
Simpler Session-Key Generation from Short
Random Passwords

Minh-Huyen Nguyen � and Salil Vadhan��

Harvard University, Cambridge, MA
{mnguyen,salil}@eecs.harvard.edu

Abstract. Goldreich and Lindell (CRYPTO ‘01) recently presented the
first protocol for password-authenticated key exchange in the standard
model (with no common reference string or set-up assumptions other
than the shared password). However, their protocol uses several heavy
tools and has a complicated analysis.
We present a simplification of the Goldreich–Lindell (GL) protocol
and analysis for the special case when the dictionary is of the form
D = {0, 1}d, i.e. the password is a short random string (like an ATM
PIN number). Our protocol can be converted into one for arbitrary dic-
tionaries using a common reference string of logarithmic length. The
security bound achieved by our protocol is somewhat worse than the GL
protocol. Roughly speaking, our protocol guarantees that the adversary
can “break” the scheme with probability at most O(poly(n)/|D|)Ω(1),
whereas the GL protocol guarantees a bound of O(1/|D|).
We also present an alternative, more natural definition of security than
the “augmented definition” of Goldreich and Lindell, and prove that the
two definitions are equivalent.

1 Introduction

What is the minimal amount of information that two parties must share in order
to perform nontrivial cryptography? This fundamental question is at the heart
of many of the major distinctions we draw in cryptography. Classical private-
key cryptography assumes that the legitimate parties share a long random key.
Public-key cryptography mitigates this by allowing the sharing of information
to be done through public keys that need not be hidden from the adversary.
However, in both cases, the amount of information shared by the legitimate
parties (e.g. as measured by mutual information) needs to be quite large. Indeed,
the traditional view is that security comes from the adversary’s inability to
exhaustively search the keyspace.

Thus it is very natural to ask: can we do nontrivial cryptography using “low-
entropy” keys? That is, using a keyspace that is feasible to exhaustively search.
� Supported by NSF grant CCR-0205423.

�� Supported by NSF grant CCR-0205423 and a Sloan Research Fellowship. Part of
this work done while at the Radcliffe Institute for Advanced Study.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 428–445, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Simpler Session-Key Generation from Short Random Passwords 429

In addition to being a natural theoretical question, it has clear relevance to the
many “real-life” situations where we need security but only have a low-entropy
key (e.g. an ATM PIN number, or human-chosen password on a website).

Public-key cryptography provides an initial positive answer to this question:
key-exchange protocols, as in [10], do not require any prior shared information.
However, this holds only for passive adversaries, and it is well known that without
any prior shared information between the legitimate parties, an active adversary
can always succeed through a person-in-the-middle attack. Thus, it remains an
interesting question to achieve security against active adversaries using a low-
entropy shared key. This has led researchers to consider the problem of password-
authenticated key exchange, which we describe next.

Password-Authenticated Key Exchange. The password-authenticated key ex-
change problem was first suggested by Bellovin and Merritt [4]. We assume that
two parties, Alice and Bob, share a password w chosen uniformly at random from
a dictionary D ⊆ {0, 1}n. This dictionary can be very small, e.g. |D| = poly(n),
and in particular it may be feasible for an adversary to exhaustively search it.
Our aim is to construct a protocol enabling Alice and Bob to generate a “ran-
dom” session key K ∈ {0, 1}n, which they can subsequently use for standard
private-key cryptography. We consider an active adversary that completely con-
trols the communication channel between Alice and Bob. The adversary can
intercept, modify, drop, and delay messages, and in particular can attempt to
impersonate either party through a person-in-the-middle attack.

Our goal is that, even after the adversary mounts such an attack, Alice and
Bob will generate a session key that is indistinguishable from uniform even given
the adversary’s view. However, our ability to achieve this goal is limited by two
unpreventable attacks. First, since the adversary can block all communication,
it can prevent one or both of the parties from completing the protocol and
obtaining a session key. Second, the adversary can guess a random password
w̃ ← D and attempt to impersonate one of the parties. With probability 1/|D|,
the guess equals the real password (i.e., w̃ = w), and the adversary will succeed in
the impersonation and therefore learn the session key. Thus, we revise our goal
to effectively limit the adversary to these two attacks. Various formalizations
for this problem have been developed through several works [3,15,22,2,7,12]. We
follow the definitional framework of Goldreich and Lindell [12], which is described
in more detail in Sec. 2.

In addition to addressing what can be done with a minimal amount of shared
information, the study of this problem is useful as another testbed for developing
our understanding of concurrency in cryptographic protocols. The concurrency
implicitly arises from the person-in-the-middle attack, which we can view as two
simultaneous executions of the protocol, one between Alice and the adversary
and the other between Bob and the adversary.

The first protocols for the password-authenticated key exchange problem
were proposed in the security literature, based on informal definitions and heuris-
tic arguments (e.g. [5,24]). The first rigorous proofs of security were given in the
random oracle model [2,7]. Only recently were rigorous solutions without ran-

430 M.-H. Nguyen and S. Vadhan

dom oracles given, in independent works by Goldreich and Lindell [12] and Katz,
Ostrovsky, and Yung [16]. One of the main differences between these two pro-
tocols is that the KOY protocol (and the subsequent protocols of [17,11]) is in
the “public parameters model,” requiring a string to be generated and published
by a trusted third party, whereas the GL protocol requires no set-up assump-
tion other than the shared password. Thus, even though the KOY protocol has
a number of practical and theoretical advantages over the GL protocol (which
we will not enumerate here), the GL protocol is more relevant to our initial
question about the minimal amount of shared information needed for nontrivial
cryptography.

The Goldreich–Lindell Protocol. As mentioned above, the Goldreich–Lindell pro-
tocol [12] is remarkable in that the only set-up assumption it requires is that
the two parties share a password chosen at random from an arbitrary dictionary.
Their protocol can be based on general complexity assumptions (the existence
of trapdoor permutations), can be implemented in a constant number of rounds
(under stronger assumptions), and achieves a nearly optimal security bound (the
adversary has probability only O(1/|D|) of “breaking” the scheme).

Despite giving such a strong result, the Goldreich–Lindell protocol does not
leave us with a complete understanding of the password-authenticated key ex-
change problem. First, the protocol makes use of several “heavy” tools: secure
two-party polynomial evaluation (building on [19], who observed that this yields
a protocol for password-authenticated key exchange against passive adversaries),
nonmalleable commitments (as suggested in [6]), and the specific concurrent
zero-knowledge proof of Richardson and Kilian [21]. It is unclear whether all of
these tools are really essential for solving the key exchange problem. Second, the
proof of the protocol’s security is extremely complicated. Goldreich and Lindell
do introduce nice techniques for analyzing concurrent executions (arising from
the person-in-the-middle attack) of two-party protocols whose security is only
guaranteed in the stand-alone setting (e.g. the polynomial evaluation). But these
techniques are applied in an intricate manner that seems inextricably tied to the
presence of the nonmalleable commitment and zero-knowledge proof. Finally,
finding an efficient instantiation of the Goldreich–Lindell protocol would require
finding efficient instantiations of all three of the heavy tools mentioned above,
which seems difficult. In particular, the Richardson-Kilian zero-knowledge proof
is used to prove an NP statement that asserts the consistency of a transcript
of the nonmalleable commitment, a standard commitment, and the output of
an iterated one-way permutation. For such an NP statement, it seems difficult
to avoid using a generic zero-knowledge proof system for NP, which are almost
always inefficient due to the use of Cook’s theorem.

Our Protocol. Our main result is a simplification of the Goldreich–Lindell pro-
tocol and analysis for the special case when the dictionary is of the form
D = {0, 1}d, i.e. the password is a short random string (like an ATM PIN
number). This special case still retains many of the key features of the problem:
the person-in-the-middle attack and the resulting concurrency issues are still

Simpler Session-Key Generation from Short Random Passwords 431

present, and the adversary can still exhaustively search the dictionary (since we
allow the password length d to be as small as O(log n), where n is the secu-
rity parameter). Moreover, our protocol can be converted into one for arbitrary
dictionaries in the common reference string model (using the common reference
string as the seed of a randomness extractor [20]). For dictionaries D ⊂ {0, 1}n,
the common reference string is a uniform string of only logarithmic length (specif-
ically, O(log n + log |D|)), and thus retains the spirit of minimizing the amount
of shared information between the legitimate parties. In contrast, the previous
protocols in the public parameters model [16,17,11] require a public string of
length poly(n) with special number-theoretic structure.

The main way in which we simplify the GL protocol is that we remove the
nonmalleable commitments and the Richardson–Kilian zero-knowledge proof. In-
stead, our protocol combines secure polynomial evaluation with a combinatorial
tool (almost pairwise independent hashing), in addition to using “lightweight”
cryptographic primitives also used in [12] (one-way permutations, one-time
MACs, standard commitments). Our analysis is also similarly simpler. While
it has the same overall structure as the analysis in [12] and utilizes their tech-
niques for applying the stand-alone properties of the polynomial evaluation in
the concurrent setting, it avoids dealing with the nonmalleable commitments and
the zero-knowledge proof (which is the most complex part of the GL analysis).

Removing the nonmalleable commitments and the RK zero-knowledge proof
has two additional implications. First, finding an efficient implementation of
our protocol only requires finding an efficient protocol for secure polynomial
evaluation (in fact, only for linear polynomials).1 Since this is a highly structured
special case of secure two-party computation, it does not seem beyond reach
to find an efficient protocol. Indeed, Naor and Pinkas [19] have already given
an efficient polynomial evaluation protocol for passive adversaries. Second, our
protocol can be implemented in a constant number of rounds assuming only the
existence of trapdoor permutations, whereas implementing the Goldreich–Lindell
protocol in a constant number of rounds requires additional assumptions, such
as the existence of claw-free permutations (for [21]) and some sort of exponential
hardness assumption (to use [1]).

We note that the security bound achieved by our protocols is somewhat
worse than in previous works. Roughly speaking, our protocol guarantees that

the adversary can “break” the scheme with probability at most O
(

poly(n)
|D|

)Ω(1)
,

whereas previous works guarantee a bound of O(1/|D|).
An additional result in our paper involves the definition of security in [12].

As pointed out by Rackoff (cf., [2]), it is important that a key exchange protocol
provide security even if the party who completes the protocol first starts using
the generated key in some application before the second party completes the
protocol. In order to address this issue, Goldreich and Lindell [12] augmented

1 Actually, we require a slightly augmented form of polynomial evaluation, in which
one of the parties commits to its input beforehand and the protocol ensures consis-
tency with this committed input.

432 M.-H. Nguyen and S. Vadhan

their definition with a “session-key challenge”, in which the adversary is given
either the generated key or a uniform string with probability 1/2 upon the
first party’s completion of the protocol. We present an arguably more natural
definition that directly models the use of the generated key in an arbitrary
application, and prove its equivalence to the augmented definition of Goldreich
and Lindell [12]. (This result is analogous to the result of Shoup [22] for non-
password-based key exchange protocols.)

2 Definition of Security

We adopt the notation of Goldreich and Lindell and refer the reader to [12] for
more details.

– C denotes the probabilistic polynomial time adversary through which the
honest parties A and B communicate. We model this communication by
giving C oracle access to a single copy of A and a single copy of B. Here the
oracles A and B have memory and represent honest parties executing the
session-key generation protocol. We denote by CA(x),B(y)(σ) an execution
of C with auxiliary input σ when it communicates with A and B, with
respective inputs x and y. The output of the channel C from this execution
is denoted by output

(
CA(x),B(y)(σ)

)
.

– The security parameter is denoted by n. The password dictionary is denoted
by D ⊆ {0, 1}n and we write ε = 1

|D| .

We denote by Un the uniform distribution over strings of length n, by neg(n) a
negligible function and write x

R← S when x is chosen uniformly from the set S.

For a function γ : IN → [0, 1], we say that the probability ensembles {Xn}
and {Yn} are (1 − γ)-indistinguishable (denoted by {Xn} γ≡ {Yn}) if for every
nonuniform PPT distinguisher D and all n,

|Pr [D(Xn) = 1]− Pr [D(Yn) = 1] | < γ(n) + neg(n) .

We say that {Xn} and {Yn} are computationally indistinguishable, which we
denote by Xn

c≡ Yn, if they are 1-indistinguishable. We say that {Xn} is (1− γ)
pseudorandom if it is (1− γ) indistinguishable from Un.

We will now formalize the problem of session-key generation using human
passwords. We first follow the presentation of the problem as in [12] and then
contrast it with our definition.

2.1 The Initial Definition

The definition in [12] follows the standard paradigm for secure computation:
define an ideal functionality (using a trusted third party) and require that every

Simpler Session-Key Generation from Short Random Passwords 433

adversary attacking the real protocol can be simulated by an ideal adversary
attacking the ideal functionality. Note that in the real protocol, the active ad-
versary C can prevent one or both of the parties A and B from having an output.
Thus, in the ideal model, we will allow Cideal to specify two input bits, decA

C and
decB

C , which determine whether A and B obtain a session key or not.

Ideal model. Let A, B be the honest parties and let Cideal be any PPT ideal
adversary with auxiliary input σ.
1. A and B receive w

R←D.
2. A and B both send w to the trusted party.
3. Cideal sends (decA

C , decB
C) to the trusted party.

4. The trusted party chooses K
R← {0, 1}n. For each party i ∈ {A, B}, the

trusted party sends K if deci
C = 1 and sends ⊥ if deci

C = 0.
The ideal distribution is defined by:

IDEALCideal(D, σ) = (w, output(A), output(B), output(Cideal(σ))) .

Real model. Let A, B be the honest parties and let C be any PPT real adver-
sary with auxiliary input σ.
At some initialization stage, A and B receive w

R←D. The real protocol is
executed by A and B communicating via C. We will augment C’s view of
the protocol with A and B’s decision bits, denoted by decA and decB , where
decA = reject if output(A) = ⊥, and decA = accept otherwise (decB is
defined similarly). (Indeed, in typical applications, the decisions of A and
B will be learned by the real adversary C: if A obtains a session key, then
it will use it afterwards; otherwise, A will stop communication or try to
re-initiate an execution of the protocol.) C’s augmented view is denoted by
output(CA(w),B(w)(σ)).
The real distribution is defined by:

REALC(D, σ) = (w, output(A), output(B), output(CA(w),B(w)(σ))) .

One might want to say that a protocol for password-based session-key gener-
ation is secure if the above ideal and real distributions are computationally in-
distinguishable. Unfortunately, as pointed in [12], an active adversary can guess
the password and successfully impersonate one of the parties with probability
1

|D| . This implies that the real and ideal distributions are always distinguishable
with probability at least 1

|D| . Thus we will only require that the distributions be
distinguishable with probability at most O(γ) where the goal is to make γ as
close to 1

|D| as possible. In the case of a passive adversary, we require that the real
and ideal distributions be computationally indistinguishable (for all subsequent
definitions, this requirement will be implicit).

Definition 1 (Initial definition). A protocol for password-based authenticated
session-key generation is (1− γ)-secure for the dictionary D ⊆ {0, 1}n (where γ
is a function of the dictionary size |D| and n) if:

434 M.-H. Nguyen and S. Vadhan

1. For every real passive adversary, there exists an ideal adversary Cideal which
always sends (1,1) to the trusted party such that for every auxiliary input
σ ∈ {0, 1}poly(n),

{IDEALCideal(D, σ)}σ c≡ {REALC(D, σ)}σ .

2. For every real adversary C, there exists an ideal adversary Cideal such that
for every auxiliary input σ ∈ {0, 1}poly(n),

{IDEALCideal(D, σ)}σ
O(γ)≡ {REALC(D, σ)}σ .

By the discussion above, the best we can hope for is γ = 1
|D| . Note that

in [12], their definition and protocol refer to any dictionary D ⊆ {0, 1}n and
γ = 1

|D| . In contrast, our protocol will be (1 − γ)-secure for dictionaries of the

form D = {0, 1}d and γ =
(

poly(n)
|D|

)Ω(1)
.

2.2 Augmented Definitions

The above definition is actually not completely satisfying because of a subtle
point raised by Rackoff: the adversary controls the scheduling of the interactions
(A, C) and (C, B) so the honest parties do not necessarily end at the same time.
A might use its session key KA before the interaction (C, B) is completed: A’s
use of KA leaks information which C might use in its interaction with B to learn
KA, KB or the password w.

In [12], Goldreich and Lindell augment the above definition with a session-
key challenge to address this issue. Suppose that A completes the protocol first
and outputs a session key K, then the adversary is given a session-key challenge
Kβ , which is the session key K with probability 1/2 (i.e. β = 1) or a truly
random string K0 with probability 1/2 (i.e. β = 0). The adversary C will be
given the session-key challenge in both the ideal and real models, as soon as
the first honest party outputs a session-key K. We call the resulting definition
security with respect to the session-key challenge.

Goldreich and Lindell give some intuition as to why the session-key challenge
solves the above flaw. First, note that the ideal adversary cannot distinguish
between the case β = 0 and the case β = 1 since in the ideal model, both K0
and K are truly uniform strings. Consider the real adversary who has been
given the session-key challenge: if C has been given K0, then the session-key
challenge does not help C in attacking the protocol, since C could generate K0
on its own. Suppose that instead C has been given K and can somehow use
it to attack the protocol (this corresponds to the situation where A uses the
session key K; C(K) can simulate A’s use of the key), then it would mean that
C can tell if it is in the case β = 0 or β = 1, which is not possible if the protocol
is secure with respect to the session-key challenge.

Simpler Session-Key Generation from Short Random Passwords 435

Our intuitive notion of security is that no matter how A uses its session
key K before the execution (C, B) is completed, the ideal and real distributions
should be (1−O(γ))-indistinguishable. Even with the above intuition, it is not
immediate that the session-key challenge fully captures this goal. Thus we pro-
pose an alternative augmentation to Definition 1 that corresponds more directly
to this goal.

We model the different ways the party A could use its session key K by con-
sidering an arbitrary probabilistic polynomial time machine Z which is given the
key K (as soon as A outputs a session key K) and interacts with the adversary
in both the ideal and real models. This is similar to the “application” queries
in Shoup’s model for (non-password-based) secure key exchange [22], which was
later extended to password protocols in [7]. Z can also be thought of in terms
of “environment” as in the definition of universal composability by Canetti [8]:
Z models an arbitrary environment (or application) in which the key generated
by the session-key generation protocol is used.2

Examples of environments follow:

1. Z(K) = ⊥: A does not use its session key.
2. Z(K) = K: A publicly outputs its session key.
3. Z(K) = K with probability 1/2, Un with probability 1/2. This corresponds

to the session-key challenge.
4. Z(K) = EncK(0n): A uses its session-key for secure private-key encryption.
5. C sends a query m1, Z(K) answers with EncK(m1), C sends a query m2,

Z(K) answers with EncK(m2) and so on. A uses its key for encryption and
the adversary is mounting a chosen plaintext attack.

We call the definition obtained by adding (in both the ideal and real models)
the environment Z security with respect to the environment. Informally, a real
protocol is secure with respect to the environment if every adversary attacking
the real protocol and interacting with an arbitrary environment can be simulated,
with probability 1−O(γ), by an ideal adversary attacking the ideal functionality
and interacting with the same environment in the ideal model. (More precisely,
for every real adversary, there should be a single ideal adversary that simulates
it well for every environment.)

Note that security with respect to the environment implies security with
respect to the session-key challenge since it suffices to consider the PPT Z(K)
which generates β

R← {0, 1} and outputs the key K if β = 1 or a truly random
string K0 if β = 0. We show that the two definitions are actually equivalent:

Theorem 2. A protocol (A, B) is (1− γ)-secure with respect to the session-key
challenge iff it is (1− γ)-secure with respect to the environment.

This is similar to a result of Shoup [22] showing the equivalence of his def-
inition and the Bellare-Rogaway [3] definition for non-password-based key ex-
change. The “application” queries in Shoup’s definition are analogous to our
2 Note that this is not as general as the definition of Canetti since the environment Z

is only given the session key and not the password w.

436 M.-H. Nguyen and S. Vadhan

environment Z, and the “test” queries in [3] are analogous to the session-key
challenge. Though both of these definitions have been extended to password-
authenticated key exchange [7,2], it is not immediate that Shoup’s equivalence
result extends directly to our setting. For example, the definitions of [3,2] are not
simulation-based and do not directly require that the password remain pseudo-
random, whereas here we are relating two simulation-based definitions that do
ensure the password’s secrecy.

Given Theorem 2, the relationship between security with respect to the en-
vironment and security with respect to the session-key challenge is analogous
to the relationship between semantic security and indistinguishability for en-
cryption schemes [14,18]. Though both are equivalent, the former captures our
intuitive notion of security better, but the latter is typically easier to establish for
a given protocol (as it involves only taking into account a specific environment
Z).

3 An Overview of the Protocol

Before presenting our protocol, we introduce the polynomial evaluation function-
ality, which is an important tool for the rest of the paper. In [19], it is observed
that a secure protocol for polynomial evaluation immediately yields a protocol
for session-key generation which is secure against passive adversaries. In [12],
Goldreich and Lindell work from the intuition (from [6]) that by augmenting a
secure protocol for polynomial evaluation with additional mechanisms, one can
obtain a protocol for session-key generation which is secure against active ad-
versaries. Our protocol also comes from this intuition but the additional tools
we are using are different.

3.1 Secure Polynomial Evaluation

In a secure polynomial evaluation, a party A knows a polynomial Q over some
field IF and a party B wishes to learn the value Q(x) for some element x ∈ IF such
that A learns nothing about x and B learns nothing else about the polynomial
Q but the value Q(x). More specifically, for our problem, we will assume that
IF = GF(2n) ≈ {0, 1}n, Q is a linear non-constant polynomial over IF, and x is
a string in {0, 1}n.

Definition 3 (Polynomial evaluation). The polynomial evaluation function-
ality is defined as:

Inputs The input of A is a linear non-constant polynomial Q over GF(2n). The
input of B is a value x ∈ GF(2n).

Outputs B receives Q(x). A receives nothing.

As observed in [19], a secure protocol for polynomial evaluation yields im-
mediately a protocol for session-key generation which is secure against passive
adversaries as follows: A chooses a random linear non-constant polynomial Q,

Simpler Session-Key Generation from Short Random Passwords 437

and A and B engage in a secure polynomial evaluation protocol, where A inputs
Q and B inputs w, so that B obtains Q(w). Since A has both Q and w, A can
also obtain Q(w), and the session key is set to be K = Q(w).

This protocol is secure against passive adversaries because the key K is a
random string (since Q is a random polynomial), and it can be shown that
an eavesdropper learns nothing about w or Q(w) (due to the security of the
polynomial evaluation).

However, the protocol is not secure against active adversaries. For example,
an active adversary C can input a fixed polynomial QC in its interaction with B,
say the identity polynomial id, and a fixed password wC in its interaction with
A. A outputs the session key QA(w) and B outputs the session key QC(w) = w.
With probability 1−2−n, the two session keys are different, whereas the definition
of security requires them to be equal with probability 1−O(γ).

3.2 Motivation for Our Protocol

The main deficiency of the secure polynomial evaluation protocol against active
adversaries is that it does not guarantee that A and B output the same random
session key. Somehow, the parties have to check that they computed the same
random session key before starting to use it. It can be shown that A’s session
key KA = QA(w) is pseudorandom to the adversary, so A can start using it
without leaking information. However, B cannot use its key KB = QC(w)
because it might belong to a set of polynomial size (for example, if QC = id,
then QC(w) ∈ D where the dictionary is by definition a small set). Hence
Goldreich and Lindell added a validation phase in which A sends a message
to B so that B can check if it computed the same session key, say A sends
fn(KA) where f is a one-way permutation. Since fn is a 1-1 map, this uniquely
defines KA (the session key used now consists of hardcore bits of f i(KA), for
i = 0, · · · , n − 1) : B will compute fn(KB) and compare it with the value it
received.

But it is still not clear that this candidate protocol is secure. Recall that the
security of the polynomial evaluation protocol applies only in the stand-alone
setting and guarantees nothing in the concurrent setting. In particular, it might
be that C inputs a polynomial QC in the polynomial evaluation between C and
B such that the polynomials QA and QC are related in some manner, say for
any w ∈ D, it is easy to compute the correct validation message f2n(QC(w))
given the value of f2n(QA(w)); yet B’s key does not equal A’s key.

To prevent this from happening, Goldreich and Lindell force the polynomial
Q input in the polynomial evaluation phase to be consistent with the message
sent in the validation phase (which is supposedly f2n(Q(w))). The parties have
to commit to their inputs at the beginning and then prove in a zero-knowledge
manner that the messages sent in the validation phase are consistent with these
commitments. Because of the person-in-the-middle attack and the concurrency
issues mentioned earlier, Goldreich and Lindell cannot use standard commitment

438 M.-H. Nguyen and S. Vadhan

schemes and standard zero-knowledge proofs but rather they use nonmalleable
commitments and the specific zero-knowledge proof of Richardson and Kilian.

Our approach is to allow C to input a polynomial QC related to QA, but
to prevent C from being able to compute a correct validation message with
respect to B’s session-key, even given A’s validation message. Suppose that
the parties have access to a family of pairwise independent hash functions H.
In the validation phase, we require A to send h(f2n(KA)) = h(f2n(QA(w)))
for some function h

R← H. Then, even if KA = QA(w) and KB = QC(w) are
related (but distinct), the values h(f2n(KA)) and h(f2n(KB)) will be indepen-
dent and C cannot do much better than randomly guess the value of h(f2n(KB)).

One difficulty arises at this point: the parties have to agree on a common
random hash function h

R←H. But the honest parties A and B only share the
randomness coming from the password w so this password w has to be enough
to agree on a random hash function. To make this possible, we assume that the
password is the form (w, w′) where w and w′ are chosen independently of one
another: w is chosen at random from an arbitrary dictionary D ⊆ {0, 1}n and w′

is uniformly distributed in D′ = {0, 1}d′
. (For example, these can be obtained by

splitting a single random password from {0, 1}d′′
into two parts.) The first part

of the password, w, will be used in the polynomial evaluation protocol whereas
the second part of the password, w′, will be used as the index of a hash function.
Indeed, if we assume that D′ = {0, 1}d′

, there exists a family of almost pairwise
independent hash functions H = {h : {0, 1}n → {0, 1}m}, where each hash
function is indexed by a password w′ ∈ D′ and m = Ω(d′).

We formalize these ideas in the protocol described below.

3.3 Description of the Protocol

Like in [12], we will need a secure protocol for an augmented version of polyno-
mial evaluation.

Definition 4 (Augmented polynomial evaluation). The augmented poly-
nomial evaluation functionality is defined as:

Earlier phase. A sends a commitment cA = Commit(QA, rA) to a linear non-
constant polynomial QA for a randomly chosen rA. B receives a commitment
cB. We assume that the commitment scheme used is perfectly binding and
computationally hiding.

Inputs. The input of A is a linear non-constant polynomial QA, a commit-
ment cA to QA and a corresponding decommitment rA. The input of B is a
commitment cB and a value x ∈ GF(2n).

Outputs.
– In the case of correct inputs, i.e. cA = cB and cA = Commit(QA, rA),

B receives QA(x) and A receives nothing.
– In the case of incorrect inputs, i.e. cA 	= cB or cA 	= Commit(QA, rA),

B receives a special failure symbol ⊥ and A receives nothing.

Simpler Session-Key Generation from Short Random Passwords 439

The other cryptographic tools we will need are:

Commitment scheme: Let Commit be a perfectly binding, computationally
hiding string commitment.

Seed-committed pseudorandom generator: Similarly to [12], we will use
the seed-committed pseudorandom generator

G(s) = (b(s)b(f(s)) · · · b(fn+�−1(s))fn+�(s))

where f is a one-way permutation with hardcore bit b.
One-time MAC with pseudorandomness property: Let MAC be a mes-

sage authentication code for message space {0, 1}p(n) (for a polynomial p(n)
to be specified later) using keys of length � = �(n) that is secure against one
query attack, i.e. a PPT A which queries the tagging algorithm MACK on
at most one message of its choice cannot produce a valid forgery on a differ-
ent message. Additionally, we will require the following pseudorandomness
property:
– Let K be a uniform key of length �.
– The adversary queries the tagging algorithm MACK on the message m

of its choice.
– The adversary selects m′ 	= m. We require that the value MACK(m′) be

pseudorandom with respect to the adversary’s view.
Two examples of such a MAC are:
– MACs(m) = fs(m) where {fs}s∈{0,1}� is a pseudorandom function fam-

ily
– MACa,b(m) = am + b where �(n) = 2p(n) and a, b ∈ GF(2�/2).

Almost pairwise independent hash functions: The family of functions
H = {hw′ : {0, 1}n → {0, 1}m}w′∈{0,1}d′ is said to be pairwise δ-dependent
or almost pairwise independent if:
1. (uniformity) ∀x ∈ {0, 1}n, when we choose w′ R← {0, 1}d′

, hw′(x) is uni-
form over {0, 1}m.

2. (pairwise independence) ∀x1 	= x2 ∈ {0, 1}n,∀y1, y2 ∈ {0, 1}m, when we
choose w′ R←{0, 1}d′

,

Pr
w′∈{0,1}d′

[hw′(x1) = y1 ∧ hw′(x2) = y2] =
1 + δ

22m
.

We also require that for a fixed w′ ∈ {0, 1}d′
, the function hw′ is regular, i.e.

it is 2n−m to 1. In other words, hw′(Un) ≡ Um. Throughout this paper, we
write µ

def= 1+δ
2m .

Lemma 5. For the fixed dictionary D′ = {0, 1}d′ ⊆ {0, 1}n, there exists a
family of almost pairwise independent hash functions H = {hw′ : {0, 1}n →
{0, 1}m}w′∈D′ for µ = O

(
n

|D′|1/3

)
.

The formal description of the protocol follows. A schematic diagram of the
protocol is given in Fig. 1.

440 M.-H. Nguyen and S. Vadhan

Protocol 6. 1. Inputs: The parties A and B have a joint password (w, w′)
where w and w′ are chosen independently: w is chosen at random from an
arbitrary dictionary D ⊆ {0, 1}n and w′ is uniformly distributed in D′ =
{0, 1}d′ ⊆ {0, 1}n.

2. Commitment: A chooses a random linear non-constant polynomial QA

over GF(2n) and coin tosses rA and sends cA = Commit(QA, rA). B receives
some commitment cB .

3. Augmented polynomial evaluation:

a) A and B engage in a polynomial evaluation protocol: A inputs the poly-
nomial QA, the commitment cA and the coin tosses rA it used for the
commitment; B inputs the commitment cB it received and the password
w seen as an element of GF (2n).

b) The output of B is denoted ΠB , which is supposed to be equal to QA(w).
c) A internally computes ΠA = QA(w).

4. Validation:
a) A sends the string yA = hw′(fn+�(ΠA)).
b) Let tA be the session transcript so far as seen by A. A computes k1(ΠA) =

b(ΠA) · · · b(f �−1(ΠA)) and sends the string zA = MACk1(ΠA)(tA).
5. Decision:

a) A always accepts and outputs k2(ΠA) = b(f �(ΠA)) · · · b(f �+n−1(ΠA))
b) B accepts (this event is denoted by decB = accept) if the strings yB

and zB it received satisfy the following conditions :
– yB = hw′(fn+�(ΠB))
– Verk1(ΠB)(tB , zB) = accept, where tB is the session transcript so far

as seen by B and k1(ΠB) is defined analogously to k1(ΠA).
If ΠB = ⊥, then B will immediately reject. If B accepts, it outputs
k2(ΠB) = b(f �(ΠB)) · · · b(f �+n−1(ΠB)).

4 Security Theorems

Theorem 7. Protocol 6 is secure for the dictionary D×D′ = D×{0, 1}d′
against

passive adversaries. More formally, for every passive PPT real adversary C,
there exists an ideal adversary Cideal which always sends (decA

C , decB
C) = (1, 1)

to the trusted party such that for every auxiliary input σ ∈ {0, 1}poly(n):

{IDEALCideal(D ×D′, σ)}σ c≡ {REALC(D ×D′, σ)}σ .

Theorem 8. Protocol 6 is (1−γ)-secure with respect to the session-key challenge

for the dictionary D×D′ = D×{0, 1}d′
, for γ = max

{
1

|D| ,
(

poly(n)
|D′|

)Ω(1)
}

. More

precisely, γ = max
{

1
|D| , O

((
n3

|D′|
)1/6

)}
.

Simpler Session-Key Generation from Short Random Passwords 441

A has (w, w′) and picks a random QA B has (w, w′)

Commitment cA
def= Commit(QA, rA) cB�

Secure polynomial evaluation
QA, cA, rA � � w

� ΠB

ΠA
def= QA(w)

Hash yA
def= hw′(fn+�(ΠA)) yB�

MAC of transcript zA
def= MACk1(ΠA)(tA) � zB

Output key k2(ΠA)

Accept if yB = hw′(fn+�(ΠB))
& Verk1(ΠB)(tB , zB) = accept

If accept, output key k2(ΠB)

Fig. 1. Overview of our protocol

The shared dictionary of the form D×{0, 1}d required in Theorem 8 can be
realized from several other types of dictionaries D′′, achieving security bounds
of the form (poly(n)/|D′′|)Ω(1) in all cases:

Single Random Password
We can split a single random password from a dictionary D′′ = {0, 1}d′′

into
two parts, one of length d and one of length d′.

Arbitrary Password with Common Random String
We can convert a password from an arbitrary dictionary D′′ ⊆ {0, 1}n
into a single random password (as in the previous bullet) in the com-
mon random string model. Specifically, we view the common random string
r ∈ {0, 1}� as the seed for a randomness extractor Ext : {0, 1}n × {0, 1}� →
{0, 1}d′′

[20]. Given password w ← D′′, the honest parties can compute
an (almost-uniform) password Ext(w, r). Using the low min-entropy ex-
tractors of [13,23], the length of the common random string need only be
� = O(log n + log |D′′|). (Unlike the protocols of [12] and [16], this requires
knowing a lower bound on the size of the dictionary |D′′|.)

Two Independent Passwords
If the parties share two independent passwords w1, w2 coming from arbitrary
dictionaries D′′

1 ,D′′
2 ⊆ {0, 1}n, then they can apply an extractor for 2 inde-

pendent weak random sources [9] to convert these into an almost-uniform
password. Unfortunately explicit constructions for 2-source extractors are
only known when |D′′

1 | · |D′′
2 | ≥ 2n, but nonconstructively there exist 2-source

extractors that would only require the dictionaries to be of size poly(n).

442 M.-H. Nguyen and S. Vadhan

5 Overview of the Proof

Like in [12], the main part of the proof of Theorem 8 is the key-match property:
if ΠA 	= ΠB , then B will reject with probability 1−O(γ). Once the key-match
property is established, we can easily adapt the proofs in [12] to our specific
protocol to build an ideal adversary which simulates the real adversary’s view.

The main part of our proof that is new (and simpler than [12]) is the key-
match property. As noted in the introduction, the adversary C has total control
over the scheduling of the two interactions (A, C) and (C, B). Hence the key-
match property will be proved for every possible scheduling case, including those
for which these interactions are concurrent. Nevertheless, the key-match property
will be established by tools of secure two-party computation, which a priori only
guarantee security in the stand-alone setting.

Recall that B accepts iff two conditions are satisfied: the string yB received
must equal hw′(fn+�(ΠB)) and the MAC zB received must be a valid MAC,
i.e. Verk1(ΠB)(tB , zB) = accept. Hence, to establish the key-match property, we
can omit the verification of the MAC by B and only consider the probability
that C succeeds in sending the value hw′(fn+�(ΠB)) when ΠA 	= ΠB . (Like in
[12], the MAC is only used to reduce the simulation of active adversaries to the
simulation of passive adversaries plus the key-match property.)

We consider two scheduling cases (see Figures 2 and 3):

Scheduling 1 : C sends the commitment cB to B after A sends the hash value
yA.
The intuition for this case is that we have two sequential executions (A, C)
and (C, B). Using the security of the polynomial evaluation (A, C), we show
that even if C receives yA, the hash index w′ is (1− ε) pseudorandom with
respect to the adversary’s view. Hence, by the uniformity property of the
hash functions, C cannot do much better than randomly guess the value of
hw′(fn+�(ΠB)).

Scheduling 2 : C sends the commitment cB to B before A sends the hash value
yA.
The almost pairwise independence property means that for fixed values x1 	=
x2 ∈ {0, 1}n, if the index w′ is chosen at random and independently of x1 and
x2, then given the value hw′(x1), one cannot do much better than randomly
guess the value hw′(x2). Before yA is sent, the hash index w′ is random (since
it has not been used by A). Thus, if we show that the values ΠA and ΠB can
be computed before yA is sent, then w′ is independent of x1 = fn+�(ΠA)
and x2 = fn+�(ΠB) and the adversary cannot guess hw′(x2) even given
yA = hw′(x1). To show that ΠA and ΠB can be computed before yA is
sent, we use an ideal augmented polynomial evaluation (C, B) to extract an
opening of the adversary’s commitment cB . (The adversary must input such
an opening in the ideal evaluation, else B will reject.)

Simpler Session-Key Generation from Short Random Passwords 443

Polynomial
evaluation

cA = Commit(QA, rA)
�

QA, cA, rA
�

ΠA
def= QA(w)

yA �
zA

�
�

cB

Polynomial
evaluation

w�

ΠB�

�
yB

A(QA, w, w′) C B(w, w′)

Fig. 2. First scheduling

Polynomial
evaluation

cA = Commit(QA, rA)
�

QA, cA, rA
�

ΠA
def= QA(w)

yA �
zA

�

�
cB

Polynomial
evaluation

w�

ΠB�

�
yB

A(QA, w, w′) C B(w, w′)

Fig. 3. Second scheduling

444 M.-H. Nguyen and S. Vadhan

Acknowledgments. We thank Oded Goldreich and Yehuda Lindell for their
encouragement and an inspiring discussion which led to a substantial simplifica-
tion of our protocol. We are also grateful to Mihir Bellare for pointing out the
extension of our protocol to arbitrary dictionaries in the common random string
model.

References

1. Barak, B.: Constant-Round Coin-Tossing With a Man in the Middle or Realizing
the Shared Random String Model. IEEE Symposium on Foundations of Computer
Science (2002) 345–355

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. Advances in Cryptology–Eurocrypt 2000 Proceedings,
Lecture Notes in Computer Science 1807 (2000) 139–155

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. Advances
in Cryptology - Crypto 93 Proceedings, Lecture Notes in Computer Science 773
(1994) 232–249

4. Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Se-
cure Against Dictionary Attacks. ACM/IEEE Symposium on Research in Security
and Privacy (1992) 72–84

5. Bellovin, S., Merritt, M.: Augmented Encrypted Key Exchange: A Password-Based
Protocol Secure against Dictionary Attacks and Password File Compromise. ACM
Conference on Computer and Communications Security (1993) 244–250

6. Boyarsky, M.: Public-Key Cryptography and Password Protocols: The Multi-User
Case. ACM Conference on Computer and Communications Security (1999) 63–72

7. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. Advances in Cryptology - Eurocrypt 2000 Proceed-
ings, Lecture Notes in Computer Science 1807 (2000) 156–171

8. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. IEEE Symposium on Foundations of Computer Science (2001) 136–145

9. Chor, B., Goldreich, O.: Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM Journal on Computing 17:2
(1988) 230–261

10. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22:6 (1976) 644–654

11. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key
Exchange. Advances in Cryptology - Eurocrypt 2003 Proceedings, Lecture Notes
in Computer Science 2656 (2003) 524–543

12. Goldreich, O., Lindell, Y.: Session-Key Generation Using Human Passwords Only.
Advances in Cryptology - Crypto 2001 Proceedings, Lecture Notes in Computer
Science 2139 (2001) 408–432

13. Goldreich, O., Wigderson, A.: Tiny Families of Functions with Random Properties:
A Quality-Size Trade-off for Hashing. Random Structures and Algorithms 11:4
(1997) 315–343

14. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28:2 (1984) 270–299

15. Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. ACM
Conference on Computer and Communications Security (1998) 122–131

Simpler Session-Key Generation from Short Random Passwords 445

16. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. Advances in Cryptology - Eurocrypt 2001
Proceedings, Lecture Notes in Computer Science 2045 (2001) 475–494

17. Kobara, K., Imai, H.: Pretty-Simple Password-Authenticated Key-Exchange Under
Standard Assumptions. IECIE Trans. E85-A:10 (2002) 2229–2237

18. Micali, S., Rackoff, C., Sloan, B.: The Notion of Security for Probabilistic Cryp-
tosystems. SIAM Journal on Computing 17 (1988) 412–426

19. Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. ACM Sym-
posium on Theory of Computing. (1999) 245–254

20. Nisan, N., Zuckerman, D.: Randomness is Linear in Space. Journal of Computer
and System Sciences 52:1 (1996) 43–52

21. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge
Proofs. Advances in Cryptology - Eurocrypt 99 Proceedings, Lecture Notes in
Computer Science 1592 (1999) 415–431

22. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive
(1999) Report 1999/012

23. Srinivasan, A., Zuckerman, D.: Computing with Very Weak Random Sources. IEEE
Symposium on Foundations of Computer Science (1994) 264–275

24. Steiner, M., Tsudik, G., Waidner, M.: Refinement and Extension of Encrypted Key
Exchange. Operating Systems Review 29:3 (1995) 22–30

	Introduction
	Definition of Security
	The Initial Definition
	Augmented Definitions

	An Overview of the Protocol
	Secure Polynomial Evaluation
	Motivation for Our Protocol
	Description of the Protocol

	Security Theorems
	Overview of the Proof

