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Abstract

We present a novel feature description algorithm to de-

scribe 3D local spatio-temporal features for human action

recognition. Our descriptor avoids the singularity and lim-

ited discrimination power issues of traditional 3D descrip-

tors by quantizing and describing visual features in the sim-

plex topological vector space. Specifically, given a feature’s

support region containing a set of 3D visual cues, we de-

compose the cues’ orientation into three angles, transform

the decomposed angles into the simplex space, and describe

them in such a space. Then, quadrant decomposition is per-

formed to improve discrimination, and a final feature vec-

tor is composed from the resulting histograms. We develop

intuitive visualization tools for analyzing feature character-

istics in the simplex topological vector space. Experimental

results demonstrate that our novel simplex-based orienta-

tion decomposition (SOD) descriptor substantially outper-

forms traditional 3D descriptors for the KTH, UCF Sport,

and Hollywood-2 benchmark action datasets. In addition,

the results show that our SOD descriptor is a superior indi-

vidual descriptor for action recognition.

1. Introduction

Local spatio-temporal features have shown promising

performance for human action recognition in unconstrained

scenarios [5, 7, 13, 17, 23, 27, 30]. These features charac-

terize local shape and motion variations, in space and time

dimensions, and can provide robust representation of hu-

man actions against disturbing effects such as background

clusters, occlusions, illumination, view variations, etc. Typ-

ically, local features are directly extracted from videos and

thus avoid potential failures resulting from pre-processing

steps, such as human segmentation. These desirable prop-

erties make local spatio-temporal features the most popular

method to recognize actions, and continue to attract increas-

ing attention from the computer vision community [7, 28].

Feature description is a fundamental research problem in

local feature extraction [3, 13, 16, 23] aimed at construction

of compact, descriptive representations of visual cues, in-

support region
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Figure 1: Overview of our novel simplex-based orientation

decomposition feature descriptor to quantize and represent

visual features in 3D space. Given a feature’s support region

containing a set of visual cues, our descriptor decomposes

each cue’s orientation into three angles. Then, the decom-

posed orientation vectors are transformed into the simplex

topological vector space, and features are described in this

space. After performing quadrant decomposition to further

increase discrimination power, our SOD descriptor concate-

nates the histograms from all decomposed quadrants into a

final feature vector.

cluding gradients and normals, computed within a feature’s

support region of a detected interest point. For example, the

well-known scale-invariant feature transform (SIFT) [16]

and histograms of oriented gradients (HOG) [3] descriptors

quantize 2D gradients in a support region by computing a

histogram from their orientations. Since the orientation of

a visual cue is independent of its magnitude, which is usu-

ally affected by image noise and illumination changes, ori-

entation quantization has proven to be a powerful, robust

approach for feature description [3, 16, 27].

To recognize unconstrained human actions, a large num-

ber of 3D local spatio-temporal features have been recently

introduced that are computed in xyt (i.e., 2D spatial and

1D temporal) space [1, 4, 7, 13, 23]. Although orientation
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(a) Spherical coordinate based (b) Regular polyhedron based

Figure 2: Issues of previous 3D feature description method-

ologies: Spherical coordinate based approaches suffer from

the singularity issue (Figure 2a): bins at the poles (red tri-

angle) are significantly smaller than bins around the equa-

tor (blue rectangle). Regular polyhedron based approaches

have limited discrimination power (Figure 2b), since only

five regular polyhedrons exist.

description in 2D space is intuitive and well defined, de-

scription of 3D features is much more challenging. Previous

methods to describe 3D feature orientations can be general-

ly categorized into two groups: spherical coordinate-based

description and regular polyhedron-based description. As

shown in Figure 2, spherical coordinate description of 3D

features suffers from the singularity issue at the poles, while

regular polyhedron descriptors have limited discrimination

power due to the limited number of regular polyhedrons

(discussed further in Section 2.1).

In this paper, we introduce a novel algorithm to describe

visual features in 3D space, which addresses the singularity

issue and provides a powerful description capability. The

overview of our feature description algorithm is illustrated

in Figure 1. Given the support region of a visual feature in

3D space (e.g., xyt spatio-temporal space), our description

algorithm decomposes each 3D visual cue (e.g., gradients)

into three dependent orientations. Then, all orientations are

transformed into the standard 2-simplex topological vector

space to deal with orientation dependency, and description

is performed in the simplex topological vector space. Final-

ly, to increase descriptive power, quadrant decomposition is

performed to refine the quantization results. The final de-

scriptor is a concatenated vector of the decomposed quanti-

zation results. Since our algorithm describes 3D features in

the simplex topological vector space, we name it Simplex-

based Orientation Decomposition (SOD) descriptor.

Our contributions are threefold. First, we introduce the

novel simplex-based feature description algorithm to quan-

tize and describe orientations of 3D visual features, which is

an efficient, powerful, general algorithm to represent spatio-

temporal (xyt) visual features in 3D space. Second, we de-

velop visualization tools that can be applied to intuitively

analyze feature characteristics in the abstract simplex topo-

logical space. Third, we empirically validate that visual fea-

tures in 3D space, e.g., 3D local spatio-temporal features in

xyt space, can greatly benefit from our descriptor, through

demonstrating their state-of-the-art performance on uncon-

strained action recognition. The code of our SOD descriptor

and its visualization tools are made available at:

http://dilab.eecs.utk.edu/SOD.

The remainder of the paper is structured as follows. Sec-

tion 2 discusses related studies. Then, Section 3 introduces

our novel SOD algorithm for 3D feature description. Addi-

tional characteristics of our algorithm are discussed in Sec-

tion 4. Experimental results are presented in Section 5. Fi-

nally, the paper is concluded in Section 6.

2. Related Work

In this section, we discuss previous 3D visual feature de-

scription methods and briefly review existing 3D features

with the focus on human action recognition applications.

2.1. Description of 3D Features

A naive method to describe visual features in 3D space is

to directly concatenate 3D visual cues, such as 3D gradients

or normals, into a single vector [30]. However, this method

is not robust [16, 27], since the magnitude of a visual cue

is usually affected by image noise, illumination variations,

etc. Because a visual cue’s orientation is independent of its

magnitude and is not similarly affected, orientation-based

methodology dominates 3D feature description approaches.

A large number of 3D feature description methods are

based on spherical coordinate systems [8, 10, 18, 23, 24,

29]. This description method applies polar angle θ and az-

imuthal angle φ in spherical coordinate systems to encode

orientations and build orientation histograms. Then, θ and

φ are divided into a set of bins, as illustrated in Figure 2a,

which are used to construct a histogram of orientations of

visual cues in a 3D feature’s support region. However, as

observed in [8, 13], spherical coordinate based descriptors

suffer from the singularity issue at the poles, as in Figure

2a, where the blue bin near the equator is significantly larg-

er than the red bin at the north pole.

Another popular 3D feature description methodology is

based on regular polyhedrons [1, 7, 11, 13, 25]. This tech-

nique approximates the orientation space by a regular poly-

hedron with congruent faces that are regular polygons, each

of which serves as a bin. Tracing each 3D vector along its

direction up to the intersection with a polyhedron face iden-

tifies the bin. Then, a feature is described using a histogram

of visual cues’ orientations. Since only five regular polyhe-

drons exist that support a maximum of 20 bins, as depicted

in Figure 2b, this methodology has limited discrimination

power when quantizing a large number of distinct features.

Because our SOD descriptor transforms 3D visual cues

to the simplex topological vector space instead of describ-

ing them in original Euclidian space, we are able to appro-

priately subdivide the transformed feature space and avoid

the singularity and limited discrimination power issues.
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2.2. 3D Features for Action Recognition

The large quantity of 3D spatio-temporal features pro-

posed in recent years can be generally grouped based upon

their information sources as follows:

• 3D spatio-temporal features computed in xyt spatio-

temporal space using a temporal sequence of images,

including 3D SIFT [18, 23], ST-SIFT [1], HOG3D

[13], CHOG3D [11], 3D optical flow [10], etc.

• Multi-channel 3D features, typically computed in xyt
spatio-temporal space and from multiple information

channels, such as RGB and depth channels, including

Color-SIFT [7], 4D-LST [30], etc.

The research problem we discuss in this paper, i.e., 3D

feature description, is an integral part of the methods to ex-

tract the above-mentioned features. Our SOD descriptor is

mathematically proven to work with any 3D vector and can

be directly applied to each of these 3D features. The univer-

sal applicability to a large number of 3D features highlights

the significance of our SOD descriptor.

It is also worth noting that, unlike feature encoding ap-

proaches such as unsupervised k-means and supervised en-

tropy optimization [14], which aim to build a vocabulary of

quantized features [2], our objective is to provide a descrip-

tion of each individual 3D visual feature.

3. The SOD Descriptor

In this section, we discuss our simplex-based orientation

description algorithm. The goal is to construct a compact,

representative description of 3D visual features. In particu-

lar, we describe 3D features in the simplex topological vec-

tor space to allow for appropriate subdivision of the 3D fea-

ture space. An overview of our SOD descriptor is depicted

in Figure 1, and its algorithmic description is presented in

Algorithm 1. Without loss of generality, we focus our dis-

cussion on describing 3D local spatio-temporal features that

are extracted in xyt space.

3.1. Orientation Decomposition

The input to our SOD descriptor is the support region of

a visual feature centered at a detected interest point in 3D

space, which contains a set of 3D visual cues. An example

of such a region containing 3D gradient cues in xyt space is

visualized in Figure 3a. Given a support region, the goal of

orientation decomposition is to decompose the orientation

of each 3D visual cue into three angles.

Let S = {v1, . . . ,vN} denote a visual feature’s support

region that contains a set of 3D cues vi = (xi, yi, ti) ∈ R
3,

i = 1, . . . , N . Given a user-defined reference Cartesian co-

ordinate system C defined by the unit vectors vr
x, vr

y and vr
t

in the direction of xr-axis, yr-axis and tr-axis, respectively,

the orientation of v can be decomposed into three angles α,

Algorithm 1: Simplex-based 3D feature description

Input : S = {v1, . . . ,vN} (3D support region),

C={vr
x,v

r
y,v

r
z} (reference Cartesian coordinate),

k (parameter of edgewise simplex subdivision)

Output : f(S) (feature vector)

1: for i← 1 to N do

2: Decompose the orientation of vi by computing cosα,

cosβ, and cos γ with respect to C acc. to Eq. (1);

3: Transform vi into the standard 2-simplex topological

vector space ∆2: δi = {cos
2 α, cos2 β, cos2 γ};

4: Compute indices i(δi) = (r(δi), c(δi), l(δi)), acc. to

Eq.(5–7), of the sub-simplex in k edgewise subdivision;

5: Compute decomposed orientation quadrant assignment

q(δi) acc. to Eq. (8);

6: Increase the count of the sub-simplex indexed by i(δi)
in quadrant q(δi) by one;

7: end

8: Form f(S) by concatenating counts of the sub-simplices in

all eight quadrants;

9: return f(S)

β, and γ with respect to the reference coordinates, which

can be computed in constant time by:

cosα=
v · vr

x

‖v‖ , cosβ=
v · vr

y

‖v‖ , cos γ=
v · vr

t

‖v‖ (1)

The definitions of the decomposed angles are illustrated in

Figure 3b. To allow for flexible orientation decomposition,

the reference coordinate system does not necessarily over-

lap the standard Cartesian coordinate system that is repre-

sented by the standard basis i = (1, 0, 0), j = (0, 1, 0), and

k = (0, 0, 1) in the directions of x-axis, y-axis and t-axis,

respectively, as shown in Figure 3b.

It is noteworthy that description through independently

dividing α, β and γ into equally sized cells in 3D space is

problematic, because the decomposed angles α, β and γ are

not independent, as will be demonstrated by Eq. (3). For

example, when α, β and γ are equally divided into six bins

(a total number of 63 cells in 3D space), the 3D cell repre-

senting the angle range α, β, γ ∈ [5π/6, π) can never be

assigned by any cues, due to the constraints of the decom-

posed angles. We name this problem constrained orienta-

tion quantization, and for this reason it is not appropriate to

independently discretize the angles into bins in 3D space.

3.2. Transformation to Simplex Space

We provide an elegant solution to the constrained orien-

tation quantization problem to describe 3D visual features.

Our novel visual feature description algorithm is based on

the topological concept of simplex [6, 19, 21], which is

a generalization of a tetrahedral region of space to arbi-

trary dimensions. Specifically, an n-simplex is the smallest

closed convex set that contains n+1 vertices. For example,
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(a) Input visual cues (b) Angle decomposition

Figure 3: Orientation decomposition: given a feature’s sup-

port region, shown in Figure 3a computed from seven tem-

porally adjacent frames, each 3D visual cue’s orientation is

decomposed into three angles (α, β and γ) with respect to a

user-defined reference Cartesian coordinate system defined

by axes xr, yr, and tr (Figure 3b).

a 1-simplex is a line segment that contains two vertices, and

a 2-simplex is a triangle that is specified by three vertices.

We start discussion of our novel simplex-based orienta-

tion decomposition descriptor by showing that each 3D cue

can be transformed into a standard simplex topological vec-

tor space, where a standard n-simplex is a simplex whose

edges have the same length. This is mathematically defined,

in the context of a topological vector space, as follows:

Definition 1 (Standard n-simplex). The standard n-simplex

is defined as a topological vector space that is the subspace

of R
n+1 satisfying:

∆n=

{

(δ0, · · · , δn)∈R
n+1 |

n
∑

i=0

δi=1, δi≥0, ∀i
}

(2)

Since we aim at describing visual features in 3D space,

we are interested in the standard 2-simplex that is defined

by three vertices ∆2 = {δrα, δrβ , δrγ}, which can be used to

represent feature vectors that take values in the space R
3.

Given a feature’s support region that contains a set of 3D

visual cues (e.g., gradients), i.e., S = {v1, . . . ,vN}, each

3D visual cue v ∈ S satisfies the following theorem:

Theorem 1. Any visual cue in a 3D Cartesian space can be

transformed into the standard 2-simplex topological vector

space.

Proof. For a given 3D visual cue v ∈ R
3, its orientation in

3D space can be decomposed into α, β and γ with respect to

a given reference Cartesian space defined by the unit vectors

vr
x, vr

y and vr
t (as shown in Eq. (1)). Assuming δα=cos2 α,

δβ=cos2 β, and δγ=cos2 γ, the vector representing the cue

belongs to a standard simplex topological vector space, i.e.,

δ=(δα, δβ , δγ)∈∆2, because δα≥0, δβ≥0, δγ≥0, and:

δα + δβ + δγ = cos2 α+ cos2 β + cos2 γ

=
(v · vr

x)
2 + (v · vr

y)
2 + (v · vr

t )
2

‖v‖2 = 1 (3)

Thus, the 3D visual cue encoded by δ = (δα, δβ , δγ) takes

values in the standard 2-simplex vector space.

The concept of simplex is rather abstract. To address this

issue, we developed visualization tools for intuitive analysis

of the visual cues’ characteristics in the standard 2-simplex

topological vector space. In the paper, we also adopt these

tools to intuitively explain the idea of our descriptor.

As shown in Figure 4a, the standard 2-simplex topologi-

cal vector space can be graphically represented as an equi-

lateral triangle on a plane. Using this representation, the

element of a transformed visual cue vector δ = (δα, δβ , δγ)
represents the distance ratio of the projected point on the

2-simplex to its respective edge; that is:

δ = (δα, δβ , δγ) =
1

dα + dβ + dγ
(dα, dβ , dγ) (4)

where dα+dβ+dγ = h, and h is the height of the standard

2-simplex triangle that is computed by h =
√
3b/2, given

the edge length b. For example, given the transformed vec-

tor δ = (0.5, 0.3, 0.2) of the visual cue in Figure 3b, its

projected data point on the simplex satisfies that dα=0.5h,

dβ=0.3h, and dγ=0.2h, as illustrated in Figure 4a.

3.3. Description in Simplex Space

After projecting the 3D visual cues onto the standard 2-

simplex, we discuss how to describe the transformed visual

cue vectors in the standard 2-simplex topological space. In

particular, we prove that the standard 2-simplex topologi-

cal vector space can be subdivided into a large number of

equally-sized cells, as stated by the following theorem:

Theorem 2. For every integer k ≥ 1, there exists a subdivi-

sion of the standard 2-simplex topological vector space into

k2 standard sub-simplices that have the same size.

Proof. Given a standard 2-simplex ∆2 with edge length b
and height h, we apply edgewise subdivision to divide ∆2,

which equally divides each edge into k segments and con-

nects any pair of endpoints if the line segment represented

by the endpoints is parallel to an edge. Then, the total num-

ber of sub-simplices is: 1+ 3+ · · ·+ (2k− 1) = k2. Since

all sub-simplices have the same edge length b/k and height

h/k, they are thus standard and have the same size.

From Theorem 2 arises the description power of our al-

gorithm, which can scale without bound and therefore avoid

the limited discrimination power issue of the regular poly-

hedron based approach. Theorem 2 also demonstrates that

all bins (i.e., sub-simplices) have the same size, which ad-

dresses the singularity issue of the spheral coordinate based

descriptor. Figure 4a depicts an example that subdivides the

standard 2-simplex topological vector space into k2 = 49
equally-sized sub-simplices.
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To efficiently identify each individual sub-simplex in the

standard 2-simplex topological vector space, we propose a

new sub-simplex indexing method using three indices, i.e.,

row, column, and layer, which are defined as follows:

Definition 2 (Indices of sub-simplices). Given k edgewise

subdivision of the standard 2-simplex ∆2 = {δrα, δrβ , δrγ},

each height is divided into k intervals indexed by 1, . . . , k.

Then, row and column are defined as the interval indices of

the heights with respect to the edges opposite to δrα and δrβ ,

respectively. Layer is a binary value that indicates whether

a sub-simplex has a down-pointing triangular shape with

respect to an edge.

(a) Feature projection

Row 4 Column2 Layer0

Compute row index Compute column index Compute layer index

(b) Computation of subdivision indices

Figure 4: An illustrative example of our topological trans-

formation and sub-simplex index computation in the stan-

dard 2-simplex topological vector space, when k = 7.

Using the row, column and layer definitions, we are able

to efficiently assign each transformed visual cue vector to

a sub-simplex in constant time. Given a transformed visual

cue δ = (δα, δβ , δγ) ∈ ∆2, our SOD algorithm computes

its row r, column c and layer l indices as follows:

r(δ) = ⌈kδα⌉+ ✶(δα = 0), r ∈ {1, . . . , k} (5)

c(δ) = ⌈kδβ⌉+ ✶(δβ = 0), c ∈ {1, . . . , k} (6)

l(δ) = (r(δ) + c(δ) + ⌊kδγ⌋+ ✶(δβ 6= 1) + k) mod 2,

l ∈ {0, 1} (7)

where ✶(·) is the indicator function that is used to deal with

the special cases when δ is projected onto the edges of the

sub-simplices in the standard 2-simplex vector space.

Then, we can directly assign δ to a sub-simplex indexed

by r, c and l. An illustrative example is provided in Figure

4b to explain our index computation method. For the trans-

formed 3D visual cue δ = (0.5, 0.3, 0.2), after computing

its row and column indices, i.e., r(δ) = 4 and c(δ) = 2,

a diamond that contains a pair of sub-simplices is located.

Then, the layer index is computed, i.e., l(δ) = 0 indicating

that the sub-simplex is not upside-down, which determines

the final sub-simplex assignment to the 3D visual cue.

After assigning all 3D visual cues in a feature’s support

region into their respective sub-simplices, each sub-simplex

counts the number of cues assigned to it, and a histogram

using these sub-simplices as bins is formed to describe the

visual feature. An intuitive visualization tool is provided to

(a) 2D view (b) 3D view

Figure 5: Visualization of the histogram of the visual cues

contained in the support region of a 3D feature when k =
12. Figure 5a shows a 2D view with projection distribution

of the cues, where a warmer color denotes a larger number

of cues falling in the sub-simplex. A more intuitive 3D view

is depicted Figure 5b.

investigate the histogram in the simplex topological vector

space, as depicted in Figure 5. In particular, Figure 5a also

visualizes the 3D visual cue’s orientation distribution in the

transformed simplex vector space.

3.4. Quadrant Decomposition

When the histogram of 3D visual cues is obtained in the

simplex space, quadrant decomposition is performed to fur-

ther improve the discriminative power of our SOD descrip-

tor. Since the cosine-squared function maps all visual cues

to the first quadrant and removes the signs of their orienta-

tions, the objective of quadrant decomposition is to describe

the orientation signs of visual cues from different quadrants

in the reference Cartesian coordinate system. There exist

eight quadrants in a 3D Cartesian space that are represented

by their signs (±1,±1,±1). Given the orientation of a 3D

cue, its quadrant assignment is efficiently computed by:

q(δ) =

(

cosα

| cosα| ,
cosβ

| cosβ| ,
cos γ

| cos γ|

)

(8)

As a result, the orientation histogram obtained in the

simplex vector space is decomposed into eight parts accord-

ing to different orientation quadrants. It is noteworthy that

quadrant assignments are computed with respect to a user-

defined coordinate system, which provides additional flex-

ibility to our SOD descriptor. An example of quadrant de-

composition is shown in Figure 1.

In order to construct a final vector to describe a 3D vi-

sual feature S={v1, . . . ,vN}, all decomposed histograms

in different quadrants are concatenated into a single vector

f(S) that is of size 8k2, i.e., each of the eight orientation

quadrants has a histogram formed by k2 sub-simplices.

4. Discussion

Efficiency and Runtime Our SOD descriptor employs

cosine values to quantize feature orientations in 3D space,
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which are efficiently computed using the dot product. For

each single 3D visual cue, orientation decomposition (Eq.

(1)), topological space transformation (in Theorem 1), sub-

simplex index computation (Eq.(5, 6, 7)), and quadrant de-

composition (Eq. (8)) take constant time O(1) to perform.

Concatenation to form a feature vector takes O(k2) runtime,

where k is the edgewise simplex subdivision parameter. Be-

cause typically N ≫ k2, i.e., the number of visual cues is

much greater than the number of bins in a histogram, our

SOD algorithm only takes O(N) time to describe a 3D vi-

sual feature that contains N visual cues.

Multi-Channel 3D Features Our SOD algorithm can

be directly applied on visual features extracted from multi-

ple channels in 3D space, which include color-depth spatio-

temporal features [30] that typically apply descriptors to in-

tensity and depth image sequences in xyt space, and multi-

color spatio-temporal features [7] that apply descriptors to

multiple color channels of color image sequences. Follow-

ing [7, 30], one can apply our descriptor over each channel

to obtain a vector that describes 3D visual cues in that chan-

nel, and combine them together to form a final feature vec-

tor. In this scenario, the 3D visualization of our descriptor

is a stacked bar plot on the standard 2-simplex.

High Dimensional Features The SOD descriptor is not

limited to describing features in 3D space; our methodology

can be extended to quantize and describe high dimension-

al features. Given a d-dimensional visual cue v ∈ R
d and

a reference coordinate C = {vr
1, . . . ,v

r
d}, its orientation

can be decomposed into d angles (α1, . . . , αd), in a manner

similar to Eq. (1), which satisfies
∑d

i=1
cos2 αi = 1. Thus,

v can be projected onto the standard (d−1)-simplex (i.e.,

an extension of Theorem 1). In addition, [6] showed that a

(d−1)-simplex can be subdivided into kd−1 sub-simplices

with the same (d−1)-dimensional volume using k edgewise

subdivision (i.e., an extension of Theorem 2). Thus, our

fundamental theorems still hold, meaning the SOD descrip-

tor can be applied to features in high dimensional space.

5. Empirical Study

Here we detail the experiments conducted to evaluate the

performance of our SOD descriptor on action recognition.

We would like to highlight that we are not constructing new

classifiers and detectors; rather, we intentionally use exist-

ing benchmark classifiers and detectors in combination with

our novel descriptor to emphasize the performance gain re-

sulting specifically from our SOD descriptor.

5.1. Implementation and Experiment Setup

Detectors Three detectors are adopted to detect spatio-

temporal interest points from videos in xyt space. (1) Har-

ris3D detector [15] is a spatio-temporal extension of the

Harris cornerness criterion that is based on the eigenvalues

of a spatio-temporal second-moment matrix. We apply the

original implementation [15] and standard parameter setups

σ =
√
2i, i = 2, . . . , 7 and τ = {

√
2,
√
4}. (2) Gabor

detector [5] applies separable filters on spatial and temporal

dimensions to select interest points in xyt space. We adopt

the original implementation [5] and standard parameter se-

tups σ = 2, τ = 4 in our experiments. (3) Multi-channel

Gabor detector [7] detects spatial-temporal interest points

using Gabor detectors to compute image responses based

on intensity and normalized chromatic channels. We apply

σ = 2, τ = 4 as in the original work [7].

Descriptors The size of support regions is set to ∆x =
∆y=8σ, and ∆t=6τ , as in [13, 27]. The support region’s

size and cell layout may be optimized over a specific dataset

[13]. To maintain focus on the descriptors themselves, we

refrain from such an optimization, following [7, 27]. We use

the standard Cartesian space as our reference coordinates.

When using multi-channel detectors, the multi-channel de-

scription mechanism (discussed in Section 4) is applied.

Two 3D description methodologies based on spherical

coordinates, such as 3D SIFT [23], and regular polyhe-

drons, such as HOG3D [13] are used as our 3D description

baselines (discussed in Section 2.1). Feature descriptors in

previous works are also adopted as baselines to compare the

feature discrimination’s ability to recognize human actions.

Recognition Following [7, 13, 27], action recognition

is performed in a standard bag-of-features learning frame-

work and a codebook is created through clustering 200,000

randomly sampled features using k-means into 4000 code-

words. For classification, we use non-linear SVMs with χ2-

kernels and the one-against-all approach [7, 13, 27].

5.2. Datasets

We perform experiments using three action datasets. The

KTH dataset [22] contains six actions performed by 25 sub-

jects in four scenarios. Following [22], we apply the all-in-

one experimental settings and the accuracy metric as the

performance measure. The UCF Sport dataset [20] con-

tains ten sporting actions in 150 videos that exhibits a large

intra-class variability. Following the standard settings [20],

performance is evaluated using accuracy in a leave-one-out

cross validation framework. The Hollywood-2 dataset [17]

contains 12 complex human actions that are collected from

69 different Hollywood movies. The actions are performed

in unconstrained, realistic scenarios, and viewed from dif-

ferent camera angles. Following the standard setup [17], the

dataset is divided into 823 training and 884 testing exam-

ples; performance is evaluated using the precision measure.

5.3. Descriptor Evaluation

We show our SOD descriptor’s superior performance by

comparing it with the 3D baseline descriptors. We also in-

vestigate our descriptor’s sensitivity with respect to the size

of the final feature vector, which turns out to be very impor-
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Figure 6: Sensitivity of our SOD descriptor and comparison

with baseline 3D descriptors based on spherical coordinates

or regular polyhedrons. Error bars are standard deviations.

tant but is rarely studied in previous descriptors. Sensitivity

is empirically analyzed using five fold cross-validation over

training sets. To focus on investigating characteristics of the

descriptors themselves, no additional feature aggregation is

applied, i.e., the support region is not divided into cells. Ex-

perimental results over three datasets are graphically shown

in Figure 6. Because the baseline descriptor based on regu-

lar polyhedrons with four and six faces (i.e., bins) performs

poorly, we only present the results using polyhedrons with

8, 12 and 20 faces. It is worth recalling that 20 is the max-

imum number of bins supported by this descriptor as it suf-

fers from the limited discrimination power issue.

For all tested spatio-temporal feature detectors, our SOD

descriptor significantly outperforms the 3D baseline de-

scriptors, in general. The discrimination ability provided by

the polyhedron baseline is not sufficient to represent com-

plex actions in real-world scenarios. The performance im-

provement provided by our SOD descriptor over the spheri-

cal baseline highlights the advantages of quantizing and de-

scribing spatio-temporal features in the simplex topological

space that can be equally subdivided into any large number

of sub-simplices, thus addressing the singularity issue.

In addition, as Figure 6 illustrates, the descriptor’s rep-

resentation ability is greatly affected by the number of bins

used to form the final feature vector. All descriptors gener-

ally produce poor recognition results when a small number

of bins (e.g., less than 15) is used; in this case, the descrip-

tors are not sufficiently discriminative. On the other hand, a

very large number of bins (e.g., greater than 1000) also hurts

recognition performance. This occurs because although the

descriptors discriminate well between visual features, not

enough cues fall into each bin. Another important observa-

tion is that the ideal number of bins depends on the dataset

complexity; a more complex dataset usually requires a larg-

er number of bins. For example, using around 300 bins for

the KTH and UCF Sport datasets and around 600 bins for

the more complex Hollywood-2 dataset generally leads to

satisfactory recognition performance. In summary, our sen-

sitivity analysis results demonstrate the importance of care-

fully selecting the number of bins, by considering both de-

scriptor’s discrimination ability and dataset complexity.

5.4. Comparison with the State of the Art

We compare our SOD descriptor with the state-of-the-art

feature description methods, in terms of their performance

on human action recognition. The compared methods gen-

erally follow similar experimental setups that are based on

feature pooling, bag-of-features encoding and SVM-based

classification. Following [1, 4, 7, 11, 27], we adopt a spatio-

temporal pooling scheme that divides each support region

into 4×4×3 cells to construct bag-of-features models.

Different descriptors are compared in Tables 1, 2 and 3,

which show human action recognition performance over the

KTH, UCF Sport and Hollywood-2 datasets, respectively.

Our SOD descriptor achieves a 94.8% accuracy on KTH,

a 87.5% accuracy on UCF Sport, and a 50.9% overall pre-

cision on Hollywood-2. Comparison shows that our SOD

descriptor is the best-performing individual descriptor (i.e.,

without combining multiple descriptors, as in [26]), which

again shows the effectiveness of our SOD algorithm to de-

scribe local spatio-temporal features in xyt space.

Table 1: Comparison of accuracy (%) on the KTH dataset.

2D description methods Acc. 3D description methods Acc.

Harris3D + HOG [27] 80.9 Harris3D + 3D SIFT [18] 82.7

Gabor + HOG [12] 82.3 Gabor + Cuboid [5] 89.1

Gabor + HOF [12] 88.2 ST-SIFT + HOG3D [1] 90.7

Gabor + HOF/HOF [12] 88.7 Gabor + HOG3D [13] 91.4

Hessian3D + HOG/HOF [27] 88.7 Harris3D + HOG3D [12] 92.4

Harris3D + HOG/HOF [27] 91.8 FAST + CHOG3D [11] 93.1

Harris3D + HOF [27] 92.1 Multi-ch. Gabor + Poly. 92.9

Oriented energy desc. [4] 93.2 Multi-ch. Gabor + Sphe. 93.8

Context + HOG/HOF [9] 94.1 Multi-ch. Gabor + SOD 94.8

Table 2: Comparison of accuracy (%) with state-of-the-art

descriptors on the UCF Sport datset.

2D description methods Acc. 3D description methods Acc.

Harris3D + HOG [27] 71.4 Gabor + Cuboids [12] 76.6

Gabor + HOG [12] 72.7 Harris3D + HOG3D [27] 79.7

Harris3D + HOF [27] 75.4 ST-SIFT + HOG3D [1] 80.5

Gabor + HOF [12] 76.7 Gabor + HOG3D [13] 82.9

Gabor + HOG/HOF [12] 77.7 Multi-ch. G. + HOG3D [7] 85.6

Harris3D + HOG/HOF [27] 78.1 Multi-ch. Gabor + Poly. 85.2

Hessian3D + HOG/HOF [27] 79.3 Multi-ch. Gabor + Sphe. 86.3

Oriented energy desc. [4] 81.5 Multi-ch. Gabor + SOD 87.5
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Table 3: Descriptor comparison on Hollywood-2 using precision (%). ‘&f ’ denotes ‘HOG/HOF combined with f features’.

Actions
Multi-ch. Cuboid + 3D descriptors Harris3D + Harris3D + 2D descriptors

Our SOD Polyhedron Spherical HOG3D [13] HOG [12] HOF [12] HOG/HOF [12] & SIFT [17] & context [9] & global [26]

AnswerPhone 18.1 15.9 17.1 16.3 11.8 11.6 15.3 13.1 15.57 25.9

DriveCar 88.1 85.8 87.2 86.3 79.0 84.8 85.8 81.0 87.0 85.9

Eat 61.6 57.8 60.7 55.8 43.4 58.6 63.1 30.6 50.9 56.4

FightPerson 76.2 74.5 75.8 77.2 60.4 72.1 71.3 62.5 73.1 74.9

GetOutCar 36.3 33.5 34.3 35.7 24.9 19.6 32.3 8.6 27.2 44.0

HandShake 55.9 51.3 53.5 55.7 36.3 50.2 49.5 19.1 17.2 29.7

HugPerson 48.3 46.5 47.2 47.9 29.6 30.9 38.6 17.0 27.2 46.1

Kiss 58.4 54.2 55.3 51.1 43.5 45.1 49.3 57.6 42.9 55.0

Run 72.1 67.3 69.7 71.7 62.1 68.5 67.2 55.5 66.9 69.4

SitDown 51.9 48.2 49.3 47.6 30.3 56.4 57.3 30.0 41.6 58.9

SitUp 22.4 18.5 20.3 22.2 16.1 8.5 22.5 17.8 7.2 18.4

StandUp 21.6 19.6 20.8 15.6 20.9 18.9 20.4 33.5 48.6 57.4

Overall 50.9 47.8 49.3 48.6 38.2 43.8 47.7 35.5 42.1 51.8

6. Conclusion

We introduce a novel simplex-based orientation decom-

position descriptor to quantize and represent 3D visual fea-

tures including local spatio-temporal features in xyt space.

Our technique decomposes each 3D visual cue in a feature’s

support region into three angles and transforms the decom-

posed angles into the simplex topological vector space. Fea-

ture description is performed in the simplex space, which is

able to address the singularity and limited discrimination

power issues. Then, quadrant decomposition is performed

to improve our SOD descriptor’s discrimination capability,

and a final feature vector is formed by combining decom-

posed histograms from all quadrants. Extensive empirical

study using three benchmark action datasets has been con-

ducted, which shows that our descriptor significantly out-

performs previous 3D feature descriptors based on spherical

coordinates or regular polyhedrons and achieves state-of-

the-art description power for recognition of human actions.
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[12] A. Kläser. Learning human actions in video. PhD thesis, Université
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