.1 eV, assigned to 
C-O and C=O bonds, respectively39. �ese peaks, however, completely disappeared a�er a week. �is is due to the 
recovery of hydrophobicity a�er oxidation by reorientation of the surface silanol groups into the bulk polymer, 
which provides for the movement of free PDMS chains from the bulk phase to the surface and condensation of 
silanol groups at the surface8. In contrast, PDMS with 0.25% PDMS-PEG BCP showed both a strong peak near 
284.6 eV arising from C-Si bonds and a shoulder near 286.3 eV, corresponding to C-O bonds, indicating the pres-
ence of PEG segments from the PDMS-PEG BCP additive near the surface. Upon plasma treatment, the intensity 
of the C-O peak increased, and a new peak corresponding to C=O appeared. �ese groups may arise both from 
reactions of PDMS and from reactions and cross-linking of PEG. Unlike pure PDMS, the intensity of the C-O and 
C=O peaks in the PDMS with 0.25% PDMS-PEG remained unchanged a week a�er plasma treatment. �is phe-
nomenon con�rms the existence of PEG molecules on the modi�ed surface for long-term stability a�er plasma 
treatment, which is in good agreement with the hydrophilicity data (Fig. 2a,b).

Mechanical properties. PDMS is a good candidate for use in micro�uidic devices due to its high compliance and 
�exibility. Its Young’s modulus depends on the exact formulation, and is around ∼1.32–2.12 MPa for the com-
monly used pre-polymer to curing agent ratio of 10:140–42. Ideally, surface modi�cation by any approach should 
not compromise these mechanical properties. To check the mechanical properties of PDMS-PEG-modi�ed 
PDMS samples, tensile strength and compressive modulus were evaluated by dynamic mechanical analysis 
(DMA) immediately a�er fabrication and also 20 months a�er fabrication. Young’s modulus and compressive 
modulus of the modi�ed samples were calculated for the linear elastic region (<40% strain). No signi�cant 
change was observed with the mechanical properties of the PDMS-PEG BCP modi�ed PDMS when compared 
with literature studies even a�er 20 months of storage.

Biocompatibility. Many micro�uidic applications that utilize PDMS and its alternatives involve culture or 
circulation of cells from di�erent tissues. �erefore, when designing a new material for biomicro�uidics, it is 
crucial to take its biocompatibility into account. For instance, the surface modifying additives may leach from the 
device into the micro�uidic channel and a�ect cell viability and/or function. �is may lead to poor device per-
formance even if surface hydrophilicity is enhanced. To date, there are some studies that evaluated the biocom-
patibility or cell adhesion of modi�ed PDMS micro�uidic devices or slabs using mammalian A549 cells43, L929 

Figure 3. High-resolution scans of C1s of both (a) PDMS with no PDMS-PEG BCP additive and (b) PDMS 
with 0.25% PDMS-PEG BCP additive before IPA soaking (BS), a�er IPA soaking (AS), a�er IPA soaking and 
1 day a�er O2 plasma treatment (AS + PT-1 d) and a�er IPA soaking and 1 week a�er O2 plasma treatment 
(AS + PT-1 wk) were analyzed. Unmodi�ed PDMS acquires hydrophilic groups upon plasma treatment, but 
these functional groups disappear from the surface within a week. XPS data con�rms that the PDMS-PEG BCP 
additive segregates to the surface, and creates hydrophilic groups on the surface upon plasma treatment.
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mouse �broblasts44, tendon stem cells45, mesenchymal stem cells (MSCs)46, brain cerebral cortex cells47, HeLa 
cells48, and stroma cells49. To our knowledge, none of the previous PDMS modi�cation strategies were evaluated 
for compatibility with hepatocytes, the parenchymal cells of the liver, which are highly susceptible to adverse reac-
tions. �e liver plays a central role in drug metabolism and detoxi�cation so the development of liver-on-a-chip 
models for successful prediction of toxic response is at the center of the recent initiatives towards in vitro human 
clinical trial approaches50,51. Here, we used rat primary hepatocytes to test the biocompatibility of our modi�ed 
PDMS substrate in a simple micro�uidic liver-on-a-chip model.

To ensure that the use of the PDMS-PEG BCP in micro�uidic device manufacture does not adversely impact 
cell function, we manufactured microfluidic devices using a glass bottom and PDMS top with or without 
PDMS-PEG BCP additives, and cultured primary rat hepatocytes in these devices. In order to quantitatively 
evaluate cell viability, the cells were stained with a live (green)/dead (red) stain 3 days a�er the culture (Fig. 4). 
Cells had high viability (>99.0%) throughout the 3 day culture period following the initial cell seeding into the 
microdevice. �e use of the PDMS-PEG BCP additive led to no visible or signi�cant di�erences in cell viability 
or morphology. PDMS-PEG modi�ed micro�uidic devices performed just as well as PDMS with no PDMS-PEG 
additives and presented no adverse e�ects. Since in vitro systems are o�en preferred as models to predict drug 
toxicity and pharmacokinetics for clinical cases, this design can be easily scaled to create an array of in vitro stud-
ies for rapid drug development or studying the toxicity of drugs due to the simplicity of the device.

Protein adsorption on PDMS with PDMS-PEG BCP additives. �e main goal of developing this 
PDMS surface modi�cation approach was to create a fouling resistant surface and prevent the non-speci�c 
adsorption of proteins onto the micro�uidic device. �is is motivated by two phenomena. First, most of the unde-
sired bioreactions and bio-responses in arti�cial materials are promoted due to adsorbed proteins52,53. Second, 
many applications of biomicro�uidics involve controlling the exposure of cells to a known concentration of a 
speci�c, desired protein such as a biologic drug. Non-speci�c adsorption leads to the loss of this drug through 
adsorption, exposing the cells to a lower concentration than presumed. �is can lead to a severe underestima-
tion of the toxicity and activity of such drugs. While hydrophilicity is broadly correlated with decreased pro-
tein adsorption, the relationship is not necessarily straightforward54,55. �erefore, we quantitatively measured 
the adsorption of two �uorescently-labeled proteins, albumin and lysozyme, on PDMS slabs with and without 
PDMS-PEG BCP additives (Fig. 5(a,b)), both directly upon manufacture (Fig. 5a) and following processes that 
simulate biomicro�uidic device manufacture (Fig. 5b, IPA soak and 1 week a�er O2 plasma treatment).

PDMS with no PDMS-PEG BCP adsorbed signi�cantly more protein than all PDMS with PDMS-PEG-BCP 
additives, con�rming that this approach led to decreased non-speci�c adsorption (Fig. 5a). PDMS with 0.125% 
PDMS-PEG BCP exhibited some protein adsorption. No adsorption was visible for any of the other samples. �e 
same trend continued following soaking in IPA and O2 plasma treatment (Fig. 5b). PDMS slabs with PDMS-PEG 
BCP additives indicated substantially reduced adsorption as compared to additive free PDMS.

To further quantify protein adsorption in a more realistic setting for biomicro�uidic device applications, we 
manufactured micro�uidic devices from PDMS with or without PDMS-PEG additives. We then introduced a pro-
tein solution containing 0.05 mg/mL BSA, lysozyme or IgG into the microchannel (30–90 min), and measured the 
loss of protein due to adsorption on the device by micro-BCA analysis (Fig. 5c). Devices with PDMS-PEG addi-
tives adsorbed signi�cantly lower quantities of each protein as compared to PDMS with no PDMS-PEG (Fig. 5c). 

Figure 4. Biocompatibility of PDMS with PDMS-PEG BCP additives. Rat hepatocytes were cultured in glass-
(modi�ed) PDMS devices. No adverse e�ects were observed (3 days) with (a) PDMS with no PDMS-PEG and 
PDMS with (b) 0.125%, (c) 0.25%, (d) 0.5% and (e) 1% (w/w) PDMS-PEG BCP. Image scale bar: 400 µm. Each 
experiment was conducted in triplicates from at least three di�erent rat isolations.
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As the BCP concentration increased in the mixture, the amount of adsorbed protein decreased. PDMS-PEG BCP 
additives signi�cantly reduced protein adsorption at concentrations as low as 0.125% (w/w). �e use of only 1% 
PDMS-PEG additive led to 98.9%, 89.4%, and 99.6% lower adsorption of albumin, lysozyme, and IgG, respec-
tively when compared to PDMS without PDMS-PEG BCP. An additive concentration of 0.25% PDMS-PEG led to 
a ~90% the reduction in protein adsorption while also retaining excellent optical clarity.

Capillary-driven microfluidic devices with PDMS-PEG BCP additives. Having demonstrated the suc-
cessful hydrophilization of PDMS with PDMS-PEG BCP additives, we investigated the �ow characteristic of PDMS 
with and without PDMS-PEG BCP additives (0.25% and 0.5%) in the capillary microchannels which were bonded 
on the glass substrates. Two linear channels (height: 0.1 mm, length: 40 mm) with di�erent widths (0.25 mm and 
0.5 mm) were tested for capillary-driven �ow experiments. PDMS with no PDMS-PEG BCP was utilized as a con-
trol. All samples were tested 3 days a�er plasma treatment. Liquid was introduced into the inlet of the capillary chan-
nel and �uid �ow through the channel was recorded by a camera to calculate the experimental �ow rates. Table 3 
and Fig. S7 show the variation of �ow velocities of liquid using PDMS samples with varying amounts of PDMS-PEG 
BCP. All modi�ed devices were shown to �ll through steady capillary action while PDMS without PDMS-PEG BCP 

Figure 5. PDMS with PDMS-PEG BCP additives exhibit lower protein adsorption. Adsorption of �uorescently 
labeled albumin and lysozyme onto BCP modi�ed PDMS slabs (a) without any treatment (b) a�er IPA soak 
and 1 week a�er O2 plasma. Samples were covered with protein solutions for 30–90 minutes. PDMS with 
PDMS-PEG BCP additive showed high adsorption, whereas PDMS modi�ed with 1% w/w PDMS-PEG block 
copolymer exhibited signi�cantly lower adsorption, near detection limit (n = 5). Image scale bar: 400 µm. (c) 
We measured adsorption of IgG, BSA, and lysozyme in modi�ed micro�uidic devices, comparing the in�ux 
and e�ux concentrations a�er IPA soaking and a week a�er O2 plasma. PDMS-PEG BCP additive leads to 
signi�cantly reduced adsorption for all proteins. Error bars represent the standard deviation with samples 
measured in triplicate (n = 3).
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failed to �ll with liquid. We did not observe a signi�cant di�erence in capillary �ow rates through the 0.25% and 
0.5% PDMS-PEG BCP modi�ed samples. �is was consistent with the WCA results, which showed very similar 
hydrophilicity (Fig. 2). �e advantage of the fabrication technique presented here is that hydrophilic PDMS micro-
�uidic channels can be obtained with a simple, one-step method through inexpensive bench-top methods.

We �nally evaluated our results to choose the most preferred PDMS-PEG BCP concentration for a given appli-
cation. As the biocompatibility and mechanical properties of all PDMS samples with PDMS-PEG BCP additives 
are almost identical with PDMS, we compared the di�erent samples for their transparency, WCA a�er plasma 
treatment (t = 45 min) and protein (IgG as a sample protein) adsorption data. We selected 0.25% PDMS-PEG 
BCP concentration (WCA = 25.7° ± 2°, transmittance = 99%, reduction in IgG adsorption relative to PDMS with 
no additive = 92.2%) to be the best performing composition for applications where optical clarity is of impor-
tance, since the transparency of the modi�ed samples decreased down to 73% and below a�er IPA soaking with 
BCP concentrations at or above 0.5%.

Conclusion
�is manuscript introduces a simple approach to address non-speci�c protein adsorption, a key problem encoun-
tered in the use of PDMS in biomicro�uidic applications, without making any changes to the existing work-
�ow for manufacturing such devices. �is involves simply adding a PDMS-PEG BCP additive to PDMS during 
device manufacture. �is BCP segregates to the surface during device manufacture and rearranges to create a 
hydrophilic surface upon exposure to aqueous media. As little as 0.25% additive leads to contact angles as low as 
31.4° ± 1.5, whereas 2% additive leads to a fully wettable (WCA ≈ 0) surface. Surface hydrophilicity is retained 
through common processes used in micro�uidic device manufacture (e.g. immersion in IPA and plasma treat-
ment), and a�er prolonged storage at the bench top for at least 20 months. �e extent and durability of surface 
hydrophilicity obtained by this method surpass others reported in the literature20–23. Only 0.25% PDMS-PEG 
additive leads to ~90% reduction in the adsorption of three proteins, whereas 1% additive led to 89–99.6% reduc-
tion in protein adsorption, comparable to or better than the highest reductions in protein adsorption in the 
literature56. While we did not test protein adsorption resistance a�er extensive storage, the long-term stability of 
surface hydrophilization implies that these devices will likely exhibit reduced non-speci�c adsorption for long 
time periods. Furthermore, devices prepared with this approach preserve their transparency, �exibility, and bio-
compatibility with primary rat hepatocytes. According to all results, 0.25% (w/w) copolymer concentration was 
selected as an optimum value for applications requiring high transparency, whereas 1% additive led to samples 
with the lowest fouling while preserving mechanical properties.

�e PDMS modi�cation method introduced here does not require any additional steps or equipment for device 
fabrication. �is allows easy adoption and scale-up and is more compatible with mass production of micro�uidic 
devices compared to silicon, glass or thermoplastic alternatives. It is our opinion that this method has a potential for 
applications including drug-related studies, analytical separations, biosensing, cell targeting, and isolation. Apart 
from the applications in micro�uidics, we expect our invention to remove barriers that currently prevent the use of 
PDMS in critical commercial applications such as those in applications in pharmaceutical and biomedical industries.

Methods
Microfluidic device fabrication for cell culture studies and protein adsorption experiments.  
Silicon wafer templates served as negative molds to fabricate micro�uidic devices using PDMS, (Sylgard 184, 
Dow Corning, Tewksbury, MA) with and without PDMS-PEG BCP additives and utilizing standard so� lithog-
raphy protocols. �e micro�uidic platform consisted of media �uid inlet/outlet and cell inlet/outlet in the same 
place, and a cell culture chamber. �e dimensions of the chamber were 11 mm2 × 0.1 mm (Surface area x height). 
Inlet and outlet ports of the device were punched into the PDMS micro�uidic device using a 1.5 mm biopsy 
punch piercing tool (Ted Pella Inc.). �e face of the PDMS with microchannel and a glass microscope slides 
(75 × 25 mm, �ermo scienti�c) were bonded with O2 plasma (80 W, 35 sec) using a vacuum plasma cleaner.

Capillary-driven microfluidic device fabrication. Capillary-driven micro�uidic devices were fabricated 
with and without PDMS-PEG BCP using replica molding on silicon wafer templates as discussed above. Two 
linear micro�uidic channel designs consisted of media �uid inlet/outlet were fabricated with varied geometries 
(0.25 mm, 0.5 mm widths, 0.1 mm height, and 40 mm length). Inlet and outlet ports of the micro�uidic devices 
were punched using a 3.5 mm biopsy punch piercing tool (Ted Pella Inc.). �e devices were then bonded to glass 
microscope slides (75 × 25 mm, �ermo Scienti�c) using an O2 plasma cleaner (80 W, 35 sec). We placed a drop of 
DDI water with food coloring into the inlet port of the capillary channel with no applied pressure. �e progress of 
the aqueous solution through the capillary was recorded using a camera. �e recording was analyzed to calculate 
the experimental capillary �ow rates.

PDMS-PEG (w/w %)

Flow rate (nL/s)

Width: 0.25 mm Width: 0.50 mm

No PDMS-PEG No �ow No �ow

0.25 69 ± 2.5 181 ± 2

0.50 69 ± 1.5 200 ± 1

Table 3. Capillary-driven �ow of hydrophilic PDMS channels with aqueous solutions. �e data are shown as 
the mean ± SD (n = 3).
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Production of PDMS with PDMS-PEG BCP additives. A block copolymer with a poly(dimethyl-
siloxane) (PDMS) and hydrophilic poly(ethylene glycol) (PEG) blocks, PDMS-PEG, was purchased from Gelest 
(product code DBE-712, dimethylsiloxane-(60–70% ethylene oxide) block copolymer, MW 600, 20 cSt, speci�c 
gravity: 1.01, refractive index: 1.442, Gelest, USA) and utilized as an additive in the modi�cation of micro�uidic 
devices. Silicone pre-polymer and curing agent were mixed in a mass ratio of 10:1 (w/w). Desired amount of 
PDMS-PEG BCP was then added to the polymer base-curing agent mix to obtain a �nal additive concentration 
of 0.125%, 0.25%, 0.5% 1.0%, 1.5%, 2.0% (w/w) in the mixtures. �e mixtures were blended using a glass a rod 
and poured onto a silicon wafer or into a petri dish for the fabrication of micro�uidic devices and slabs, respec-
tively. Trapped air bubbles were removed by keeping the mixture at +4 °C for 15 min. A�er removing air bubbles, 
the blended mixture was cured at 70 °C for 24 h. All devices and slabs (~2 mm thick) were rinsed with isopropyl 
alcohol (IPA) for 24 h and dried at room temperature (RT). Steam sterilization was applied to micro�uidic devices 
before performing experiments.

Primary rat hepatocyte isolation and cell seeding. Primary rat hepatocytes were isolated from 
adult female Lewis rats (Charles River Laboratories, MA) as described previously57. All methods were per-
formed in accordance with the guidelines and regulations of National Research Council. For isolation, protocol 
#2011N000111 approved by the Institutional Animal Care and Use Committee (IACUC) at the Massachusetts 
General Hospital (MGH) was implemented by the Cell Resource Core (CRC). In general, as determined by 
trypan blue exclusion, 100–150 million hepatocytes with 90–95% cell viability were obtained and a suspension 
consisting of primary rat hepatocytes at a �nal concentration of 5 million cells (M) mL−1 was prepared to plate 
into micro�uidic devices. Before introducing rat hepatocytes, glass bottom of the devices was coated with 50 µg/
mL �bronectin (Sigma-Aldrich) for 30–45 min at 37 °C in 5% CO2. �en the cells were plated into the cell culture 
chamber and the device was connected to a syringe pump with a �ow rate of 10 µl/hr and incubated at 37 °C in 5% 
CO2. A�er 24 hours of seeding, the �ow of the fresh media was replaced in the cell culture chamber of perfusion 
devices and continued therea�er. Dulbecco’s modi�ed eagle’s medium (DMEM, Life Technologies, Carlsbad, CA, 
USA) supplemented with 10% fetal bovine serum (FBS, Sigma, St. Louis, MO, USA), 0.5 U/mL insulin, 7 ng/mL 
glucagon, 20 ng/mL epidermal growth factor, 7.5 µg/mL hydrocortisone, 200 U/mL penicillin, 200 µg/mL strep-
tomycin, and 50 µg/mL gentamycin was utilized for culturing primary rat hepatocytes. For all �uidic connections 
and media perfusion, Tygon tubing (0.01“ID × 0.03” OD, Cole Parmer) was used.

Hepatocyte morphology and cell viability. Hepatocyte morphology and viability were assessed by phase 
contrast microscopy (Evos FL Imaging System, �ermoFisher Scienti�c). Live/Dead Cell Viability/Cytotoxicity 
Kit (�ermo Fisher Scienti�c) were utilized to determine cell viability. For this purpose, Live/Dead assay reagents 
(calcein AM (10 µL), ethidium homodimer-1 (100 µL)) and PBS (2.5 mL) were combined and vortexed to ensure 
thorough mixing. Reagents were introduced into the culture chamber and a�er 30 min incubation (37 °C) and 
PBS rinsing, images were captured on the EVOS �uorescence microscope to evaluate the cell viability.

Protein adsorption study. PDMS-PEG BCP at ratios between 0.125–1.0 (w/w %) was blended with PDMS 
and poured into a petri dish and cured at 70 °C for 24 h, as described in Section 2.2. A�er polymerization, round 
swatches of PDMS samples (5 mm Dia × 4 mm) were cut using a 5 mm dermal punch (Ted Pella Inc.). �ese sam-
ples were immersed in phosphate bu�ered saline (PBS, pH 7.4) for 2 h to reach pre-equilibration. 0.5 mg/mL solu-
tions of each �uorescently labeled protein, bovine serum albumin (BSA) (Alexa Fluor 594-labeled BSA, �ermo 
Fisher Scienti�c) or lysozyme (FITC-labeled, Nanocs), were prepared in PBS separately. To study protein adsorp-
tion, 50 µL of �uorescently labeled protein solution was placed on the modi�ed PDMS swatch and incubated in 
the dark at 37 °C for 1.5 h. For comparison, the same procedure was followed for PDMS with no PDMS-PEG BCP. 
A�er 1.5 h, each sample was rinsed with 200 µL PBS. Fluorescence microscope images were captured by Evos FL 
Imaging System (�ermoFisher Scienti�c) using 10X objective. Quantitative protein adsorption experiments 
were also performed using PDMS micro�uidic devices with/without PDMS-PEG additives. For this purpose, 
micro�uidic devices were conditioned with PBS at a �ow rate of 20 µL/min for 4 hours using a syringe pump and 
then emptied. 0.05 mg/mL solutions of BSA from the chicken egg (Sigma Aldrich), lysozyme from chicken egg 
white (Sigma Aldrich) and Immunoglobulin G from human serum (IgG) (Sigma Aldrich) were introduced into 
the device (30–90 min). �e amount of adsorbed BSA, lysozyme and IgG were measured comparing the in�ux 
and e�ux concentrations utilizing the Pierce BCA Protein Assay Kit (�ermo Scienti�c) according to the man-
ufacturer’s protocol.

Characterization. Optical Properties. Optical clarity was quanti�ed using UV-Vis spectrophotometer 
(�ermo Scienti�c, Genesys 10S equipped with a high-intensity xenon lamp and dual-beam optical geometry) 
within the wavelength range of 400–600 nm both for PDMS and BCP modi�ed PDMS samples (0.125–1.0% 
(w/w)). Samples were tested before and a�er IPA soaking. All samples were prepared with similar thicknesses 
(~8 mm) with the purpose of avoiding any disparity in the data.

Mechanical properties. Mechanical properties (Young’s modulus, compressive modulus) were tested using TA 
Instruments RSAIII Dynamic Mechanical Analyzer (DMA), (Rheometrics Solids Analyzer). PDMS samples with/
without PDMS-PEG additives for tensile and compressive testing were fabricated according to ASTM standards. 
For tensile testing, crosshead velocity was 250 mm/min. At strain levels below 40%, the linear behavior allows 
utilizing Hooke’s law (E = σ/ε, where σ is the applied stress and ε is the resultant strain) to calculate Young’s mod-
ulus40. For compression testing, crosshead velocity was set to a maximum of 20 mm/min. Prior to all subsequent 
compression tests, a drop of machine oil was applied to the parallel surfaces of the PDMS cylinder to prevent 
excessive friction and the resultant barreling.
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Surface characterization. Sessile drop water droplet contact angles (WCA) were measured at the polymer-air 
interface using a contact angle goniometer (Rame-Hart Instrument Co., Netcong, NJ) to assess the wettability of 
PDMS modi�ed with PDMS-PEG BCP additives. Brie�y, 6 µL volume of distilled water (18.2 MΩ cm−1 water) 
was dropped onto the BCP modi�ed PDMS slab (2 cm × 2 cm) and the contact angle was measured at regular 
time intervals to observe the timeline of surface arrangement. WCA of PDMS without BCP additive substrates 
(2 cm × 2 cm) was also measured as a control.

To characterize the surface chemistry of PDMS with and without PDMS-PEG BCP additives, square samples 
(1 cm × 1 cm) were prepared. Samples were analyzed using X-ray photoelectron spectroscopy (XPS) using the 
K-Alpha + XPS system (�ermo Scienti�c) at Harvard University’s Center for Nanoscale Systems. �e probe for 
the measurement was aluminum k-α X-ray line with energy at 1.4866 keV and X-ray spot size at 400 µm with 
90 degrees take-o� angle (sampling depth is around 10 nm from the surface). A �ood gun, which supplies low 
energy electrons and ions was used throughout the entire experiment for sample surface charge compensation. 
Both survey spectra and high-resolution scan data were collected at each sample. For survey spectra, the scan was 
completed by taking an average of 5 scans in 1 eV steps with passing energy at 200 eV from −10 eV to 1350 eV 
binding energy. For high-resolution scans, the data were collected by taking an average of 10 scans in 0.1 eV steps 
with passing energy at 50 eV for Si 2p, O 1s, and C 1s photoelectron lines.

Statistical analysis. Each biocompatibility experiment was conducted in triplicate using cells from at least 
three di�erent rat isolations. �ree di�erent samples were utilized to quantify the WCA, protein adsorption, 
and mechanical analysis measurements. Capillary-driven �ow experiments were performed with three di�erent 
samples (n = 3). XPS of each sample was obtained by taking an average of 5 and 10 scans for survey spectrum and 
high resolution scan data respectively. Wherever indicated, quantitative data were plotted as the mean ± standard 
error of the mean (n = 3).

Data Availability
�e raw and processed data to reproduce these �ndings can be obtained by contacting the authors.
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