
2434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

SIMPLER MAGIC: Synthesis and Mapping of

In-Memory Logic Executed in a Single

Row to Improve Throughput
Rotem Ben-Hur , Ronny Ronen , Fellow, IEEE, Ameer Haj-Ali , Student Member, IEEE,

Debjyoti Bhattacharjee , Adi Eliahu, Natan Peled, and Shahar Kvatinsky , Senior Member, IEEE

Abstract—In-memory processing can dramatically improve the
latency and energy consumption of computing systems by mini-
mizing the data transfer between the memory and the processor.
Efficient execution of processing operations within the memory
is therefore, a highly motivated objective in modern computer
architecture. This article presents a novel automatic framework
for efficient implementation of arbitrary combinational logic
functions within a memristive memory. Using tools from logic
design, graph theory and compiler register allocation technol-
ogy, we developed synthesis and in-memory mapping of logic
execution in a single row (SIMPLER), a tool that optimizes the
execution of in-memory logic operations in terms of through-
put and area. Given a logical function, SIMPLER automatically
generates a sequence of atomic memristor-aided logic (MAGIC)
NOR operations and efficiently locates them within a single size-
limited memory row, reusing cells to save area when needed. This
approach fully exploits the parallelism offered by the MAGIC
NOR gates. It allows multiple instances of the logic function
to be performed concurrently, each compressed into a single
row of the memory. This virtue makes SIMPLER an attractive
candidate for designing in-memory single instruction, multiple
data (SIMD) operations. Compared to the previous work (that
optimizes latency rather than throughput for a single function),
SIMPLER achieves an average throughput improvement of 435×.
When the previous tools are parallelized similarly to SIMPLER,
SIMPLER achieves higher throughput of at least 5×, with 23×

improvement in area and 20× improvement in area efficiency.
These improvements more than fully compensate for the increase
(up to 17% on average) in latency.

Index Terms—Logic design, logic synthesis, memristor-aided
logic (MAGIC), memristive systems, memristor, memristive
memory-processing unit (mMPU), throughput, von Neumann
architecture.

Manuscript received January 21, 2019; revised May 24, 2019; accepted
July 10, 2019. Date of publication July 30, 2019; date of current version
September 18, 2020. This work was supported in part by European Research
Council under the European Union’s Horizon 2020 Research and Innovation
Programme under Agreement 757259, and in part by the Israel Science
Foundation under Grant 1514/17. This article was recommended by Associate
Editor Y. Shi. (Corresponding author: Rotem Ben-Hur.)

R. Ben-Hur, R. Ronen, A. Eliahu, N. Peled, and S. Kvatinsky are
with the Andrew and Erna Viterbi Faculty of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa 32000, Israel (e-mail:
rotembenhur@campus.technion.ac.il; shahar@ee.technion.ac.il).

A. Haj-Ali is with the Faculty of Electrical Engineering and Computer
Science, University of California at Berkeley, Berkeley, CA 94720 USA.

D. Bhattacharjee is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore.

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Digital Object Identifier 10.1109/TCAD.2019.2931188

I. INTRODUCTION

A
BASIC assumption that has guided computer architects

in the design of almost all modern computing systems is

the separation between processing units and data storage units.

In almost any computing system today, data is processed by

the processor and stored inside the memory. Over the last few

decades, computer architects have enjoyed orders of magni-

tude improvement in computer performance, e.g., processor

speedup, reduced power consumption, and the downscale of

system dimensions. This trend line was fueled by impres-

sive technological achievements in the two principal computer

components: 1) the processor and 2) the memory. Nowadays,

however, it seems that both units have reached a scaling bar-

rier, and that data processing performance is now limited

mostly by the inevitable need to transfer data. The energy

and delay associated with this data transfer are estimated to

be several orders of magnitude higher than the cost of the

computation itself [1]. This data transfer bottleneck is known

as the memory wall.

Numerous methods for alleviating the memory wall have

been explored. The most common method is to integrate

several levels of cache memory near the processor. Cache

memories can significantly reduce the amount of data trans-

ferred between the processor and the memory [2], but do

not fully eliminate this need. A relatively more recent (and

less prevalent) approach is to integrate processing units within

memory elements. The idea of combining processing units

within DRAM and SRAM cells was explored in [3]–[5].

However, the potential benefits of in-memory computing were

not fully exploited in these works, as they still required data

transfer between storage and processing elements. In most

common technologies, conventional memory cells are in fact

ill-suited for performing direct computations.

The breakthrough in the field of in-memory computing came

with the emergence of new memory technologies that can be

used to perform logic operations, in addition to their traditional

data storage capabilities. Some of these technologies are based

on novel electrical elements called memristors [6]. Memristors

are used to modulate data into resistance, where high and

low resistances represent logical “0” and “1,” respectively.

Memristors are actually passive elements with very promis-

ing capabilities. They can change their resistance as a result

of the voltage applied across them, and their high density,

nonvolatility, low power consumption, and CMOS fabrication

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8995-7655
https://orcid.org/0000-0002-0341-284X
https://orcid.org/0000-0001-8515-2828
https://orcid.org/0000-0001-6561-8934
https://orcid.org/0000-0001-7277-7271

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2435

compatibility [7], [8] offer huge potential improvements over

current cell technologies. Furthermore, memristors can be

used to perform logic operations, enabling processing within

the memory [9]–[12]. Resistive random access memories

(RRAMs) [13] have paved the way for combining process-

ing and memory, since they allow the same physical entities

to be used for both [9]–[12].

An attractive approach for performing logic within a con-

ventional memristive memory array is stateful logic, where

logical states of logic gates are represented by resistance and

the logic gates are constructed solely by memristors. The

inputs of a logic gate are the logical states of the memris-

tors before the execution of the logical operation associated

with the gate. Likewise, the output of the gate is the state

of the memristor after the execution of the logical operation

associated with the gate.

Several stateful logic families compatible with memris-

tive memories have been proposed in this context [14], [15].

A leading candidate among these is memristor-aided logic

(MAGIC) [16]. MAGIC has been shown to outperform com-

peting methods [17], while enabling a full implementation

within a standard memristive memory array. The basic MAGIC

gate executes a logical NOR operation. Since NOR is a com-

plete logic function, a MAGIC NOR gate is sufficient for the

execution of any logical operation within the memory: the

desired logic function is divided into a sequence of MAGIC

NOR operations. In what follows, we refer to a single exe-

cution of a function with specific inputs as a computation

instance (or as an instance). MAGIC NOR gates can be applied

anywhere within the memory array, using the same cells and

structure, where the stored data functions as input for the

logical operation.

The integration of data storage capabilities with MAGIC-

based processing within memristive memories has led to

the development of the memristive memory processing unit

(mMPU) [18]. This novel architecture replaces conventional

DRAM memory with a memory that is, also capable of per-

forming general-purpose computing. The mMPU consists of

standard memristive memory arrays, with only minor modifi-

cations to the CMOS periphery and control circuits to allow

support for computations as well as conventional data read and

write operations. The mMPU is therefore, completely compati-

ble with standard von Neumann architectures, as it can operate

either as a hybrid memory-processing unit or as a standard

memory. Nevertheless, the advantages of a memristive cross-

bar array, e.g., density and nonvolatility, are maintained in the

mMPU architecture.

To perform a computation within the mMPU, a compute

command is received by the mMPU controller [19]. The con-

troller interprets the command and converts it into a sequence

of MAGIC operations. It then sends the corresponding con-

trol signals to the memristive memory arrays to perform the

actual logic operations. To realize the full potential of the

mMPU, the desired computation must be converted into an

efficient sequence of MAGIC operations. Such a sequence

should involve a small number of computational steps, utilize

only a limited area within the array, and consume low energy.

Several such sequences were proposed for some popular

arithmetic operations and shown to be relatively efficient. The

studied functions include fixed-point addition and multiplica-

tion [17], [20], [21], and convolution [22]. However, all of

these works relied on manual crafting and optimization of

the sequence of operations, designed for a specific logical

function. Obviously, this is neither a general, nor optimal,

design methodology. Furthermore, manual designs are natu-

rally time consuming and error-prone, hence prolonging the

time-to-market of any future product.

Recent work has focused on automatic conversion of arbi-

trary logical functions to a sequence of executions within the

memory. In [23] and [24], tools were developed to generate

execution sequences for arbitrary logical functions, while min-

imizing the computational latency in a memristive memory

setup. Latency is minimized for a single computation instance

by exploiting parallelism features of in-memory stateful logic

operations so to execute several NOR operations within an

instance in a single cycle. However, because multiple rows and

columns must be utilized, this optimized latency comes at the

cost of disabling significant areas within the array, since many

cells are unused for the computation. Additionally, numerous

instances of the same logical function within a given memory

array can only be executed serially in this method.

In this article, we take a different approach: we improve

the performance of the mMPU by maximizing the through-

put rather than minimizing the latency. We work under the

single instruction, multiple data (SIMD) [2] concept, exploit-

ing parallelism among different computation instances rather

than optimizing a single instance of a given logical function.

In this model, the mMPU will perform a series of identical

computations (differing only in the input data) on many com-

putation instances. We present a novel synthesis and mapping

tool called synthesis and in-memory mapping of logic execu-

tion in a single row (SIMPLER).1 SIMPLER unleashes the

full potential of parallel computations offered by in-memory

executions within a memristive array, in the SIMD setup.

As a synthesis tool, SIMPLER outperforms the previous

work by performing in parallel multiple instances of compu-

tations associated with a given logical function. Thus, although

the latency of a single computation instance may be slightly

higher, the overall throughput of the array increases dramat-

ically thanks to the ability to compute each instance in a

different row in parallel. Such a configuration allows SIMD

operations to be supported efficiently in an mMPU setup for

the first time. The magnitude of this paradigm change is illus-

trated by a simple, realistic example: a system consisting of a

512-row memory array can execute 512 computation instances

in parallel. Even at 4× longer latency, the system provides an

astonishing 128× higher throughput.

SIMPLER represents a fundamental shift in the design of

in-memory computing systems. New challenges that arise in

this novel, throughput-oriented, approach are all solved using

SIMPLER. In this context, SIMPLER makes the following

contributions.

1The SIMPLER tool may be found at: https://github.com/
RotemBenHur/SIMPLER-MAGIC.git.

2436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

1) Automates the process of generating in-memory MAGIC

NOR execution sequences to improve the throughput of

the computation and allow efficient SIMD executions.

2) Compresses relatively complex computations into a sin-

gle finite size memory row by efficient reuse of cells

when necessary.

3) Reduced Tool Complexity: SIMPLER uses efficient com-

piler like register allocation technology to generate

an optimized mapping for huge computations within

seconds.

Compared to the previous work that optimizes latency rather

than throughput for a single function [24], [25], SIMPLER

achieves an average throughput improvement of over 435×

for a memory array with 512 rows. When the previous tools

are parallelized in a similar manner to SIMPLER, SIMPLER

offers at least 5× higher throughput and 23× smaller area

usage.

II. PRELIMINARIES AND MOTIVATION

All in-memory computations in this article rely on the basic

MAGIC NOR operation. We first explain MAGIC and how it

motivates our choice to optimize throughput in Section II-A.

Then, we describe a motivational example to explain and sup-

port this choice in Section II-B. Next, we survey the relevant

related work in Section II-C. Finally, we formally define the

problem this article solves in Section II-D.

A. Preliminaries and Definitions

The MAGIC NOR gate is performed by applying voltage(s)

to the input(s) and output memristors. The state of the output

memory cell changes in accordance with the logical states of

the memristors. The advantages of MAGIC over other stateful

logic techniques include the separation between the input(s)

and output memristors, the need for only a single execution

voltage (called Vg), and the lack of additional periphery ele-

ments [17]. The N-input NOR gate operation requires two steps

(clock cycles).

1) A logical “1” is written to the output memristor by

applying a voltage, denoted Vw1, across it.

2) Vg is applied to all N inputs, and the ground is connected

to the output.

A single-input NOR is a NOT gate; hence, both N-input

NOR and NOT gates may be executed by MAGIC. Fig. 1 illus-

trates the in-memory execution of three MAGIC NOR gates,

each using three cells: two for the inputs and one for the

output. The inputs and output of a single gate need not be

located in adjacent cells; the only requirement is that they

be located on the same row (MAGIC row operation), or col-

umn (MAGIC column operation). To perform both MAGIC

row and MAGIC column operations, a transpose memory [17]

is required.

Since a NOR operation spans the complete set of Boolean

operations, a MAGIC NOR gate is sufficient to execute any

desired logic function. Hence, MAGIC NOR may be used as

the basic computing element for all kinds of processing within

the memory by dividing the desired function into a sequence of

MAGIC NOR operations (execution sequence). The execution

Fig. 1. Parallel execution of the three aligned MAGIC NOR gates.

(a)

(b)

Fig. 2. Serial execution of two MAGIC NOR gates in a single row.
(a) Two-gate netlist. (b) Execution of the netlist in three steps (clock cycles).
1) Writing a logical “1” to the output memristors (initialization). 2) Gate 1
execution—NOR(IN1, IN2). 3) Gate 2 execution—NOR(IN3, OUT1).

of a sequence of two two-input MAGIC NOR gates is shown

in Fig. 2. These basic NOR operations are performed serially

using the memory cells, where the output of the first MAGIC

gate acts as one of the inputs of the second gate during the

second stage (cycle) of the computation. Serially executing all

the gates in the sequence may be time consuming. Aligning

the inputs and outputs of different MAGIC NOR gates allows

them to be executed in parallel, as illustrated in Fig. 1. Wisely

exploiting this property may either improve the latency of a

logic function or the throughput of an SIMD operation.

The latency may be improved by parallelizing several gates

of the NOR execution sequence belonging to the same single

instance, using multiple rows for the execution of a single

instance [23]. The throughput may be improved by paralleliz-

ing the execution of many instances of the same logic function:

each instance is placed in a different row.

In our context, throughput is defined as

Throughput =
#instances

Latency
(1)

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2437

(a)

(b)

(c)

Fig. 3. (a) Single-bit full adder (1-bit FA) netlist. (b) Single 1-bit FA execution using an 11 × 3 array. Each green cell initially stores the inputs. Each
orange cell gi stores the result of gate i. Gates g1 and g2 (yellow rectangles) are executed in parallel during the first clock cycle, and gates g4 and g5 (gray
rectangles) are executed in parallel during the second clock cycle. All other gates are executed serially. The total execution time is therefore 10 clock cycles,
but parallelizing instances is difficult. (c) N 1-bit FA operations executed in parallel. Each FA operation is allocated to a single row. Each green cell initially
stores the inputs. Since they are all aligned, all N FA operations are executed concurrently. Each orange cell gij stores the result of gate i of the jth FA
operation. All results of gij of a specific i for all j (each orange column) are executed in a single clock cycle. Since there are enough columns for computation,
no initialization cycles are necessary, and the execution time is 12 cycles, in accordance with the number of gates.

where #instances is the number of instances of the func-

tion performed in parallel (=#rows), and Latency is the

number of clock cycles required for the computation.

The throughput increases linearly with the number of

instances.

When the row is wide enough to hold all the inputs and gates

required to execute the desired function (number of columns

≥ number of inputs + number of gates), the computation fits

easily into that row, and the number of execution steps (clock

cycles) is equal to the number of gates. However, if the row is

not wide enough (number of columns < number of inputs +

number of gates), the computation must be split into different

rows or cells must be reused.

A cell can be reused when it stores data no longer needed

for the rest of the computation, i.e., all its consumers have

already been computed. A cell must be initialized before

reuse. Because MAGIC requires that a logical “1” be ini-

tially written to the output memristor, a cell is reinitialized

by writing a “1” to it. We assume that all desired cells within

a row can be reinitialized in a single clock cycle, by apply-

ing Vw1 to their columns and connecting the row to ground.

Reinitializations that take more than a single-clock cycle is

addressed in Section IV. The overall number of total cell

initializations does not change because of cell reuse. Every

MAGIC write has to be preceded by a cell initialization, so

the total number of writes remains the same regardless of

cell reuse; only their timing is different. Depending on the

desired computation and the number of cells available for

it, cell reuse may or may not suffice. The execution order

of the gates of a given computation determines the number

of cells that can be reused at a given time; thus, a mapping

will be found only if the execution order of the gates is effi-

cient. For large logic functions, all of the cells might still be

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Execution of the 1-bit full adder netlist using a single row of the
memory with nine columns, following the execution order detailed in Fig. 6.
The states of the row during different stages of the computation are as fol-
lows. (a) Initial state of the row. (b) Serial calculation of the first six gates.
(c) Initialization of the three gate results not required as inputs for future com-
putations. (d) Serial calculation of the next three gates. (e) Initialization of
the three gate results not required as inputs for future computations. (f) Serial
calculation of the last three gates.

required for reinitialization, because there are no unneeded

cells to free. Consequently, the tool fails to find a possible

mapping.

Since the row has to be large enough for complex execu-

tions, the size of the memory array limits the complexity of

the computations that can be executed in-memory. In conven-

tional DRAM memories, the smallest unit is called an MAT.

Usually, a DRAM MAT consists of an array of 512 × 512

memory cells. In memristive memories, an MAT may con-

tain up to 512 × 512 cells in transistor-less memristive arrays

and up to 2048 × 8192 in 1T1R arrays [8]. Using a single

MAT to execute a given function yields better latency and

2438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

energy consumption. In contrast, distributing a single compu-

tation instance over more than a single MAT requires data

transfer between the MATs, significantly reducing the benefits

of in-memory computation [26]. However, the same computa-

tion can be parallelized over different data in different MATs.

In this article, we consider an MAT size of 512×512. This size

allows us to maintain the conventional DRAM structure while

supporting in-memory execution of relatively large functions

(large number of MAT columns) and improving the parallelism

(large number of MAT rows). To show the potential of execut-

ing larger functions, we report some results with a 1024×1024

MAT size.

B. Motivational Example

To further clarify the definitions and explanations from the

previous section, we describe an example of a single-bit full

adder, consisting of 12 gates,2 as described in Fig. 3(a). To

improve the latency of a single instance of the full adder, it

is executed using an 11 × 3 memory array. Two pairs of NOR

operations are parallelized, and the execution takes 10 clock

cycles, as shown in Fig. 3(b).

The throughput of the full adder can be improved by

executing N instances in parallel using an N × 15 array.

Each instance is executed using a single row, and the num-

ber of execution steps (clock cycles) is 12, in accordance

with the number of NOR and NOT gates (independent of

the value of N), as demonstrated in Fig. 3(c). In this case,

row size = 15 columns = 12 gates + 3 inputs; hence, no

reinitialization cycles are required. A row with fewer than 15

columns is too small to execute all the gates. Cells must be

reinitialized in this case. If, for example, the instance is exe-

cuted using a 9-cell row, two reinitialization cycles will suffice

when the execution order is chosen wisely, as described in

Fig. 4. On the other hand, when the row size is less than 8,

reinitialization will not help, and no mapping exists, regardless

of the execution order.

C. Related Work

Techniques for mapping an execution of complex func-

tions into a limited-size MAT were previously proposed. The

two leading approaches are: 1) to automatically improve the

latency of a single computation instance by executing differ-

ent gates of the same instance in parallel and 2) to manually

improve the throughput by executing different instances of the

same logic function in parallel.

In our previous work, we developed synthesis and in-

memory mapping of logic execution for MAGIC (SIMPLE

MAGIC) [23], a tool for improving the latency of a single

instance by using both MAGIC row and column operations to

exploit the parallelism within that instance. Without reusing

cells, SIMPLE maps the gates of the same instance of a

function to the memory array so that as many gates as pos-

sible of the same computing instance are aligned in either

rows or columns; therefore, many gates can be performed

in parallel. To achieve the best mapping, SIMPLE solves an

2The best known full adder consists of nine two-input NOR Gates. We use
a 12-gate full adder to better explain various aspects of the SIMPLER tool.

optimization problem that minimizes the latency, area or/and

energy. SIMPLE improves the latency by 48% on average as

compared to a single row execution (without reusing cells).

Motivated by the computational burden of solving

optimization problems, Yadav et al. [24] suggested heuristics

for finding a mapping. Instead of generating the mapping with

the maximum number of aligned gates (thus, with maximum

parallelism and minimum latency), the unaligned gate outputs

required as inputs for other gates were moved by adding copy

cycles. Their method resulted in a latency increase of 4.9%

and an average area increase of 4.7× as compared to serial

execution using a single row.

To alleviate the copy cycles overhead, the authors of

SAID [25] proposed an improved heuristics that uses a lookup

table-based synthesis, based on a sum-of-products (SoP) repre-

sentation, to increase the number of gates executed in parallel.

SAID reduces the latency by 28% compared to serial execution

using a single row, but increases the area by 8.6×.

Talati et al. [17] proposed that each logic function be

mapped into a single row. Parallelism within a single com-

putation instance is not allowed, meaning that the gates are

executed serially. Therefore, the latency of the execution (in

terms of the number of clock cycles) equals the number of

NOR and NOT gates in the execution sequence of that logic

function, which is not minimized. Additionally, cell reuse is

not supported. Unfeasibly wide rows are thus required to exe-

cute large logic functions. In [22], manually crafted algorithms

that reuse cells are proposed to solve this problem.

Cell reuse allows larger functions to be feasibly exe-

cuted inside the size-limited memory arrays. However, manual

implementation of complex algorithms (with and without cell

reuse) is very tedious and error prone. The variety of functions

they can fit in a restricted memory row size is therefore, quite

limited. In contrast, SIMPLER automatically generates the

execution sequence that allows maximum cell reuse when nec-

essary. For example, SIMPLER reduces the minimum required

number of cells for the execution of an 8-bit multiplier from

77 (in [22]) to 65, and reduces the execution latency using a

row size of 77 cells from 918 cycles to 699.

Efficient in-memory execution of SIMD operations yields

significantly higher throughput than low latency execution of

a single computation instance. This motivated our choice to

automatically map the function execution into a single row.

D. Problem Definition and Complexity

The problem we address in this article is similar to the

problem discussed in [27]. The problem is generating an exe-

cution sequence ES that uses the minimum number of memory

cells (smallest row). It is formally defined as follows.

Problem Statement 1: Given a data dependence graph G that

represents a logical function, derive an execution sequence ES

for G that is, optimal in the sense that the number of memory

cells required for executing the graph is minimal.

For a general directed acyclic graph (DAG), the problem

is known to be NP-complete [28]. We therefore, propose

heuristics to find an optimized mapping in a linear complexity.

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2439

Fig. 5. SIMPLER general flow. The ABC synthesis tool receives an arbitrary logic function and a modified library, and produces a minimized NOR and
NOT netlist. An in-house Python-based mapping tool receives the netlist along with the possible memory array size and produces the execution sequence.

III. SIMPLER MAPPING ALGORITHM

The SIMPLER flow is divided into two main stages, as

shown in Fig. 5.

1) ABC Synthesis Tool: Similarly to [23], the first stage is

the ABC synthesis tool [29] with a modified cell library. ABC

receives an arbitrary logic function in a .pla or .blif format,

and produces a NOR and NOT netlist in a verilog format, while

minimizing the number of gates.

2) SIMPLER Mapping Tool: The second stage is the

SIMPLER mapping tool, an in-house Python script that does

the following.

1) Receives the minimized NOR and NOT netlist and the

number of cells within the memory row dedicated to the

computation.

2) Maps all netlist gates to that single row by determining

the locations (column/cell number) of each input and

output of the gate and the timing (clock cycle number)

in which it is executed.

3) Adds reinitialization cycles when cells must be reused.

In the next sections, the SIMPLER mapping algorithm

is described. Section III-A discusses the assumptions and

considerations for optimizing the in-memory execution. In

Section III-B, the mapping of the netlist gates into the memory

row is described. The complexity of the algorithm is then

discussed in Section III-C.

A. Principles for Efficient Mapping Into the Memory

The mapping of a computation to the memory cells is pro-

duced by first determining the execution order of the gates and

then deciding to which free cell each gate is allocated. The

order influences the number of cells required for the entire

execution, as some gates may be freed earlier than others;

thus more cells may be reused during prior stages of the

computation. To minimize the required number of cells, we

use a register allocation technique that minimizes the number

of registers necessary for a computation [30]. This technique

requires first performing a reduction from the NOR and NOT

netlist to a DAG

vertexi ← gatei (2)

edgei ← wirei (3)

for all i gates in the netlist. Therefore, the DAG’s roots are

the gates whose outputs are connected only to the function

outputs, and its leaves are the gates whose inputs are connected

Fig. 6. Reduction from one-bit full adder netlist [Fig. 3(a)] to a DAG, where
each vertex represents a gate and each blue edge represents a wire. The green
arrows represent the direction the signals propagate in the original netlist.
The FO and the CU are, respectively, the FO and the CU values of each
vertex. The order of the execution sequence is determined according to the
CU values.

only to the function inputs. Additionally, each vertex receives

a fan out (FO) value according to the number of vertices its

output is connected to. For example, a reduction of the one-bit

full adder netlist from Fig. 3(a) to a DAG is shown in Fig. 6.

To maximize the number of cells that may be reused at a

given time, the following two principles should be considered

while determining the execution order.

1) Use Depth-First Search (DFS) rather than breadth-first

search (BFS) [31], i.e., start from the root node(s) and

traverse along each branch as far as possible. A node V

is inserted into the execution sequence on the way back

up if either: 1) V is a leaf or 2) all children of V are

in the sequence. For example, if the execution order

of the DAG in Fig. 6 is determined according to BFS:

g1 → g2 → g4 → g3 → g5, then after five cell alloca-

tions, only two may be reused (g1, g2). However, with

DFS, the order is g1 → g2 → g5 → g4 → g6, and

then after five cell allocations, four cells may be reused

(g1, g2, g5, g4).

2) The Quality of the Execution Order Depends on the

Order of Traversal Among the Node’s Children: Our

heuristic for determining the order is to first execute

subgraphs that require more cells for their execution.

2440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

For example, in Fig. 6, g6 has two subgraphs: g5 and

g4, which require, respectively, execution of three cells

and a single cell. If subgraph g5 is executed first, then

at least three cells are required for the execution of g6

[g5, g4, g6, in the cycle that g6 = NOR(g4, g5) is exe-

cuted, since the cells of g1, g2 are reused]. On the other

hand, if subgraph g4 is executed first, then at least four

cells are required for the execution of g6 [g4, g1, g2, g5,

in the cycle that g5 = NOR(g1, g2) is executed].

To determine the minimum number of cells required for the

execution of each subgraph, our algorithm follows the gen-

eralized Strahler algorithm proposed in [30], which uses the

Strahler number [32] to determine the minimal number of reg-

isters needed to compute an arithmetic expression tree. In the

SIMPLER algorithm, this number is called cell usage (CU),

and it is calculated for each vertex. The CU represents an

estimation for the number of memory cells known to be suf-

ficient for executing the subtree of each vertex. As previously

stated, the execution of a MAGIC logic gate also requires

a memory cell for its output. Therefore, CU + 1 of a ver-

tex is the estimated sufficient number of memory cells for

the entire execution of that vertex (after execution of all its

descendants and reusing cells when possible). For example, as

discussed in the previous paragraph, to execute g6 from Fig. 6,

three cells are enough when choosing the right execution order

(CU(g6) = 2).

The Strahler algorithm [30] is intended for trees only.

However, in our case the netlist is reduced to a DAG, since

some gates may be connected to several parents or ances-

tors, i.e., their FO is larger than 1. As a result, the CU + 1

value does not predict the minimum number of cells accu-

rately. For example, CU(g9) = 2, but when the execution order

is g1 → g2 → g5 → g4 → g6 → g7 → g3 → g9 → g8,

four cells are required when g9 is executed. The reason is that

FO(g6) = 2; thus, while executing g9, g6 is still needed for

the execution of g8. Therefore, g6 may not be freed after g7 is

executed. Consequently, during the execution of g9, four cells

are occupied by the following gates: g6, g7, g3, g9. As a result,

determining the execution order according to the Strahler num-

ber alone, while perfectly correct, does not necessarily produce

the optimal execution. More optimal cell ordering should be

evaluated in the future work.

B. Mapping Execution Sequence of Logic Functions Into

Single Row

The mapping algorithm, presented in Algorithm 1, in

Appendix A in the supplementary material, receives the netlist

as a directed graph G = (V, E) representation (V and E are,

respectively, the sets of nodes and edges), along with the num-

ber of cells dedicated for the computation (row size), and

produces a mapping of the nodes to that limited-size row. In

the initial state of the memory, when a computation is started,

all inputs are stored in a single row, in adjacent cells. (This is

not in fact mandatory for in-memory execution of MAGIC, but

the algorithm works this way for simplicity and without loss

of generality since the locations of the inputs are irrelevant

because the mapping is arbitrary.)

The mapping is done by traversing all vertices of the DAG

twice: 1) once to determine the execution order by calculating

a CU value for each vertex and 2) again, using the order

imposed by the CU values, to allocate the vertices into the

available memory cells. Both traversals are done by starting

from all the DAG roots (the gates that produce an output of

the netlist, e.g., vertices g12 and g11 in Fig. 6) to the leaves

[gates connected only to the input(s) of the netlist, e.g., vertices

g1–g4 in Fig. 6].

The stages of the mapping are as follows.

1) Stage 1—Compute the Cell Usage Value for Each Vertex:

In this stage, the CU value is computed for each vertex,

by function ComputeCU, as detailed in Algorithm 2, in

Appendix A in the supplementary material. The CU is com-

puted by traversing all of the vertices, starting from each one of

the roots, and continuing to the leaves. A CU value is assigned

to a vertex only if all its children were already given a CU

value. The CU of a given vertex V is determined according to

the following rules.

1) If V is a leaf (i.e., all of the inputs of V are also inputs

of the function): CU(V) = 1.

2) Else: Sort all N children of V by descending order of

their CU values. Then:

CU(V) = max{CU(Vchild,i) + i − 1},∀i = (1 to N).

Explanation: When executing child i, all i − 1 chil-

dren must already be allocated, and CU(Vchild,i) is the

estimation of the number of cells necessary for executing

child i’s subtree. Therefore, for the execution of child i,

the number of cells is CU(Vchild,i) + i − 1. Therefore,

the number of cells sufficient for executing V’s subtree

(CU(V)) is max{CU(Vchild,i)) + i − 1},∀i = (1 to N).

An example of the CU values of a single-bit full adder is

given in Fig. 6.

2) Stage 2—Allocate the Gates to the Memory Cells: In

this stage, the gates are allocated to the memory cells, and

each allocation is assigned an execution clock cycle num-

ber t. This number is assigned by functions AllocateRow and

AllocateCell, which are detailed in Algorithms 3 and 4, in

Appendix A in the supplementary material, respectively. The

graph is traversed again, starting from the roots, and continuing

to the leaves. The child with the larger CU value is traversed

first. For example, when traversing the graph in Fig. 6, g5 is

traversed before g4 from g6, since CU(g5) = 2 > CU(g4) =

1. When a gate whose children were already allocated to cells

(i.e., executed) is reached, it can also be executed (since all its

inputs are ready). For example, in Fig. 6, the execution order

when starting with the root g11 is either:

1) g1 → g2 → g5 → g4 → g6 → g8 → g7 → g3 →

g9 → g11 → g10 → g12 or;

2) g1 → g2 → g5 → g4 → g6 → g7 → g3 → g9 →

g8 → g11 → g10 → g12

since CU(g8) = CU(g9); thus no priority between them is

defined. In future work, priorities between vertices with equal

CU values and priorities between different roots should be

explored. The gate that is ready for execution is allocated to

a free cell, and t is incremented by 1. If no free cells are

left, the cells that store the outputs of the gates that are no

longer needed are all reinitialized in a single cycle; thus t

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2441

TABLE I
COMPARISON BETWEEN SIMPLE MAGIC [23] WITH 512 × 512 MEMORY ARRAY SIZE AND SIMPLER, BOTH USING NOR2 NETLISTS

is also incremented by 1. Consequently, there is more space

available for mapping the outputs of the next gates; thus, the

gate is allocated, with another increment of t.

To determine that the output of a gate is not needed as input

for future gates, the FO value is computed for each gate. When

a gate is allocated, the FO values of all gates connected to its

inputs are reduced by one. Therefore, during the initialization

cycle, the cells of the gates with FO = 0 may be freed and

reused, since they are not needed as inputs for any future gate.

For example, the mapping of a single-bit full adder into 9 cells

is given in Fig. 4. The total number of cycles is 14, 2 of which

are dedicated for initialization. In the first initialization cycle,

gates g1, g2, and g4 are reused. However, g5 and g6 cannot

be freed yet, since FO(g5) = FO(g6) = 2 and during the

first initialization cycle only one of their parents nodes was

executed (g6 is parent of g5 and g8 is parent of g6).

When all the netlist gates are mapped, the mapping tool

prints the produced mapping and the required number of ini-

tialization cycles. When there is no possible mapping, the tool

reports it.

C. SIMPLER Complexity

We evaluated SIMPLER complexity and found it to be

O(|V|), where |V| is the number of vertices in the graph (# of

gates). The analysis is as follows [where |E| is the number of

edges (wires), and N is the row size used for allocation].

1) The maximum number of edges entering a vertex

depends on the type of gate used: 2 and 4 for NOR gates

with, respectively, 2 and 4 inputs. Hence, |E| < 4 · |V|

or O(|E|) ≤ O(|V|).

2) We use DFS in both stages. Classical DFS has complex-

ity of O(|V| + |E|); hence, in our case it is O(|V|).

3) In stage 1, for each vertex we sort the incoming edges

according to the CU of the vertices they came from.

Since the number of incoming edges is limited to 2 or 4,

this is basically a (small) constant cost.

4) In stage 2, allocating a cell for a vertex involves search-

ing for a free cell and changing its state as needed. The

complexity of this search is O(1), achieved by using

linked-lists to link all cells with the same state.

All in all, SIMPLER complexity is linear with the number

of vertices in the graph. This low complexity results in a fast

execution time. As an example, SIMPLER maps a graph with

over 12K vertices, independent of the memory row size, in

less than 0.6 s on a client notebook (HP EliteBook 840, Intel

Core i7, 16-GB RAM, and 512-GB SATA SSD).

IV. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate the SIMPLER synthesis and mapping tool by

calculating the latency, throughput, area, and area efficiency

of each benchmark execution using the Python-based tool we

developed. Additionally, we compare SIMPLER to other tools

by assessing its ease of use and the time it takes to generate

the mapping. The netlists we use consist of N-input NOR gates,

where either: 1) N ∈ {1, 2}, i.e., NOT gates and two-input NOR

gates (NOR2) or 2) N ∈ {1, 2, 3, 4} (NOR4). The evaluation

consists of three parts.

1) Comparison to other mapping tools: SIMPLE

MAGIC [23], Yadav et al. [24] (referred as YADAV

for the rest of this article) and SAID [25]. For each

comparison, we use the benchmark suites used by

the original authors. For both SIMPLE and YADAV

we use NOR2 netlists, and for SAID we use NOR4,

similarly to each work. Tables I–III list the results of

the comparison with, respectively, SIMPLE MAGIC,

YADAV, and SAID.

2) Evaluation of SIMPLER on the EPFL combinational

benchmark suite [33]. EPFL is a quite large, modern

benchmark suite designed to challenge modern logic

optimization tools. The tradeoff between the area and

the performance (latency and throughput) is examined.

The SIMPLER tool is very efficient and produces the

mapping for each of the EPFL benchmarks within

seconds. The SIMPLER EPFL results are given for

both NOR2 and NOR4. These results will be useful

for comparison with future work, and are detailed

in Table IV.

3) Comparison to Optimal SIMPLER (OptiSIMPLER)3:

OptiSIMPLER tries to determine the minimum area (in

terms of number of cells) required for the execution

of a function using a single row of the memory by

reusing cells, and then to find the minimal latency pos-

sible for this area. We developed OptiSIMPLER as part

of this article on SIMPLER to assess SIMPLER’s ben-

efits. OptiSIMPLER works by solving an optimization

3The OptiSIMPLER tool may be found at: https://github.com/
debjyoti0891/arche.git.

2442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE II
COMPARISON BETWEEN YADAV [24] WITH 512 × 512 MEMORY ARRAY SIZE (1024 × 1024

FOR LAST THREE BENCHMARKS) AND SIMPLER, BOTH USING NOR2 NETLISTS

TABLE III
COMPARISON BETWEEN SAID [25] WITH 512 × 512 MEMORY ARRAY SIZE AND SIMPLER, BOTH USING NOR4 NETLISTS

TABLE IV
EPFL BENCHMARKS EXECUTED USING SIMPLER WITH DIFFERENT MEMORY ARRAY SIZES (#MINCELLS, #MINCELLS + max{5% of #MinCells, 10}),

AND #MINCELLS WITH LIMITATION ON NUMBER OF SIMULTANEOUSLY INITIALIZED CELLS (LIMITINITCELLS).
COMPARISON BETWEEN RESULTS OF NOR2 AND NOR4 NETLISTS

problem, using the Z3 SMT solver [34]. This tool evalu-

ates the quality of SIMPLER’s heuristics by comparing

the minimum number of cells proposed by SIMPLER

to the optimal solution generated by OptiSIMPLER.

Since solving optimization problems is computation-

ally cumbersome, its run-time has to be restricted. We

allowed OptiSIMPLER to run no more than two days per

benchmark. With this limit, OptiSIMPLER succeeds in

mapping only small benchmarks (less than 100 gates).

Therefore, it succeeds in running only the LGsynth91

benchmark suite [35]. OptiSIMPLER and SIMPLER

are compared in Table V, where both map NOR4

netlists.

A. Description of the Compared Previous Works

We compare SIMPLER to three previously developed

mapping tools: SIMPLE MAGIC [23], YADAV [24], and

SAID [25].

1) SIMPLE MAGIC [23]—solves an optimization problem

that minimizes the latency of the execution of a func-

tion in-memory. As opposed to SIMPLER, SIMPLE

uses several memory rows for the execution of a sin-

gle computation instance, with the goal of reducing the

latency of a single computation instance. For the same

reasons as OptiSIMPLER, SIMPLE can map very small

benchmarks only; thus, we evaluated SIMPLE using the

LGsynth91 benchmark suite [35].

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2443

TABLE V
COMPARISON BETWEEN THE MAPPING WITH THE MINIMAL REQUIRED NUMBER OF CELLS (OPTISIMPLER), AND SIMPLER, USING NOR4 NETLISTS

2) YADAV [24]—uses heuristics to map the execution

of larger functions into the memory. It can process

larger benchmarks than SIMPLE. The authors use the

ISCAS85 benchmark suite [36] for their evaluation. To

execute the larger benchmarks within an array with

limited-size rows, several rows are used for a single

computation instance and data is copied among the dif-

ferent rows occasionally. Each copy of a single bit takes

two clock cycles (two NOT operations), thus increasing

the execution latency.

3) SAID [25]—similar motivation and general approach as

YADAV, but employing a different mapping technique

and using the IWLS’93 benchmark set.

B. Description of the Criteria for Efficient Mapping

Latency is the number of cycles to complete a computation.

An MAT (memory array) may contain several computation

instances. The latency of executing all computation instances

in the given MAT (#CycAllInst) is higher than the execu-

tion latency of a single computation instance (#CycSinInst),

unless all computation instances can be executed in parallel. In

SIMPLER, where all instances are simultaneously executed,

the overall latency of all instances is equal to the latency

of a single instance, which is equal to the number of exe-

cuted gates + the number of initialization cycles (independent

of the number of instances). However, in SIMPLE, YADAV,

and SAID (which aimed to improve the latency of a single

instance), when parallelized in a similar manner to SIMPLER,

the latency of all computation instances increases with the

number of instances. When the computation instances are

aligned by rows (row alignment), MAGIC column operations

of different instances are executed in parallel, and MAGIC

row operations are serially executed, and vice versa when the

instances are aligned by columns (col alignment), as shown in

Fig. 7. Hence, #CycAllInst = #Cr × #Ir + #Cc × #Ic, where

#Cr and #Cc are, respectively, the number of cycles in which

MAGIC row and MAGIC column operations are executed.

#Ir and #Ic are, respectively, the number of instances that can

be executed within the given MAT in the row alignment and

col alignment configuration (i.e., respectively, two and three

instances in Fig. 7). The tools developed by YADAV and SAID

are not public; thus, we could not evaluate the exact #Cr and

#Cc. Therefore, for both we optimistically assume a latency

Fig. 7. 64×64 memory array. Each blue rectangle is a computation instance
computed within the array. Each instance is executed using 18 × 27 cells.
The yellow lines represent a MAGIC column and the green lines a MAGIC
row operation. When the instances are aligned by rows (row alignment), two
instances can be aligned, since ⌊64/27⌋ = 2, e.g., (a) and (b). All aligned
MAGIC column operations of the different row-aligned instances may be
executed in parallel, whereas the MAGIC row operations of the different
instances are serially executed. When the instances are aligned by columns
(col alignment), three instances can be aligned, since ⌊64/18⌋ = 3, e.g., (a),
(c), and (e). All aligned MAGIC row operations of the different column-
aligned instances may be executed in parallel, whereas the MAGIC column
operations of the different instances are serially executed.

equal to that of executing a single instance, which is a very

loose lower-bound on the latency of executing all the instances.

This bound can only be reached when each instance is exe-

cuted using a single row. For the rest of the section, latency

of SIMPLE refers to #CycAllInst, and of YADAV and SAID

refers to #CycSinInst.

Throughput is the maximum number of instances that can

be executed within the MAT within a given time unit, as

stated in (1). Maximal throughput improvements can only be

achieved for well-parallelizable code. To assess the practi-

cal benefit for a specific kernel/application, a comprehensive

system analysis is needed. Additionally, physical restric-

tions [26] may also limit the number of rows that can be

executed in parallel, thus reducing the throughput gain pro-

portionally. In this article, we evaluate the throughput as

if the maximum parallelism is possible, i.e., the number of

instances equals the number of rows in the MAT (i.e., 512).

For SIMPLE, YADAV, and SAID, we evaluated the throughput

in two ways: first, the throughput for a single instance (SinTP),

as these methods were originally intended to be executed that

way. Additionally, we computed the throughput for as many

instances as possible that are executed concurrently, within the

given MAT (ParTP). ParTP is only the hypothetical potential

2444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

throughput of the existing methods should they employ paral-

lel computation of different instances. Overall, ParTP favors

the existing methods by giving them the extra benefit of run-

ning multiple computation instances in parallel (which may

be unrealizable). Also, as previously mentioned, the latency

of SAID and YADAV is a loose lower bound; hence, we use

a quite optimistic upper-bound for the throughput potential of

these two methods.

Area is determined by the number of columns × the number

of rows allocated for the execution of a single computation

instance, including the area necessary for storing the func-

tion inputs, e.g., 18 × 27 = 486 in Fig. 7. For SIMPLER,

the area is equal to the number of active memristors, since

a single row execution enables the use of all available mem-

ristor cells for the computation. Therefore, when cell reuse

is not required, the area is equal to the number of gates +

the number of inputs. Otherwise, when cell reuse is required,

the area is equal to the number of columns allocated for the

computation (which is smaller than the allocated area with

no reuse). On the other hand, for all three tools, the area

is much larger than the number of active memristors. This

is because the processing is distributed over several rows;

hence, they do not use all the memristors in the array for the

executions.

The area efficiency is calculated as (1/Latency × Area).

C. SIMPLER Results

Tables I–III (first three columns) list the number of inputs

(#In), outputs (#Out), and the number of all gates (both two-

input NOR and NOT) after the ABC optimization (ABC,

#Gates), which is equivalent to the number of pure execution

steps (latency) in SIMPLER (that is, without reinitialization

cycles). The next seven columns of Table I and six columns

of Tables II and III, show the results for SIMPLE, YADAV,

and SAID, using a memory array size of 512 × 512 (the last

three benchmarks in Table II uses a 1024×1024 array, accord-

ing to the area required for the execution of YADAV). First,

the latency necessary for execution is given. For SIMPLE, the

number of cycles for executing a single instance (#CycSinInst)

and the number of cycles for executing all instances in the

MAT (#CycAllInst) are given in two different columns. As

discussed in Section IV-B, the given latency for YADAV and

SAID is a loose lower bound equal to the number of cycles for

executing a single instance (#CycSinInst). The next columns

show the maximum number of computation instances that fit

the given array size (#inst), the throughput (TP), the number

of active memristors used for the execution (#Mem), the area

necessary for the computation of a single instance (Area), and

the area efficiency (AreaEff). The next four columns list the

results of the proposed SIMPLER synthesis tool, when execut-

ing within a row with the minimum number of cells required

by SIMPLER for the execution of each benchmark (referred

as #MinCells) and an additional max{5% of #MinCells, 10}

cells. #Inst is not stated for each benchmark, since SIMPLER

maps the computation to a single row; thus, the number of

instances that can be executed concurrently equals the num-

ber of rows in the array (1024 for the last three benchmarks

in Table II, and 512 for all other benchmarks in Tables I–III).

Area and #Mem are listed together in one column, as they

are the same for SIMPLER since only a single row is used.

Finally, the area efficiency (AreaEff) is listed.

The comparisons between all three works (SIMPLE,

YADAV, and SAID) and SIMPLER are given, respectively, in

the last five columns (Comparison) of Tables I–III. All aver-

ages are relative numbers computed as geometric mean. All

compare the number of cycles, throughput, and area efficiency

of SIMPLE, YADAV, and SAID to SIMPLER, calculated

as [(SIMPLER results)/(SIMPLE/YADAV/SAID results)].

Additionally, the area compression (AreaCom) is calculated

as [(SIMPLE/YADAV/SAID Area)/(SIMPLER Area)].

SIMPLER is area efficient since it can reuse cells; there-

fore, it uses on average 24× less area as compared to

YADAV, 22× less than SAID, and 6.5× less than SIMPLE.

SIMPLER achieves 9.8× better (lower) average latency

than SIMPLE, when executing all instances. Additionally,

SIMPLER achieves 2.6% better average latency than YADAV.

On the other hand, SAID achieves 42% better average

latency than SIMPLER (note that the latency of YADAV

and SAID is for a single instance only). For SIMPLE,

the latency for executing all instances is 14× greater than

for the execution of a single instance only. Assuming the

latency overhead for executing all instances by YADAV and

SAID is similar, SIMPLER achieves 14× better average

latency. Thus, the bound on latency is very loose. Overall,

SIMPLER exhibits higher throughput than previous work.

Compared to the original versions of YADAV, SAID, and

SIMPLE, all of which operate on a single computation

instance at a time, SIMPLER, respectively, achieves higher

throughput (SinTP) of 526×, 360×, and 332×. When the

previous work is parallelized, SIMPLER achieves 4.9×

better average throughput (ParTP) than SIMPLE, and at

least 9.3× and 2.7× better throughput than, respectively,

YADAV and SAID (again, with latency of a single instance),

when using the loose upper bound on the throughput of

SAID and YADAV. Additionally, SIMPLER achieves at

least 25× and 16× better area efficiency than, respec-

tively, YADAV and SAID, and 63× better area efficiency

than SIMPLE.

Table IV lists the results for executing the EPFL combina-

tional benchmark suite within the memristive memory using

the SIMPLER algorithm. The first three columns are simi-

lar to Tables I–III. The next eight columns of Table IV list

the results using NOR2 netlists. First, the number of gates is

given (ABC, #Gates). Then, the latency (#Cyc) and area (Area)

of three cases are listed: when executing using 1) an unlim-

ited number of cells (UnlimitCells), i.e., an array with enough

columns to execute with no initialization cycles; 2) the mini-

mum number of cells required by SIMPLER (MinCells); and

3) the minimum number of cells required by SIMPLER with

an additional max{5% of #MinCells, 10} (MinCells+5%/10).

These additional cells decrease computation latency with a rel-

atively low area cost. Reinitializing all desired cells within a

row might take more than a single clock cycle, depending on

the size of the row and the voltage applied to it [13]. The last

column of the NOR2 results shows the latency (LimitInitCells,

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2445

(a)

(b)

Fig. 8. Results of EPFL benchmarks for (a) NOR2 and (b) NOR4 as compared
to NOR2.

#Cyc) when no more than ten cells can be initialized simulta-

neously (during the same clock cycle), while the area is equal

to MinCells+5%/10. The last eight columns list similar results

when using NOR4 netlists.

The number of cycles and the area for the UnlimitCells

case are compared to the following four cases: 1) MinCells;

2) MinCells+5%/10; 3) LimitInitCells; and 4) lowest-bound

Area (#In+#Out). The results for NOR2 are given in Fig. 8(a),

where all averages are relative numbers computed as geo-

metric mean. When using the minimum required number of

cells (MinCells), the area decreases by 5.8× on average as

compared to UnlimitCells, at the cost of a 6.2% average

increase in the number of cycles. Adding a small percentage

of cells (MinCells+5%/10) reduces the overhead of initializa-

tion cycles from 6.2% to a Geomean of 2.3%, at the cost of

a small increase in area (7.5%). In the LimitInitCells case,

the latency increases by 10% on average as compared to exe-

cuting with no limitation on the number of initialized cells

with UnlimitCells. In general, when the number of initialized

cells is increased to A, the relative latency increases by less

than (1 + (1/A)). For example, when the number of initial-

ized cells is increased to 25, the latency increases to less than

4%. Under the assumption that 25 cells or more can be initial-

ized simultaneously, the latency overhead is small; therefore,

for all other results we ignore the limitation on the number

of cells that can be initialized during the same clock cycle.

The lowest-bound area is the minimal theoretical possible area

required for the execution, as if cells store only the inputs and

outputs of the function, assuming that no cells are needed

for execution of the intermediate gates. This bound indicates

how close the obtained mapping is to the theoretical low-

est limit. For example, although benchmark dec reduces the

area to only 76%, the lowest-bound area shows it may not be

reduced below 72%, since dec inputs and outputs occupy most

of the cells.

In Fig. 8(b), the NOR2 and NOR4 configurations are com-

pared as (NOR4results/NOR2results), for UnlimitCells and

MinCells. In the UnlimitCells case, the area and latency

decrease, respectively, by an average of 19.6% and 20.5%

when using NOR4 netlists. With MinCells, the latency

decreases by an average of 21.3% compared to NOR2, sim-

ilar to the relative decrease in latency; however, the area is

almost similar (increases by a Geomean of 0.2%) for NOR2

and NOR4. The reason is that the fan-in of NOR4 gates (i.e.,

the number of children) is higher than for NOR2, and the cells

that store the children cannot be freed for reuse until the gate

is executed. Therefore, when using NOR4 gates, fewer cells

may be freed and reused at a given time. As a result, the area

when using MinCells with NOR4 (i.e., the number of reuse

cycles is large) is similar to MinCells with NOR2.

Table V compares the minimum number of cells required

for different executions using SIMPLER and OptiSIMPLER.

The first four columns are similar to Tables I–III. The next

two columns detail the minimal number of gates for which the

SAT solver found a mapping (SAT) and the minimal number

of gates for which the SAT solver found that no mapping

is possible (UNSAT). In all benchmarks except mux, the SAT

solver found the mapping within the 2-day time limit using the

minimum number of cells (SAT_Area − UNSAT_Area = 1).

In mux, the SAT solver could not decide on the optimal

mapping under this limited run-time, (SAT_Area = 30 and

UNSAT_Area = 27; thus, a mapping with 29 or 28 cells

might also exist). As can be seen in the table, SIMPLER suc-

ceeded in generating a mapping using only 29 cells in mux,

meaning that it produced a better mapping than limited-run-

time-OptiSIMPLER. In the next column, the optimal number

of cycles (#Cyc) for the chosen mapping (SAT case) is listed.

The next two columns list the minimum number of gates

for which SIMPLER found a mapping with (MinCells) and

the number of cycles (#Cyc) required for each benchmark in

SIMPLER. The last two columns list the difference between

the area and number of cycles of the minimized mapping found

by OptiSIMPLER (SAT case) and SIMPLER.

Although SIMPLER is not optimal, it successfully generates

mappings with only 0.8 additional cells on average, compared

to the optimal mapping produced by OptiSIMPLER. However,

SIMPLER reduces the number of cycles by an arithmetic aver-

age of 1.1, compared to OptiSIMPLER. Since the results are

given for small benchmarks only, a more accurate evaluation

may require further work.

In addition to comparing the numerical results, we also

compare the ease of use among the different tools.

1) Flexibility: For SIMPLER, the mapping is done into

a single dimension. SIMPLE, YADAV, and SAID, on

the other hand, generate a mapping using a 2-D array.

2446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Therefore, the process for the mapping generation is

much shorter and simpler for SIMPLER.

2) Overhead on Memory Periphery and Control: In

SIMPLER, either MAGIC row or MAGIC column oper-

ations are used. In contrast, SIMPLE, YADAV, and

SAID use both operations. Therefore, they use a trans-

pose memory [17], which has a larger and more complex

periphery. Additionally, SIMPLE, YADAV, and SAID

require scattered execution of gates among rows and

columns, thus complicating the memory controller.

3) Function Input and Output Locations: For SIMPLER,

the function inputs and outputs can be located more nat-

urally, i.e., adjacent to each other, with no overhead. On

the other hand, the inputs and outputs in SIMPLE and

SAID are located to allow optimal latency. In YADAV,

if the inputs are in adjacent cells, copy cycles are nec-

essary to align them for the execution of the gates they

feed, and the outputs are moved to their final locations

after they are ready.

V. CONCLUSION

This article presented an automatic logic synthesis flow

called SIMPLER for optimizing the throughput of in-memory

SIMD computations. SIMPLER automatically generates a

sequence of MAGIC NOR gates and then maps the execution

of a single instance of a desired logic function to a single size-

limited row, reusing cells as needed. Mapping a computation

into a single row allows numerous instances to be executed

in parallel, according to the number of rows dedicated to the

computation, thus dramatically improving the throughput. The

SIMPLER algorithm uses heuristics to reduce the complex-

ity of mapping the computation in-memory; thus, SIMPLER

can quickly generate an optimized mapping for huge bench-

marks. The optimized mappings that SIMPLER generates are

the basis for designing an efficient mMPU controller. Hence,

SIMPLER is a stepping stone toward a powerful mMPU.

Our experimental results show that SIMPLER yields an

average throughput improvement of 435× compared to

Yadav et al. [24] and SAID (which optimize the latency, rather

than throughput). When these previous tools are parallelized in

a similar manner to SIMPLER, SIMPLER achieves a through-

put improvement of at least 5×, with at least 23× better area,

and at least 20× better area efficiency, at the cost of up to

17% average latency degradation.

REFERENCES

[1] A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. A. Horowitz,
“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Des. Test., vol. 34, no. 2, pp. 39–50, Apr. 2017.

[2] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
5th ed. Waltham, MA, USA: Elsevier, 2014.

[3] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17,
no. 2, pp. 34–44, Mar./Apr. 1997.

[4] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. 50th Annu.

IEEE/ACM Int. Symp. Microarchit., 2017, pp. 273–287.
[5] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and

R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High Perform.

Comput. Archit. (HPCA), 2017, pp. 481–492.
[6] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit

Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[7] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “The
desired memristor for circuit designers,” IEEE Circuits Syst. Mag.,
vol. 13, no. 2, pp. 17–22, May 2013.

[8] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of
memristor-based RRAM cross-point structures,” in Proc. Design Autom.

Test Europe, Mar. 2011, pp. 1–6.

[9] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser,
“Beyond von Neumann—Logic operations in passive crossbar arrays
alongside memory operations,” Nanotechnology, vol. 23, no. 30,
Jul. 2012. Art. no. 305205.

[10] P.-E. Gaillardon et al., “The programmable logic-in-memory (PLiM)
computer,” in Proc. Conf. Design Autom. Test Europe (DATE), 2016,
pp. 427–432.

[11] Y. Levy et al., “Logic operations in memory using a memristive akers
array,” Microelectron. J., vol. 45, no. 11, pp. 1429–1437, 2014.

[12] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “Fast
Boolean logic mapped on memristor crossbar,” in Proc. 33rd IEEE Int.

Conf. Comput. Design (ICCD), 2015, pp. 335–342.

[13] C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in Proc. IEEE 21st Int. Symp. High Perform. Comput.

Archit. (HPCA), Feb. 2015, pp. 476–488.

[14] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic opera-
tions via material implication,” Nature, vol. 464, no. 7290, pp. 873–876,
Apr. 2010.

[15] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst, vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[16] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[17] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (MAGIC),” IEEE

Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650, Jul. 2016.

[18] R. Ben-Hur and S. Kvatinsky, “Memory processing unit for in-
memory processing,” in Proc. IEEE/ACM Int. Symp. Nanoscale Archit.

(NANOARCH), Jul. 2016, pp. 171–172.

[19] R. Ben-Hur and S. Kvatinsky, “Memristive memory processing unit
(MPU) controller for in-memory processing,” in Proc. Int. Conf. Sci.

Electric. Eng. (ICSEE), Nov. 2016, pp. 1–5.

[20] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algorithms
for in-memory fixed point multiplication using MAGIC,” in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[21] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proc. 54th Annu. Design

Autom. Conf. (DAC), 2017, p. 6.

[22] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky,
“IMAGING: In-memory algorithms for image processing,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4258–4271, Dec. 2018.

[23] R. Ben-Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic:
Synthesis and in-memory mapping of logic execution for memristor-
aided logic,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design

(ICCAD), Nov. 2017, pp. 225–232.

[24] D. N. Yadav, P. L. Thangkhiew, and K. Datta, “Look-ahead mapping
of Boolean functions in memristive crossbar array,” Integration, vol. 64,
pp. 152–162, Jan. 2019.

[25] V. Tenace, R. G. Rizzo, D. Bhattacharjee, A. Chattopadhyay, and
A. Calimera, “SAID: A supergate-aided logic synthesis flow for mem-
ristive crossbars,” in Proc. Design Autom. Test Europe Conf. Exhib.

(DATE), Mar. 2019, pp. 372–377.

[26] N. Talati et al., “Practical challenges in delivering the promises of real
processing-in-memory machines,” in Proc. Design Autom. Test Europe

Conf. Exhib. (DATE), Mar. 2018, pp. 1628–1633.

[27] R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and G. R. Gao,
“Minimum register instruction sequencing to reduce register spills in out-
of-order issue superscalar architectures,” IEEE Trans. Comput., vol. 52,
no. 1, pp. 4–20, Jan. 2003.

[28] R. Sethi, “Complete register allocation problems,” SIAM J. Comput.,
vol. 4, no. 3, pp. 226–248, 1975.

[29] A. Mishchenko, ABC: A System for Sequential Synthesis and

Verification, Release 90215, Berkeley Logic Synth. Verification Group,
2012. [Online]. Available: http://www.eecs.berkeley.edu/∼alanmi/abc/

[30] D. Auber, “Using Strahler numbers for real time visual exploration of
huge graphs,” in Proc. Comput. Vis. Graph. (ICCVG), 2002, pp. 56–69.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

BEN-HUR et al.: SIMPLER MAGIC: SYNTHESIS AND MAPPING OF IN-MEMORY LOGIC EXECUTED IN SINGLE ROW TO IMPROVE THROUGHPUT 2447

[32] A. N. Strahler, “Hypsometric analysis of erosional topography,” Bull.

Geol. Soc. America, vol. 63, pp. 1117–1142, Nov. 1952.
[33] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combi-

national benchmark suite,” in Proc. 24th Int. Workshop Logic Synthesis

(IWLS), 2015.
[34] L. De Moura and N. Bjørner, “Z3: An efficient SMT

solver,” in Proc. 14th Int. Conf. Tools Algorithms Construct.

Anal. Syst. (TACAS), 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[35] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:

Version 3.0, MCNC, Durham, NC, USA, 1991.
[36] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-

mark circuits and a target translator in fortran,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), Piscataway, NJ, USA, 1985, pp. 695–698.

Rotem Ben-Hur received the B.Sc. degree in
electrical engineering from the Technion – Israel
Institute of Technology, Haifa, Israel, in 2014, where
she is currently pursuing the Ph.D. degree (direct
path) with the Andrew and Erna Viterbi Faculty of
Electrical Engineering.

In 2012, she joined as an FPGA Designer with
Elbit Systems, Haifa. Her current research interest
includes novel architectures for logic with emerging
memory technologies.

Ronny Ronen (F’97) received the B.Sc. and M.Sc.
degrees in computer science from the Technion –
Israel Institute of Technology, Haifa, Israel, in 1978
and 1979, respectively.

He is a Senior Researcher with the Andrew
and Erna Viterbi Faculty of Electrical Engineering,
Technion – Israel Institute of Technology. He was
with Intel, Santa Clara, CA, USA, from 1980 to 2017
in various technical and managerial positions. In his
last role, he led the Intel Collaborative Research
Institute for Computational Intelligence. He was the

Director of microarchitecture research with Intel Development Center, Haifa,
where he was a Senior Staff Computer Architect until 2011. He led the devel-
opment of several system software products and tools, including the Intel
Pentium processor performance simulator and several compiler efforts. In
these roles, he led/was involved in the initial definition and pathfinding of
major leading edge Intel processors. He holds over 70 issued patents and has
published over 20 papers. He was an Intel Senior Principal Engineer.

Ameer Haj-Ali (S’17) received the B.Sc. degree
(summa cum laude) in computer engineering from
the Technion – Israel Institute of Technology,
Haifa, Israel, in 2017, and the M.Sc. degree
from the Andrew and Erna Viterbi Faculty of
Electrical Engineering, Technion – Israel Institute
of Technology, in 2018. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering and Computer Science, University of
California at Berkeley, Berkeley, CA, USA.

From 2015 to 2016, he was a Chip Designer
with Mellanox Technologies, Sunnyvale, CA, USA. His current research
interests include auto-tuning, reinforcement learning, ASIC design, and high
performance computing.

Debjyoti Bhattacharjee received the B.Tech. degree
in computer science and engineering from WBUT,
Kolkata, India, in 2013, the M.Tech. degree in
computer science from Indian Statistical Institute,
Kolkata, in 2015, and the Ph.D. degree in com-
puter science and engineering from Nanyang
Technological University, Singapore, in 2018.

During his doctoral studies, he worked on design
of architectures using emerging technologies for in-
memory computing. He developed novel technology
mapping algorithms, technology-aware synthesis

techniques, and proposed novel methods for multivalued logic realization.
His current research interests include hardware design automation tools
and application-specific accelerator design, with emphasis on emerging
technologies.

Adi Eliahu received the B.Sc. degree in electrical
engineering from the Technion – Israel Institute of
Technology, Haifa, Israel, in 2018, where she is cur-
rently pursuing the M.Sc. degree with the Andrew
and Erna Viterbi Faculty of Electrical Engineering.

Her current research interest includes designing
architectures for low-power systems using non-
volatile memory emerging technologies.

Natan Peled received the B.Sc. degree in computer
engineering from the Technion – Israel Institute of
Technology, Haifa, Israel, in 2019, where he is cur-
rently pursuing the M.Sc. degree with the Andrew
and Erna Viterbi Faculty of Electrical Engineering.

In 2018, he joined as a Verification Engineer
with Annapurna Labs, Amazon, Haifa. His cur-
rent research interest includes novel architectures for
logic with emerging memory technologies.

Shahar Kvatinsky (M’13–SM’18) received the
B.Sc. degree in computer engineering and applied
physics and the M.B.A. degree from the Hebrew
University of Jerusalem, Jerusalem, Israel, in 2009
and 2010, respectively, and the Ph.D. degree in
electrical engineering from the Technion – Israel
Institute of Technology, Haifa, Israel in 2014.

He is an Assistant Professor with the Andrew
and Erna Viterbi Faculty of Electrical Engineering,
Technion – Israel Institute of Technology. From
2006 to 2009, he was a Circuit Designer with Intel,

Intel, Santa Clara, CA, USA. From 2014 and 2015, he was a Post-Doctoral
Research Fellow with Stanford University, Stanford, CA, USA. His current
research interests include circuits and architectures with emerging memory
technologies and design of energy efficient architectures.

Dr. Kvatinsky was a recipient of numerous awards: the 2019 Krill Prize
for Excellence in Scientific Research, the 2015 IEEE Guillemin-Cauer Best
Paper Award, the 2015 Best Paper of Computer Architecture Letters, the
Viterbi Fellowship, the Jacobs Fellowship, the ERC Starting Grant, the 2017
Pazy Memorial Award, the 2014 and 2017 Hershel Rich Technion Innovation
Awards, the 2013 Sanford Kaplan Prize for Creative Management in High
Tech, the 2010 Benin Prize, and seven Technion Excellence Teaching Awards.
He is an Editor of the Microelectronics.

