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Abstract. Block cipher modes of operation provide a way to securely
encrypt using a block cipher, and different modes of operation achieve dif-
ferent tradeoffs of security, performance and simplicity. In this paper, we
present a new authenticated encryption scheme that is designed for the
lightweight cryptography setting, but can be used in standard settings as
well. Our mode of encryption is extremely simple, requiring only a single
block cipher primitive (in forward direction) and minimal padding, and
supports streaming (online encryption). In addition, our mode achieves
very strong security bounds, and can even provide good security when
the block size is just 64 bits. As such, it is highly suitable for lightweight
settings, where the lifetime of the key and/or overall amount encrypted
may be high. Our new scheme can be seen as an improved version of
CCM that supports streaming, and provides much better bounds.

1 Introduction

1.1 Background and the Challenge

Block ciphers are a basic building block in encryption. Modes of operation are
ways of using block ciphers in order to obtain secure encryption, and have been
studied for decades. Nevertheless, new computing settings and threats make the
design of new and better modes of operation a very active field of research.
For just one example, NIST has recently initiated a competition for a mode of
operation that is suited for lightweight ciphers [18]. This has unique challenges
due to the need that the mode be both simple and provide high security in
multiple settings.

The gold standard for encryption security is authenticated encryption with
additional data (AEAD), ensuring both privacy and integrity. In this paper, we
construct an AEAD mode of operation that is suitable for the lightweight setting
(and others).

The challenge – many messages or long messages with both unique
nonce or random IV.3 In many settings, the nonce can be guaranteed to

⋆ This paper contains the full security analysis for the round-1 candidate to the NIST
Lightweight Cryptography standardization process named “SIMPLE”; see [19].

3 Throughout, we use the term nonce for a value that is guaranteed to be unique, and
use the term IV when it is randomly chosen.
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be unique (e.g., by storing the previously used nonce and incrementing it for
each encryption). In such cases, better bounds can be achieved than when the
IV is chosen randomly and so repeats at the birthday bound. However, devices
may be stateless, making it impossible to ensure a unique nonce. In such cases,
random IVs must be used. As such, a good mode of operation should be able to
work both for unique nonces and random IVs, and should provide better bounds
in the former case. In order to see why this is not always trivial, consider the
counter mode of operation. In this mode, the ith block is encrypted by masking
it with the output of the block cipher applied to an encoding of the nonce and
the index i. This encoding must ensure that the input to the block cipher is
unique each time (with very high probability). As such, the standard way of
doing this is to make the nonce smaller than the block size, and to concatenate
the binary representation of i in the remaining bits. For example, with a 128-bit
block, the nonce can be 96 bits, and up to 232 blocks can be encrypted, since
32 bits remain for the encoding of the block counters. As long as the nonces are
unique, all inputs to the block cipher are also unique. We stress that one cannot
take a nonce of 128-bits long, and simply increment it for each block (mod 2128),
since then unique nonces may result in overlapping inputs to the block cipher.
For example, if the unique nonces are achieved by simply incrementing by one
(and so in consecutive encryptions we have N and N + 1), then the same input
will be used to the block cipher, as N +(i+1) mod 2128 = (N +1)+ i mod 2128,
resulting in security being completely broken. In contrast, if only random IVs
are used, then with high probability such an overlap will not occur unless a large
number of blocks (near the birthday bound) are encrypted.

As a result of the above, a counter-based mode of operation that must support
nonce-based encryption is limited to the size of the nonce which cannot be too
large, and this limits the number of encryptions when used with a random IV.
For example, the standard nonce sizes for AES for CTR, AES-GCM and so on
is 96 bits (to enable encrypting messages of up to length 232 blocks). However,
this means that when random IVs are used, an IV repeats with probability 2−32

already after encrypting just 232 messages. The NIST recommendation for these
modes is therefore to encrypt at most 232 messages, which is a severe limitation
in practice today.

Thus, there is a significant challenge in constructing a single scheme that
meets the following requirements simultaneously:

1. It can be used both with unique nonces and random IVs (where uniqueness
guarantees nothing about the format of the nonces, but just that they are
different).

2. It can be used to encrypt many blocks in any configuration: from a small
number of very large messages to a large number of small messages, and
everything in between.

Simplicity and lightweight. Additional challenges arise since in order to
make the mode of operation suitable for the lightweight setting, it must be very
simple, in the following sense:
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1. Only a single primitive should be required (e.g., a block cipher only, and in
forward mode only).

2. The entire message need not be held in memory or processed more than once.
Thus, streaming (online computation) needs to be supported. Preferably, the
length of the overall message need not be known at the onset.

3. The code for implementing the mode should be small. Preferably, the code
for decryption should be very similar to the code for encryption, reducing
the code base.

1.2 Design Goals for our Lightweight Mode of Operation

NIST recently initiated a competition for standardizing a lightweight encryption
method [18]. The competition covers both the underlying (stream or block) ci-
pher, and the method of using the cipher to encrypt; i.e., the mode of operation.
We consider only the mode of operation here, that can use any block cipher
E with block size of 128 (and even 64) bits. The desired properties that are
targeted are:

1. Security: The top priority design goal is the security achieved by the scheme.
The mode is intended to rely only on the standard (and most basic) assump-
tion on E, that modern block ciphers should be pseudorandom permutations
when the keys are selected uniformly at random from the key space. In partic-
ular, we do not require additional properties or assumptions, like related-key
security.

2. Flexibility: The mode should allow for encrypting a large number of blocks
while preserving a high security margin. To be concrete, considering a 128-
bit block, the goal is to be able to encrypt up to 250 bytes (equivalently,
246 blocks) in any configuration of number of messages and message length.
Specifically (and per the requirements of the NIST call [18, Sec. 3.1]), security
should be maintained when 250 single-byte encryptions are carried out, or
when encrypting a message of size 250 bytes, and everything in between.

3. Long lifetime for keys: The maximal number of messages that can be en-
crypted with a single key is a significant concern in lightweight scenarios,
where devices (communicating with a server) are deployed “in the field” and
it could be extremely difficult to rotate keys. It is likely that messages emit-
ted from the device are (very) short, but over time, a large number of such
messages need to sent.

4. Random nonces: The mode should support a mode where uniquely-chosen
nonces or randomly-chosen nonces are used. In particular, one should not
require random nonces, but must allow them.

5. Simplicity and frugality: The mode should be simple to describe and also
to implement, e.g., not involving a length block, or not requiring complex
padding or multiple conditional branches. The mode should use only a small
number of cryptographic primitives, preferably one.

6. Online (streaming): The mode should be “online”, meaning that the lengths
of the additional authentication data and/or message should not be needed
at the onset.



4

1.3 The SimpleENC and SimpleENCsmall Modes of Operation

We present a new mode of operation (with variants) that is designed to meet
the requirements described in Section 1.2, and can work with any block cipher.
We have two main modes: one for a large block size (e.g., 128 bits) and one for
a small block size (e.g., 64 bits). Unlike other existing modes, our mode achieves
good security even for a small block size. Our mode of operation is extremely
simple and can be used both for the lightweight and general setting, as it achieves
a very high level of security. It can be seen as an improvement over AES-CCM,
that is simpler, provides much better security bounds, and can be run in online
mode.

Background – CCM. Before proceeding to describe our mode, we observe that
CBC-MAC and Counter-Mode encryption are obvious choices for simple authen-
tication and encryption. Indeed, the known authenticated-encryption scheme
CCM [7,16,17] leverages exactly these primitives to gain its simplicity. Unfortu-
nately, raw CBC-MAC is known to be insecure for messages of arbitrary length,
unless it operates over a prefix-free set of inputs (or otherwise enhanced like by
encrypting the tag with an additional key). Due to this, CCM uses a relatively
complex padding to achieve the prefix-free property. For this reason, CCM is
not an online mode and the lengths of the messages are required in advance. In
addition, CCM cannot support the conflicting requirements of simultaneously
supporting a few long messages and many short messages with unique and ran-
dom nonces. On the one hand, one cannot safely use short randomized nonces
because of the high probability that nonces would repeat. For example, in order
to leave enough bits (in a block of size 128) to account for a message of length
250 bytes (246 blocks), the nonce can have at most 82 bits. However, this means
that with 2−32 security, at most 211 different messages can be encrypted.

Our construction paradigm. We base our construction on CBC-MAC and
Counter-Mode encryption, due to their simplicity. However, we overcome the
aforementioned limitations by having a long nonce as input, but deriving keys
and a shorter nonce in each encryption. This is inspired by the continual key-
derivation method of [9] but is different since we also derive a nonce. Since we
derive both a nonce and encryption key, security is maintained as long as there
is no simultaneous collision of the derived key and derived nonce. In addition,
by XORing the derived nonce to the first block of the message in the CBC-MAC
computation, we obtain effective prefix-freeness, enabling us to use plain CBC-
MAC which is much simpler. In some sense, our mode of operation “breaks all
the rules” of CBC-MAC:

1. We apply CBC-MAC to the plaintext and not the ciphertext (enabling the
encryption and MAC portions to run independently),

2. We do not require any padding to ensure prefix-freeness, and
3. We do not encrypt the resulting MAC-tag.

Ordinarily, this would be completely insecure. However, by a small but novel
modification, the above is secure. Namely, we XOR the (derived) nonce to the
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first block of the message before MACing it. This very simple change results in
prefix-freeness with very high probability, as long as the nonce does not repeat. It
also means that the tag need not be encrypted since the same message encrypted
twice with different nonces will have different pseudorandom tags.

A high-level description of SimpleENC. The mode SimpleENC is designed for
use with a “large” block size (at least 128-bits long). Denoting by n the size of
the block and by κ this size of the key, we first consider the case that κ = n. The
nonce size is (n−τ) for some τ ≥ 2, such that the strings [N ‖ 0], [N ‖ 1], [N ‖ 2]
fit into one block. Upon input (N,A,M) and key K, where N is a nonce, A is
additional authentication data, and M is the message, the output C and tag are
produced in three (logical) steps, namely Derive, Encrypt and Authenticate, as
follows:4

1. Derive: Derive 2κ + n = 3n random bits to define KE and KM of length κ
each, and two half blocks N1, N2 of length n/2 each. The derivation invokes
E over [N ‖ 0], [N ‖ 1], [N ‖ 2] using key K, in order to derive 3n bits.

2. Encrypt: Encrypt M in counter mode with the key KE and initial counter
N1; let C be the result.

3. Authenticate: Compute CBC-MAC on the message N2⊕̃A‖M with the key
KM (where N2⊕̃A denotes the operation of XORing N2 with the first block
of A, and leave the rest of the blocks unchanged); let Tag be the result.5

4. Output: Output (C, Tag).

A variant of SimpleENC, that we call SimpleENC′ in the sequel, works for the
case that κ = 2n (e.g., for a block-size of 128 and a key of size 256, as with
AES-256). The only difference is in the derive step since 2κ+n = 5n, and thus 5
blocks of pseudorandomness are derived by invoking E over [N ‖ 0], . . . , [N ‖ 4]
using key K. This also means that the nonce size is at most (n − τ) for some
τ ≥ 3. From here on, we take τ = 8 so that all operations are on bytes.

A high-level description of SimpleENCsmall. The mode SimpleENCsmall is
designed for use with a “small” block size (e.g., of size 64-bits). For a typical case,
consider the case that κ = 2n. Then, SimpleENCsmall works in the same way as
SimpleENC′, except that instead of deriving the keys and nonces directly with the
block cipher (pseudorandom permutation), we derive them using CENC [12,13].6

CENC is an efficient way of constructing a pseudorandom function from a block
cipher that provides security beyond the birthday bound. It is parameterised
by a parameter w, and works by XORing the output of an additional block
for each w blocks output. CENC has strong bounds, achieving security of w·ℓ·q

2n

4 The Derive-Encrypt-Authenticate description is a logical description of Simple,
which is useful for the simplicity of description and for analysis. An implementation
can (and should) interleave the encryption and the authentication steps in order to,
among other things, avoid reading the input from memory twice.

5 Formally, A and M are each padded with 10∗ first in order to achieve unambiguity.
6 We remark that SimpleENCsmall in the NIST lightweight cryptography round-1 can-
didate [19] uses CENC also in the encryption phase, and not just for key derivation.
However, we observe that this is not necessary and counter-mode encryption suffices.
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where ℓ equals the number of blocks encrypted per message and q the number of

messages (rather than (q·ℓ)2

2n+1 for a direct use of a permutation). This overcomes
the birthday barrier on the number of different encryptions (since this is the
number of different derivations), and allows us to achieve good bounds.

Efficiency and simplicity. The nonce-based derivation precedes encryption
and authentication, and is an overhead paid toward key lifetime enhancement.
In most cases, this overhead is small and insignificant, and is offset by the fact
that length-encoding, encryption of the tag, and so on are not needed.

We observe that both counter mode and plain CBC-MAC are very simple
to implement, and avoiding length encoding allows the mode to be an online
(streaming) mode. In addition, decryption is almost identical to encryption, as
can be seen in the formal description in Appendix B.

The choice of the block ciphers. SimpleENC and SimpleENCsmall can be
used with any block cipher desired. Some examples of note are GIFT128 [1],
Speck128 [2], and AES128 (all with 128-bit block sizes for SimpleENC), and
GIFT64, PRESENT [6] and Speck64 (with a 64-bit block size for SimpleENCsmall).
The choice of AES is obvious, albeit not necessarily for the lightweight setting,
as this is a well established cipher used in multiple standards. However, CBC-
MAC does not enable pipelining, so this mode would not be the best choice on
modern processors which have out-of-order capabilities and AES-NI support.

1.4 Security Bounds

The precise security bounds are provided within the paper below. Here, we
present tables that show the bounds achieved for different configurations of:
number of encrypted messages denoted qE , maximum size of an encrypted mes-
sages denoted ℓmax, and number of decryption queries by the adversary denoted
qD.

SimpleENC. In Table 1, we provide bounds for the case of n = 128. As can
be seen, it is possible to go well beyond the birthday bound and still maintain
a security margin of 2−32. Furthermore, whereas standard schemes like CCM
fail with probability 1/2 at 264 blocks encrypted, SimpleENC can encrypt well
beyond that number of blocks and still achieve security of 2−32. This is due to
the nonce-based derivation method that we use.

n qE ℓmax qD

Total Blocks

Encrypted

Total Bytes

Encrypted

Security

Bound

128 246 224 262 270 274 2−33

128 240 228 232 268 272 2−33

128 232 232 248 264 268 2−33

128 216 240 232 256 260 2−33

128 28 244 242 252 256 2−32

128 21 248 220 249 253 2−32

Table 1. Security bounds for SimpleENC
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The bounds in Table 1 refer to the case that unique nonces are guaranteed.
When considering random IVs that may repeat with some probability, the only
difference is an additional term of qE

2/2n−7, which in the case of n = 128 means
that for security of 2−32 it must hold that qE ≤ 244. Thus, only the first row of
the table is affected (and only mildly).

SimpleENCsmall. In Table 2, we provide bounds for the case of n = 64. Most
modes of operation fail miserably at this block size due to the birthday bound. In
contrast, SimpleENCsmall provides very good bounds, even when encrypting a
high volume of messages. Note that when encrypting many messages, the lengths
of the encrypted messages must still be quite small. Fortunately, the typical use
of a small-block block cipher is for weak devices that encrypt at small volumes.
These devices often have a long life-time and thus may encrypt many messages
overall, making these types of parameters ideal. Having said the above, it is also
possible to encrypt a smaller number of large messages and maintain security.

n qE ℓmax qD

Total Blocks

Encrypted

Total Bytes

Encrypted

Security

Bound

64 226 23 220 229 232 2−32

64 224 24 220 228 231 2−32

64 220 26 220 226 229 2−32

64 214 29 210 223 226 2−32

64 212 210 210 222 225 2−32

64 28 212 210 220 223 2−32

64 232 24 224 236 239 2−24

64 228 26 223 234 237 2−24

64 214 213 221 227 230 2−24

Table 2. Security bounds for SimpleENCsmall.

We stress that the bounds in Table 2 assume that unique nonces are used.
However, if random IVs are used then an additional term of qE

2/2n−8 must
be considered, which in the case of n = 64 means that security of 2−32 cannot
be achieved. Lower security bounds can be achieved by limiting qE to a small
number. Nevertheless, SimpleENCsmall with a block size of 64 bits only, should
typically used in unique-nonce mode (e.g., by a device holding minimal state in
the form of a counter that is incremented with every encryption).

2 Description of SimpleENC, SimpleENC′ and SimpleENCsmall

The SimpleENC, SimpleENC′ and SimpleENCsmall modes of encryption can be
used with a unique or randomly-chosen nonce. The descriptions below will thus
refer to a nonce, and in the analysis of security we will show separate bounds
for the case that the nonce is guaranteed to be unique and the case that it is
randomly chosen. We provide a high-level description of the modes here, and
refer to Appendices A, B and C for the exact specifications.
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2.1 The Building Blocks CBCMAC-IV, CTRENC, and CENC

CBCMAC-IV. Let X be a nonempty sequence of x > 0 blocks, X = X1, . . . , Xx,
let R be a block, and let K be a key. Define the following sequence of blocks:
T0 = R and Ti = E(K,Xi ⊕ Ti−1) for i = 1, . . . , x. The last block Tx is also
referred to as an authentication tag (for X). The CBCMAC-IV of X under the
key K and the IV R is denoted by CBCMAC-IV(K,R,X) and is defined to be the
block Tx. The input X is also referred to as a “message”.

Remark 2.1. CBCMAC-IV is defined only for sequences (messages) of full blocks,
consisting of at least one block.

Remark 2.2. The standard basic CBC-MAC is a special case of CBCMAC-IV where
R = 0n, i.e., CBCMAC-IV(K, 0n, X). Alternatively, CBCMAC-IV of the message X
can be viewed as the standard CBC-MAC applied to X ′ = (X1⊕R), X2, . . . , Xx.
In other words, CBCMAC-IV(K,R,X) =CBC-MAC(K,X ′).

CTRENC. Let 0 < δ ≤ n be an integer, let IV be a string of (n− δ) bits, and let
K be a key. Let M be a nonempty string of bits such that |M | ≤ n · 2δ. Let i[#δ]

denote the δ-bit representation of the index i. Denote |M | (mod n) = r. Parse
M = M1, . . . ,Mm as a sequence of m = ⌈|M |/n⌉ blocks (possibly appending
(n − r) 0 bits to M , when r > 0, to complete to M to an integer number of
blocks). Observe that 1 ≤ m ≤ 2δ. The (counter mode) CTR encryption of M
under the key K with the IV IV is denoted by CTRENC(K, IV,M) and is defined
as the ciphertext C computed as follows.
for j = 1, . . . ,m

Ctrj = IV ‖ (j − 1)[#δ]

Cj = Mj ⊕ E(K,Ctrj)
if r > 0 then C∗

m = Truncate(Cm, r)
C = C∗

m ‖ Cm−1 ‖ . . . ‖ C1

By definition, |C| = |M |. (As a degenerate case, the ciphertext for an empty
string is also an empty string.)

Remark 2.3. The blocks Ctrj are called counter blocks. They are well defined
for j = 1, . . . ,m due to the constraint 1 ≤ m ≤ 2δ and the running counter
(j − 1)[#δ]. The choice of δ implies limits on the longest possible length of the
messageM , although an implementation can choose to allocate δ bits for counter,
but independently restrict message lengths to less than ∼ 2δ blocks. When δ = n
the IV is an empty string and the counter blocks have the form (j − 1)[#n].

CENC derivation. We use CENC in order to carry out key derivation, and there-
fore limit our description to our specific use. Let 0 < δ < n be an integer, let IV
be a string of (n− δ) bits, and let K be a key. The CENC derivation of c · n bits
under the key K with the IV IV is denoted by CENC(K, IV, c) and is defined as
the output computed as follows.
D0 = E(K, IV ‖ (0)[#δ])
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for j = 1, . . . , c
Ctrj = IV ‖ (j)[#δ]

Dj = E(K,Ctrj)⊕D0

Output D = D1 ‖ . . . ‖ Dc

The CENC encryption mode is defined in [12] and its improved security bounds
are shown in [13] (to be a corollary from a theorem proved in [14]).

2.2 SimpleENC – encryption with κ = n for large n

SimpleENC = SimpleENCK(N,A,M) is an AEAD scheme (mode of operation)
that encrypts and authenticates a header A and message M , with a nonce N
and key K. It uses the building blocks CBCMAC-IV and CTRENC that are described
above. This scheme is defined for keys of length κ and block size n = κ.

Key generation. SimpleENC uses a single key K of length κ.

Encryption. Let A be authentication data, M the plaintext, and N a nonce
of length n− 8. The message is encrypted in SimpleENC in three steps:

1. Key derivation: The block cipher is applied to N‖0, N‖1 and N‖2 in order
to obtain KE , KMAC and [N2, N1], all of length n (note that N1, N2 are of
length n/2 each). We remark that N can be of length n− 2 to support these
3 derivations, but we set it to be n − 8 so that everything is defined over
bytes.

2. Encryption: Encrypt the message M using CTRENC with key KE and initial-
ization vector IV = N1.

3. Authentication: Compute Tag by applying CBCMAC-IV with key KMAC and
initialization vector IV = N2 to A and M . In order to prevent ambiguity,
the actual string input to CBCMAC-IV is pad10∗(A) ‖ pad10∗(M), where
pad10∗(x) denotes the operation of padding x to be block aligned by add
a single 1 and then zeroes (and adding a full block if x is already aligned).
Recall that IV = N2 is XORed into the first block of this string.

4. Output: Output Tag‖C.

Decryption. Let A be authentication data, C the ciphertext, N a nonce of
length n− 8, and Tag the MAC tag. The ciphertext is decrypted in SimpleENC

in three steps:

1. Key derivation: The block cipher is applied to N‖0, N‖1 and N‖2 in order
to obtain KE , KMAC and [N2, N1], all of length n (note that N1, N2 are of
length n/2 each).

2. Decryption: Decrypt the ciphertext C using CTRENC with key KE and ini-
tialization vector IV = N1. Let the result be M .

3. Authentication verification: Compute Tag′ by applying CBCMAC-IV with key
KMAC and initialization vector IV = N2 to A and M , with padding as in
encryption.

4. Output: Output M if Tag′ = Tag; otherwise, output ⊥.



10

Simplicity. Observe that decryption is almost identical to encryption since
decryption of C in CTRENC is exactly the same code as encryption ofM in CTRENC;
likewise, the computation of CBCMAC-IV is identical. Thus, the only difference
is in the output step. In addition, SimpleENC only requires computation of the
block cipher in the “forward” direction (encryption). Finally, only very trivial
10∗ padding is required; in particular, no length padding is needed, and it enables
encryption in an online mode (streaming).

Performance. The input for encryption is (N,A,M). The following computa-
tion counts the number of blocks in the padded A and M combination.

– For the encryption of M : M (possibly padded with 0 bits to the next bound-
ary of a multiple of n) is parsed as m blocks, where m = ⌈|M |/n⌉.

– For the authentication of X = pad10∗(A) ‖ pad10∗(M): X consists of x
blocks where x = a +m′, and a is the number of blocks in pad10∗(A) and
m′ is the number of blocks in pad10∗(M). The value of a is a = 1+ ⌊|A|/n⌋
(e.g., a = 1 if A = ⊥) and the value of m′ is m′ = 1 + ⌊|M |/n⌋.

The performance of SimpleENC is measured in terms of the number of invo-
cations of the block cipher E for processing A and M . The key derivation step
requires 3 invocations of E. The CTRENC encryption requires m invocations of E.
The CBCMAC-IV authentication requires x = a+m′ invocations of E. Thus, the
total number of invocations of E is

TotalECalls(SimpleENC) = 3 + a+m′ +m = 5 +

⌊

|A|

n

⌋

+ 2 ·

⌊

|M |

n

⌋

.

2.3 SimpleENC′ – encryption with κ = 2n for large n

This mode is a variant of SimpleENC for the case that n is large, but the key is
larger. For example, it can be used with AES256 where n = 128 and κ = 256.
SimpleENC′ is identical to SimpleENC except that the key derivation step must
generate more key material. Thus, the only difference in both encryption and
decryption is as follows:

1. Key derivation: The block cipher is applied to N‖0, N‖1, . . . , N‖4 in order
to obtain KE , KMAC of length 2n each, and [N2, N1] of length n (note that
N1, N2 are of length n/2 each).

Performance. The performance of SimpleENC′ differs from SimpleENC by the
fact that the key derivation step requires 5 invocations of E instead of 3. Thus,
the total number of invocations of E is

TotalECalls(SimpleENC′) = 5 + a+m′ +m = 7 +

⌊

|A|

n

⌋

+ 2 ·

⌊

|M |

n

⌋

.
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2.4 SimpleENCsmall – encryption with κ = 2n for small n

SimpleENCsmall is a variant of SimpleENC that can be used for block ciphers
with a small block size, like 64 bits. In most modes of operations, encryption
with such small blocks is insecure when encrypting even a small number of small
messages. This fact was demonstrated in practice in the highly effective Sweet32
attack on 3DES in TLS [5]. SimpleENCsmall is designed to provide good security
even in this case.

SimpleENCsmall = SimpleENCsmallK(N,A,M) is an AEAD scheme (mode
of operation) that encrypts and authenticates a header A and message M , with
a nonce N and key K. It uses the building blocks CBCMAC-IV and CTRENC that
are described above. This scheme is defined for keys of length κ and block size
κ = 2n.

We provide a high-level description of the mode here, and refer to Appendix C
for the exact specification. Observe that since the block length here is short, we
use CENC for derivation and encryption in order to get good bounds.

Key generation. SimpleENCsmall uses a single key K of length κ.

Encryption. Let A be authentication data, M the plaintext, and N a nonce
of length n− 8. The message is encrypted in SimpleENCsmall in three steps:

1. Key derivation: The block cipher is applied to N‖0, N‖1, . . . , N‖5 in order to
obtain 6 blocks of length κ/2. Then, CENC is used to obtain 5 output blocks,
by XORing the result of E(K,N‖0) to all other results. Finally, keys KE

and KMAC of length n = 2κ each are defined using 4 of the output blocks,
and two nonces [N2, N1] of length n/2 each are defined using the fifth output
block. and [N2, N1]. We remark that N can be of length n − 3 to support
these 3 derivations, but we set it to be n − 8 so that everything is defined
over bytes.

2. Encryption: Encrypt the message M using CTRENC with key KE and initial-
ization vector IV = N1.

3. Authentication: Compute Tag by applying CBCMAC-IV with key KMAC and
initialization vector IV = N2 to A and M . In order to ensure no ambiguity,
the actual string input to CBCMAC-IV is pad10∗(A) ‖ pad10∗(M). Recall that
IV = N2 is XORed into the first block of this string.

4. Output: Output Tag‖C.

Decryption. Let A be authentication data, C the ciphertext, N a nonce of
length n−8, and Tag the MAC tag. The ciphertext is decrypted in SimpleENCsmall
in three steps:

1. Key derivation: Exactly as in encryption.
2. Decryption: Decrypt the ciphertext C using CTRENC with key KE and ini-

tialization vector IV = N1. Let the result be M .
3. Authentication verification: Compute Tag′ by applying CBCMAC-IV with key

KMAC and initialization vector IV = N2 to A and M , with padding as in
encryption.
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4. Output: Output M if Tag′ = Tag; otherwise, output ⊥.

Simplicity. SimpleENCsmall is almost as simple as SimpleENC, with the only
difference being that CENC is used for the derivation. Since we use CENC with a
single additional block only, this is very easily implemented (requiring only to
XOR each output of the block cipher with the derived blocks).

Performance. The key derivation step using CENC requires 6 invocations of E,
CTRENC encryption requires m invocations of E, and CBCMAC-IV authentication
requires x = a +m′ invocations of E. Thus, the total number of invocations of
E is

TotalECalls(SimpleENCsmall) = 6 + a+m′ +m = 8 +

⌊

|A|

n

⌋

+ 2 ·

⌊

|M |

n

⌋

.

Thus, SimpleENCsmall provides good security even for small-block block ciphers,
at a cost that is almost that of SimpleENC.

3 Definitions of Security

Before proceeding to formally prove our bounds, we provide definitions for
chosen-plaintext security (CPA) and authenticated encryption (AE). We dif-
ferentiate between nonce-based security, where the nonce is provided by the
adversary but the adversary is required to use a unique nonce in each encryp-
tion query, and IV-based security where a random IV is chosen as part of the
encryption process (and not chosen by the adversary). We distinguish these cases
by calling the former a nonce and the latter an IV.

CPA-secure nonce-based encryption (nE). Let Π = (Gen,Enc,Dec) be a
nonce-based encryption scheme. Encryption is a deterministic function receiving
a key K, nonce N and message M , and is denoted C = EncK(N,M). Consider
the following oracles:

– Oracle EncK : upon input (N,M), it computes C = EncK(N,M). The output
is C.

– Oracle $K : upon input (N,M), it computes C = EncK(N,M). The output
is a random string of length |C|.

The CPA-advantage of an adversary A against a nonce-based encryption scheme
is defined to be:

AdvnCPAΠ (A) =
∣

∣

∣
PrK

[

AEncK(·,·) = 1
]

− PrK

[

A$K(·,·) = 1
]∣

∣

∣

where A may not make two queries (N,M), (N,M ′) to its oracle with the same
nonce N .

CPA-secure IV-based encryption (ivE). Let Π = (Gen,Enc,Dec) be an
IV-based encryption scheme, and let the space of IVs be IV. Encryption involves
choosing IV ← IV uniformly at random, and then computing the deterministic
function EncK(IV,M). Consider the following oracles:
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– Oracle EncK : upon input M , it chooses IV ← IV at random and computes
C = EncK(IV,M). The output is (IV ‖C).

– Oracle $K : upon input M , it chooses IV ← IV at random and computes
C = EncK(IV,M). The output is a random string of length |(IV ‖C)|.

The advantage of an adversary A against an IV-based encryption scheme is
defined to be:

AdvivCPAΠ (A) =
∣

∣

∣
PrK

[

AEncK(·) = 1
]

− PrK

[

A$K(·) = 1
]∣

∣

∣

Secure nonce-based authenticated encryption (nAE). LetΠ = (Gen,Enc,Dec)
be a nonce-based encryption scheme. Encryption is a deterministic function re-
ceiving a key K, nonce N , associated data A and plaintext message M , and is
denoted C = EncK(N,A,M). We denote decryption by DecK(N,A,C). Consider
the following oracles:

– Oracle $K : upon input (N,A,M), it computes C = EncK(N,A,M). If C =
⊥ then the output is ⊥; otherwise, the output is a random string of length
|C|.

– Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against a nonce-based authenticated encryp-
tion scheme is defined to be:

AdvnAEΠ (A) =
∣

∣

∣
PrK

[

AEncK(·,·,·),DecK(·,·,·) = 1
]

− PrK

[

A$K(·,·,·),⊥(·,·,·) = 1
]
∣

∣

∣

where A may not make two encryption queries (N,M,C), (N,M ′, C ′) with the
same first component (nonce), and may not make any decryption query for a
value (N,A,C) that was obtained as output from some encryption query.

Secure random-IV based authenticated encryption (ivAE). Let Π =
(Gen,Enc,Dec) be an IV-based encryption scheme, and let the space of IVs be
IV. Encryption involves choosing IV ← IV uniformly at random, and then
computing the deterministic function EncK(IV,A,M). We denote decryption
by DecK(IV,A,C). Consider the following oracles:

– Oracle $K : upon input (A,M), it chooses IV ← IV uniformly at random and
computes C = EncK(IV,A,M). If C = ⊥ then the output is ⊥; otherwise,
the output is a random string of length |(IV ‖C)|.

– Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against an IV-based authenticated encryption
scheme is defined to be:

AdvivAEΠ (A) =
∣

∣

∣
PrK

[

AEncK(·,·),DecK(·,·,·) = 1
]

− PrK

[

A$K(·,·),⊥(·,·,·) = 1
]
∣

∣

∣

where A may not make any decryption query for a value (N,A,C) that was
obtained as output from some query to Enc.
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4 Authenticity Bounds

Our entire security analysis models the block cipher (when used with a ran-
dom key) as a random permutation. This is standard, and the only difference
necessary is to add the difference between a random permutation and a block
cipher.

4.1 The Basic Forgery Bound for CBCMAC-IV

A multi-key and multi-query MAC game. In our setting, since the MAC
keys are derived using a pseudorandom function from the nonce, we actually
have a multi-key scenario. Thus, in order to prove our authenticity bound for
SimpleENC, we begin by defining a multi-key and multi-query MAC game for
our purpose. We denote the MAC computation algorithm by Mac and the verify
algorithm by Vrfy (thus Vrfyk(m, t) = 1 if t is a valid MAC-tag on m with key
k, and otherwise it equals 0).

We define an oracle Mac that receives a message m, chooses a fresh random
key k, stores (i, k) where i is the next unused index (initially i = 0), and returns
t = Mack(m). In addition, we define an oracle Vrfy that receives a triple (i,m, t)
and checks if some (i, k) has been stored. If yes, and t was not returned as the
response from a previous query Mack(m), it returns Vrfyk(m, t); if no, it chooses
a new k, stores (i, k), and returns Vrfyk(m, t). We consider an experiment where
an adversary is given access to both the Mac and Vrfy oracles, and succeeds
if it asks some query to Vrfy that returns 1. We remark that since Mac and
Vrfy have access to the same set of keys, they are not really different oracles;
rather they are formally modeled as a single oracle with two different types of
queries. The MAC forging experiment that we consider for A with MAC scheme
Π = (Mac,Vrfy) is as follows:

Experiment MultiForgeΠ(A) :

1. Execute AMac(·),Vrfy(·,·,·)(1n), where the oracles are defined as above.
2. Output 1 if and only if there exists a query to Vrfy that returned 1.

We say that an adversary A is a (QM , QV , ~ℓ)-adversary if it makes at most
QM queries to the Mac oracle and at most QV queries to the Vrfy oracle, and
the ith query to the Mac oracle is of length ℓi blocks where ~ℓ = (ℓ1, . . . , ℓQM

).
Observe that the ith query to the MAC oracle uses the ith key, and thus an
independent key is used each time. Therefore, the same key may be used more
than once, but only with the probability that the same random key is chosen
more than once amongst q keys. We now bound the adversarial advantage in
MultiForge.

Lemma 4.1. Let Π = (Mac,Vrfy) be CBCMAC-IV as defined in SimpleENC and

SimpleENCsmall with a random permutation. Then, for every (QM , QV , ~ℓ)-adversary
A, it holds that

Pr [MultiForgeΠ(A) = 1] ≤ QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

+
QM

2

2n+1
,
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where ℓmax is the maximum value in {ℓ1, . . . , ℓQM
}.

Proof. We begin by modifying MultiForge to MultiForge′ with the only difference
being that if the Mac oracle chooses a key that has already been used before,
then the experiment halts and outputs 1 (i.e., the adversary wins). Since the

probability that two keys are equal is at most QM
2

2n+1 , it follows that

Pr [MultiForgeΠ(A) = 1] ≤ Pr
[

MultiForge′Π(A) = 1
]

+
QM

2

2n+1
.

Now, inMultiForge′, each CBC-MAC key is used for tagging at most one message.
In particular, the i’th key is used to generate a MAC-tag on a single message of
length ℓi. By [4], for any single key, the advantage of the adversary is at most

12 · ℓ ·Q2

2n
+

64 · ℓ4 ·Q2

22n

where Q is the number of queries, and ℓ the length of the longest query. Thus,
intuitively, in our setting where Q = 1 per key the probability that any single
query to Vrfy of the form (i,m, t) returns 1 is at most

12 · ℓi
2n

+
64 · ℓ4i
22n

.

Since A makes at most QV queries to Vrfy, we therefore claim that

Pr
[

MultiForge′Π(A) = 1
]

≤ QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

(1)

where ℓmax is the maximum value in {ℓ1, . . . , ℓQM
}. Note that these are the

lengths of the queries to the Mac oracle.
We prove Eq. (1) by reducing the security to a single CBC-MAC forgery. In

order to do so, we bound the forging probability for every possible distribution
over the verification queries. Specifically, let ~q = (q1, . . . , qQM+QV

) be a vector
of integers where qi is the (non-negative) number of verification queries made
to the ith MAC key. Observe that each MAC query and verification query can
potentially be to a new key, and thus there are at most QM +QV different keys
used throughout the game. However, since there are QV verification queries,
we have that

∑QM+QV

i=1 qi = QV . We denote by query(~q) the event that in the
execution of MultiForge′, A’s queries to the verification oracle are exactly as in
~q. We have:

Pr
[

MultiForge′Π(A) = 1
]

=
∑

~q

Pr
[

MultiForge′Π(A) = 1 | query(~q)
]

·Pr[query(~q)]

(2)

where the sum is over all possible integer vectors ~q such that
∑QM+QV

i=1 qi = QV

(technically, this is the set of all the partitions of the integer QM + QV with
non-negative summands). We now argue that for every ~q,

Pr
[

MultiForge′Π(A) = 1 | query(~q)
]

≤ QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

. (3)
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In order to see this, fix ~q, and let Ai be an adversary who attacks CBC-MAC
for a single key. Ai works by choosing all MAC keys kj for j 6= i (formally for
j ∈ {1, . . . , QM + QV } \ {i}). Then, Ai invokes A and simulates the Mac and
Vrfy oracles for all keys kj with j 6= i by using the keys it chose. In contrast,
for every Mac or Vrfy oracle query to the ith key, Ai sends the query externally
to its own oracle. If the queries made by A are not exactly ~q, then Ai aborts.
Denote by forge(Ai) the probability that Ai succeeds in forging a tag in one
of the verification queries. Then, since in MultiForge′ there is at most one Mac

query to the ith key, and the longest query is ℓmax, we have

Pr [forge(Ai)] ≤ qi ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

.

Observe that this argument holds since we have conditioned over ~q, and we only
consider Ai’s success when the query vector is ~q. Denote by forgeA(i) the event
that A forges a verification query for the ith key. Then,

Pr [forge(Ai)] = Pr
[

MultiForge′Π(A) = 1 ∧ forgeA(i) | query(~q)
]

Thus,

Pr
[

MultiForge′Π(A) = 1 | query(~q)
]

≤

QM+QV
∑

i=1

Pr
[

MultiForge′Π(A) = 1 ∧ forgeA(i) | query(~q)
]

=

QM+QV
∑

i=1

Pr [forge(Ai)]

≤

QM+QV
∑

i=1

qi ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

= QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

,

where the last equality is because
∑QM+QV

i=1 qi = QV . This proves Eq. (3). Com-
bining this with Eq. (2), we have:

Pr
[

MultiForge′Π(A) = 1
]

=
∑

~q

Pr
[

MultiForge′Π(A) = 1 | query(~q)
]

· Pr[query(~q)]

≤
∑

~q

QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

· Pr[query(~q)]

= QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

·
∑

~q

Pr[query(~q)]

= QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

.
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We conclude that

Pr [MultiForgeΠ(A) = 1] ≤ QV ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

+
QM

2

2n+1
,

thereby completing the proof.

4.2 An Improved Forgery Bound for CBCMAC-IV

The bound proven in Section 4.1 is strong enough for a large block, since QM
2

2n+1 is
small (e.g., for n = 128, we can achieve 2−32 security with QM ≤ 248). However,
for smaller blocks, this is too weak and we need to prove a different bound.
Intuitively, there is one important element that we did not utilize at all in the
analysis in Section 4.1; namely, the fact that a random nonce of length n/2
is XORed to the first block in the CBCMAC-IV computation. This is important
since the analysis of Section 4.1 assumes that each message is MACed with a
different key, whereas CBC-MAC is secure when the same key is used to MAC
multiple messages as long as these messages are prefix-free. Since the first block
of the messages are XORed with a random nonce of length n/2 this ensures
prefix-freeness with high probability, unless the nonce repeats. Thus, CBCMAC-IV
actually provides much better bounds, and remains secure as long as the same
combination of derived key and derived nonce does not repeat. We do this in the
following lemma.

Lemma 4.2. Let Π1 = (Mac,Vrfy) be CBCMAC-IV as defined in SimpleENC and
let Π2 be as in SimpleENCsmall, with a random permutation. Then, for every

(QM , QV , ~ℓ)-adversary A with SimpleENC, it holds that

Pr [MultiForgeΠ(A1) = 1] ≤ QV ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
QM

3

6 · 23n
,

where ℓmax is the maximum value in {ℓ1, . . . , ℓQM
}. Likewise, when considering

SimpleENCsmall it holds that

Pr [MultiForgeΠ(A2) = 1] ≤ QV ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
QM

3

6 · 25n
.

Proof. In the proof of Lemma 4.1, we bounded the cheating probability by first
bounding the probability that a derived key is obtained more than once. This
immediately adds a bound of QM

2/2n+1, which is a birthday bound. However,
observe that if a derived key is obtained multiple times, but the prefix of the
message is different each time, then CBC-MAC is still secure. In SimpleENC, the
random (half) nonce N2 is XORed to the first block of the message, guaranteeing
prefix freeness with high probability. Thus, we can actually bound the probability
of forging the CBC-MAC even if the key repeats multiple times. By [15, Theorem
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2.2], the probability of r collisions on q queries over a domain of size 2S is at

most qr

r!·2(r−1)·S . Thus, the probability that a key/nonce pair repeats 3 times or

more is upper bound by q3

6·22S
. Note that the nonce N2 is XORed into the first

block, but since N2 is random the probability that two first blocks repeat is the
same probability of a collision as above. (Note that S = 1.5n for SimpleENC and
S = 2.5n for SimpleENCsmall.)

Returning to the proof of Lemma 4.1, we define MultiForge to be exactly the
same as before except that now we also choose a random N2 and XOR it into
the first block of a queried message. Next, we define MultiForge′ to be the same
as MultiForge except that if there exists a key/nonce-N2 pair that repeats (i.e.,
is chosen) three or more times, then the adversary loses. By the above, we have

Pr [MultiForgeΠ(A) = 1] ≤ Pr
[

MultiForge′Π(A) = 1
]

+
QM

3

6 · 22S
.

Now, in MultiForge′, each CBC-MAC key is used at most twice, and prefix free-
ness is guaranteed. By [4], for any single key, the advantage of the adversary is
at most

12 · ℓmax ·Q
2

2n
+

64 · ℓmax
4 ·Q2

22n

but here Q ≤ 2 and thus the advantage of the adversary for any single key is at
most

48 · ℓmax

2n
+

256 · ℓmax
4

22n
.

In the same way as in the proof of Lemma 4.1, we multiply this by QV to obtain
the forging probability over all keys. We therefore conclude that

Pr [MultiForgeΠ(A) = 1] ≤ QV ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
QM

3

6 · 22S
.

Using the fact that S = 1.5n for SimpleENC and S = 2.5n for SimpleENCsmall,
the proof is completed.

4.3 The Authenticity Bound for SimpleENC

Unique nonce case. We begin by analyzing SimpleENC in the nonce setting,
where the adversary must use a unique nonce in every encryption query (such
an adversary is called nonce respecting).

Theorem 4.3. Consider the nonce-version of SimpleENC. Then, for every nonce-

respecting (qE , qD, ~ℓE , ~ℓD)-adversary A, the probability that A makes a query to
the decryption oracle that does not return ⊥, denoted ValidDecA, is at most

Pr [ValidDecA] ≤ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1











.

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).
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Proof. Let A be a (qE , qD, n, ~ℓE , ~ℓD)-adversary and let ℓmax be the maximum

length in ~ℓE . Without loss of generality, we assume that A does not query its
decryption oracle with any ciphertext received from its encryption oracle. We
bound the probability that A makes a decryption query that returns a value
that is not ⊥. Let validDecA denote the event that A makes such a query; we
bound ValidDecA by showing that it is possible to forge a MAC in the experiment
MultiForge defined above with probability that is related to the probability that
ValidDecA occurs. In the sequel, we denote by pad(N2, A,M) the construction
of the MAC message as specified in SimpleENC. Specifically, N2 is XORed with
the first block of A, and pad10∗ is applied to the result; then, pad0∗(M) is
concatenated to the result.

We construct an adversary A′ for MultiForge that uses A in order to forge.
Adversary A′ works as follows:

1. A′ invokes A, and initializes i = 0 and i′ = qE .
2. For every encryption query (N,A,M) made by A, adversary A′ chooses a

random KE and [N2‖N1] (note that in this case A is nonce respecting so
N never repeats, meaning that the derivation is new each time). Then, A′

queries its MAC oracle to obtain a tag T on pad(N2, A,M), and locally
encrypts M in counter mode with nonce N1 and key KE . A stores the
association (i, N,KE , N2, N1), sets i = i+1, and returns (N,A,C, T ) where
C is the resulting ciphertext and T the tag received back.

3. For all decryption queries (N,A,C, T ) made by A, if N is a new nonce
then A′ chooses a random KE and [N2‖N1], stores the new association
(i′, N,KE , N2, N1) and sets i∗ = i′ = i′+1; else,A′ retrieves (i, N,KE , N2, N1)
already stored and sets i∗ = i. Then, A′ decrypts C with the key KE and
nonceN1, to obtainM , and queries its Vrfy oracle with (i∗, pad(N2, A,M), T ).

We define the above by game0, and the probability that A′ successfully forges
by AdvMAC0

Π(A′). To analyze this probability, we define a new game, denoted
game1.

Game game1: This game is identical to game0 except that the experiment
chooses a random permutation π. Then, for every nonce N it derives KE ,KM ,
[N2‖N1] as in SimpleENC using π. Then, it hands KE , N2, N1 to the adversary
A′, and uses KM in the MAC query. The adversary A′ works in the same way
as in game0, using these keys and nonce values. Let AdvMAC1

Π(A′) denote the
probability that A′ successfully forges in this game.

We claim that the probability that A′ outputs a valid forgery in game1 is
at most 9 · qE

2/2n+1 far from the probability that A′ outputs a valid forgery
in game0. In order to see this, observe that the only difference is that all keys
and nonces are chosen uniformly at random in game0, and are derived using
a pseudorandom permutation in game1. Since choosing all values uniformly at
random is equivalent to using a random function, we have that the difference
between the games is the difference between a random function and a random
permutation. The number of queries made to this function is equal to 3 · qE , the
number of encryption queries made by A (this is only encryption queries since
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the decryption queries are all replied with ⊥). Thus,

∣

∣AdvMAC0
Π(A′)− AdvMAC1

Π(A′)
∣

∣ ≤
9 · qE

2

2n+1
.

Finally, observe that the probability that A outputs a valid forgery in game1
is exactly the probability that a (qE , qD, n, ~ℓ)-adversary succeeds in MultiForge.
Thus, by Lemma 4.1, we have

Pr [ValidDecA] ≤ qD ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

+
qE

2

2n+1
+

9 · qE
2

2n+1

= qD ·

(

12 · ℓmax

2n
+

64 · ℓmax
4

22n

)

+
10 · qE

2

2n+1

and by Lemma 4.2, we have

Pr [ValidDecA] ≤ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 23n
+

9 · qE
2

2n+1
.

This completes the proof.

Random IV case. In the case of a random IV, the only difference between this
case and the previous one is if the IV repeats. Since the IV is of length n − 8,

this makes a difference of at most qE
2

2n−7 (i.e., it is the standard birthday bound).
Thus, we just need to add this to each of the bounds in Theorem 4.3, and we
have:

Theorem 4.4. Consider the random-IV version of SimpleENC. Then, for ev-

ery (qE , qD, ~ℓE , ~ℓD)-adversary A, the probability that A makes a query to the
decryption oracle that does not return ⊥, denoted ValidDecA, is at most

Pr [ValidDecA] ≤ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 + qE
2

2n−7 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1 + qE
2

2n−7











.

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

4.4 The Authenticity Bound for SimpleENC′

The only difference between SimpleENC and SimpleENC′ is that in the latter,
the CTRENC and CBCMAC-IV keys are of length 2n and thus are derived using
two applications of the random permutation each. This makes a difference of

additional multiples of qE
2

2n+1 over the bounds proven in Theorems 4.3 and 4.4 for
the nonce-based and random-IV settings, respectively. In particular, instead of

3 queries there are 5 queries, and thus the 9·qE
2

2n+1 term should be replaced with
25·qE

2

2n+1 throughout (note that the final term 10·qE
2

2n+1 in the bounds is changed to
26·qE

2

2n+1 ).



21

Theorem 4.5. Consider the nonce-version of SimpleENC′. Then, for every

nonce-respecting (qE , qD, ~ℓE , ~ℓD)-adversary A, the probability that A makes a
query to the decryption oracle that does not return ⊥, denoted ValidDecA, is at
most

Pr [ValidDecA] ≤ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 26·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 25·qE
2

2n+1











.

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

4.5 The Authenticity Bound for SimpleENCsmall

The difference between SimpleENC and SimpleENCsmall with respect to integrity
(the CBCMAC-IV part) is only is only in the derivation of the MAC keys. In
SimpleENC the derivation uses a random permutation, whereas in SimpleENCsmall
the derivation uses CENC which is closer to a random function. The reason for
this change is that for SimpleENCsmall we assume that n is too small to allow
a standard birthday bound. Thus, we only include the possibility for ValidDecA
that does not have the qE

2

2n+1 term.

The authenticity bound – unique nonce case. We first prove the authen-
ticity bound for SimpleENCsmall for the unique nonce setting.

Theorem 4.6. Consider the nonce-version of SimpleENCsmall. Then, for every

nonce-respecting (qE , qD, ~ℓE , ~ℓD)-adversary A with 5 ·qE < 2n/67, the probability
that A makes a query to the decryption oracle that does not return ⊥, denoted
ValidDecA, is at most

Pr [ValidDecA] ≤ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 25n
+

25 · qE
2n

,

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

Proof. The proof of this bound is the same as that of Theorem 4.3 with the
exception of the analysis of how game1 differs from game0 (and that we take
the bound for SimpleENCsmall from Lemma 4.2, and not for SimpleENC). In
the proof of Theorem 4.3 the difference between game0 and game1 was a pure
birthday bound, whereas here we utilize the bounds of CENC. Namely, here, the
only difference between game0 and game1 is that all keys and nonces are chosen
uniformly at random in game0, and are derived using CENC and a pseudoran-
dom permutation in game1. Since choosing all values uniformly at random is
equivalent to using a random function, we have that the difference between the
games is the difference between a random function and CENC with a random
permutation. The number of queries made to this function is equal to qE , the
number of encryption queries made by A (this is only encryption queries since



22

the decryption queries are all replied with ⊥). Furthermore, we apply CENC
with w = 5. The CENC bounds of [13] state that at long as w · q ≤ 2n/67 then
CENC with a random permutation can be distinguished from a random function
with probability at most ℓ·w·q

2n , where q equals the number of queries and ℓ is the
number of blocks. In our usage for the key derivation, ℓ = w = 5 and so as long
as 5 · qE < 2n

67 , the CENC derivations can be distinguished from random with

probability at most 25·qE
2n . Thus,

∣

∣AdvMAC0
Π(A′)− AdvMAC1

Π(A′)
∣

∣ ≤
25 · qE
2n

.

Finally, observe that the probability that A outputs a valid forgery in game1
is exactly the probability that a (qE , qD, n, ~ℓ)-adversary succeeds in MultiForge.
Thus, by Lemma 4.2, we have

Pr [ValidDecA] ≤ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 25n
+

25 · qE
2n

.

This completes the proof.

Random IV case. As with SimpleENC, in the case of a random IV, the only
difference between this case and the previous one is if the IV repeats. Since

the IV is of length n − 8, this makes a difference of at most qE
2

2n−7 (i.e., it is
the standard birthday bound). Thus, we just need to add this to the bound in
Theorem 4.6, and we have:

Theorem 4.7. Consider the random-IV version of SimpleENCsmall. Then, for

every (qE , qD, ~ℓE , ~ℓD)-adversary A with 5 · qE < 2n/67, the probability that
A makes a query to the decryption oracle that does not return ⊥, denoted
ValidDecA, is at most

Pr [ValidDecA] ≤ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 25n
+

25 · qE
2n

+
qE

2

2n−7

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

Remark: It is important to note that in the random IV case, SimpleENCsmall
can only be used to encrypt a small number of possibly long messages. In par-
ticular, consider the case of n = 64 and a desired security margin of 2−32. Then,

due to the term of qE
2

2n−7 , it is possible to encrypt at most 212.5 different messages.

5 Authenticated-Encryption Security Bounds

In this section, we analyze the security of the three schemes. We use the au-
thenticity bounds of Section 4 in order to prove the authenticated-encryption
security (AEAD) of SimpleENC, SimpleENC′ and SimpleENCsmall.
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5.1 Authenticated-Encryption Security for SimpleENC

We use the authenticity bound of Section 4.3 in order to bound the advantage
of the adversary in the authenticated-encryption setting. We begin with the
nonce-respecting setting, where the nonce in each encryption is guaranteed to
be unique, and then provide the bounds for the random-IV setting.

The nonce-respecting setting. We have the following theorem:

Theorem 5.1. Denote by Π the nonce-version of SimpleENC. Then, for any

nonce-respecting (qE , qD, ~ℓE , ~ℓD)-adversary A, we have:

AdvnAEΠ (A) ≤
10 · qE

2

2n+1
+

qE
∑

i=1

ℓi
2

2n+1

+ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1











,

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

Proof. Let A be a (qE , qD, n, ~ℓE , ~ℓD)-adversary. Our aim is to bound:

∣

∣

∣
PrK

[

AEncK(·,·,·),DecK(·,·,·) = 1
]

− PrK

[

A$K(·,·,·),⊥(·,·,·) = 1
]∣

∣

∣
.

By Theorem 4.3,

∣

∣

∣
PrK

[

AEncK(·,·,·),DecK(·,·,·) = 1
]

− PrK

[

AEncK(·,·,·),⊥(·,·,·) = 1
]∣

∣

∣

≤ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1











. (4)

Based on this, we can construct a CPA-adversary A′ who invokes A and forwards
all encryption queries by A to its own encryption oracle and back. In contrast, it
replies to all decryption queries with ⊥. At the end of the execution, A′ outputs
whatever A outputs. It is immediate that

PrK

[

A′EncK(·,·,·)
= 1

]

= PrK

[

AEncK(·,·,·),⊥(·,·,·) = 1
]

. (5)

Next, we bound:

∣

∣

∣
PrK

[

A′EncK(·,·,·)
= 1

]

− PrK

[

A′$K(·,·,·)
= 1

]∣

∣

∣
.

We construct a nonce-based CPA-adversaryA′′ who attacks an encryption scheme
Π ′ = Enc′ that is defined to be counter-mode using a fresh random key for ev-
ery encryption (this cannot be decrypted in principle, but this is not important
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here). For every encryption query (N,A,M) made by A′, adversary A′′ works
by choosing random KM and N1, N2, queries its encryption oracle with (N1,M)
and gets back C, and computes the tag T using N2 and KM .7 Then, A′′ returns
(N,C, T ) to A′. At the end of the execution, A′′ outputs whatever A′ outputs.
The only difference between A′’s view in its execution with oracle Enc and in
the execution with A′′, is that KE ,KM , N1, N2 are all random with A′′ whereas
they are derived using a random permutation in the execution with oracle Enc.
Thus, using the birthday bound for three derivations per query as in the proof
of Theorem 4.3, we have

∣

∣

∣
PrK

[

A′′Enc
′

K(·,·,·)
= 1

]

− PrK

[

A′EncK(·,·,·)
= 1

]∣

∣

∣
≤

9 · qE
2

2n+1
. (6)

Next, observe that since Enc′ chooses a fresh random key each time, the output
of the i’th encryption can be distinguished from random with probability at most
ℓi

2

2n+1 , using the standard PRP-PRF switching lemma (where ~ℓE = (ℓ1, . . . , ℓqE )),
assuming that no key repeats. Thus, we have that

∣

∣

∣
PrK

[

A′′EncK(·,·,·)
= 1

]

− PrK

[

A′′$K(·,·,·)
= 1

]
∣

∣

∣
≤

qE
∑

i=1

ℓi
2

2n+1
+

qE
2

2n+1
, (7)

where the additional qE
2

2n+1 is to ensure that no key repeats. We use the continual
key derivation (and that no key repeats) to obtain that the bound on CTRENC

is
∑qE

i=1
ℓi

2

2n+1 , which is much smaller than the standard bound of
(
∑qE

i=1 ℓi)
2

2n+1 for
counter mode with a single key throughout.

Finally, observe that there exists an adversary A′′′ who invokes A′′ and for-
wards all encryption queries and replies to A′′′, and responds to all decryption
queries with ⊥, such that

PrK

[

A′′′$K(·,·,·),⊥(·,·,·)
= 1

]

= PrK

[

A′′$K(·,·,·)
= 1

]

. (8)

Combining Equations (4)–(8), we have:

∣

∣

∣
PrK

[

AEncK(·,·,·),DecK(·,·,·) = 1
]

− PrK

[

AEncK(·,·,·),⊥(·,·,·) = 1
]
∣

∣

∣

≤
10 · qE

2

2n+1
+

qE
∑

i=1

ℓi
2

2n+1
+min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1











,

thereby completing the proof.

Remark 5.2 (Tightness of the bound.). Before proceeding, we observe that the

factor of 10·qE
2

2n+1 appears twice; once in the authenticity bound and a second

7 Note that although A′ does not have a decryption oracle, it still interacts with
Π = SimpleENC and thus the CBC-MAC part must be computed for it.
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time when proving the encryption. Thus, we “pay” for the key derivation twice,
and this is actually not necessary. A tighter bound could be achieved with a
less modular proof. However, since this makes only a difference of “one bit” of
security, we prefer the modular proof.

The random-IV setting. The only difference between the random-IV setting
and the nonce-based setting is that a random (n − 8)-bit IV may repeat with
probability qE

2/2n−7. Thus, all bounds for the nonce-respecting settings imme-
diately translate to the random-IV setting, by adding an additional qE

2/2n−7

to the bound (and using the authenticity bound of Theorem 4.4 instead). This
results in an overall addition of 2 · qE

2/2n−7 = qE
2/2n−8.

Theorem 5.3. Denote by Π the random-IV version of SimpleENC. Then, for

any (qE , qD, ~ℓE , ~ℓD)-adversary A, we have:

AdvnAEΠ (A) ≤
qE

2

2n−8
+

10 · qE
2

2n+1
+

qE
∑

i=1

ℓi
2

2n+1

+ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 10·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 9·qE
2

2n+1











,

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

5.2 Authenticated-Encryption Security for SimpleENC′

As we have described in Section 4.4, the only difference between SimpleENC

and SimpleENC′ is that additional derivations are needed. In particular, two

additional derivations are needed and this increases the factor of 9·qE
2

2n+1 to 25·qE
2

2n+1 .
Thus, we obtain comparable bounds to Theorems 5.1 and 5.3 by increasing these
terms, respectively.

Theorem 5.4. Denote by Π the nonce-version of SimpleENC′. Then, for any

nonce-respecting (qE , qD, ~ℓE , ~ℓD)-adversary A, we have:

AdvnAEΠ (A) ≤
26 · qE

2

2n+1
+

qE
∑

i=1

ℓi
2

2n+1

+ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 26·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 25·qE
2

2n+1











,

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).
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Theorem 5.5. Denote by Π the random-IV version of SimpleENC′. Then, for

any (qE , qD, ~ℓE , ~ℓD)-adversary A, we have:

AdvnAEΠ (A) ≤
qE

2

2n−8
+

26 · qE
2

2n+1
+

qE
∑

i=1

ℓi
2

2n+1

+ min











qD ·
(

12·ℓmax

2n + 64·ℓmax
4

22n

)

+ 26·qE
2

2n+1 ,

qD ·
(

48·ℓmax

2n + 256·ℓmax
4

22n

)

+ qE
3

6·23n + 25·qE
2

2n+1











,

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

5.3 Authenticated-Encryption Security for SimpleENCsmall

In the case of SimpleENCsmall, the key-derivation and is carried out using CENC.
This provides better security bounds, as we will now show.

Theorem 5.6. Denote by Π the nonce-version of SimpleENCsmall. Then, for

any nonce-respecting (qE , qD, ~ℓE , ~ℓD)-adversary A such that 5 · qE < 2n/67 and
ℓmax

2 < 2n/67, we have:

AdvnAEΠ (A) <
qE

2

22.5n+1
+

qE · ℓmax
2

2n

+qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

3 · 24n
+

50 · qE
2n

where ℓmax = max{ℓ1, . . . , ℓqE} for
~ℓE = (ℓ1, . . . , ℓqE ).

Proof. The outline of the proof is similar to that of Theorem 5.1, with the
exception that “losing” in the case that an encryption key repeats yields a poor
bound due to the small block size. Thus, as in the proof of Lemma 4.2, we utilize
the fact that security is preserved unless the same encryption key and derived
nonce N2 repeat simultaneously. We now show the analogous bounds for each of
Equations (4) to (7), with the modification as described:

1. Eq. (4) is replaced using the authenticity bound for SimpleENCsmall from
Theorem 4.6. Thus, we have

∣

∣

∣
PrK

[

AEncK(·,·,·),DecK(·,·,·) = 1
]

− PrK

[

AEncK(·,·,·),⊥(·,·,·) = 1
]∣

∣

∣

≤ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 25n
+

25 · qE
2n

2. Eq. (5) remains unchanged.
3. Eq. (6) is changed due to the fact that the derivation uses CENC. As in the

proof of Theorem 4.6, using the bounds of [13] we have that as long as
5 · qE < 2n/67, then

∣

∣

∣
PrK

[

A′′Enc
′

K(·,·,·)
= 1

]

− PrK

[

A′EncK(·,·,·)
= 1

]∣

∣

∣
≤

25 · qE
2n

.
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4. We change Eq. (7) and prove a better bound for a small block based on
the fact that even if a key repeats, security is still preserved as long as a
different nonce is used for that (repeated) key. Note that the key/nonce pair
is of length 2.5n here, and thus the probability that a key/nonce-N1 repeats

is less than qE
2

22.5n+1 . Next, note that by [15], the probability that a key (of

length 2n) repeats three or more times is at most qE
3

6·24n . Assuming this does
not happen, each key is used at most twice, and so the standard bound on

CTRENC for each key will be at most (2·ℓ)2

2n . However, for each key that is
repeated, the number of terms in the sum over all queries qE is reduced by

one; in the “worst case”, all keys repeat twice. Thus, the term
∑qE

i=1
ℓi

2

2n+1 in

Eq. (7) can be upper bounded by qE
2 ·

(2·ℓmax)
2

2n+1 = qE ·ℓmax
2

2n , where ℓmax is the
largest message encrypted. We therefore have that Eq. (7) is replaced with:

∣

∣

∣
PrK

[

A′′EncK(·,·,·)
= 1

]

− PrK

[

A′′$K(·,·,·)
= 1

]∣

∣

∣
≤

qE · ℓmax
2

2n
+

qE
2

22.5n+1
+

qE
3

6 · 24n
.

5. Eq. (8) remains unchanged.

Combining all of the above, we have that

AdvnAEΠ (A) ≤
25 · qE
2n

+
qE · ℓmax

2

2n
+

qE
2

22.5n+1
+

qE
3

6 · 24n

+ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

6 · 25n
+

25 · qE
2n

<
qE

2

22.5n+1
+

qE · ℓmax
2

2n

+ qD ·

(

48 · ℓmax

2n
+

256 · ℓmax
4

22n

)

+
qE

3

3 · 24n
+

50 · qE
2n

,

where the last inequality is obtained by consolidating terms, and replacing qE
3

6·25n

with qE
3

6·24n . This completes the proof.

Remark 5.7. As in Remark 5.2, a tighter bound can be obtained via a less mod-
ular proof. However, the difference is not significant.

5.4 Concrete Security Bounds

In Tables 1 and 2, we present concrete bounds for different choices of n, qE , qD
and ~ℓE , showing that our new modes can support a very large number of en-
cryptions, whether these are due to many small messages or few large messages.
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A Preliminaries for the Full Specification

Strings of bits. This document deals with strings of bits (strings for short).
The length of a string S is denoted by |S|, where S > 0 for all nonempty
strings. The empty string is denoted by the symbol ⊥, which is also used as a
signal for failure. The symbol ⊕ denotes the bit-wise XOR operation and the
symbol ‖ denotes concatenation of strings. By convention, strings are written
in “Little EndiaN’ orientation. If S is a string of length |S| = L its bits are
written as (S =) sL−1sL−2 . . . s0 such that the least significant bit (s0) is in the
rightmost position and the most significant bit (sL−1) is in the leftmost position.
A string of k repeated zero bits is denoted by 0k. The right-shift of the string
S = sL−1 . . . , s0 by θ positions (θ ≤ L) is the string 0θ‖sL−1 . . . sθ and is denoted
by S≫θ.

Encoding of integers as strings. For integers p, k such that 0 ≤ p < 2k, p[#k]

denotes the k-bit (string) binary representation of the integer p. For example
19[#8] = 00010011.

Blocks and block ciphers. Hereafter, E is used for denoting a block cipher
with block size of n bits and key size of κ ≥ n bits. For all the cases discussed here,
n and κ are powers of 2, and either κ = n or κ = 2n. A string of n bits is called
a block. The encryption of the plaintext block P under the key K is denoted
by E(K,P ). Let B = bn−1 . . . b0 be a block. Then the notation [B2, B1] = B
indicates that B2 and B1 are strings of n/2 bits defined by B2 = Bn−1 . . . Bn/2,
B1 = Bn/2−1 . . . B0. They are also called “half blocks”. For an integer 1 ≤ r < n
the truncation of B to r bits is the string of r bits br−1 . . . b0, and is denoted by
Truncate(B, r).

Parsing a string of bits as blocks. Let V = pv−1pv−2 . . . p0 be a nonempty
string of v bits where v is divisible by n, i.e., v = ξ × n for some positive
integer ξ. Then, V can be parsed as a sequence of ξ blocks. It is written as
V̄ξ−1 ‖ . . . ‖ V̄0. Alternatively, V can be represented as a list (sequence of
blocks) V1, . . . , Vξ (with indexes increasing from left to right), where V̄j = Vj+1 =
pjn+n−1pjn+n−2 . . . pjn, j = 0, . . . , ξ − 1.

http://csrc.nist.gov/encryption/modes/proposedmodes/
http://csrc.nist.gov/encryption/modes/proposedmodes/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
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The pad10∗( ) padding. Let Y be a string of bits. The mandatory padding of
Y is the string pad10∗(Y ) generated by first appending the bit 1 and then zero
padding the result.

Remark A.1. pad10∗(S) padding always modifies the string S (hence the label
“mandatory”). It is always a nonempty string, and in particular, consists of at
least one block. If |S| is divisible by n, then one block is added to S in order to
generate pad10∗(S).

B Specification of the AEAD scheme SimpleENC

SimpleENC = SimpleENCK(N,A,M) is an AEAD scheme that operates over a
block cipher E for which κ = n. The scheme encrypts and authenticates a header
A, a message M with a nonce N , under the key K. Note that M and/or A may
be the empty strings.

Parameters. The parameters that define SimpleENC are Amax, Mmax, Dmax,
τ , δ, n, κ (with κ = n) as follows. The maximal allowed lengths for the header
and for the message in any single encryption are denoted by Amax and Mmax,
respectively. To be considered legitimate, the input strings A, M must satisfy
0 ≤ |A| ≤ Amax, 0 ≤ |M | ≤ Mmax. The nonce N has length |N | = (n − τ),
where 2 ≤ τ < n. It is assumed that Mmax ≤ n · 2δ − 1, and for simplicity the
value δ = n/2 is fixed.

For convenience, Dmax is used hereafter in order to denote the maximal
number of bits that can be processed with a given key.

Structure. SimpleENC can be viewed as a three step construction: (a) nonce
based derivation based on CTR mode that produces an encryption key, an au-
thentication key, and two half nonces; (b) encryption (in CTRENC mode) of M ;
(c) authentication of X = pad10∗(A) ‖ pad0∗(M) using CBCMAC-IV.

B.1 Nonce based derivation (for κ = n)

The following derivation function Derive(K,N) is defined.

Derive(K,N)
Input: K, N
Parameter: τ
(a.) KE = E(K,N ‖ 0[#τ ])
(b.) KMAC = E(K,N ‖ 1[#τ ])
(c.) [N2, N1] = E(K,N ‖ 2[#τ ])
Output: [N2, N1],KE ,KMAC

Algorithm Derive.
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B.2 The SimpleENC AEAD scheme

The encryption and decryption flows of SimpleENC are illustrated in Algorithm
1 and Algorithm 2, respectively.

SimpleENCK(N,A,M)
Input: N , A, M
1. ([N2, N1],KE ,KMAC) = Derive(K,N)
2. if M = ⊥ then C = ⊥
else
IV = N1
C = CTRENC(KE , IV,M)

end if
3. X = pad10∗(A) ‖ pad0∗(M)

R = N2 ‖ 0n/2

Tag = CBCMAC-IV(KMAC , R,X)
Output: Tag ‖ C

Algorithm 1. SimpleENC - encryption flow.

SimpleENCK(N,Tag,A,C)
Input: N , A, C, Tag
1. ([N2, N1],KE ,KMAC) = Derive(K,N)
2. if C = ⊥ then M = ⊥
else
IV = N1
M = CTRENC(KE , IV, C)

end if
3. X = pad10∗(A) ‖ pad0∗(M)

R = N2 ‖ 0n/2

Tag′ = CBCMAC-IV(KMAC , R,X)
if Tag′ = Tag then
S = M
else

S = ⊥
end if

Output: S

Algorithm 2. SimpleENC - decryption flow.

Remark B.1. Note that the decryption flow is almost identical to the encryption
flow. This is advantageous in the lightweight setting, as it reduces the size of the
code.
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Parameters choice for concrete instantiations. The selected parameters
are κ = n = 128, δ = n/2 = 64, τ = 8, Mmax = Amax = 253−1, Dmax = 253−1.
The lengths of all the inputs and outputs are required to be divisible by 8, so
that they can be viewed as strings of bytes.

Remark B.2. Although τ = 2 suffices for the derivation, the value τ = 8 is
chosen so that all lengths are divisible by 8 (and considered as bytes).

Random nonces. The nonce length is 120 bits. A uniform random selection
of nonces, used across q encryptions has nonce collision probability of (at most)
q2/2121. For a limit of q ≤ 246 encryptions, this probability is at most 2−29 which
seems a sufficient margin for practical usage.

C Specification of the AEAD scheme SimpleENCsmall

SimpleENCsmall = SimpleENCsmallK(N,A,M) is an AEAD scheme that oper-
ates with a block cipher E for which κ = 2n. The scheme encrypts and authen-
ticates a header A, a message M with a nonce N , under the key K. As above,
M and/or A may be the empty strings. It is called “small” since it is primarily
defined in practice for a 64-bit block, which if used in a naive way provides low
security.

Parameters. The parameters that define SimpleENCsmall are Amax, Mmax,
Dmax, τ , δ, n, κ (with κ = n) as follows. The maximal allowed lengths for the
header and for the message are denoted by Amax and Mmax, respectively. To
be considered legitimate, the input strings A, M must satisfy 0 ≤ |A| ≤ Amax,
0 ≤ |M | ≤Mmax. The nonce N has length |N | = (n− τ), where 2 ≤ τ < n. The
maximal number of bits that can be processed with a given key is denoted by
Dmax. It is assumed that Mmax ≤ n ·2δ−1, and for simplicity the value δ = n/2
is fixed.

Structure. SimpleENCsmall can be viewed as a three steps construction: (a)
nonce based derivation based on XORP/CENC that produces an encryption key,
an authentication key, and two half nonces; (b) encryption (in CTRENC mode)
of M ; (c) authentication of X = pad10∗(A) ‖ pad0∗(M) using CBCMAC-IV.

C.1 Nonce based derivation (for κ = 2n)

The following derivation function DeriveDouble(K,N), is defined.
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DeriveDouble(K,N)
Input: K, N
Parameter: τ
T0 = E(K,N ‖ 0[#τ ])
T1 = E(K,N ‖ 1[#τ ])⊕ T0
T2 = E(K,N ‖ 2[#τ ])⊕ T0
T3 = E(K,N ‖ 3[#τ ])⊕ T0
T4 = E(K,N ‖ 4[#τ ])⊕ T0
T5 = E(K,N ‖ 5[#τ ])⊕ T0
(a.) KE = T2 ‖ T1
(b.) KMAC = T4 ‖ T3
(c.) [N2, N1] = T5
Output: [N2, N1],KE ,KMAC

Algorithm DeriveDouble.

C.2 The SimpleENCsmall AEAD scheme

The encryption and decryption for SimpleENCsmall are illustrated in Algorithm
3 and Algorithm 4, respectively.

SimpleENCsmallK(N,A,M)
Input: N , A, M
1. ([N2, N1],KE ,KMAC) = DeriveDouble(K,N)
2. if M = ⊥ then C = ⊥
else

IV = N1
C = CTRENC(KE , IV,M)

end if
3. X = pad10∗(A) ‖ pad0∗(M)

R = N2 ‖ 0n/2

Tag = CBCMAC-IV(KMAC , R,X)
Output: Tag ‖ C

Algorithm 3. SimpleENCsmall - encryption flow.
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SimpleENCsmallK(N,Tag,A,C)
Input: N , A, C, Tag
1. ([N2, N1],KE ,KMAC) = DeriveDouble(K,N)
2. if C = ⊥ then M = ⊥
else

IV = N1
M = CTRENC(KE , IV, C)

end if
3. X = pad10∗(A) ‖ pad0∗(M)

R = N2 ‖ 0n/2

Tag′ = CBCMAC-IV(KMAC , R,X)
if Tag′ = Tag then

S = M
else

S = ⊥
end if

Output: S

Algorithm 4. SimpleENCsmall - decryption flow.

Remark C.1. Note that the decryption flow is almost identical to the encryption
flow. This is advantageous in the lightweight setting, as it reduces the size of the
code.
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