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Abstract

We present a robust representation for gait recogni-
tion that is compact, easy to construct, and affords effi-
cient matching. Instead of a time series based represen-
tation comprising of a sequence of raw silhouette frames
or of features extracted therein, as has been the prac-
tice, we simply align and average the silhouettes over one
gait cycle. We then base recognition on the Euclidean dis-
tance between these averaged silhouette representations.
We show, using the recently formulated gait challenge prob-
lem (www.gaitchallenge.org), that the improvement in exe-
cution time is 30 times while possessing recognition power
that is comparable to the gait baseline algorithm, which is
becoming the comparison standard in gait recognition. Ex-
periments with portions of the average silhouette represen-
tation show that recognition power is not entirely derived
from upper body shape, rather the dynamics of the legs also
contribute equally to recognition. However, this study does
raise intriguing doubts about the need for accurate shape
and dynamics representations for gait recognition.

1.. Introduction

Possibilities for gait recognition was demonstrated in
the early 70s using light point displays. Over the past few
years, a variety of approaches to gait recognition have been
proposed, almost all of which are based on matching sil-
houettes of persons. Approaches to gait recognition, typ-
ically, involves matching time series of features extracted
in each frame. The possible frame features include just
the raw silhouettes as in the gait baseline algorithm [8],
shape PCA coefficients [15], shape moments [12], silhou-
ette width vector [11, 4, 13], and body part ellipses [10]. The
matching of the trajectories of these features rely on simple
spatio-temporal correlation [15, 8, 11], or matching maps
of silhouette correlations [1], or dynamic time warping and
HMM [4, 13]. Apart from these classes of approaches that
tend to emphasize both the shape of the silhouette and its
evolution over time, there are approaches that emphasize
just the shape [3, 14] or use static body parameters [6] with
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almost equal or better performance than the first class of ap-
proaches.

Given this collective wisdom about gait recognition, it
is pertinent to ask: what is the simplest representation that
suffices for gait recognition? The quest for the simplest rep-
resentation is meaningful from both a computational point
of view and from a robustness point of view; simpler ideas
tend to be generalizable across a wider range of condi-
tions. Towards this end, we propose the averaged silhouette
representation; we simply consider the sum of the silhou-
ettes over approximately one gait cycle as the gait repre-
sentation. The matching process simply considers the Eu-
clidean distances between these average silhouettes. The
representation is robust with respect to gait cycle length
estimates and does not depend on the choice of the start-
ing stance of the gait cycle. There is no need for stance
matching or gait alignment before matching. The idea be-
hind the proposed representation is somewhat similar to the
summed symmetry maps proposed in [5], where bilateral
symmetry map of each silhouette is first extracted and then
summed over one gait cycle. We, however, do not even ex-
tract the symmetry maps. The use of cumulative images for
motion-based human activity recognition is not new. Bobick
and Davis [2] used temporal template, a vector-image con-
structed by weighted image-differencing through the mo-
tion history, to identify different human activities, such as
sit-down, arms-wave, and crouch down. We show that this
kind of representation seem to be sufficient also for recog-
nition.

We use the HumanID Gait Challenge framework [8] to
demonstrate the efficacy of the proposed representation.
The challenge problem, which is being used by the gait
community [13, 14, 9], consists of a baseline algorithm,
a set of twelve experiments (A through L), and a large
data set (1870 sequences, 122 subjects, 1.2 Terabytes of
data). The baseline gait recognition algorithm estimates sil-
houettes by background subtraction using the Mahalanobis
distance in the RGB color space and performs recogni-
tion by spatio-temporal correlation of the silhouettes. The
twelve challenge experiments are of increasing difficulty
and examine the effects of five covariates (and some of
their combinations) on performance. The covariates are:
change in viewing angle, change in shoe type, change in
walking surfaces (concrete and grass), carrying or not car-
rying a briefcase, and temporal differences. The detailed
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Figure 1. The first and second rows show sam-
ples of the binary silhouettes over one gait cycle,
for two subjects, respectively. The third row shows
the averaged silhouettes for the subject in the sec-
ond row; each averaged over a different gait cycle.
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Figure 2. Variation over time of the number of fore-
ground pixels from the bottom half of the silhou-
ettes.

specifications of the experiments, the gait data, the source
code of the baseline algorithm, and scripts to run, score,
and analyze the challenge experiments were taken from
www.GaitChallenge.org.

2.. Averaged Silhouette Representation

The first step is silhouette extraction in each frame based
the Mahalanobis distance from the background pixel statis-
tics. We compute the background statistics of the RGB val-
ues at each image location, (x,y), in terms of the mean
µB(x,y) and the covariances ΣB(x,y) of the RGB values
at each pixel location. Using the Mahalanobis distance of
a pixel value as the observation, pixels are classified into
foreground or background using Expectation Maximization
(EM) with a Gaussian mixture model. We found that the
process stabilizes within 15 or so iterations. Fig. 1 shows
some example silhouettes.

The second step is to estimate the gait periodicity, Ngait .
We simply count the number of foreground pixels in the sil-
houette in each frame over time, Nf (t). This number will
reach a maximum when the two legs are farthest apart (full
stride stance) and drop to a minimum when the legs over-
lap (heels together stance). To increase the sensitivity, we
consider the number of foreground pixels mostly from the
legs, which are selected simply by considering only the bot-
tom half of the silhouette. Fig. 2 shows an instance of the
variation of Nf (t). Notice that two consecutive strides con-
stitute a gait cycle. We compute the median of the distances
between minima, skipping every other minima. Using this
strategy, we get two estimates of the gait cycle, depending
on whether we skipped the first minima or not. We esti-
mate the gait period by the average of these two medians.
We have observed that the estimate are pretty robust even in
the presence of shadows, the size of which tend to be corre-
lated with the stance.

The third step is average silhouette computation. Given
a sequence of silhouettes, S = {S(1), · · · , S(M)}, we parti-
tion it into subsequences of gait period length, denoted by
SPk = {S(k), · · · ,S(k + NGait)}. For each subsequence we
average the silhouettes to arrive at a set of average silhou-
ettes, AS(i), i = 1, · · · ,� M

NGait
�.

AS(i) =
1

NGait

(i+1)NGait−1

∑
k=iNGait

S(k) (1)

Fig. 1 shows examples of the average silhouette represen-
tation for a sequence. Note that this representation implic-
itly captures the shape of the template and, to a lesser ex-
tent, the temporal dynamics of gait. The time spent at each
stance shows up indirectly as intensity in the average sil-
houette representation.

3.. Similarity Computation

For gait recognition, we need to compute the similar-
ity between a given probe sequence and a stored gallery se-
quence. Let the average silhouettes from a probe and
a gallery be denoted by {ASP(i)|i = 1, · · · ,NP} and
{ASG( j)| j = 1, · · · ,NG}, respectively. The similarity is de-
fined as the negative of the median of the Euclidean dis-
tance between the averaged silhouettes from the probe and
the gallery.

Sim(ASP,ASG)=−Median
Np
i=1

(
NG

min
j=1

||ASP(i)−ASG( j)||
)

(2)

4.. Gait Challenge Performance

We use the HumanID Gait Challenge framework [8] to
demonstrate the efficacy of the proposed representation.
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The challenge problem consists of a set of twelve exper-
iments (A through L) of increasing difficulty and exam-
ine the effects of five covariates (and some of their com-
binations) on performance. After the widely accepted face
recognition technology evaluations (FERET) [7], each ex-
periment is specified in terms of a gallery set and a probe
set consisting of data from a set of subjects, with controlled
difference in covariates. The covariates are: change in view-
ing angle, change in shoe type, change in walking surfaces
(concrete and grass), carrying or not carrying a briefcase,
and temporal differences. Of these 12 experiments, we pick
5 key experiments, exercising variation in just one covari-
ate at a time. For instance, the first experiment (A), which
studies the effect of viewpoint, consists of a gallery of se-
quences taken from the left view and probes of sequences
from the right view.

We list performance in terms of the correct identifica-
tion rates at the top most rank, i.e. fraction of times the cor-
rect match to a probe is the top ranked match among all
the matches of that probe to the complete gallery set. This
is a standard performance metric used in biometrics [7] for
the identification scenario, where one is interested to find a
match to a given probe from the whole gallery set, i.e. one-
to-many match. (For the verification scenario, where one
is interested in matching one probe to one gallery (one-to-
one match), the performance is specified in terms of stan-
dard false alarm and detection rates. In general, identifica-
tion is considered to be a harder problem than verification.)
We have found that the pattern of verification performance
is similar to that for identification, so we do not report those
here due to space limitations.

In Fig. 3, we plot CMCs for the first 20 ranks for the
gait baseline algorithm, which uses spatio-temporal corre-
lation of the silhouette, and recognition based on the aver-
aged silhouette representation proposed here. We see that
performance on three of the experiments, i.e. A (view), B
(shoe), and H (carry), is better with averaged silhouettes.
There is some fall in performance for the other two exper-
iments exercising surface (D) and time (K). However, sta-
tistical McNemar’s tests show that the rank 1 identification
rates are not statistically significant (P-value > 0.05). On a
800 MHz SunFire server it took 4.63s on an average to com-
pare two sequences by spatio-temporal correlation as com-
pared to 0.14s on an average to compare similarity using the
average silhouette; a 30 times improvement in time.

5.. Discussion and Conclusions

We have seen that even though the averaged silhouette
representation is simple to compute and is compact, it has
significant recognition power. We demonstrated this using
the recently formulated gait challenge problem; we showed
performances are statistically equivalent to the baseline al-
gorithm for gait recognition. In this context, it is worth not-
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Figure 3. Performance on 5 key experiments from
the gait challenge problem. Identification perfor-
mance in terms of CMCs with a gallery set of 122
subjects of (a) the baseline algorithm using indi-
vidual silhouette frames, (b) the averaged silhou-
ettes.

ing that the gait baseline performance is competitive with
respect to other gait recognition algorithms that are being
proposed. For example, on experiment D that compares se-
quences from different surfaces, the identification rate of (i)
continuous HMM based recognition [13] is 36%, (ii) body
shape [14] is 21%, and (iii) body part based recognition [9]
is 25%, reported on a smaller version of the gait challenge
problem involving just 71 subjects. The rate of the baseline
algorithm on the corresponding data subset is 29% [8].

The competitive performance of the averaged silhouette
representation raises intriguing questions about the impor-
tance of shape vs. dynamics in gait recognition. Are we
recognizing persons from the upper body shape? This is a
tough question to answer since the arm dynamics is merged
with upper body shape. However, we ran a simple experi-
ment that suggest that leg dynamics do contribute to recog-
nition. We removed (or kept) portions from the top of the av-
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Figure 4. Variation in identification rates as differ-
ent portions of the silhouettes are removed.

eraged silhouette representation. In Fig. 4, we plot the iden-
tification rate (at rank 1) for Experiment A (view change)
versus the percentage of the silhouette removed (green) or
kept (red) from the top. We see that the lower portion of
the average silhouette, which is dominated by leg dynam-
ics, contributes equally to recognition as the top half por-
tion, which is dominated by body shape.

Another factor that might be confounding recognition is
the presence of shadows and background subtraction errors.
Are correlations in error patterns contributing to recogni-
tion? Error patterns will tend to be correlated if the se-
quences being compared are collected roughly around the
same time or subjects do not change clothing. Maybe these
error patterns are getting reinforced in the averaged repre-
sentation, thus contributing to recognition. To help us an-
swer this question, we manually created silhouettes over
one gait cycle from 71 subjects in the gait challenge prob-
lem for experiments studying shoe variation (B), surface
variation (D), carrying condition (H), and time (K). The
manual silhouettes are “clean” without shadow or back-
ground subtraction artifacts. Table 1 lists the rank 1 iden-
tification rates with individual manual silhouettes and with
the averaged silhouette for these four experiments. We see
that performances are very close; the rank 1 performances
are not statistically different, as judged by McNemar’s test
with a P-value of 0.05.
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