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Abstract. Rank estimation algorithms allow analyzing the computa-
tional security of cryptographic keys for which adversaries have obtained
partial information thanks to leakage or cryptanalysis. They are particu-
larly useful in side-channel security evaluations, where the key is known
by the evaluator but not reachable with exhaustive search. A first in-
stance of such algorithms has been proposed at Eurocrypt 2013. In this
paper, we propose a new tool for rank estimation that is conceptually
simpler and much more efficient than this previous proposal. It allows ap-
proximating the key rank of (128-bit, 256-bit) symmetric keys with very
tight bounds (i.e. with less than one bit of error), almost instantaneously
and with limited memory. It also scales nicely to larger (e.g. asymmetric)
key sizes, for which the previous algorithm was hardly applicable.

1 Introduction

Despite progresses in the analysis and understanding of side-channel attacks,
empirical evaluations remain an essential ingredient in the security assessment of
leaking devices. The main reason for this fact is that the leakage of cryptographic
implementations is highly device-specific. This implies that the actual security
level provided by ad hoc countermeasures such as masking (e.g. [2, 11] and related
works) or shuffling (e.g. [6, 17] and related works) may depend on the underlying
technology on which they are running (e.g. glitches in integrated circuits are an
illustration of this concern [9]). In fact, even in leakage-resilient primitives that
aim to prevent/mitigate side-channel attacks by cryptographic design, the need
to bound/quantify the leakages in a rigorous way is an important ingredient for
connecting formal analysis with concrete security levels (e.g. [4, 14]).

In this context, the usual strategy for an evaluation laboratory is to launch
a set of popular attacks, and to determine whether the adversary can break
the implementation (i.e. recover the key). The vast majority of these popular
attacks are “divide-and-conquer” ones1, where different pieces of a master key

1 Including but not limited to Kocher et al.’s seminal Differential Power Analysis
(DPA) [7], Brier et al.’s Correlation Power Analysis (CPA) [1], Chari et al.’s Tem-
plate Attacks (TA) [3], Gierlichs et al.’s Mutual Information Analysis (MIA) [5]
and Schindler et al.’s stochastic approach based on Linear Regression (LR) [12].
Following [8], we will use the term “standard DPAs” for those attacks.



are recovered independently, and then recombined via enumeration [10, 15]. But
as recently observed by Veyrat-Charvillon, Gérard and Standaert at Eurocrypt
2013, such security evaluations are limited to the computational power of the
evaluator [16]. This is typically a worrying situation since it sets a hard limit
to the decision whether an implementation is “practically secure”. For example,
one could decide we have a practically secure AES implementation as soon as
the number of keys to enumerate is beyond 250, but this does not provide any
hint whether the concrete security level is 251 or 2120. The latter makes a sig-
nificant difference in practice, especially in view of the possibility of improved
measurement setups, signal processing, information extraction, . . . , that usually
has to be taken into account for any physical security evaluation, e.g. via larger
security margins. As a consequence, the main contribution in [16] was to intro-
duce a rank estimation algorithm which enables evaluators to (quite efficiently)
approximate the security level of any implementation, by approximating the po-
sition of the master key in the list of 2128 possible ones provided by an attack
(even if it is beyond enumeration power). This allowed, for the first time, to
compute all the security metrics introduced in [13] and to summarize them into
“security graphs” (i.e. plots of the adversary’s success probability in function of
the number of side-channel measurement and enumeration power, essentially).

Technically, the Eurocrypt 2013 algorithm essentially results from the time
vs. memory tradeoff between depth-first and breadth-first search in a large data
structure representing the key space. More precisely, since depth-first exploration
of the key space is too computationally intensive, it rather exploits breadth-first
search up to the memory limits of the computing device on which rank es-
timation is performed. This allows the algorithm to rapidly converge towards
reasonably accurate bounds on the key rank. But of course, it implies that re-
fining the bounds becomes exponentially difficult at some point, which may lead
to limited accuracies in certain contexts (e.g. large key sizes, typically). Con-
cretely, the representation of a side-channel attack’s results also has a strong
impact on the efficiency of the Eurocrypt 2013 rank estimation. For example
in the AES case, representing a DPA outcome as 8 lists of size 216 leads to
more (time) efficient rank estimation than representing it as 16 lists of size 28.
Using a (more memory consuming) representation with 5 lists of 224 elements
and one list of 28 elements typically allowed bounds with approximately 10 bits
of tightness2 within seconds of computation, and bounds with approximately 5
bits of tightness within minutes of computation, for a 128-bit key leading to a
post side-channel attack security level of 80 bits. Note that the time complexity
of the latter rank estimation algorithm is dependent of the estimated security
level (and 80-bit was the experimental worst-case in the 128-bit example of [16]).
Summarizing, the Eurocrypt 2013 algorithm provides satisfying estimations of
the key rank as long as the key size is limited (to symmetric key sizes, typically)
and the tightness required by the evaluators can be left to a couple of bits.

2 Measured with the log of the ratio between the upper and lower bounds.



In this paper, we provide an alternative rank estimation algorithm that enjoys
simplicity and (much) improved (time and memory) efficiency. The algorithm es-
sentially works in fours steps. First, we express the DPA outcome with lists of log
probabilities (each list corresponding to a piece of key). Second, we compute the
histograms of these log probabilities for all the lists, with a sufficient number
of equally-sized bins. Third, we recursively compute the convolution between
these histograms. Eventually, we approximate the security level from the last
histogram as the number of keys having larger log probabilities than the correct
one (that is known by the evaluator). Bounds can additionally be obtained by
tracking the quantization errors (depending on the bin width). Besides its sim-
plicity, this algorithm leads to bounds with less than one bit of tightness within
seconds of computation (using the same computing platform as for the previous
estimates). Furthermore, and contrary to the Eurocrypt 2013 algorithm, it nicely
scales to larger key sizes and leads to rank estimations with good tightness for
key sizes up to the ones considered in the asymmetric cryptographic setting.

We finally recall that the proposed algorithm is not limited to physical se-
curity evaluations, and is potentially useful in any cryptanalysis context where
experiments are needed to validate an hypothetical attack model as well.

2 Background

2.1 Side-channel cryptanalysis

Details on how divide-and-conquer side-channel attacks actually extract infor-
mation about the master key are not necessary for describing the rank estimation
problem. For the rest of the paper, we only need to specify the DPA outcomes
as follows. Say we target an n-bit master key k and cut it in Np = n

b pieces of b
bits, next denoted as subkeys ki (for simplicity, we assume that b divides n). The
side-channel adversary uses the leakages corresponding to a set of q inputs Xq

leading to a set of q leakages Lq. As a result of the attack, he obtains Np lists of
probabilities Pr[k∗i |Xq,Lq], where i ∈ [1 : Np] and k∗i denotes a subkey candidate
among the Nk = 2b possible ones. Note that TA and LR-based attacks indeed
output such probabilities directly. For other (typically non-profiled) attacks such
as DPA or CPA, a Bayesian extension can be used for this purpose [15].

2.2 Rank estimation

Concretely, each of the Np lists of probabilities obtained by the divide-and-
conquer adversary is typically small (i.e. easy to enumerate). So one can straight-
forwardly compute the rank of each subkey. The rank estimation problem is
simply defined as the problem of estimating the master key rank based on the
Np lists Pr[k∗i |Xq,Lq]. Quite naturally, the problem is trivial when the attack is
directly successful (i.e. when the master key is rated first). But it becomes tricky
whenever this rank becomes larger. The solution in [16] was to organize the keys
by sorting their subkeys according to the posterior probabilities provided by



DPA, and to represent them as a high-dimensional dataspace (with Np dimen-
sions). The full key space can then be partitioned in two volumes: one defined
by the key candidates with probability higher than the correct key, one defined
by the key candidates with probability lower than the correct key. Using this ge-
ometrical representation, the rank estimation problem can be stated as the one
of finding bounds for these “‘higher” and “lower” volumes. It essentially works
by carving volumes representing key candidates on each side of their boundary,
in order to progressively refine the (lower and upper) bounds on the key rank.
As mentioned in introduction, this approach is efficient as long as the carved
volumes are large enough, and becomes computationally intensive afterwards.

3 Simpler and more efficient rank estimation

3.1 Algorithm specification

We first denote the lists of log probabilities obtained from the previously de-
fined DPA outcomes as LPi = log(Pr[k∗i |Xq,Lq]), and the histograms (with Nbin

equally-sized bins) corresponding to these lists as Hi = hist(LPi,bins). We fur-
ther denote the convolution between two histograms as conv(Hi, Hj). From these
notations, our rank estimation proposal is specified by Algorithm 1.

Algorithm 1 Rank estimation (Hi, log(Pr[k|Xq,Lq])).

initialization: Hcurr = H1;

histograms convolution:
for i = 2 : Np

Hcurr = conv(Hcurr, Hi);
end

rank estimation:

estimated rank ≈
Np·Nbin−(Np−1)∑

i=bin(log(Pr[k|Xq,Lq ]))

Hcurr(i).

The algorithm exploits the property that for two sets of numbers S1 and S2 of
which the distribution is described by the histograms H1, H2, the distribution of
the numbers in the set S1+S2 := {x1+x2|x1 ∈ S1, x2 ∈ S2} can be approximated
by a convolution of the histograms H1 and H2, if the histograms use the same
binsize. Note that the (log) probability of the correct key has to be known by the
evaluator – as in the previous proposal of [16]. Note also that the number of bins
of the current histogram Hcurr increases linearly with the number of convolutions
executed Np. Overall, the accuracy of the approximated rank essentially depends
on the number of bins Nbin and number of pieces Np, leading to the simple
tightness vs. time complexity tradeoff discussed in the next sections.



3.2 Bounding the error

Let us assume two log probabilities LP
(j)
1 and LP

(j)
2 corresponding to the jth

candidates in the lists LP1 and LP2. They are associated with two bins of central

value m
(j)
1 and m

(j)
2 in the histograms H1 and H2. Whenever summing those log

probabilities (as required to combine two lists of probabilities), it may happen

that the central value of the bin corresponding to LP
(j)
1 +LP

(j)
2 is different than

m
(j)
1 + m

(j)
2 (which corresponds to the approximated sum of log probabilities

obtained from the convolution in Algorithm 1). This typically occurs if the dis-

tance between the log probabilities LP
(j)
1 , LP

(j)
2 and their bins’ central values

m
(j)
1 ,m

(j)
2 is too large, as illustrated by the following numerical example.

Example 1. Take two lists LP1 = {0, 0.02, 0.07, 0.11, 0.14, 0.16, 0.19, 0.3} and
LP2 = {0.02, 0.02, 0.036, 0.04, 0.12, 0.19, 0.24, 0.29}. For Nbin = 3, it leads to
a common binsize of Sbin = 0.1, and central values {0.05, 0.15, 0.25}. Hence, we
obtain H1 = {3, 4, 1} and H2 = {4, 2, 2}. The convolution H3 = conv(H1, H2)
is a histogram with Nbin = 5 and central values {0.1, 0.2, 0.3, 0.4, 0.5}, given by

H3 = {12, 22, 18, 10, 2}. As a result, the sum of log probabilities LP
(7)
1 + LP

(8)
2

equals 0.19 + 0.29 = 0.48 and should be placed in the bin with central value 0.5.
Yet, since their corresponding central values are 0.15 and 0.25, the convolution
approximates their sum within the bin of central value 0.15 + 0.25 = 0.4.

In other words, the rank estimation accuracy is limited by quantization errors (of
one bin in our example). Hopefully, we can bound the number of bins between
the result of the convolution and the real sum of log probabilities as follows.

Proposition 1. Let {LPi}
Np

i=1 be Np lists of log probabilities with their jth ele-

ments denoted as LP
(j)
i and set in the bins of central values m

(j)
i of the corre-

sponding histograms {Hi}
Np

i=1. The quantization error (measured in bins) between
Np∑
i=1

LP
(j)
i (i.e. the actual sum of log probabilities) and

Np∑
i=1

m
(j)
i (i.e. the sum of

the bins’ central values corresponding to these log probabilities) is at most
Np

2
.

Proof. If Sbin is the binsize, the equation
∣∣∣LP (j)

i −m
(j)
i

∣∣∣ ≤ Sbin

2
holds for each

i ∈ [1 : Np]. Hence, by summing over all the pieces, we obtain:

−Sbin

2
×Np ≤

Np∑
i=1

(LP
(j)
i −m

(j)
i ) ≤ Sbin

2
×Np.

Hence, we also have: ∣∣∣∣∣∣
Np∑
i=1

LP
(j)
i −

Np∑
i=1

m
(j)
i

∣∣∣∣∣∣ ≤ Np

2
× Sbin,



which limits the distance between
Np∑
i=1

LP
(j)
i and

Np∑
i=1

m
(j)
i to

Np

2
bins. ut

Following, we can directly bound the estimated rank in Algorithm 1 with:

rank lower bound =

Np·Nbin−(Np−1)∑
i=bin(log(Pr[k|Xq,Lq ]))+Np

Hcurr(i),

and:

rank upper bound =

Np·Nbin−(Np−1)∑
i=bin(log(Pr[k|Xq,Lq ]))−Np

Hcurr(i),

where the Np (rather than
Np

2
) value comes from the fact that the distance limit

holds for each list of log probabilities independently. Hence, a triangle inequality

with
Np∑
i=1

m
(j)
i as origin gives us an interval of size 2×Np bins around

Np∑
i=1

LP
(j)
i .

4 Performance evaluation

In this section, we analyze the performances of Algorithm 1. For comparison pur-
poses, we first use the same AES case study as Veyrat-Charvillon et al. We then
extend our experiments to larger key sizes. Note that the functional correctness
of our algorithm directly derives from the previous section. Yet, we tested its
implementation by comparing our results with the ones obtained by enumeration
for key ranks up to 232, and made sure that these results were consistent with
the the ones obtained using the open source code of the Eurocrypt 2013 paper.

4.1 AES-128 case study

As in [16], we considered simulated attacks where the adversary is provided
with 16 leakage samples of the shape li = HW(S(xi ⊕ ki)) + ni for i ∈ [1 : 16],
where HW is the Hamming weight function, S is the AES S-box, ki and xi are
the previously defined subkeys and corresponding plaintext bytes, and ni is a
Gaussian-distributed random noise. We then performed classical TAs using the
noise variance and number of plaintexts as parameters, so that the adversary
computes 16 lists of 256 posterior probabilities. As in the previous paper as well,
the efficiency of the rank estimation algorithms was quite independent of the
type of leakage exploited: the only influencing factor in our performance evalu-
ations was the rank of the correct key candidate. For this purpose, we started
by reproducing an experiment where we launched many independent attacks,
with different security levels and increasing time complexities, and plotted the
resulting bounds’ tightness (defined in Footnote 1). The left (resp. right) part
of Figure 1 contains the results of this experiment for the Eurocrypt 2013 al-
gorithm3 (resp. Algorithm 1). In both cases, they were obtained on a desktop

3 Using 8 lists of size 216 for illustration.



Fig. 1. Rank estimation tightness in function of the security level.

computer with an Intel i7 core, without any parallelization effort (details on
the implementation of Algorithm 1 are in Appendix B). Two clear observations
can be extracted from this figure. First, the security levels leading to the most
complex rank estimations differ for the two algorithms (i.e. key ranks around
280 are most challenging with the Eurocrypt 2013 algorithm, enumerable key
ranks are the most challenging with ours). Second and most importantly, the
new bounds are much tighter (less than one bit of distance between the bounds)
and obtained much faster (in less than a second). For completeness, note that
the experiments with 0.05 sec, 0.5 sec and 5 sec of computations in the right
part of the figure respectively correspond to 5K, 50K and 500K bins.

In order to make the comparison even more explicit, we additionally provide
the “convergence graphs” where the upper and lower bounds on the key rank are
plotted in function of the time complexity. As clear from Figure 2, the conver-
gence is incomparably faster with the histogram-based approach than with the
Eurocrypt 2013 one. Additional results for other relevant security levels (namely
≈ 60-bit and ≈ 100-bit) are provided in Appendix, Figures 5 and 6.

Fig. 2. Rank estimation convergence for an ≈ 80-bit security level.



4.2 Larger key sizes

In order to analyze situations with larger key sizes, we simply extended our AES
simulated setting to more 8-bit pieces. Namely, we considered key sizes of 256,
512 and 1024 bits (i.e. Np = 32, 64, 128). We omit the figure corresponding to
the 256-bit case because it is extremely close to the 128-bit one, and represent
the convergence graphs of the two latter cases in Figure 3. While the application
of the Eurocrypt 2013 method hardly provides useful results on this context, the
figure clearly exhibits that Algorithm 1 produces tight bounds within seconds of
computation, even in this challenging case. Interestingly, the increase of execu-
tion time in the 1024-bit example mainly corresponds to the convolutions’ cost
that becomes significant as the number of bins increases (in Nbin log(Nbin)).

Fig. 3. Rank estimation convergence for 512- and 1024-bit keys.

Eventually and for completeness, we also provide graphs representing the
bounds’ tightness in function of the security level for these 512- and 1024-bit
cases in Figure 4. They essentially confirm the observation already made in
Figure 1 that the most challenging key ranks to estimate are the lower ones.
Note that in these latter cases, the experiments with 0.1 sec (resp. 0.5) and 1
sec (resp. 5 sec) were performed with respectively 2K and 20K bins.

5 Conclusions

This paper provides a surprisingly simple alternative of rank estimation algo-
rithm, that significantly outperforms the previous proposal from Eurocrypt 2013.
It has natural applications in the field of side-channel cryptanalysis and is a tool
of choice for evaluation laboratories willing to quantify the security level of a
leaking implementation in a rigorous manner. More generally, it can also be use-
ful in the evaluation of any cryptanalytic technique where the advantage gained
is not sufficient for key recovery and not predictable by analytical means.



Fig. 4. Rank estimation tightness in function of the security level.
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A Additional figures

Fig. 5. Rank estimation convergence for an ≈ 60-bit security level.

Fig. 6. Rank estimation convergence for an ≈ 100-bit security level.



B Implementation details

One additional advantage of Algorithm 1 is that is it straightforward to imple-
ment, in particular if efficient convolution algorithms for vectors of arbitrary
precision integers are available out of the box, as in a number of mathematical
programming languages. Our experiments were performed with Matlab scripts,
which turn out to be sufficiently efficient for all the case studies we considered.
Yet, we mention that if efficient convolutions algorithms are not available out
of the box, they can easily be implemented using more readily available primi-
tives. One possible approach is to use a mixture of floating point arithmetic and
representation of large numbers according to the Chinese Remainder Theorem.
For example, a set of moderately sized primes, like the 20 largest primes below
10000, is chosen, and each histogram is converted into a CRT representation by
using the 20 integer vectors that are obtained by modular reduction with each
of the 20 chosen primes. This particular choice of primes is suitable to repre-
sent numbers of up to 265 bits (i.e. for rank estimation of 256-bit keys). In this
example, when two histograms are to be convoluted, 20 regular convolutions
are computed, each one modulo the corresponding prime base. To speed up the
computation, each of these 20 convolutions can be performed by multiplication
in Fourier space with regular double precision floating point arithmetic, i.e. two
FFTs, one element-wise multiplication of two complex vectors, and one inverse
FFT. Since the exact result is known to consist of integer values, computational
inaccuracies can unambiguously be removed by rounding to the nearest integers.
In the CRT representation, the input values are bounded by the prime bases, and
this sufficiently limits the requirements on floating point precision. After round-
ing to integer values, modular reductions to the corresponding prime bases are
performed to obtain the CRT representation of the convolution result. The result
can be left in CRT representation until all histograms (i.e. the histograms for
all subkeys) have been convoluted. Only a single CRT back transform to large
integers is required after all the histograms have been convoluted.


