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Abstract
The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the

basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of

ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforemen-

tioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard.

It appears, taking HgTe/Hg1−xCdxTe and InxGa1−xAs/InP effective mass superlattices, that the photoemission from these quantized

structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing

carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with

increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the

direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of

low dimensional systems in general.
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Introduction
With the advent of modern fabrication techniques [1], semicon-

ductors with superlattice structures (SLs) [2], in which alternate

layers of two different degenerate materials set up a periodic

potential with a periodicity many times the crystal dimensions

[3], resulting in energy mini-bands, have been experimentally

realized [4]. The SL has been extensively used in many new

device structures, such as light emitters [5], electro-optical

modulators [6] photo detectors [7], transistors [8], avalanche

photodiodes [9], etc. Among the III–V SLs, the GaAs/

Ga1−xAlxAs SL has been extensively investigated, in which the

GaAs layers form the quantum wells and Ga1−xAl1−xAs layers

form the potential barriers. The III–V SLs are being exten-

sively used in the realization of high speed optoelectronic

devices [10]. The II–VI [11], IV–VI [12] and HgTe/CdTe [13]

SLs have also been experimentally realized. The IV–VI SLs

shows new physical properties in comparison with the III–V SL

owing to the peculiar band structure of the constituent materials

[14]. The II–VI SLs are being used for optoelectronic operation

in the blue [14]. HgTe/CdTe SLs also find applications for long

wavelength infrared detectors and other electro-optical applica-

tions [15]. These features arise from the direct band gap com-

pound CdTe whose conduction electrons obey the three band

model of Kane and gap-less material HgTe [16]. In this context,

it may be noted that in the effective mass SLs, the subbands of

the electrons exist in real space [17].

In recent years, the different optical properties of these SLs

have been extensively studied on the basis of the assumption

that the band structures of the different materials remain an

invariant quantity in the presence of intense light field, although

this concept is not fundamentally true. In this paper, the photoe-

mission from quantum wells (QWs), quantum well wires

(QWWs) and quantum dots (QDs) of effective mass SLs of

optoelectronic materials is investigated in the presence of

external light waves, which radically change the carrier energy

spectrum in a fundamental way on the basis of newly formu-

lated carrier dispersion laws for such quantized systems.

The photoemission from the SLs is a very important quantity

from the viewpoint of photoemission spectroscopy [18]. The

classical equation of the photo-current density is [19]

where e, m*, gv, kb, T, h, hν,  are the electron charge, effec-

tive electron mass at the edge of the conduction band, valley

degeneracy, the Boltzmann constant, temperature, the Planck

constant, incident photon energy along the z-axis and work

function respectively. It may be noted that the said equation is

valid for both charge carriers and in this conventional form the

photoemission changes with temperature, work function and the

incident photon energy. This relation holds only under the

condition of carrier non-degeneracy [20].

The following section gives the theoretical background for this

manuscript. In subsection 1, the photoemission from quantum

well effective mass SLs of optoelectronic materials under

magnetic quantization has been studied on the basis of newly

formulated electron dispersion laws. In subsections 2 and 3, the

photoemissions from QWW and QD SLs have been investi-

gated. The magneto-photoemission has been studied in subsec-

tion 4. The subsection 5 includes six different applications of

this paper in the field of superlattices and microstructures in

general.

Theoretical Background
1 The formation of photoemission from effec-

tive mass quantum well superlattices of opto-

electronic materials under magnetic quanti-

zation on the basis of a newly formulated

electron energy spectrum in the presence of

external photo excitation.
The simplified electron energy spectra in optoelectronic ma-

terials up to the second order in the presence of intense external

light waves, whose unperturbed dispersion relations of the

conduction electrons are defined by the three and two band

models of Kane together with parabolic energy bands, can be

expressed as [21]

(1)

(2)

(3)
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where , m* is the effective electronic mass at the edge

of the unperturbed conduction band, k = (kx, ky, kz) is the elec-

tronic wave vector,

E is the electron energy as measured from the edge of the

conduction band in the vertically upward direction in the

absence of any field, Eg0 is the band gap in the absence of any

field, Δ is the spin–orbit splitting constant in the absence of any

field,

e is the magnitude of electronic charge, mr is the reduced mass

and is given by mr
−1 = (m*)−1 + mv

−1, mv is the effective mass

of the heavy hole at the top of the valance band in the absence

of any field, I0 is the light intensity of wavelength λ, ε0 is the

permittivity of vacuum, εsc is the permittivity of the material,

The electron energy spectrum in effective mass superlattices in

the presence of a strong external electromagnetic field can be

expressed as [17]

(4)

where L0 ≡ a0 + b0 is the SL period, a0 and b0 and are the

widths of the barrier and the well respectively,
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the subscript 1 in the energy band parameters refers to the first

material and the subscript 2 refers to the second material of the

SL.

When the unperturbed bulk dispersion law of the constituent

materials is defined by the two band model of Kane, Equation 4

remains valid and β0(E, λ, Eg0i, Δi) is replaced by τ0(E, λ, Eg0i),

where

When the unperturbed bulk dispersion law of the constituent

materials is defined by parabolic energy bands, Equation 4

remains as it is, and only β0(E, λ, Eg0i, Δi) is replaced by ρ0(E,

λ, Eg0i), where
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In the presence of a quantizing magnetic field B along the x

direction, the electron dispersion relation in quantum well effec-

tive mass superlattices in the present case, is given by

(5)

where nx is the size quantum number along the x direction (nx =

1, 2, 3…), dx is the nanothickness along the x direction, E30 is

the totally quantized energy, n is the Landau quantum number

(n = 0, 1, 2, 3…),

The electron concentration is given by

(6)

and EFBQWSLEM is the Fermi energy in this case and F−1(η30,1)

is the Fermi–Dirac integral of order −1 and is the special case of

the Fermi–Dirac integral of order j as defined in [22].

The photoelectric current density is given by

(7)

where, α0 is the probability of photoemission,
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Enx should be determined from the equation

(8)

The nx,min in Equation 7 must be determined from the

inequality

(9)

where W is the electron affinity.

When the unperturbed bulk dispersion relation of the

constituent materials are defined by the two band model of

Kane, all the pertinent equations above remain unchanged,

where β0(E, λ, Eg0i, Δi) is to be replaced by τ0(E, λ, Eg0i) and

β'0 (E, λ, Eg0i, Δi) should be replaced by τ'0 (E, λ, Eg0i) where

with

For the perturbed parabolic bulk dispersion relation of the

constituent materials in this case β0(E, λ, Eg0i, Δi) should be

replaced by ρ0(E, λ, Eg0i) and β'0 (E, λ, Eg0i, Δi) should be

replaced by ρ'0 (E, λ, Eg0i), where

2 Photoemission from quantum well wire

effective mass superlattices
The electron dispersion relation in this case is given by

(10)

where, ny and nz are size quantum numbers along the y and z

directions, dy and dz are the nano-thicknesses along the y and z

directions,
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The sub-band energy E31 can be written as

(11)

The photo-emitted current assumes the form

(12)

where

The electron concentration per unit length is given by

(13)

ζ(2r) is the zeta function of order 2r, s is the upper limit of the

summation and Y = QWWSLEM. For the cases defined by the

perturbed two band model of Kane or a parabolic energy band,

β0(E, λ, Eg0i, Δi) should be replaced by τ0(E, λ, Eg0i) and ρ0(E,

λ, Eg0i) respectively. The basic forms of Equation 12 and Equa-

tion 13 remain unchanged.

3 Photoemission from quantum dot effective

mass superlattices
The electron energy spectrum in this case can be expressed as

(14)

where E32 is the totally quantized electron energy in this case.

The electron concentration can be written as

(15)

where η32 = (EFQDSLEM – E32)/kBT, in which EFQDSLEM is the

Fermi energy in the present case.

The photo-emitted current density assumes the form

(16)

where

I30(Enx,0) and f30(Enx,0) are defined in connection with Equa-

tion 7 and

(17)

Besides, the Enx should be determined from the equation

(18)
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4 Magneto-photoemission from effective

mass superlattices
The electron dispersion law in this case assumes the form

(19)

The Landau level energy E33 is given by

(20)

The photo-emitted current density can be written as

(21)

where η33 = [EFBSLEM –(E33 + W − hν)]/kBT, in which

EFBSLEM is the Fermi energy in the present case.

The electron concentration can be expressed as

(22)

Y = BSLEM.

5 The six different applications of the results

of this paper in the field of nanostructured

electronics in general
The investigations as presented in this paper find six different

applications in the realm of modern quantum effect devices and

they are briefly written as follow:

5.1 Debye screening length

The Debye screening length (DSL) of the carriers in the semi-

conductors is a fundamental quantity, characterizing the

screening of the Coulomb field of the ionized impurity centers

by the free carriers. It affects many special features of the

modern semiconductor devices, the carrier mobility under

different mechanisms of scattering, and the carrier plasmas in

semiconductors [23]. The DSL (LD) can, in general, be written

as [24]

(23)

where n0 and EF are applicable for bulk samples.

The thermoelectric power of the carriers in semiconductors in

the presence of a classically large magnetic field is independent

of scattering mechanisms and is determined only by their

energy band spectra [25]. The magnitude of the thermoelectric

power G can be written under the condition of carrier degen-

eracy [25] as

(24)

Using Equation 23 and Equation 24, one obtains

(25)

Therefore, we can experimentally determine LD by knowing the

experimental curve of G versus carrier concentration at a fixed

temperature. It is evident that the DSL for a system can be

investigated for different cases by using the functional depend-

ence between the electron concentration and the Fermi energy,

as given for different cases in the different sections of this

paper.

5.2 Carrier contribution to the elastic constants

The knowledge of the carrier contribution to the elastic

constants is very important in studying the mechanical prop-

erties of the materials and has been investigated in the literature

[26]. The electronic contribution to the second- and third- order

elastic constants can be written as [27]

(26)
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and

(27)

where  is the deformation potential constant. Thus, using

Equation 26, Equation 27 and Equation 24, we can write

(28)

and

(29)

Thus, again the experimental graph of G0 versus n0 allows us to

determine the electronic contribution to the elastic constants for

materials having arbitrary spectra.

5.3 Effective electron mass

The concept of effective mass of the carriers in different ma-

terials, being connected with the mobility, is known to be one of

the most important pillars in the whole field of solid state and

related sciences and is used for the analysis of the semicon-

ductor devices under different operating conditions in general

[28]. It must be noted that among the various definitions of the

effective electron mass [29], it is the effective momentum mass

that should be regarded as the basic quantity [30]. This is due to

the fact that it is this mass which appears in the description of

transport phenomena and all other properties of the conduction

electrons of the semiconductors having arbitrary dispersion

laws [31]. It is the effective momentum mass which enters in

various transport coefficients and plays the most dominant role

in explaining the experimental results under different scattering

mechanisms [32]. The carrier degeneracy in semiconductors

influences the effective mass when it is energy dependent.

Under degenerate conditions, only the electrons at the Fermi

surface of n-type semiconductors participate in the conduction

process and hence, the effective momentum mass of the elec-

trons (EMM), corresponding to the Fermi level, would be of

interest in electron transport under such conditions. The Fermi

energy is again determined by the carrier energy spectrum and

the carrier concentration and therefore, these two features

would determine the dependence of the EMM in degenerate

materials on the degree of carrier degeneracy. In recent years,

the EMM in such materials under different external conditions

has been studied extensively [33]. It has different values in

different materials and varies with electron concentration, with

the magnitude of the reciprocal quantizing magnetic field under

magnetic quantization, with the quantizing electric field as in

inversion layers, with the nano-thickness as in quantum wells

and quantum well wires and with superlattice period as in the

quantum confined superlattices having various carrier energy

spectra.

The expression of the EMM in the i-th direction is given by

(30)

where i0 = x, y and z.

From the different sections of this paper, the EMM can be

formulated by using the respective dispersion relation, and their

dependencies with respect to various variables can also be

studied. In addition to Fermi energy and other system

constraints, the effective mass will depend on the respective

quantum numbers, which is the characteristic feature of effec-

tive mass superlattices.

5.4 Diffusivity to mobility ratio

The diffusivity (D) to mobility (μ) ratio (DMR) of the carriers

in semiconductor devices is known to be very useful [34] since

the diffusion constant (a quantity often used in device analysis

but whose exact experimental determination is rather difficult)

can be obtained from this ratio by knowing the experimental

values of the mobility. In addition, it is more accurate than any

of the individual relations for the diffusivity or the mobility,

which are the two most widely used quantities for the character-

ization of carrier transport in modern nanostructured materials

and devices. The classical DMR equation is valid for both types

of carriers. In its conventional form, the DMR increases linearly

with the temperature T, being independent of the carrier concen-

tration. This relation holds only under the condition of carrier

non-degeneracy although its validity has been suggested erro-

neously for degenerate materials [35]. The performance of the

electron devices at the device terminals and the speed of opera-

tion of modern switching transistors are significantly influence

by the degree of carrier degeneracy present in these devices

[36]. The simplest way of analyzing them under degenerate

conditions is to use the appropriate DMR to express the perfor-

mance of the devices at the device terminals and the switching

speed in terms of the carrier concentration [22].

It is well known from the fundamental work of Landsberg [37]

that the DMR for electronic materials having degenerate elec-
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tron concentration is essentially determined by their respective

energy band structures. It can, in general, be proved that for

bulk specimens the DMR is given by [38]

(31)

Under the electric quantum limit, as in inversion layers and

n-i-p-i structures, referring to the lowest electric sub-band,

Equation 31 assumes the form [22]

(32)

where  and  and  are the electron concentration, the

energy of the electric sub-band and the Fermi energy in the

electric quantum limit.

For inversion layers and n-i-p-i structures, under the condition

of electric quantum limit, Equation 24 can be expressed as [25]

(33)

Using the appropriate equations one obtains

(34)

Thus, the DMR for degenerate materials can be determined by

knowing the experimental values of G. The suggestion for the

experimental determination of the DMR for degenerate semi-

conductors having arbitrary dispersion laws, as given by Equa-

tion 34, does not contain any energy band constants. For a fixed

temperature, the DMR varies inversely as G. Only the experi-

mental values of G, for any material as a function of electron

concentration, will generate the experimental values of the

DMR for that range of n0 for that system. Since G decreases

with increasing n0, from Equation 34 one can infer that the

DMR will increase with increasing n0. This statement is the

compatibility test so far as the suggestion for the experimental

determination of DMR for degenerate materials is concerned.

5.5 Third order nonlinear optical susceptibility

The third order nonlinear optical susceptibility can be written as

[38]

(35)

where

and the other notations are defined in [38]. The term

 can be formulated by using the dispersion relations

of different materials as given in appropriate sections of this

paper. Thus one can investigate the χNP(ω1, ω2, ω3) for all ma-

terials as considered in this paper.

5.6 Generalized Raman gain

The generalized Raman gain in optoelectronic materials can be

expressed as [39]

(36)

where

 is the Fermi factor for spin-up Landau levels,

 is the Fermi factor for spin down Landau levels and

the other notations are defined in [39]. It appears then that the

formulation of RG is determined by the appropriate derivation

of I, which in turn requires the magneto-dispersion relations. By

using the appropriate formulas RG can, in general, be investi-

gated.

Thus we can summarize the whole theoretical background in

the following way. In this paper, we have studied the photoe-

mission from quantum wire and quantum dot effective mass

superlattices of optoelectronic materials, on the basis of newly

formulated electron dispersion relations, in the presence of

external photo-excitation. In addition, the influence of magnetic

field on the photoemission from the said superlattices, together

with quantum well effective mass super lattices in the presence
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Figure 1: Plot of the normalized photoemission current density from QW effective mass superlattices of HgTe/Hg1−xCdxTe as a function of inverse

magnetic field, in which the curves (a), (b) and (c) represent the perturbed three and two band models of Kane and parabolic energy bands, respect-

ively. The curves (d), (e) and (f) exhibit the corresponding plots of InxGa1−xAs/InP.

of quantizing magnetic field, has also been studied in this

context. The strong dependences of the photoemission on the

light intensity reflect the direct signature of light waves on the

carrier energy spectra. The content of this paper finds six real

applications in the field of nanoscience and technology in

general.

Results and Discussion
Using Equation 6 and Equation 7 and taking the numerical

values of the energy band constants from [19], the normalized

photo-emitted current density from QW HgTe/Hg1−xCdxTe

effective mass SL, whose constituent materials obey the

perturbed three band model of Kane in the presence of external

photo-excitation, has been plotted as a function of inverse quan-

tizing magnetic field, as shown in plot (a) of Figure 1. The

curves (b) and (c) of the same figure have been drawn for the

perturbed two band model of Kane and that of perturbed para-

bolic energy bands respectively. The curves (d), (e) and (f) in

the same figure exhibit the corresponding plots of QW

InxGa1−xAs/InP effective mass SL. Figure 2 to Figure 5 show

the variations of the normalized photo-emitted current density

from the said SLs as a function of normalized electron degen-

eracy, normalized intensity, wavelength and thickness, respect-

ively, for all the cases of Figure 1. Using Equation 15 and Equa-

tion 16, the normalized photocurrent from QWW effective mass

HgTe/Hg1−xCdxTe SL, whose constituent materials obey the

perturbed three band model of Kane in the presence of external

light waves, has been depicted in plot (a) of Figure 6 as a func-

tion of film thickness. The curves (b) and (c) of the same figure

have been drawn for the perturbed two band model of Kane and

perturbed parabolic energy bands respectively. The curves (d),

(e) and (f) in the same figure exhibit the corresponding plots of

InxGa1−xAs/InP QWW effective mass SL.

Figure 7 to Figure 10 exhibit the plots of the normalized photo-

emitted current as functions of normalized electron degeneracy,

normalized intensity, wavelength and normalized incident

photon energy, respectively, for all the cases of Figure 6.

Using Equation 16 and Equation 17, the normalized photo-

emitted current density from HgTe/Hg1−xCdxTe and

InxGa1−xAs/InP effective mass QD SLs respectively has been

plotted for all types of band models as a function of film thick-

ness, as shown in Figure 11. Figure 12 to Figure 15 exhibit the

plots of normalized photo-emitted current density from the said

SLs as functions of normalized electron degeneracy, normal-

ized intensity, wavelength and normalized incident photon

energy, respectively, for all cases of Figure 11.
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Figure 2: Plot of the normalized photoemission as a function of normalized electron degeneracy for all cases of Figure 1.

Figure 3: Plot of the normalized photoemission current density as a function of normalized light intensity for all cases of Figure 1.
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Figure 4: Plot of the normalized photoemission current density as a function of wavelength for all cases of Figure 1.

Figure 5: Plot of the normalized photoemission current density as a function of film thickness for all cases of Figure 1.
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Figure 6: Plot of the normalized photocurrent from quantum well wire effective mass superlattices of HgTe/Hg1−xCdxTe as a function of film thick-

ness in which the curves (a), (b) and (c) represent the perturbed three and two band models of Kane and parabolic energy bands, respectively. The

curves (d), (e) and (f) exhibit the corresponding plots of InxGa1−xAs/InP.

Figure 7: Plot of the normalized photocurrent from quantum well wire effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP as a

function of normalized electron degeneracy for all cases of Figure 6.
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Figure 8: Plot of the normalized photocurrent from quantum well wire effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP as a

function of normalized intensity for all cases of Figure 6.

Figure 9: Plot of the normalized photocurrent from quantum well wire effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP as a

function of light wavelength for all cases of Figure 6.
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Figure 10: Plot of the normalized photocurrent as a function of normalized incident photon energy from quantum well wire effective mass superlat-

tices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP for all cases of Figure 6.

Figure 11: Plot of the normalized photoemission current density from quantum dot effective mass superlattices of HgTe/Hg1−xCdxTe as a function of

film thickness in which the curves (a), (b) and (c) represent the perturbed three and two band models of Kane and parabolic energy bands, respective-

ly. The curves (d), (e) and (f) exhibit the corresponding plots of InxGa1−xAs/InP.
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Figure 12: Plot of the normalized photoemission current density from quantum dot effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/

InP as a function of normalized electron degeneracy for all cases of Figure 11.

Figure 13: Plot of the normalized photoemission current density from quantum dot effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/

InP as a function of normalized light intensity for all cases of Figure 11.
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Figure 14: Plot of the normalized photoemission current density from quantum dot effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/

InP as a function of light wavelength for all cases of Figure 11.

Figure 15: Plot of the normalized photoemission current density from quantum dot effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/

InP as a function of normalized incident photon energy for all cases of Figure 11.
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Figure 16: Plot of the normalized photoemission current density from effective mass superlattices of HgTe/Hg1−xCdxTe as a function of inverse

magnetic field and in which the curves (a), (b) and (c) represent the perturbed three and two band models of Kane and parabolic energy bands, res-

pectively. The curves (d), (e) and (f) exhibit the corresponding plots of InxGa1−xAs/InP.

Using Equation 21 and Equation 22, the normalized photo-

emitted current density from effective mass HgTe/Hg1−xCdxTe

SL under magnetic quantization, whose constituent materials

obey the perturbed three band model of Kane in the presence of

external photo-excitation, has been plotted as a function of

quantizing inverse magnetic field as shown in plot (a) of

Figure 16. The curves (b) and (c) of the same figure have been

drawn for perturbed two band model of Kane and perturbed

parabolic energy bands, respectively. The curves (d), (e) and (f)

in the same figure exhibit the corresponding plots of

InxGa1−xAs/InP SL.

Figure 17 to Figure 20 exhibit the said variation in this case as

functions of normalized electron degeneracy, normalized inten-

sity, wavelength and normalized incident photon energy, res-

pectively, for all the cases of Figure 16.

It appears from Figure 1 that the normalized photo-emitted

current density from QW effective mass HgTe/Hg1−xCdxTe and

InxGa1−xAs/InP SLs oscillate with the inverse quantizing

magnetic field due to the Shubnikov–de Haas (SdH) effect,

where the oscillatory amplitudes and the numerical values are

determined by the respective energy band constants. From

Figure 2, it appears that the photo-emitted current density

increases with increasing carrier concentration in an oscillatory

way. Figure 3 and Figure 4 show that the photo-emitted current

density decreases with increasing intensity and wavelength in

different manners. From Figure 5, it appears that the normal-

ized photo-emitted current density from QW effective mass

HgTe/Hg1−xCdxTe and InxGa1−xAs/InP SLs decreases with

increasing film thickness in an oscillatory manner, with

different numerical values as specified by the energy band

constants of the aforementioned SLs. From Figure 6, it appears

that the normalized photoemission from QWW effective mass

HgTe/Hg1−xCdxTe and InxGa1−xAs/InP SLs decreases with

increasing thickness and exhibits large oscillations. From

Figure 7, it appears that the normalized photocurrent for the

said system increases with increasing carrier concentration, ex-

hibiting a quantum jump for a particular value of the said vari-

able, for all the models of both the SLs. From Figure 8 and

Figure 9, it can be inferred that the normalized photocurrent in

this case increases with decreasing intensity and wavelength in

different manners. From Figure 10, it has been observed that the

normalized photocurrent from QWW effective mass HgTe/

Hg1−xCdxTe and InxGa1−xAs/InP SLs increases with increasing

normalized incident photon energy and exhibits quantum steps

for specific values of the said variable.

From Figure 11, it appears that photo-emitted current density

from QD effective mass HgTe/Hg1−xCdxTe and InxGa1−xAs/InP

SLs exhibits the same type of variations as given in Figure 5

and Figure 6, respectively, although the physics of QD effec-
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Figure 17: Plot of the normalized magneto photoemission current density from effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP

as a function of normalized electron degeneracy for all cases of Figure 16.

Figure 18: Plot of the normalized magneto photoemission current density from effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP

as a function of normalized intensity for all cases of Figure 16.
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Figure 19: Plot of the normalized magneto photoemission current density from effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP

as a function of wavelength for all cases of Figure 16.

Figure 20: Plot of the normalized magneto photo-emitted current density from effective mass superlattices of HgTe/Hg1−xCdxTe and InxGa1−xAs/InP

as a function of normalized incident photon energy for all cases of Figure 16.
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tive mass SLs is completely different as compared to the

magneto quantum well effective mass SLs and quantum wire

effective mass SLs, respectively. The different physical

phenomena in the QD case, as compared to the other two cases,

exhibit quantum jumps at different numerical values of photoe-

mission and different thicknesses, respectively. From Figure 12

to Figure 14, it appears that photoemission current density from

QD effective mass HgTe/Hg1−xCdxTe and InxGa1−xAs/InP SLs

increases with increasing carrier concentration, decreasing

intensity and decreasing wavelength, respectively, in various

manners.

Figure 15 demonstrates the fact that the photoemission current

density from QD effective mass HgTe/Hg1−xCdxTe and

InxGa1−xAs/InP SLs exhibits quantum steps with increasing

photon energy for both the cases. Figure 16 exhibits the fact that

the normalized photoemission current density from effective

mass HgTe/Hg1−xCdxTe and InxGa1−xAs/InP SLs oscillates

with inverse quantizing magnetic field. Figure 17 exhibits the

fact that the photoemission in this case increases with

increasing carrier concentration. Figure 18 and Figure 19

demonstrate that photoemission current density decreases with

increasing intensity and wavelength in different manners.

Finally, from Figure 20, it can be inferred that photoemission

exhibits step functional dependence with increasing photon

energy for both the SLs, in this case with different numerical

magnitudes.

The SL is a three dimensional system under periodic potential.

The two dimensional dispersion relations of inversion layers of

III–IV materials, for both weak and strong electric field limits,

can be expressed as

(37)

and

(38)

where the notations have been defined in [40]. The result for the

low electric field limit cannot be at all connected with the

corresponding results for the high electric limit in the analo-

gous two-dimensional systems. There is a radical difference in

the dispersion relation of the 3D quantized structures and the

corresponding dispersion law of the 2D systems. From this

paper, the dispersion relations of the various types of 1D system

can be formulated and the corresponding photoemissions can

also be investigated. The results will be fundamentally different

in all cases and the reduction from lower to higher (or higher to

lower) dimensions will not be possible due to system asym-

metry, and they will reveal new physical features in the respec-

tive cases. The dispersion law and the corresponding wave

function play a cardinal role in formulating any electronic prop-

erty of any electronic material, since they change in a funda-

mental way when moving from one to three dimensions. Conse-

quently all the formulations of the different transport quantities

change radically.

It is imperative to state that our investigations excludes the

many-body, hot electron, spin broadening, and the allied

quantum dot and SL effects, in this simplified theoretical

formalism, due to the absence of proper analytical techniques

for including them in the generalized systems as considered

here. Our simplified approach will be appropriate for the

purpose of comparison when methods to tackle the formidable

retrospective inclusion of the said effects for the generalized

systems emerge. It is vital that the results of our simple theory

get transformed to the well-known formulation of photoemis-

sion for wide-gap materials having parabolic energy bands. This

indirect test will not only illustrate the mathematical compati-

bility of our formulation but will also show the fact that our

simple analysis is a more generalized one, since one can obtain

the corresponding results for materials having parabolic energy

bands under certain limiting conditions from our present deriva-

tion. The experimental results for the verification of the theo-

retical analyses of this article are still not available in the litera-

ture. It is worth noting that our generalized formulation will be

useful to analyze the experimental results when they materi-

alize. The inclusion of the said effects would certainly increase

the accuracy of the results, although the qualitative features of

the photoemission would not change in the presence of the

aforementioned effects.

Finally, it can be remarked that on the basis of the dispersion

relations of the various quantized structures as discussed above,

the plasma frequency, the heat capacity, the dia- and para-

magnetic susceptibilities and the various important transport

coefficients can be probed for all types of quantized structures

as considered here. Thus our theoretical formulation comprises

the dispersion relation dependent properties of various techno-

logically important quantum-confined materials having

different band-structures. We have not considered other types of

compounds, in order to keep the presentation concise and

succinct. With different sets of energy band parameters, we

shall get different numerical values of the photoemission. The

nature of variations of the photoemission, as shown here, would

be similar for the other types of materials and the simplified

analysis of this paper exhibits the basic qualitative features of

the photoemission from such quantized structures. Finally, it

may be noted that the basic aim of this paper is not solely to
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demonstrate the influence of quantum confinement on the

photoemission from effective mass superlattices but also to

formulate the appropriate carrier statistics in the most general-

ized form, since the transport and other phenomena in modern

nanostructured devices having different band structures, and the

derivation of the expressions of many important carrier prop-

erties, are based on the temperature-dependent carrier statistics

in such materials.
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