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Simple Yield Surface Expressions Appropriate
for Soil Plasticity

Mahdi Taiebat, A.M.ASCE1; and Yannis F. Dafalias, M.ASCE2

Abstract: The objective of this paper is to present a number of simple, practical, and useful analytical expressions of a yield surface for
geomaterials. In classical plasticity, the analytical expression of a yield surface defines the locus of points in stress space at which plastic
flow initiates, and the corresponding function must depend on direct and mixed invariants of stress and tensor-valued internal variables.
One single function describes a yield surface in order to avoid singularities and computational difficulties arising from the use of multiple
functions representing intersecting surfaces in stress space that are often used for cap-type models in soil plasticity. The presented
functions are conveniently subdivided in three main categories depending on the type of analytical expression used, and they all describe
properly closed yield surfaces which are continuous and convex. The internal variables in these functions can be used in order to address
classical plasticity features such as isotropic and kinematic hardening, the latter in the form of rotational hardening. The effects of
parameters on the shape of yield surfaces are clearly demonstrated and illustrated for all functions in triaxial stress space. The generali-
zation of these functions to the multiaxial stress space is presented using a consistent method such that if one applies triaxial loading
conditions on the multiaxial expressions, the triaxial ones are retrieved. Finally, the appropriateness of the yield functions in regards to the
soil type is discussed.

DOI: 10.1061/�ASCE�GM.1943-5622.0000059

CE Database subject headings: Soil properties; Plasticity; Sand, soil type; Clays; Kinematics; Anisotropy.

Author keywords: Yield surface shape; Soil plasticity; Sand and clay; Kinematic hardening; Soil anisotropy.
Introduction

The purpose of this paper is to present a number of options for the
analytical description of the shape of yield surface in stress space
by a single function, which were found to be practical and useful
for soil plasticity. The paper also analyzes some of the properties
of these options, as well as the advantages and disadvantages
vis-á-vis their use for various kinds of soils, in particular clays
and sands. This is a narrower scope than the one in other works
such as Desai �1980� and Desai et al. �1986� where a thorough
examination of various analytical expressions in terms of direct
and joint isotropic invariants of stress and other internal variables
was conducted. In the present work, the focus is on specific
choices of yield surfaces many of which have been already used
to simulate experimental data, and some of which cannot be
placed under the general framework of the aforementioned works
and other similar ones. The idea is to actually present what, in the
opinion of the writers, may be best suited for soil plasticity from
a practical perspective, depending on the kind of soil and loading
conditions, while maintaining as simple as possible the analytical
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description. Hence, the family of various surfaces examined here
is more focused and restrictive than in other works, but had they
been addressed in the past, due reference is given in the course of
presentation.

The common characteristics of these yield surface options are:
1. They are closed surfaces and the size of each surface is con-

trolled by an internal variable p0 whose variation should be
defined using an isotropic hardening rule.

2. Anisotropy of the material is represented by a stress ratio
type of internal variable �, scalar-valued in triaxial, and
tensor-valued in multiaxial stress space, whose variation is
defined by an appropriate kinematic hardening rule inducing
what is known as rotational hardening.

The analytical expressions of the yield surfaces are presented
first in triaxial space, where they are discussed and illustrated, and
then in multiaxial stress space by a consistent method of gener-
alization from triaxial to multiaxial, such that if one applies tri-
axial loading conditions on the multiaxial expressions, the triaxial
ones are retrieved. The analytical expressions of the yield surfaces
are divided in three large groups of different analytical basis. For
each group, various particular choices are presented and details
of the corresponding yield surface features in stress space are
discussed, which are useful for the expected soil response under
different loading conditions. In the following, all stresses are con-
sidered effective. Illustrative plots are presented in the triaxial
p−q space.

It should be noted that modern ideas of thermodynamics,
which are based on the fundamental physical concepts of work,
energy, and dissipation, can be used for developing the elements
of constitutive models. The yield loci, plastic potentials, flow
rules, and isotropic and kinematic hardening rules can be deduced

in a systematic manner from the free energy and dissipation po-
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tential functions. The introduction of a dissipation potential func-
tion is, in essence, a form of a constitutive assumption, which,
together with the fundamental concept of free energy, create a
much tighter analytical environment within which an elastoplastic
model can rigorously be developed, guaranteed to satisfy the sec-
ond law of thermodynamics. Such solid theoretical framework,
however, often requires some compromise vis-á-vis experimental
data for the evolution laws of the internal variables which enter
the foregoing potentials. In particular for soils, such thermome-
chanical framework of elastoplasticity has been presented initially
by Houlsby �1981, 1982� and Modaressi et al. �1994� followed by
a more general and systematic approach in recent years by Collins
and Houlsby �1997�, Collins and Kelly �2002�, Collins �2002�,
and Collins and Hilder �2002�. The present paper, however, does
not attempt to consider derivations from thermodynamics and has
a more humble theoretical scope, namely, the presentation of a
geometrical and analytical exposition of yield surface shapes
which can bear serious consequences in the final stage of soil
modeling. Many of the yield surface shapes to be presented have
been found to fit experimentally determined yield points in stress
space or stress-strain curves and stress paths, but no attempt will
be made to repeat such data fitting since the main intention of the
present work is to help the future researchers by systematizing the
presentation of various yield surface expressions. Although it is
common practice to introduce yield surface expressions based on
experimental data for yielding of soils without reference to ther-
modynamics, it will be expedient to consider such questions in
future exploitation of the yield surface shapes presented in con-
junction with the rate equations for the involved internal vari-
ables, at least from the perspective of satisfying the second law of
thermodynamics with or without the explicit introduction of a
dissipation potential at the outset. The aforementioned works can
provide a solid background and guidance for such an endeavor.

Analytical Expressions of Yield Surfaces
in Triaxial Space

Elliptical Functions

The original equation for the elliptical plastic potential and yield
surface �associative flow rule� of the modified Cam-clay model by
Roscoe and Burland �1968� reads in the p−q space as

f = q2 − M2pp0�1 −
p

p0
� = 0 �1�

with M =critical state stress ratio and p0=measure of equivalent
isotropic preconsolidation effective pressure. This surface inter-
sects the p axis at 0 and p0 and the critical state stress ratio line
�CSL� �=q / p=M at a point where �f /dp=0 �top point of the
ellipse�. The following two modifications of Eq. �1� are proposed
along the lines described in the Introduction. First, the M is sub-
stituted by a factor N that may acquire a number of expressions
not necessarily fixed, which control the shape of the yield surface.
Second, in order to account for anisotropy manifested as a rota-
tion of the yield surface and measured by a dimensionless stress
ratio type internal variable �, one can substitute q− p� for q so

that the yield surface Eq. �1� becomes
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f = �q − p��2 − N2pp0�1 −
p

p0
� = 0 �2�

As shown in Fig. 1, Eq. �2� represents a sheared and rotated
ellipse with the degree of rotation determined by the value of �.
The normal to f =0 at different characteristic points is shown by a
corresponding arrow. The normals to the surface at point A where
�=q / p=�, henceforth called the tip, and point A� which is the
origin, are along the p-axis which means that at these points
�f /dq=0. Observe that p0 is the p-coordinate of point A which is
different from the value of p at the intersection of the surface with
the p-axis; these two points coincide only when �=0. The nor-
mals at points B and B�, the top and bottom points of the yield
surface, are along the q-axis, hence, �f /dp=0. These points are of
interest in constitutive modeling of clays in critical state soil me-
chanics �CSSM�, in particular if the yield surface is to be consid-
ered also the plastic potential surface for associative flow rule
plasticity. In such a case, the normal to the plastic potential at
the critical state �=M should have zero component along the
p-axis which implies the critical state condition of zero volumet-
ric plastic strain rate. Therefore, the rotational hardening rule of
such model which defines the evolution of � should guarantee
that upon shearing the current stress point eventually finds itself
at points B or B� reaching simultaneously the CSL which is
shown as usual with slope M in Fig. 1 and all figures thereafter.
To this extend it becomes important to identify in all subsequent
choices the top �and bottom� stress ratio �top by setting �f /dp
=0 �which corresponds to points A or A�� in Eq. �2� and solving
for �=�top to obtain the general expression

�top
2 = N2 + �2 �3�

Eq. �3� provides the guidelines for subsequent choices of N in the
sense of defining the corresponding �top. The following four of
such choices are presented here.

Choice 1
The first choice that comes in mind, motivated by the original
Cam-clay Eq. �1�, is to set

N2 = M2 ⇒ �top
2 = M2 + �2 �4�

where use of Eq. �3� was made. Eq. �4� indicates that at the
top point where �f /dp=0 the �top�M, the equality holding when
�=0. For that reason this is an acceptable choice if one estab-

Fig. 1. Schematic illustration of the anisotropic elliptical yield sur-
face in normalized p−q space
lishes experimentally that there is a change of the critical stress

GUST 2010

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



ratio, measured by �top, from M to something larger due to aniso-
tropy measured by �. Such increase is not often observed, and if
there is some, it is very small. In that case the present option may
work well because, as it is illustrated in Fig. 2�a�, the change from
M to �top is very mild for a reasonable value of rotation due to �;
for larger values of �, this difference increases, yet within limits.
The relatively small effect the � has on �top in relation to M is
due to the second power relation among �top, M, and �. The
difference in shape of the half top and bottom of the yield surface
is because different values of M were used on the compression
and extension sides.

Choice 2
Aiming at maintaining �top=M for any value of anisotropy mea-
sured by � due to the aforementioned reasons required by CSSM,
Eq. �3� suggests the choice

N2 = M2 − �2 ⇒ �top
2 = M2 �5�

This option is what Dafalias �1986� proposed from a nongeo-
metrical perspective, based on the simplest possible extension of
the energy assumption of the modified Cam-clay model which
leads from isotropic to anisotropic response. The surface was ob-
tained from integration of a rate of plastic work equation in tri-
axial p−q space in which coupling between the plastic deviatoric
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Fig. 2. Schematic illustration of four different choices for the factor N
2: N2=M2−�2; �c� Choice 3: N2=m2; and �d� Choice 4: N2= ��+m�2

and � in �c� and �d�
and volumetric strain rates was introduced via �. The resulting
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plastic potential surface, which for associative plasticity serves
also as a yield surface, was verified experimentally and used by
various writers in constitutive modeling of clays �Dafalias 1987;
Korhonen and Lojander 1987; Thevanayagam and Chameau
1992; Newson and Davies 1996; Wheeler et al. 1999, 2003�. For
the required positive sign of the term M2−�2 this choice of N
demands that ����M. Fig. 2�b� illustrates the shape of the yield
surface for a reasonable value of �. The top �and bottom� points
of the rotated and sheared ellipse always intersect the �=M lines
for any value of �. Again, observe the difference in shape of the
half top and bottom of the yield surface due to different values of
M on the compression and extension sides, as in Choice 1.

Choice 3

As can be seen from Fig. 2�a� or Fig. 2�b�, the resulting yield
surface shape is quite bulky, encompassing a large elastic range.
This is because, in both cases, the �top is related to M which is in
general large. It is often desired, though, to have a yield surface
which is rather slender with a small dimension along the q axis,
as, for example, it would have been the case if one chose a small
value for M. Since M is fixed by the soil properties, an alternative
way would be to introduce a new parameter m by making the
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N2 = m2 ⇒ �top
2 = m2 + �2 �6�

where m��M. The parameter m provides freedom in choosing
the slenderness of the yield surface as it is illustrated in Fig. 2�c�.
Such choice requires the definition of a prudent evolution law for
the internal variable � so that the value of �top does not exceed M
for associative flow rule plasticity. The resulting yield surface for
this choice of N was in fact proposed in the MIT-E3 model
�Whittle and Kavvadas 1994� to describe the generalized behavior
of K0-normally consolidated clays, based on earlier works of
Kavvadas �Kavvadas 1982�.

Choice 4
Along the same line of searching for a slender yield surface, a
more intuitive and direct relation between the parameter m and
the values of M and � is obtained by the choice

N2 = ���� + m�2 − �2 ⇒ �top
2 = ���� + m�2 �7�

where the absolute value of � is introduced because the � can
acquire positive and negative values. Again, one must be careful
when evolution laws for � are postulated so that the M −m is the
limit of ��� in order to keep �top�M. Fig. 2�d� illustrates this type
of yield surface.

In the illustrations of the first and second choices in Figs. 2�a
and b�, the values Mc=1.2 and Me=0.75Mc=0.9 are used to dis-
tinguish between the compression ����� and extension �����
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Fig. 3. Effect of the backstress ratio � on the shapes of the elliptica
N2=M2; �b� Choice 2: N2=M2−�2; �c� Choice 3: N2=m2; and �d� C
values of parameter M. For the third and fourth choices in
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Figs. 2�c and d� the value of mc=me=0.2 is used. The parameter
m here is left the same in compression and extension but one can
control the evolution of � so that �top does not exceed the Mc or
Me, i.e., different bounds in compression and extension for �.

An important attribute of the yield surface shape one must
account for is how it changes with various degrees of anisotropy
measured in ascending order by an increasing value of ���. An
illustration of this change is shown in the four parts of Fig. 3 for
the foregoing four choices and for three values of ���=0, 0.45,
and 0.8, with Mc, Me, mc, and me, as in Fig. 2. Observe that for
the first choice in Fig. 3�a� the value of �top is clearly different
from that of Mc for �=0.8, while for the first two values of �, �top

is almost equal to Mc. For the second choice shown in Fig. 3�b�
�top=Mc for all values of �, as expected, but observe for �=0.8
the strong flattening of the bottom part of the yield surface drawn
below the line of �, which is calculated based on Me=0.75Mc

=0.9 and the corresponding Eq. �2�; this is because as � ap-
proaches the value of Me=0.9 the corresponding equation for the
bottom part of the yield surface �the triaxial extension part� de-
generates to that of a straight line with slope �. The same thing
would happen for the top part of the yield surface as � approaches
Mc, but by this time, there is no real-valued expression for the
bottom part since ��Me. Hence, the evolution law must not
allow � to grow above the smallest of Mc and Me, that being
usually Me. In Fig. 3�c� observe that the initial slenderness of the
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values of �, while in Fig. 3�d� the corresponding slenderness
measured again by m appears to reduce for larger values of �.

In all of the above choices, one can control the relative sharp-
ness of the elliptical yield surface at the origin and at the tip �i.e.,
at p= p0� by a power of the p / p0 term. A power of n, such that
n�1, can be used to modify the generic Eq. �2� as

f = �q − p��2 − N2pp0�1 − � p

p0
�n� = 0 �8�

The effect of raising p / p0 to the power n is illustrated in Fig. 4 for
different values of n=1, 0.5, and 0.25 in an anisotropic elliptical
yield surface with �=0.3 and N=0.3. It can be observed that
smaller values of n cause a wider opening at the tip of the yield
surface at p= p0, almost like a flat cup. This may prove useful for
cases that a closed yield surface with thinner shape at the origin
and thicker shape at the tip is needed due to pressure sensitivity,
etc., and may be appropriate for rock material type.

Lemniscate

Modified Lemniscate of Bernoulli

The original equation of the Lemniscate of Bernoulli, also termed
the hyperbolic lemniscate, in the Cartesian coordinate system is
�Lawrence 1972�

�p2 + q2�2 = p0
2�p2 − q2� �9�

By substituting q with �q− p�� /m, one can control the shape and
orientation of this surface. With this substitution the equation can
be reduced to the following form:

f = �q − p��2 − m2p2�1 − � p

p0
�2

�2� = 0 �10a�

� = 1 + �q − p�

mp
�2

�10b�

where the factor m controls the slenderness of the shape. Fig. 5�a�
illustrates the effect of the parameter m while Fig. 5�b� that of an
increasing �. One can compute the value of �top which depends
on � by solving the equation �f /�p=0 for �. Hence, restrictions
on the maximum value of ��� must be imposed so that �top�M. A
basic difference of the modified lemniscate from the elliptical
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shapes is that at the origin it forms a sharp corner measuring the
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opening of the lemniscate, while for the elliptical choices of Eq.
�2�, the shape is smooth with a tangent line parallel to the q axis
at the origin. Notice from Fig. 5�b� that as � increases this sharp
corner at the origin rotates with the lemniscate.

Distorted Lemniscate

Pestana and Whittle �1999� have introduce the following form for
the yield surface of a unified model for sand and clay

f = �q − p��2 − �2p2�1 − � p

p0
�n� = 0 �11a�

�2 = m2 + �2 − 2
q

p
� �11b�

As shown in the three parts of Fig. 6, where also the effect of the
parameters m, n and the variable � is shown, the shape of the
yield surface resembles a distorted lemniscate, hence, the name
the writers attributed to their yield surface. This yield surface also
forms a sharp corner at the origin but unlike the lemniscate of the
previous case, this sharp corner does not rotate as the value of �
increases with consequences to be commented upon in the sequel.
Also, it follows that, in order to maintain the positive sign of the
right-hand side of Eq. �11b�, � must not exceed the value of m; in

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

p / p
o

q
/p

o

0.4
0.2

m = 0.8

α = 0.45

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

p / p
o

q
/p

o

α = 0

α = 0.45

α = 0.9

m = 0.4

(b)

(a)

Fig. 5. Schematic illustration of the anisotropic yield surface using
the lemniscate of Bernoulli function and the effects of the parameter
m and the backstress ratio � on the shapes of the resulting yield
surfaced
fact, as � approaches m, the top part of the distorted lemniscate
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tends to degenerate into a straight line of slope m, as shown in
Fig. 6�c� when �=0.6 for the choice m=0.7.

Eight-Curve

The motivation for the last family of yield surfaces came from the
work of Manzari and Dafalias �1997� where a thin open wedge
with its tip at the origin was chosen as the yield surface for sands,
based on the predominance of the stress ratio variation as the
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Fig. 6. Schematic illustration of the anisotropic yield surface using
the distorted lemniscate of Bernoulli function and the effects of the
parameters m and n and the backstress ratio � on the shapes of the
resulting yield surfaced
main cause of plastic deformation in sand. The wedge could ro-
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tate around the origin in the familiar form of rotational hardening
�as the previous yield surfaces do� but it was open toward increas-
ing values of p, thus, not being able to induce plastic deforma-
tions under loading at constant stress ratio. Nevertheless the very
thin wedge shape offered many advantages for the description of
the sand response under cyclic loading, thus, it was desirable to
preserve it and simultaneously find a way to close the wedge by a
single analytical expression without introducing a separate clos-
ing cup equation as often done in other works for the so-called
cap models. It proved to be easier than initially thought. The basis
was the so-called original eight-curve, because it resembles the
number eight if plotted in Cartesian coordinates according to the
analytical expression �Lawrence 1972�

p4 = p0
2�p2 − q2� �12�

Again, the above expression must be modified in order to be
useful as a yield surface. To this extent, rotational hardening is
introduced as previously by the substitution of �q− p�� /m for q in
Eq. �12�, where the additional factor m is introduced to control
the opening at the origin. In addition, the curvature of the cup-
type closure can be controlled by raising the p / p0 to the power of
n�2. With these modifications, the analytical expression of the
original eight-curve becomes the yield surface equation

f = �q − p��2 − m2p2�1 − � p

p0
�n� = 0 �13�

The effect of the parameters m, n, and the variable � is shown in
the three parts of Fig. 7. In all cases, the yield surface becomes
exactly a wedge in the limit as the origin is approached, and
maintains the wedge-type form for most of its length along in-
creasing p, in particular for the higher values of the parameter n.
For such higher values of n, the closing cup-type shape acquired
by the yield surface as p approaches p0 resembles more a straight
line cup, but recall that it is one single analytical description that
gives all these features. Also observe that the wedge at the origin
rotates together with �, as opposed to what happens for the dis-
torted lemniscate whose wedge shape at the origin remains un-
changed as � increases. It is also interesting to compare the form
of Eq. �13� with that of Eq. �4� for the modified elliptical shapes.
In Eq. �4�, the term N2pp0 is substituted by the term m2p2 of
Eq. �13�, and with the choice N=m it follows that the only dif-
ference is that a p0 appears in Eq. �4� instead of p in Eq. �13�, yet,
this difference can create the different shapes of Figs. 4 and 7.
Had the numerical value of N of Fig. 4 been chosen smaller, the
yield surfaces would have been of equal slenderness as those of
Fig. 7, but no wedge-type shape would appear at the origin where
still the tangent would be parallel to the q axis. The yield surface
given by Eq. �13� was introduced in the recent SANISAND
model by Taiebat and Dafalias �2008�. It also requires careful
control of the absolutely maximum value of � so that critical
failure occurs at �=M.

Multiaxial Generalization

There is a systematic approach to generalize the yield surface
equations presented so far from the triaxial to multiaxial setting,
such that when triaxial loading conditions are imposed on the
multiaxial expressions, they become identical to their triaxial
counterparts characterized by the same parameters �or model con-
stants� in both spaces. Henceforth, all second order tensors will be

denoted by bold face. The stress tensor is denoted by �. The
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hydrostatic or isotropic stress p and the deviatoric or shear stress
tensor s are defined by p= �tr �� /3 and s=�− pI, where tr means
the trace, and I is the identity tensor.

The multiaxial generalization of the yield surface expressions
is based on the following observation. In a triaxial setting any
deviatoric symmetric tensor t develops only normal components ti

�i=1,2 ,3� with tr t=0, which means t2= t3= �−1 /2�t1. It is
straightforward to show that the following relation holds true

3

2
t:t = �t1 − t3�2 �14�

where the symbol : implies the trace of the product of two adja-
2
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Fig. 7. Schematic illustration of the anisotropic yield surface using
the eight-curve function and the effects of the parameters m and n and
the backstress ratio � on the shapes of the resulting yield surfaced
cent tensors, which is t : t=tr t . This is a general equation which
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constitutes the basis of the current systematic multiaxial generali-
zation. For instance, substituting the deviatoric stress tensor s
into Eq. �14�, one has �3 /2�s :s= �s1−s3�2, and knowing that �s1

−s3�= �	1−	3�=q, the following relation between the deviatoric
stress tensor s and its triaxial counterpart q can be observed when
triaxial conditions are assumed

3

2
s:s = q2 �15�

Along the lines of this equation, one can introduce the deviatoric
stress-ratio tensor r=s / p, the deviatoric backstress ratio tensor �,
and the effective deviatoric stress tensor s− p�, as the multiaxial
counterparts of the triaxial entities �, �, and q− p�, respectively,
such that under triaxial conditions

3

2
�:� = �2;

3

2
�s − p��:�s − p�� = �q − p��2;

3

2
r:r = �2

�16�

Notice that Eq. �16� implies that �=�1−�3, with �2=�3 and with
the observation that under triaxial conditions the tensor � devel-
ops only normal components �i �i=1,2 ,3�. This equivalence be-
tween multiaxial and triaxial stress spaces allows the geometrical
interpretation of tensor-valued entities in the triaxial space where
tensor components can be related to scalar-valued equivalent
quantities.

Elliptical functions

Based on Eqs. �15� and �16�, the analytical expression �2� of the
elliptical surface generalizes to

f =
3

2
�s − p��:�s − p�� − N2pp0�1 −

p

p0
� = 0 �17�

where the generalized forms of N2 for the four corresponding
cases, i.e., Eqs. �3�–�6�, are

N2 = M2 �18a�

N2 = M2 −
3

2
�:� �18b�

N2 = m2 �18c�

N2 = ��3

2
�:� + m�2

−
3

2
�:� �18d�

respectively. The critical stress ratio M in Eqs. �18a� and �18b�
requires different values of Mc and Me according to the sign of
��−�� as explained after Eq. �7�. In the multiaxial stress space
the M will be interpolated between its values Mc and Me by
means of lode angle 
, according to the proposition by Argyris et
al. �1974�, which with cM =Me /Mc reads as

M = ��
,cM�Mc =
2cM

�1 + cM� − �1 − cM�cos 3

Mc �19�

cos 3
 = �6tr n3; n =
r − �

	�r − ��:�r − ��
1/2 �20�

The relations tr n=0 and tr n2=n :n=1 hold true. The values


=0 and 
=� /3 correspond to effective stress ratio definition of
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compression and extension, respectively, where the effective
stress ratio r−� �equivalent to �−�� rather than the stress ratio r
is used to define n and subsequently 
. The parameter m can be
left the same in compression and extension, as it was explained
before, with no interpolation in the multiaxial stress space. Of
course, if different values of this parameter in compression and
extension are needed one can apply a similar generalization rule
to the one already presented for M.

Finally the scalar term �p / p0�n in Eq. �8� remains unchanged
in the multiaxial generalization.

Lemniscate

The generalization of Eqs. �10a� and �10b� for the modified lem-
niscate of Bernoulli and Eqs. �11a� and �11b� for the distorted
lemniscate follow the same rule. For the modified lemniscate of
Bernoulli, the generalized form of the equations are

f =
3

2
�s − p��:�s − p�� − m2p2�1 − � p

p0
�2

�2� = 0 �21a�

� = 1 +
3

2
�s − p��:�s − p��� 1

mp
�2

�21b�

and for the distorted lemniscate

f =
3

2
�s − p��:�s − p�� − �2p2�1 − � p

p0
�n� = 0 �22a�

�2 = m2 +
3

2
�:� − 2��3

2
r:r��3

2
�:�� �22b�

Again, here it may be enough to use the same values for param-
eter m in compression and extension but generalization is
straightforward if needed.

Eight-Curve

Finally the generalized form of Eq. �13� for the eight-curve func-
tion reads

f =
3

2
�s − p��:�s − p�� − m2p2�1 − � p

p0
�n� = 0 �23�

Discussion: Sand or Clay?

Having presented a number of yield surface shapes it is natural to
discuss their appropriateness in regards to soil type. Here, a re-
striction to two basic types of soils will be considered, that of
sands and clays. The most characteristic difference between sands
and clays from the perspective of plastic constitutive modeling is
the loading direction which is normal to the yield surface. In
sands, due to their granular nature, the predominant mechanism of
plastic deformation is due to a change in stress ratio, while in
clays loading under constant stress ratio produces large plastic
deformations, as, for example, under K0 conditions. An additional
difference is that for sands the purely elastic range enclosed by a
yield surface appears to be much smaller than that for a clay,
although in principle, one can argue that in general a pure elastic

range for soils is almost nonexisting.
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Therefore, within the modeling possibilities of plasticity, a
yield surface for clays must be a closed surface producing plastic
deformation early in a loading process under a constant stress
ratio while the yield surface for sands must be narrow with a
shape that is more or less along a constant stress ratio line in the
triaxial space, and for higher values of p such shape must be
closed, since high pressure can create plastic deformation by
crushing of the sand grains. Among the previously presented
shapes, Choices 1 and 2 of the elliptical shapes as well as the
distorted lemniscate are appropriate for clays, while Choices 3
and 4 of the elliptical shapes involving the slenderness parameter
m, the two lemniscates, and the eight-curve appear to fulfill the
aforementioned requirements for a yield surface for sands, as long
as the value of m is sufficiently small. However, a problem may
arise for the distorted lemniscate elaborated in the following.

While the foregoing appear to be only qualitative assessments,
there is an interesting thought experiment which can delineate the
appropriateness of a yield surface for sands or clays. This is re-
lated to possible change of stress within the yield surface or tan-
gentially to it in what is known a neutral loading path, which can
lead to experimentally unacceptable results. For example, con-
sider the intersection of the yield surface with the p axis, and
starting from this intersection point, follow a loading path within
or tangentially to the yield surface toward increasing stress ratios
in the triaxial space. If the shape of the yield surface is such as to
allow high values of stress ratio to be reached from the zero initial
value on the p axis, then such yield surface is not appropriate for
sands because it implies that one can increase the stress ratio
without inducing any plastic deformation contrary to experimen-
tal data which show a great sensitivity of sand plastic deformation
to stress ratio changes, largely independent of the confining pres-
sure. Clearly, and for reason exposed before, the aforementioned
Choices 1 and 2 of the elliptical shape are not appropriate for
sands. In regards to the remaining shapes, let us compare the
choice 3 of the elliptical shape shown in Fig. 3�c� and the dis-
torted lemniscate shown in Fig. 6�c� for various values of �, in
particular for higher values of it and a small value of m control-
ling their slenderness. Both surfaces intersect the p axis for all �.
This is not so clear in Fig. 3�c� due to the slenderness of the
ellipse, but it clearly follows form the analytical description. Such
intersection is clear for the distorted lemniscate as a result of the
nonrotating with � opening wedge at the origin which guarantees
an intersection with the p axis. Thus, one can perform the neutral
loading test. In the case of Fig. 3�c�, such test will follow a more
or less fixed stress ratio path �the lower part of the rotated slender
ellipse� justifying why no plastic deformation occurs, but in the
case of Fig. 6�c� the neutral loading path can increase dramati-
cally the value of the stress ratio given the ”bulky” shape of the
distorted lemniscate and its inescapable intersection with the p
axis. Hence, the shape in Fig. 3�c� passes the neutral loading test
while the shape in Fig. 6�c� does not, in order to be considered
appropriate yield surface shapes for sand plasticity. Nevertheless,
shapes which do not past the aforementioned test are used as yield
surfaces for sands, often with success for the loading conditions
considered, but there will always be lingering in the failure to
predict correctly the sand response under neutral loading. The
eight-curve modification of Fig. 7, which is clearly of a rotating
wedge-type at the origin, passes the neutral loading test easily �in
fact it was constructed to do so�. In particular for values of � not
very close to zero, the corresponding yield surface does not inter-
sect the p axis due to the wedge rotation �unlike the distorted
lemniscate’s not rotating wedge�, except at exactly the origin at

zero effective stress. Its shape and position does not allow any
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significant stress ratio change to occur during neutral loading,
with the maximum change controlled by the slenderness param-
eter m which is chosen very small and reflects the stress ratio
change occurring when one crosses the width of the wedge.
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