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Abstract

We present a characteristic decomposition of the potential flow equation in the
self-similar plane. The decomposition allows for a proof that any wave adjacent
to a constant state is a simple wave for the adiabatic Euler system. This result is
a generalization of the well-known result on 2-d steady potential flow and a recent
similar result on the pressure gradient system
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1 Introduction

The one-dimensional wave equation

utt − c2uxx = 0 (1)

with constant speed c has an interesting decomposition

(∂t + c∂x)(∂t − c∂x)u = 0, (2)

1Research partially supported by NSF of China with No. 10301022, NSF from Beijing Municipality
and the Key Program from Beijing Educational Commission with no. KZ200510028018.

2Research partially supported by NSF-DMS-0305497, 0305114

1



or

(∂t − c∂x)(∂t + c∂x)u = 0 (3)

known from elementary text books. One can rewrite them as

∂+∂−u = 0, or ∂−∂+u = 0, (4)

where ∂± = ∂t ± c∂x. Sometimes, the same fact is written in Riemann invariants

∂tR + c∂xR = 0, ∂tS − c∂xS = 0 (5)

for the Riemann invariants

R := ∂t − c∂xu, S := ∂t + c∂xu. (6)

For a pair of system of hyperbolic conservation laws[
u
v

]
t

+

[
f(u, v)
g(u, v)

]
x

=

[
0
0

]
, (7)

it is known that a pair of Riemann invariants exist so that the system can be rewritten
as {

∂tR + λ1(u, v)∂xR = 0,
∂tS + λ2(u, v)∂xS = 0,

(8)

where (R,S) are the Riemann invariants and the λ’s are the two eigenvalues of the
system.

These decompositions and Riemann invariants are useful in the construction of solu-
tions, for example, the construction of D’Alembert formula, and proof of development
of singularities ([4]). An example of the system is the system of isentropic irrotational
steady two-dimensional Euler equations for compressible ideal gases{

(c2 − u2)ux − uv(uy + vx) + (c2 − v2)vy = 0,
uy − vx = 0

(9)

supplemented by Bernoulli’s law

c2

γ − 1
+

u2 + v2

2
= k2 (10)

where γ > 1 is the gas constant while k > 0 is an integration constant. This system has
two unknowns (u, v), and by the existence of Riemann invariants, any solution adjacent
to a constant state is a simple wave. A simple wave means a solution (u, v) that depends
on a single parameter rather than the pair parameters (x, y). Since there is the lack of
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the explicit expressions, the concept of Riemann invariants plays a limited role in a much
broader sense, e.g., to treat the full Euler equations.

In recent years, the pressure gradient system
ut + px = 0
vt + py = 0

Et + (up)x + (vp)y = 0,
(11)

where E = p + (u2 + v2)/2, has been known to have “simple waves” adjacent to a
constant state (u, v, p) in the self-similar variable plane (ξ, η) = (x/t, y/t). This system
has three equations and no Riemann invariants have been found. But the equation for
the unknown variable p in the (ξ, η) plane

(p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)

2

p
− 2(ξpξ + ηpη) = 0 (12)

allows for a decomposition

∂+∂−p = m+∂−p, m+ :=
r4λ+

2p2
pr, (13)

where (r, θ) denotes the polar coordinates of the (ξ, η) plane and

∂+ = ∂θ + λ−1
+ ∂r; ∂− = ∂θ + λ−1

− ∂r; λ± = ±
√

p

r2(r2 − p)
. (14)

For convenience of verification we state that the p equation in polar coordinates takes
the form

(p− r2)prr +
p

r2
pθθ +

p

r
pr +

1

p
(rpr)

2 − 2rpr = 0. (15)

The characteristics are defined by

dθ

dr
= λ±. (16)

In addition, we know that

∂±λ± = n±∂±p (17)

for some nice factors n±. These facts allow for expressions

∂∓(∂±λ±) = (∂±λ±)f± (18)

for some nice factors f±. This decomposition leads directly to the fact that

Proposition 1. A state adjacent to a constant state for the pressure gradient system
must be a simple wave in which p is constant along characteristics of a plus (or minus)
family.
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These lead to the desire to consider the pseudo-steady isentropic irrotational Euler
system which has three equations with source terms,

(ρU)ξ + (ρV )η = −2ρ,
(ρU)ξ + (ρV )η = −3ρU,
(ρU)ξ + (ρV )η = −3ρV,

(19)

where (ξ, η) = (x/t, y/t), and (U, V ) = (u− ξ, v− η) is the pseudo-velocity. It turns out
that we are unable to find explicit forms of the Riemann invariants, but decompositions
similar to ∂+∂−λ− = m∂−λ− hold for some m, presented in Section 4.

We use the characteristic decomposition of Section 4 to establish in Section 5 that
adjacent to a constant state a wave must be a simple wave for the pseudo-steady irro-
tational isentropic Euler system. A simple wave for this case is such that one family
of wave characteristics are straight lines and the physical quantities velocity, speed of
sound, pressure, and density are constant along the wave characteristics. Further, us-
ing the fact that entropy and vorticity are constant along the pseudo-flow characteristics
(the pseudo-flow lines), our irrotational result extends to the adiabatic full Euler system,
see Section 5.

2 Two-by-two system

Consider a 2× 2 hyperbolic system in the Riemann invariants{
∂tR + λ1∂xR = 0,
∂tS + λ2∂xS = 0.

(20)

So we find that

∂2λ2 := (∂t + λ2∂x)λ2 = λ2,R∂2R, (21)

where λ2,R := ∂Rλ2. We go on to find

∂1∂2R =
∂1λ2 − ∂2λ1

λ2 − λ1

∂2R, (22)

and so

∂1(
1

λ2,R

∂2λ2) =
∂1λ2 − ∂2λ1

λ2 − λ1

∂2λ2

λ2,R

(23)

which implies

∂1∂2λ2 =

(
∂1λ2 − ∂2λ1

λ2 − λ1

+
∂1λ2,R

λ2,R

)
∂2λ2. (24)
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The elegant form is undermined by the dependence on the Riemann invariant R via
the term λ2,R. It is not useful when the explicit form of the Riemann invariants are not
known. But we think it is worth mentioning. For example, (24) can be used directly to
show that all characteristics in a wave adjacent to a constant state are straight and thus
such a wave is a simple wave.

3 Steady Euler system

Let us build explicitly the characteristic decomposition for the steady Euler system for
isentropic irrotational flow (9)(10) in the absence of the explicit form of the Riemann
invariants. The same technique can be extended to the case of pseudo-steady case in
Section 4. We write the system in the form[

u
v

]
x

+

[
−2uv
c2−u2

c2−v2

c2−u2

−1 0

] [
u
v

]
y

= 0. (25)

The matrix has eigenvalues

λ± =
uv ±

√
c2(u2 + v2 − c2)

u2 − c2
(=

dy

dx
) (26)

which are solutions to the characteristic equation

λ2 +
2uv

c2 − u2
λ +

c2 − v2

c2 − u2
= 0. (27)

We have the left eigenvectors

`± = [1, λ∓], (28)

where we have used the relation

λ±λ∓ =
c2 − v2

c2 − u2
. (29)

The characteristic form of the system is therefore

`±

[
u
v

]
x

+ λ±`±

[
u
v

]
y

= 0, (30)

which is equivalent to

∂±u + λ∓∂±v = 0. (31)

We then have

∂−λ− = ∂xλ− + λ−∂yλ− = ∂uλ−∂−u + ∂vλ−∂−v = (∂uλ− − ∂vλ−/λ+) ∂−u. (32)
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We shall ignore the similar calculation for ∂+λ+ for simplicity of notation.

Now that the term ∂−λ− differs from ∂−u by a lower-order factor, we shall focus our
attention on ∂−u. First we see that we can derive a second-order equation for u, i.e.,

uyy −
(

2uv

c2 − v2
uy −

c2 − u2

c2 − v2
ux

)
x

= 0, (33)

or equivalently

uxx −
2uv

c2 − u2
uxy +

c2 − v2

c2 − u2
uyy =

c2 − v2

c2 − u2

((
2uv

c2 − v2

)
x

uy −
(

c2 − u2

c2 − v2

)
x

ux

)
. (34)

We now compute the ordered derivative ∂+∂−u to find

∂+∂−u = uxx + (λ+ + λ−)uxy + λ+λ−uyy + ∂+λ− uy. (35)

We find that

∂+λ− = ∂+u(∂uλ− − ∂vλ−/λ−). (36)

Thus we obtain

∂+∂−u = c2−v2

c2−u2

((
2uv

c2−v2

)
x

uy −
(

c2−u2

c2−v2

)
x

ux

)
+(ux + λ+uy)uy(∂uλ− − ∂vλ−/λ−).

(37)

We notice that the above right-hand side is a quadratic form in (ux, uy), once we sub-
stitute vx by uy. So we compute further. We use the Bernoulli’s law to find

(c2)x = −(γ − 1)(uux + vuy). (38)

So we find(
2uv

c2−v2

)
x

= 2
(c2−v2)2

[vux(c
2 − u2 − v2 + γu2) + uuy(c

2 + γv2)](
c2−u2

c2−v2

)
x

= −1
(c2−v2)2

[uux(2c
2 − v2 − u2 + γu2 − γv2)

−vuy(2c
2 − v2 + γv2 − u2 − γu2)].

(39)

We now compute the factor ∂uλ− − λ−1
− ∂vλ−. We use Bernoulli’s law to find

(c2)u = −(γ − 1)u, (c2)v = −(γ − 1)v. (40)

We use the characteristic equation

(c2 − u2)λ2 + 2uvλ + c2 − v2 = 0 (41)
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to obtain

∂uλ− =
λ2
−(γ+1)u−2vλ−+(γ−1)u

2λ−(c2−u2)+2uv
,

∂vλ− =
λ2
−(γ−1)v−2uλ−+(γ+1)v

2λ−(c2−u2)+2uv
.

(42)

We then simply compute to find

∂uλ− − λ−1
− ∂vλ− =

γ + 1

2λ−(c2 − u2) + 2uv

(uλ− − v)3

c2λ−
. (43)

Coming back to our equation for ∂+∂−u, we have

(c2 − u2)(c2 − v2)∂+∂−u

= u2
xu(2c2 − u2 − v2 + γu2 − γv2)

+uxuy(−vu2 − v3 + 3γvu2 − γv3 + Q)

+u2
y[2u(c2 + γv2) + λ+Q]

(44)

where we have introduced the notation

Q :=
(c2 − u2)(c2 − v2)

2λ−(c2 − u2) + 2uv

γ + 1

c2λ−
(uλ− − v)3 =

(γ + 1)(c2 − v2)(uH − vc)3

2(c2 − u2)H(cH − uv)
, (45)

where

H :=
√

u2 + v2 − c2. (46)

We then factorize the quadratic form to find finally

∂+∂−u =
u(2c2 − u2 − v2 + γu2 − γv2)

(c2 − u2)(c2 − v2)
(∂xu + α∂yu)∂−u, (47)

where

α =
2u(c2 + γv2) + λ+Q

λ−u(2c2 − u2 − v2 + γu2 − γv2)
. (48)

Proposition 2 There holds the identity

∂+∂−u = m(∂xu + α∂yu)∂−u, (49)

for some functions α(u, v) given in (48) and some m given by

m =
u(2c2 − u2 − v2 + γu2 − γv2)

(c2 − u2)(c2 − v2)
. (50)
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We use the relation

∂−u = ∂−λ−/(∂uλ− − ∂vλ−λ−1
+ ) (51)

to go back to ∂+∂−λ−. We find

∂uλ− − ∂vλ−λ−1
+ = − [4c2 + (γ − 3)(u2 + v2)][vλ−(c2 + u2) + (c2 − v2)u]

(c2 − v2)(c2 − u2)[2λ−(c2 − u2) + 2uv]
=: G. (52)

So we have

∂+(
1

G
∂−λ−) = m ∂αu

∂−λ−
G

, (53)

or

∂+∂−λ− = (m∂αu + ∂+(ln |G|))∂−λ−. (54)

Proposition 3 There holds the identity

∂+∂−λ− = m∂−λ− (55)

for some m = m(u, v)(∂xu + β(u, v)∂yu). A similar identity holds for ∂−∂+λ+.

We remark that in the application on simple waves, the equation for u is sufficient
and the equations for λ± are not needed.

4 Pseudo-steady Euler

We consider the two-dimensional isentropic irrotational ideal flow in the self-similar
plane (ξ, η) = (x/t, y/t). There holds the Bernoulli’s law

c2

γ − 1
+

U2 + V 2

2
= −ϕ (56)

where c is the speed of sound, (U, V ) = (u−ξ, v−η) are the pseudo-velocity, while (u, v)
is the physical velocity, and ϕ is the pseudo-potential such that

ϕξ = U, ϕη = V. (57)

The equations of motion can be written as{
(c2 − U2)Uξ − UV (Uη + Vξ) + (c2 − V 2)Vη = −2c2 + U2 + V 2

Vξ − Uη = 0.
(58)
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We can rewrite the equations of motion in a new form[
u
v

]
ξ

+

[
−2UV
c2−U2

c2−V 2

c2−U2

−1 0

] [
u
v

]
η

= 0 (59)

to draw as much parallelism to the steady case as possible. We emphasize the mixed
use of the variables (U, V ) and (u, v), i.e., (U, V ) is used in the coefficients while (u, v) is
used in differentiation. This way we obtain zero on the right-hand side for the system.

The eigenvalues are similar as before:

dη

dξ
= Λ± =

UV ±
√

c2(U2 + V 2 − c2)

U2 − c2
. (60)

The left eigenvectors are

`± = [1, Λ∓]. (61)

And we have similarly

∂±u + Λ∓∂±v = 0. (62)

Our Λ± now depend on more than (U, V ). But, let us regard Λ± as a simple function of
three variables Λ± = Λ±(U, V, c2) as given in (60). Thus we need to build differentiation
laws for c2. We can directly obtain(

c2

γ − 1

)
ξ

+ Uuξ + V vξ = 0,

(
c2

γ − 1

)
η

+ Uuη + V vη = 0. (63)

We have

∂±c2 = −(γ − 1)(U∂±u + V ∂±v). (64)

So we move on to compute

∂±Λ± = ∂UΛ±∂±U + ∂V Λ±∂±V + ∂c2Λ±∂±c2

= ∂UΛ±(∂±u− 1) + ∂V Λ±(∂±v − Λ±) + ∂c2Λ±∂±c2

= ∂UΛ±∂±u + ∂V Λ±∂±v + ∂c2Λ±∂±c2 − ∂UΛ± − ∂V Λ±Λ±.
(65)

We need to handle the term ∂UΛ± + ∂V Λ±Λ±. We show it is zero. Recalling that

(c2 − U2)Λ2 + 2UV Λ + c2 − V 2 = 0, (66)

and regarding that Λ depends on the three quantities (U, V, c2) independently, we can
easily find

ΛU =
Λ(UΛ− V )

Λ(c2 − U2) + UV
, ΛV = − UΛ− V

Λ(c2 − U2) + UV
. (67)
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Thus

ΛU + ΛΛV = 0. (68)

Therefore we end up with

∂±Λ± =
[
∂UΛ± − Λ−1

∓ ∂V Λ± − (γ − 1)∂c2Λ±(U − Λ−1
∓ V )

]
∂±u. (69)

Thus, if one of the quantities (u, v, c2, Λ−) is a constant along Λ−, so is all the rest. So
far the properties are very similar to the steady case.

We derive an equation for ∂−u. We have a similar second-order equation for u

uηη =

(
2UV

c2 − V 2
uη −

c2 − U2

c2 − V 2
uξ

)
ξ

. (70)

We have similarly

∂+∂−u = uξξ + (Λ+ + Λ−)uξη + Λ−Λ+uηη + ∂+Λ−uη

= c2−V 2

c2−U2

[(
2UV

c2−V 2

)
ξ
uη −

(
c2−U2

c2−V 2

)
ξ
uξ

]
+ ∂+Λ−uη.

(71)

We compute

∂+Λ− = ∂UΛ−∂+U + ∂V Λ−∂+V + ∂c2Λ−∂+c2

= [∂UΛ− − 1
Λ−

∂V Λ− − (γ − 1)∂c2Λ−(U − 1
Λ−

V )]∂+u

−(∂UΛ− + Λ+∂V Λ−).

(72)

We continue to find

∂+∂−u = c2−V 2

c2−U2

{
uη

(c2−V 2)2
[2VξU(c2 − V 2) + 2V Uξ(c

2 − V 2)− 2V U((c2)ξ − 2V Vξ)]

− uξ

(c2−V 2)2
[((c2)ξ − 2UUξ)(c

2 − V 2)− (c2 − U2)((c2)ξ − 2V Vξ)]
}

+∂+u uη

[
∂UΛ− − 1

Λ−
∂V Λ− − (γ − 1)∂c2Λ−(U − 1

Λ−
V )
]

−uη(∂UΛ− + Λ+∂V Λ−).

(73)

We apply the rule Uξ = uξ − 1, Vξ = vξ = uη to find

∂+∂−u = c2−V 2

c2−U2

{
uη

(c2−V 2)2
[2uηU(c2 − V 2) + 2V uξ(c

2 − V 2)

+2V U((γ − 1)Uuξ + (γ + 1)V uη)]

− uξ

(c2−V 2)2
[−((γ + 1)Uuξ + (γ − 1)V uη)(c

2 − V 2)

+(c2 − U2)((γ − 1)Uuξ + (γ + 1)V uη)]}

+∂+u uη

[
∂UΛ− − 1

Λ−
∂V Λ− − (γ − 1)∂c2Λ−(U − 1

Λ−
V )
]

−2V vξ−2Uuξ

c2−U2 − uη(∂UΛ− + Λ+∂V Λ−).

(74)
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We note that there appear terms which are linear in the derivatives of (u, v) in addition
to the pure quadratic form as in the steady case. The pure quadratic form is identical to
the steady case, so we do not need to handle it further. The linear form can be handled
as follows. First we use the derivatives (ΛU , ΛV ) to compute

∂UΛ− + Λ+∂V Λ− = ∂UΛ− +
1

Λ−

c2 − V 2

c2 − U2
∂V Λ− =

2(UΛ− − V )

c2 − U2
. (75)

Then we have

−2V vξ − 2Uuξ

c2 − U2
− uη(∂UΛ− + Λ+∂V Λ−) = − 2U

c2 − U2
∂−u. (76)

Thus the linear form is also in the direction of Λ−. Combining the steps we end up with

Theorem 4. There holds

∂+∂−u =
U(2c2 − U2 − V 2 + γU2 − γV 2)

(c2 − U2)(c2 − V 2)
(∂ξu + A∂ηu)∂−u− 2U

c2 − U2
∂−u, (77)

where

A :=
2U(c2 + γV 2) + Λ+Q̃

Λ−U(2c2 − U2 − V 2 + γU2 − γV 2)
, (78)

and

Q̃ :=
(c2 − U2)(c2 − V 2)

2Λ−(c2 − U2) + 2UV

γ + 1

c2Λ−
(UΛ− − V )3. (79)

We then have

Theorem 5. There holds

∂+(∂−Λ−) = m ∂−Λ−. (80)

Similarly there holds ∂−(∂+Λ+) = n ∂+Λ+.

5 Application: Simple waves

For a system of hyperbolic conservation laws in one-space dimension, a centered rar-
efaction wave is a simple wave, in which one family of characteristics are straight lines
and the dependent variables are constant along a characteristic. See any text book on
systems of conservation laws, e. g., Courant and Friedrichs [1]and others’ [8][2].

Simple waves for the two-dimensional steady Euler system are similar, i.e., one family
of characteristics are straight and the velocity are constant along the characteristics.
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For the the two-dimensional self-similar pressure gradient system, see [3], simple waves
can be defined similarly, i.e., one nonlinear family of characteristics are straight and the
pressure is constant along them. We note that we do not require the velocity to be
constant. This way, by the characteristic decomposition, we find that a wave adjacent
to a constant state is a simple wave.

In the construction of solutions to the two-dimensional Riemann problem for the
Euler system, see any of the sources [6][8][7], it is important to know how to construct
solutions adjacent to a constant state in addition to the constructions of the interaction of
rarefaction waves ([5]), subsonic solutions, and transonic shock waves. The characteristic
decomposition ∂1∂2λ2 = m∂2λ2 allows us to conclude that

Theorem 6. Adjacent to a constant state in the self-similar plane of the potential flow
system is a simple wave in which the physical variables (u, v, c) are constant along a
family of characteristics which are straight lines.

5.1 Simple waves for full Euler

Consider the adiabatic Euler system for an ideal fluid
ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu⊗ u + pI) = 0,
(ρE)t +∇ · (ρEu + pu) = 0,

(81)

where

E :=
1

2
|u|2 + e,

where e is the internal energy. For a polytropic gas, there holds

e =
1

γ − 1

p

ρ
,

where γ > 1. In the self-similar plane and for smooth solutions, the system takes the
form: 

1
ρ
∂sρ + uξ + vη = 0,

∂su + 1
ρ
pξ = 0,

∂sv + 1
ρ
pη = 0,

1
γp

∂sp + uξ + vη = 0

(82)

where
∂s := (u− ξ)∂ξ + (v − η)∂η

which we call pseudo-flow directions, as opposed to the other two characteristic direc-
tions, called (pseudo-)wave characteristics. We easily derive

∂s(pρ
−γ) = 0, (83)
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and
ωt + (uω)x + (vω)y + (

py

ρ
)x − (

px

ρ
)y = 0 (84)

for the vorticity ω := vx − uy. So entropy pρ−γ is constant along the pseudo-flow lines.
For a region Ω whose pseudo-flow lines come from a constant state, we see that the
entropy is constant in the region. For isentropic region, vorticity has zero source of
production since (py

ρ
)x − (px

ρ
)y = 0. Thus vorticity tω = vξ − uη (setting t = 1 then)

satisfies
∂s(ω/ρ) = 0. (85)

Hence, for a region whose pseudo-flow lines come from a constant state, the vorticity
must be zero everywhere. So the region is irrotational and isentropic. Thus our formulas
for the potential flow apply. We have

Theorem 7. Adjacent to a constant state in the self-similar plane of the adiabatic Euler
system is a simple wave in which the physical variables (u, v, c, p, ρ) are constant along
a family of wave characteristics which are straight lines, provided that the region is such
that its pseudo-flow characteristics extend into the state of constant.
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