
REVIEW ARTICLE

Simplex representation of molecular structure as universal
QSAR/QSPR tool

Victor Kuz’min1
& Anatoly Artemenko1

& Luidmyla Ognichenko1
& Alexander Hromov1 & Anna Kosinskaya1,2 &

Sergij Stelmakh1
& Zoe L. Sessions3 & Eugene N. Muratov3,4

Received: 15 January 2021 /Accepted: 7 May 2021
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

We review the development and application of the Simplex approach for the solution of various QSAR/QSPR problems. The

general concept of the simplex method and its varieties are described. The advantages of utilizing this methodology, especially

for the interpretation of QSAR/QSPR models, are presented in comparison to other fragmentary methods of molecular structure

representation. The utility of SiRMS is demonstrated not only in the standard QSAR/QSPR applications, but also for mixtures,

polymers, materials, and other complex systems. In addition to many different types of biological activity (antiviral, antimicro-

bial, antitumor, psychotropic, analgesic, etc.), toxicity and bioavailability, the review examines the simulation of important

properties, such as water solubility, lipophilicity, as well as luminescence, and thermodynamic properties (melting and boiling

temperatures, critical parameters, etc.). This review focuses on the stereochemical description of molecules within the simplex

approach and details the possibilities of universal molecular stereo-analysis and stereochemical configuration description, along

with stereo-isomerization mechanism and molecular fragment “topography” identification.
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Introduction

Molecular modeling is a rapidly developing field of modern

theoretical chemistry. There are numerous methods of molec-

ular modeling focused on solving various problems and dif-

fering in both strategic approach and software implementation

[1]. The modeling of the molecular structure is a necessary

step in any QSAR/QSPR study. The descriptors used in such

modeling determine the possibilities and success of solving

certain QSAR/QSPR tasks. Today, a plethora of different de-

scriptor systems (all of which depend on the models’ level of

(1D - nD) molecular representation) exist in the aims of accu-

rately describing molecular structure [2]. Widely used

Fragment Descriptor Systems [3] characterize each molecule

by a set (ensemble) of its various fragments, as each fragment

has some influence on any property in question. The advan-

tage of such a descriptor representation is the relative ease of

computation and storage of the structural information.

Additionally, Fragment Descriptor Systems provide the trans-

parent structural interpretation of their corresponding QSAR/

QSPR models.

The authors of this paper have been developing and using

their own approach to generate fragment descriptors for more

than 25 years and present both the method and its capabilities

herein as the Simplex Representation of Molecular Structure

(SiRMS) method. A distinctive feature of this approach is the

ability to not only to interpret QSAR/QSPR relations structur-

ally, but also in a physical-chemical context. Moreover, the

generation of unbound simplexes makes it possible to model
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mixtures of compounds, molecular ensembles, nanoparticles,

etc. Initially, SiRMS was developed not as a direct solution of

“structure – properties” problems, but as a tool to describe and

analyze stereochemical features of various chiral molecules.

Nevertheless, in situations when the investigated property

(e.g., biological activity) is connected with chirality, the cor-

rect solution to QSAR/QSPR problems is impossible to deter-

mine without an exhaustive description of the stereochemistry

of the corresponding compounds. In the framework of the

simplex approach, a number of fundamental problems

concerning stereochemistry have been solved; in particular,

the SiRMS method is able to identify any structural stereoiso-

mers with different chirality elements. One section of this

review is devoted to detailing this and other solutions of var-

ious stereochemical problems using SiRMS.

SiRMS methodology has been applied to the direct solu-

tion of QSAR/QSPR tasks for the last 20 years. In our opinion,

one of the reasons this approach is so effective is the optimal

size of the main fragments (simplexes). Smaller fragments

(less than four vertices) are not informative enough to describe

the structure of compounds. As the size of molecular frag-

ments increases, their “occurrence” in the compounds of the

training set decreases, which leads to an increase in their

“uniqueness.” The latter leads to a decrease in the variability

of the corresponding fragment descriptors and reduces their

informative value. Thus, the SiRMS descriptor system is

based primarily on 4-vertice fragments (simplexes), although

fragments of other sizes have been used in few specific tasks.

The main purpose of our review is to demonstrate the ca-

pabilities and effectiveness of SiRMS as it applies to a variety

of QSAR/QSPR problems concerning virtual screening aimed

prediction and the ensuing attempts to design novel molecules

and substances with optimal properties.

Table 1 demonstrates the multitude of scientific directions

in which QSAR/QSPR tasks were solved and provides refer-

ences to relevant publications. The review is based only on

publications of the authors, chemists-theorists. However,

these publications would have suffered without the immense

contributions to the successful application and development of

our working from our many colleagues who specialize in the

areas of chemistry, virology, pharmacology, toxicology,

thermophysics, and material science, as well as other related

disciplines.

In the review, we will comment on the most important and

interesting publications.

The Methodology of SiRMS

SiRMS—a tool for solving fundamental
stereochemical problems

Since Pasteur’s pivotal discovery over 170 years ago, the con-

cept of chirality has played a fundamental role in natural sci-

ence as a whole, but especially in chemistry. The stereochem-

ical knowledge system uses a concept such as configuration to

describe the chirality of molecular structures. Although any

chemist intuitively understands what the term “stereochemical

configuration” means, it is difficult to provide a universal and

unambiguous definition of this characteristic.

In [5] an attempt was made to formulate such a definition,

as well as to understand a number of questions that arise in the

analysis of the “chirality – configuration” relationship and to

date they either have not been formulated, or are controversial

in nature:

1.What is stereochemical configuration?

2.How to systematize the variety of chiral molecules? (The

system of chiral elements of Prelog is very limited and

ambiguous).

3.Is it always possible to systematize molecules into homo-

chiral subclasses only based on their chirality?

4.Why, during the configuration of isomerization, does the

enantiomer not always pass through an achiral boundary?

Table 1 SiRMS publications of

the review authors Sections review Subsections review References

Methodology

SiRMS

Stereochemical problems [4–7]

Descriptors systems [8–12]

QSAR tasks Antiviral activity, antimicrobial activity and antitumor activity [13–40]

Pharmacokinetic Parameter [25], [41–45]

Affinity for different biological targets [46–53]

Different types of toxicity [44], [54–65]

QSPR tasks Lipophilicity and water solubility [44], [66–72]

Luminescent properties [73]

Thermodynamic properties [74–80]

Properties of ionic compounds and materials [81], [82]

Properties of nanosystems [63], [83],[84]
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The concept of chiral simplexes helped us to understand

these problems. As a mathematical object, a simplex is a n-

dimensional polyhedron, which is a convex shell (n+1) of

points (vertexes of simplex) that do not lie in the (n-1)-dimen-

sional plane [85]. At n = 0,1,2,3 the simplex is a point, a

segment, a triangle, a tetrahedron, respectively. Chiral sim-

plexes are not compatible with their mirror images

(examples, see Fig. 1).

The simplest point object that can be chiral in the space of a

corresponding dimension is the chiral simplex (ChS). In fact,

the ChS is an elementary carrier of chirality. [86].

The stereoanalysis procedure we proposed—the represen-

tation of a chiral molecule as a system of simplexes (molecular

multiplex)—allowed us to solve the above mentioned funda-

mental stereochemical problems [5 - 7].

To complete the stereoanalysis, we first obtain a spatial

figure for the structure of a molecule with N atoms, four ver-

tices, and 0-6 edges and model it with N !
N−4ð Þ !4! simplexes, a

redundant description. Then we use modified Kahn-Ingold-

Prelog rules [6] to identify R,S, and achiral configurations

(an example can be seen in Fig. 2). Our representation offers

distinct stereoisomer representation for molecules, a distinct

advantage over the classical Cahn-Ingold-Prelog (CIP) system

(Fig. 2). This also allows for the differentiation of homochi-

rality classes.

For a more detailed approach, see the original publications

[4–7, 87].

The SiRMS method represents a chiral center with 5

simplexes wherein each atom is assigned a canonical num-

ber by known algorithms [87]. This representation can be

used to rank the simplexes by the precedence of atoms in

them (Fig. 3). This representation of single chiral center

compounds can order the simplexes by their precedence

and can be highly useful in determining enantiomers and

their respective stereochemical configuration.

For the molecule in Fig. 2, we see a great example of the

applications of simplexes. The top three ranked simplexes

have the same configuration and therefore highlight common

stereochemical features of the molecules. This system can be

applied to any 3D structure of any molecule and so, all stereo-

chemical peculiarities are considered.

It is well-known that the presence of chirality is a prereq-

uisite for the existence of living matter. However, it is

surprising that the molecules typical for living nature, like

proteins and nucleotides, have different stereochemical con-

figuration in their chiral centers. This introduces a hit of con-

tradiction, given that the origin of life is due to one source of

chirality. To some extent, the use of SiRMS alleviates this

contradiction. As can be seen in Fig. 4, most of the simplexes

have the same configuration (3 out of 5 are bolded) when

comparing multiplexes describing the chiral centers of select

biopolymers. This suggests that the corresponding biopoly-

mers are largely stereochemically similar.

Furthermore, it is known that the CIP system only analyzes

the environment of the chiral center, ignoring the nature and

therefore inducing issues with the identification of molecular

enantiomers. The proposed stereoanalysis procedure con-

siders all atoms. As exemplified in Fig. 5, the central atom,

as well as its surroundings, is crucial in determining the ste-

reochemistry of the entire molecule.

Figure 5 also displays that with the same mutual position

of the substituents, the nature of the asymmetric center (X)

significantly affects the features of the stereochemical con-

figuration. In all four examples, the stereochemistry of the

molecules is different. These features can be found in the

study of the stereochemistry of processes, in which the cen-

tral atom of the tetrahedral chiral structure is an active

participant.

Stereoanalysis can also serve as a convenient tool to eval-

uate stereochemical relationships (topicity) between different

fragments within a molecule [88]. To assess the topicity of the

atom or group pair strength, it is necessary to analyze the

sequence of simplexes derived. For a molecule of n atoms

the number of simplexes in which one n is included is equal

to (n-1)!/(n-4)! 3!. For 5-atomic halogen-substituted meth-

anes, each atom is included in only 4 simplexes. By the ex-

ample presented in Figure 6, we see that for homotopic hy-

drogens the corresponding sequences of simplexes are the

same. In this case all the simplexes are achiral (0), although

for more complex chiral molecules identical sequences of chi-

ral R and S simplexes will be seen. For enantiotopic atoms, the

corresponding sequences are opposite, i.e. for their chiral sim-

plexes, the configurations are necessarily different; if in one

case R, then in another case S and vice versa. If the corre-

sponding sequences also include achiral simplexes, their con-

figuration is denoted as 0.

1D 2D 3D

Fig. 1 Chiral simplexes of

different dimensions (1D–3D)
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For more complex chiral molecules, pairs of diastereotopic

atoms in corresponding sequences will have simply

different combinations of symbols R, S, 0.

Thus, the simplex sequences will simply identify different

“topicity” relationships. It is important to remember that these

relations characterize only the spatial (stereochemical) envi-

ronment of topologically equivalent atom pairs.

In this review we do not have the opportunity to discuss the

stereochemical configuration (SC) concept in detail. For each

chemist, it is obvious that SC is a peculiar invariant of chiral

molecules, on the basis of which it is possible to identify

different stereoisomers and evaluate their stereochemical sim-

ilarity (for example, subclasses of homochirality). Sequences

of simplexes (R, S or 0) in the order of their seniority,

discussed above, can be used as such invariants. For the sim-

plest chiral systems, the chiral simplexes’ SC reflects the du-

ality caused by chirality (the two steric series enantiomers R

and S). For multiatomic chiral molecules, the number of steric

series is determined by the number of simplexes in these mol-

ecules. Thus, it is obvious that the representation of the whole

variety of chiral structures by two classes (S–“left” and

R–“right”) is in most cases artificial and formal. Complex

chiral structures usually have left and right features simulta-

neously. As mentioned above, simplex sequences examine all

these stereochemical features. Unfortunately, such sequences

are too long (n!/(n-4)!4!) and redundant in terms of stereoiso-

mer identification. This is due to the fact that in the complete

sequence, some simplexes are interdependent. Therefore, to

describe the SC, it is enough to use mutually unbound sim-

plexes, which make up shorter sequences. The corresponding

procedure is described below based on a simple example al-

ready mentioned [7].

After assigning the canonical numbers, the independent

simplexes are indexed based off their vertices, and are mapped

off the face of the preceding simplex. An example here de-

scribes a set of N-3 independent simplexes.

F

Cl I

H

F

Cl

H

Cl I

H

F

I

H

F

Cl I

F

Cl I

H

M
0
= 0 M

R
= 4

Simplex 1 Simplex 5Simplex 4Simplex 3Simplex 2

R SR R R

M
S
= 1

OH

H

COOH
OH

H

COOH

Cahn-Ingold-Prelog configuration S-isomer R-isomer

Configuration based on simplexes RSSSS RSSRR

Fig. 2 An example of two

compounds that are represented

differently based on their

stereochemical with both Cahn-

Ingold-Prelog rules and simplex

representation

RSRRR

Atom ranks 

in simplexes

Simplex 

precedence

Simplex 

configuration

1 2 3 4 1 R

1 2 3 5 2 S

1 2 4 5 3 R

1 3 4 5 4 R

2 3 4 5 5 R

Fig. 3 Using the stereo-

configuration of a hypothetical

molecule with one chiral center

(numbers are canonical numbers

of atoms obtained with conven-

tional algorithms) to rank the

simplexes where the enantiomer

would be SRSSS
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Fig. 4 Demonstration of the

similarity of stereochemical

configurations for biopolymers

Fig. 5 Stereo-analysis of chiral

molecules considering the nature

of the chiral center
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C

F

Cl I

H

12

3

4

5

For this molecule, there are two stereochemically similar

simplexes:

C

Cl I

C

Cl H

+

To identify these configurations, a stereochemical code of

+1 for the R configuration, -1 for the S configuration, or 0 for

achiral simplexes is assigned to each simplex so that a bal-

anced ternary system can explicitly number and define the

stereochemical configuration [89]. For convention, this num-

ber is easily converted to decimal notation. This number may

be easily converted into the customary decimal notation.

For example,

For our molecule, H the stereochemical code is (11)3
or (4)10.

In Fig. 7, more complex chiral molecules are given and

their stereochemical configurations are identified using the

appropriate stereochemical codes (SC).

Figure 8 depicts some examples showing how the corre-

sponding sequences of simplexes are changed for different

stereoisomeric relationships.

The figure clearly shows that for conformers, the se-

quences of simplexes are identical, while for enantiomers

they are opposite, and for diastereomers they are simply

different.

As such a fundamental phenomenon, chirality manifests

itself not only in the three-dimensional world, but also in

spaces of other dimensions. It is obvious, for example, that

the oriented segment (vector) is chiral in one-dimensional

(1D) space, and the non-uniform triangle is chiral on the plane

(in 2D space).

Examples of stereoisomer relations for linear molecules

(conditionally 1D objects) and flat molecules (conditionally

2D objects) are given in Fig. 9.

Cis-trans isomers are actually erythro-threo isomers for

two-dimensional chiral systems. One should not think that

the presence of chirality in spaces with less than 3 dimensions

is speculative or virtual. It is possible to create conditions for

quite specific molecular systems when such chirality actually

manifests itself. For example, a non-mathematical mesophase

built of similarly directed rod-shaped molecules is a typical

example of a 1D chiral system. Due to intermolecular interac-

tions in the condensed phase, such extended molecules cannot

be reoriented relative to each other. A similar situation can

arise for asymmetric planar molecules identically oriented in

Langmuir films.

(0000)   and  (0000)                    (S000)   and   (R000)

Homotopic hydrogens Enantiotopic hydrogens

Fig. 6 Simplex sequence for

homotopic and enantiotopic

hydrogens in halogen-substituted

methanes

Fig. 7 Stereochemical

configuration of chiral

symmetrical molecules
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As the stereochemical section concludes, it is important to

mention another fundamental result of SiRMS which follows

from the analysis of the various works [4 - 7]. A new positive

chirality criterion has been formed. In accordance with the

symmetrical (negative) criterion for the presence of chirality,

the necessary and sufficient condition is the absence of the

object (molecule) mirror-rotating axes Sn. According to the

positive criterion, an object (molecule) is chiral if its structure

contains chiral simplexes, and if there are several of them and

they have different configurations (R/S), their overall impact

on chirality should not be compensated. Achiral objects

(molecules) in addition to achiral simplexes, may also include

chiral simplexes in their structure. However, the latter, in this

case, should form a conditional mesoform, that is, compensate

for each other's influence. This can be clearly seen from the

example below:

Simplex descriptors for solving various QSAR/QSPR
tasks

If we do not focus only on chiral simplexes, which are impor-

tant for stereochemical problems, but instead consider all pos-

sible types of tetratomic molecular fragments, then from their

totality, it is possible to generate fragment descriptors for use

in various QSAR/QSPR tasks. In the framework of SiRMS,

any molecule can be represented as a system of different sim-

plexes (tetratomic fragments of fixed composition, structure,

chirality and symmetry) [8 - 11]. An important and distinctive

feature of our approach is that when identifying the vertices of

simplexes, we use more than the labels reflecting symbols of

atoms. Within SiRMS the vertices of simplexes can be char-

acterized by weight parameters reflecting different properties

of atoms such as but not limited to the partial charge, electro-

negativity, lipophilicity, and electronic polarizability. In these

cases, the labels of the simplex vertices reflect belonging to a

certain range of values of the corresponding property (see

details below).

It is obvious then, that the descriptor representation of com-

pounds depends on the level of its molecular model (1D–4D):

& 1D models reflect the formula/composition of a molecule

& 2D models incorporate structural information but only to

the limited topological surface. Nonetheless, these topo-

logical models provide insights into all possible confor-

mations and are therefore sufficient to address > 90% of

existing QSAR/QSPR tasks.

& 3D-QSAR models consider the spatial shape of a mole-

cule, but only for one conformer. These models are com-

mon but the analyzed conformer is not usually selected

intentionally.

& 4D-QSAR addresses the issues for 3D-QSAR by analyz-

ing the same information for a set of conformers as op-

posed to one specific conformer.

The details of how SiRMS are addressed in each dimen-

sional model are described and depicted below (see Fig. 10).

Fig. 8 Examples of describing various stereoisomeric relationships within the simplex approach

1371Struct Chem (2021) 32:1365–1392



1D models For 1D models , wi th the compound

(AaBbCcDdEeFf . . . ), the simplex descriptor (SD)

(AiBjClDm) , is K = f(i)×f(j)×f(l)×f(m), where, for example,

f(i) = a!/((a−i)!×i!). A quadruple is assumed for a simplex of

four atoms, but smaller fragments can assume i, j, l, or m to be

equal to zero as necessary.

2D models Due to their ability to consider bond nature, con-

nectivity, and conformers, 2D models can differentiate atoms

of simplexes based on an atom’s individuality, partial charge,

lipophilicity, atomic refraction, or ability to hydrogen bond

(see Fig. 10) [90–92]. The properties with real values, such

as charge or lipophilicity, are set into discrete groups and the

number of groups (G) is used as a variable tuning parameter

(typically G=3-7).

A critical ability of SiRMS is to be able to consider atoms

by not only their nature, but also by their surroundings. To

accomplish this, sundry variants are included and analyzed

considering certain functions, functional groups, or identities

of an atom that may not be evident from the nature alone. One

great example of this is the marking of atoms that are H-bond

donors or acceptors, as mentioned above.

Therefore, the SD of 2D models is fixed by the mole-

cules composition and topology. Other structural parame-

ters for fragment size could be used for 1D or 2D QSAR,

but we have found that maintaining 1-4 atomic fragments is

Fig. 9 1D–3D chiral molecular structures
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Fig. 10 Depiction of the development of simplex descriptors at varying dimensional levels
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ideal to not over fit the model or decrease the predictivity

and/or AD.

2D information-topological models The introduction of the

molecular informational field [93] allows for the superpo-

sition of a complex object, such as a molecule, over a field

of its components (elements, atoms, etc.). This ideology is

crucial when combined with dimensionless weight param-

eters and provides a framework for the influence of individ-

ual atoms on each other. The properties of each molecule

can express themselves on each atom in the molecule in a

quantifiable way. Given the ability to map a molecule and

the respective forces within it, this is a highly useful tool

especially when modeling molecular structure at the 2D

level. As seen below, each vertex offers information that

extends only to the edge of the graph, but that evaluates all

relations between each atom.

CH
3

C
H

OH

C

O

OH

Similar to the 2D informational potential (IP) calculation

[93], the topological potential (IP) of i-th atom can be repre-

sented as:

IPi ¼ wi⋅ ∑
n

j¼1

∑
m

lb
r

2Rij þ 1

� �

m

0

BB@

1

CCA

where m is the number of all possible paths between every

atom pair, n is the number of atoms in the given molecule, Rij

is the number of bonds between the i-th and j-th atoms (path

length), wi is the weighed parameters describing any property

(p) of the atoms, wi ¼ pi= ∑
n

i¼1

pi (w i=1 in the case of

unweighed IP), and r is the maximal path length between

atoms for the investigated set of molecules.

A central aspect of the simplex approach is the incorpora-

tion of informational field characteristics into atom differenti-

ation. When considering the atoms nature and the topology of

the molecule, evaluating scaled properties (charge, lipophilic-

ity, refraction etc.) could prove beneficial for the understand-

ing of atomic mutual influence.

2.5 Dmodels In an analogous manor, stereochemical moi-

eties could also impact biological activity. If a com-

pound contains a chiral center on the atom X (X = C,

Si, P, etc.), the special marks XA, XR, XS (A—achiral

X atom, R—“right” surrounding of the X atom, S—

“left” surrounding of the X atom) can represent the

stereochemical information. This extra information

elevates the knowledge of a 2D model by adding ste-

reochemical information. Then, X is differentiated into XA,

XR, XS, and the different atoms of X are analyzed in the

model separately. These models are referred to as 2.5D

because they include both topological (molecular graph)

and stereochemical information. However, if the differenti-

ation occurs due to some physical–chemical properties

(e.g., partial charges, lipophilicity) then the atoms XA,

XR, XS will be leveled as in 2D models. To encompass all

results, differentiated simplexes have been considered indi-

vidually and in combination with those differentiated by

physical–chemical properties.

3D models As mentioned above, the 3D level also considers

the stereochemistry of the molecule and so simplexes can be

described as right (R), left (L), symmetrical (S), and plane (P)

achiral.

C

F

HBr
C

F

H

I

C

I

HH
O C

H

H

(R) (L) (S) (P)

Modified CIP rules can be referenced in establishing ste-

reochemical configurations [6]. The SD at this level is equal to

the number of simplexes of fixed composition, topology, chi-

rality, and symmetry.

4D models The SD of 4D-QSAR models are calculated based

on the summation of the products of descriptor values for each

conformer (SDk) and the probability of the realization of the

corresponding conformer (Pk) of N conformers.

SD ¼ ∑
N

k¼1

SDk � Pkð Þ

Pk can also be defined by its energy equation [94],

Pk ¼ 1þ ∑
i≠k

exp
− Ei−Ekð Þ

RT

� �� �−1

;∑
k

Pk ¼ 1

where Ei and Ek are the energies of conformations of i and k,

respectively. The energy of the conformers is assessed within

a 5-7 kcal/mol energy band. The entirety of this SD accounts

for the probability that any 3D conformer would actualize and

so the SD can be considered with other whole- molecule spa-

tial descriptors (e.g., characteristics of inertia ellipsoid, dipole

moment).

nD models for mixturesMixtures interactions do not occur in

the sameway as other interactions, as the reactivity is variable.

This is also amplified by synergistic or anti-synergistic mech-

anisms towards a biological target [95]. Again, in this case,

SiRMS can improve the ability of QSARmodeling for molec-

ular mixtures and ensembles. One important differentiation is

1374 Struct Chem (2021) 32:1365–1392



to identify what molecules parts of unbound simplexes belong

to. If the part belongs to a different molecule, this provides

insight into the characterization of pairs of molecules. These

serve as structural descriptors for the mixture of compounds

(Fig. 11) and provide for the analysis of synergism and com-

petition as it applies to a biological target. This approach is

applicable for nD-QSAR models where n = 1–4 but when

individual compounds are introduced, they must be represent-

ed through the mixture of two similar molecules to maintain

the descriptor system [96]. For mixtures with more than two

components, one must utilize simplexes with intermolecular

bonds.

QSAR models based on simplex descriptors

QSAR models of antiviral, antimicrobial, and
antitumor activity

Our first work [14] that used simplex descriptors in QSAR

studies of antiviral and antitumor activity was published in

2002. Based on 3D simplexes, 4D-QSAR models were built

for 63 compounds, including macrocyclic pyridinophanes and

their acyclic analogs, synthetic nucleosides, and a number of

well-known antiviral drugs (ambenum, deiteforin, etc.). The

target properties were set to study anti-influenza activity

in vitro through the reproduction inhibition of the A/Hong

Kong/1/68 (H3N2) and the antiviral activity of herpes simplex

type1 (HSV-1) and adenovirus 5 (Ad5). The compounds test-

ed in vitro at the National Cancer Institute (Bethesda,

Maryland, USA) were investigated for anticancer activity

across 60 cell lines of leukemia, CNS cancer, prostate cancer,

breast cancer, melanoma, non-small cell lung cancer, colon

cancer, ovarian cancer, and renal cancer and were expressed

as the percent of control cell growth.

A more detailed QSAR analysis of anticancer activity is

described in [18]. In all cases, the statistic characteristics for

QSAR of PLS (partial least squares) models were satisfactory

(R=0.92-0.97; cross-validation coefficient CVR=0.63–0.83).

The main result of this work was that for each type of

activity, fragments were identified that both increased and

decreased the studied properties (see Table 2).

In [13], to evaluate the antiviral activity (focused on

Influenza A/Hong Kong/1/68 H3N2) of the above com-

pounds, a set of QSARmodels with different molecular levels

(2D to 4D) were constructed using the PLS method within the

framework of SiRMS. The results of a comparative statistical

analysis of these models are given in Table 3.

Obviously, the simplest 2D-QSAR relationships give quite

acceptable results, both in terms of the adequacy of the models

and their predictive ability. As will be seen from the subse-

quent discussion, in general, in our practice of various QSAR/

QSPR studies we restrict ourselves to SiRMS descriptors of

2D molecular models.

Most of our studies of antiviral activity prior to 2010 are

summarized in a review [26]. In addition to the previously

mentioned anti-influenza activity and antiherpetic activity of

macrocyclic pyridinophanes, in this review the antiherpetic ac-

tivity of N,N´-(bis-5-nitropyrimidyl) ispirotripiperazine deriva-

tives [19], inhibition of human rhinovirus 2 replication [20] and

Fig. 11 Example of the structural

description of the mixture
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coxsackievirus B3 replication [23] by [(biphenyloxy)propyl]

isoxazole derivatives are discussed.

Another consideration herein is the research of anti-HIV

activity by artificial ribonucleases. Artificial ribonucleases in-

clude compounds with the tetrapeptide Glu–X–Arg–Gly–

OC10H21 and Glu–X–Lys–Gly–OC10H21 structures, where

X = Gly, β-Ala, 4-aminobutanoic acid, 6-aminohexanoic acid

and p-aminobenzoic acid. With the objective of inactivating

viral genome RNAs, the QSAR analysis of antiviral activities

of various artificial ribonucleases contributed to the molecular

design of new peptide anti-HIV agents [22]. [40] completed a

SAR analysis of the antiviral activities of tetrahydro-2(1H)-

pyrimidinones against the fowl plague virus (FPV) and the

vaccinia virus (VV).

For all the QSAR problems considered in the review [26],

it was shown that the corresponding models are effective for

both the virtual screening of new antiviral agents and for their

molecular design. It is important to note that several of these

newly designed antiviral agents have been synthesized and

tested. Their experimentally determined activity, in most

cases, corresponded to the predictions of QSAR models

(see, for example, [20, 29].

Of the later works, [27, 30, 32, 36] deserve special attention

for their discussion of the QSAR analysis of antiviral combi-

nations against poliovirus, ebolavirus, and three enteroviruses

(including poliovirus again).The QSAR studies against polio-

virus alone used SiRMS mixture modeling and the PLS meth-

od to predict the antiviral effects of the binary combinations of

eight picornavirus replication inhibitors in vitro. For this model,

eightfold external cross validation was performed and returned

CV, Q2
ext = 0.67–0.93. The 2D structures were analyzed and

found that fragments such as 2-(4-methoxyphenyl)-4,5-

dihydrooxazole or the combination of N-hydroxybenzimidoyl

and 3-methylisoxasole promoted antiviral activity. The

resulting consensus model found combinations of enviroxime

with pleconaril, WIN52084, and rupintrivir and the mixture of

rupintrivir with disoxaril to exhibit the highest inhibition of

poliovirus 1 replication [27, 30].

The QSARmodels built to screen ~ 17 million compounds

against ebolavirus particle entry into human cells was also

based on SiRMS descriptors. Of the 102 hits selected for ex-

perimental testing, 14 compounds displayed IC50 values

<10 μM (some having 10-fold selectivity against host cyto-

toxicity) and range from FDA-approved drugs to clinical can-

didates with non-antiviral indications to compounds with nov-

el scaffolds and no previously known bioactivity. [36] Then,

QSAR models surveying the anti-viral activity of

nitrobenzonitrile derivatives against coxsackievirus B1,

coxsackievirus B3 and poliovirus 1 returned a Matthew’s

correlation coefficient of 0.9. The results introduced the

importance of nitrogen containing substituents on the 5-

nitrobenzonitrile moiety for greater anti-viral activity [32].

The outbreak of a novel human coronavirus (SARS-CoV-2)

has evolved into global health emergency, infecting hundreds

of thousands of people worldwide. In 2020, there were many

publications devoted to the search for drugs against SARS-

CoV-2. In our works [33, 35, 37] dealing with SARS-CoV-2,

we used QSARmodels based on SiRMS descriptors. Given the

96% sequence identity and 100% active site conservation be-

tween the main protease (Mpro) of SARS-CoV-2 and SARS-

CoV, we developed QSAR models to assess the inhibitory

activity of all drugs in the DrugBank database against the

SARS-CoV Mpro.

In our virtual screening, forty-two compounds were con-

sensus computational hits. In subsequent experimental screen-

ings, NCATS coincidentally tested 11 of our 42 hits in a

cytopathic assay (https://opendata.ncats.nih.gov/covid19/)

and found cenicriviroc, proglumenetacin, and sufugolix to

be active with AC50 concentrations of 8.9 μM, 8.9 μM

(tested again independently at 12.5 μM), and 12.6 μM

respectively. These independent results endorse the abilities

of QSAR modeling in the work to elicit anti-COVID-19 drug

candidates.

Another undervalued approach to the battle against SARS-

CoV-2 is the use of synergistic antiviral drugs. Modern AI can

Table 2 The molecular fragments which increase and decrease

anticancer and antiviral activity

Table 3 Statistical characteristics of the QSAR models where R2
—

correlation coefficient, Q2
—cross validation correlation coefficient,

R2
test—correlation coefficient for test set, Sws—standard error of a

prediction for work set, Stest—standard error of a prediction for test set,

A—number of PLS latent variables, N—number of descriptors in the

model

Level R2 Q2 R2
test Sws Stest A N

2D 0.94 0.85 0.99 0.47 0.22 2 13

4D 0.97 0.88 0.98 0.32 0.28 3 18

3D 0.98 0.95 0.98 0.30 0.33 4 14
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be used to design drug combinations with known synergistic

antiviral activities without expensive and laborious testing.

One option is to use mixture specific SiRMS descriptors in

QSARmodels. The utilization of this technique with 38 drugs

identified 281 combinations with anti-COVID-19 potential

[37]. Of these, twenty binarymixtures were selected for binary

experimental testing, and once the necessary infrastructure is

in place twenty treble combinations will be tested.

At the end of this section, we briefly comment on QSAR

studies using SiRMS descriptors of 4-thiazolidone derivatives

(about 70 compounds) to assess their antimicrobial activity

[24]. Candida albicans S(I), Citrobacter freundii (II),

Klebsiella pneumoniae (III), Pseudomonas aeruginosa (R

(IV)and S (V)strains) and Staphylococcus aureus MSSA(VI)

were the reference organisms for our PLS QSARmodels. The

R2 =0.843–0.989, Q2 =0.679–0.864, and R2test =0.744–0.943

so the molecular fragments were analyzed based on their as-

sociation to the activity. It was found that any naphthalene

fragment is detrimental to activity and indole fragments are

indicative of highly active compounds. Finally, the influ-

ence of a hete rocyc l ic sys tem evolu t ion on the

antimicrobial properties of 4-thiazolidones derivatives

was also established (Fig. 12).

QSAR models of various types of toxicity

A significant portion of the publications where SiRMS was

used in QSAR models is devoted to surveying the toxicity of

various organic compounds [44, 54–67]. Together with our

American colleagues, a series of QSAR studies considered the

toxicity of high-energy nitroaromatic compounds [54, 55, 57,

62]. Twenty-eight nitroaromatic conpounds were chosen to

compare the non-additive effects of fragments on toxicity

through SiRMS based 1D- QSAR. The LD50 for rats in vivo

was used as the toxicity parameter. For all but the additive

PLS QSAR models, the statistics were satisfactory (R2 =

0.81–0.92; Q2 = 0.64–0.83; R2
test = 0.84–0.87). The success

of these models and failure of the additive models speaks to

the importance of the non-additive modeling. This was clealry

demonstrated where the toxicity of the molecules was deter-

mined based on the relationship between the nitro group and

the presence/absence of other substituents, not just the pres-

ence nitro group. For example, hydroxyl and fluorine
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Fig. 12 The influence of a heterocyclic system evolution on antimicrobial activity (“+” indicates the strengthening of antimicrobial properties; “-”

signifying the weakening of antimicrobial properties; I – VI as the investigated activities)
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substituents increase toxicity and a methyl group decreases

decreases toxicity, while cholrine was fairly neutral [54].

These observations were consistent with [55] in which 2D

QSAR was performed and found the toxicity to depend on

both substituent position and nature. More examples of frag-

ments that impacted toxicity can be seen in Fig. 13. While

a

b

Fig. 13 Molecular fragment

contributions Δ(-lgLD50) to

toxicity change: (a) nitroaromatic

fragments; (b) substituents in

benzene ring (TS: training set;

WS : work set)

Fig. 14 Relative influences of

some physical-chemical factors

on the variation of toxicity esti-

mated on the basis of consensus

model
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mutual influence of the substiuents does play a crucial role,

the toxicity can be mediated through C-H fragments on the

aromatic ring.

Toxicity was considered again in [57] using SiRMS based

PLS QSAR models to analyze the 50% inhibition growth

concentration, IGC50, of 95 diverse nitroaromatic against the

ciliate Tetrahymena pyriformis. These validated models

worked to classify different substituents based on their ef-

fects on toxicity, evaluate the structural descriptors of toxic

compounds, and consider physical-chemical factors con-

tributing to toxicity. As seen in Fig. 14, hydrophobic and

electrostatic interactions of toxicants and their biological

target are the most important factors of the interactions

(see Fig. 14). Hence, it can be presumed that compound

transport, which relys on lipophilicity, and the interaction

of nitroaromatic compounds with their targets, which func-

tion through electrostatic, are key mechanisms in the toxic-

ity of a nitroaromatic.

The toxicity of nitroaromatics was then computationaly

examined in the context of environmental hazards. The

QSAR/QSPR models built accounted for type and position

of aromatic ring substituents as well as aqueous solubility,

lipophilicity, Ames mutagenicity, bioavailability, blood–

brain barrier penetration, aquatic toxicity on Tetrahymena

pyriformis and acute oral toxicity on rats. Overall,

nitroaromatics with electron-accepting substituents, halogens,

or amino groups are the most environmentally hazardous, es-

pecially if the coumpound is hydrophobic [62].

The reproductive toxicity of various organic compounds

was studied in [59].Molecular structures were described using

2D simplex descriptors and were used with the toxicity pa-

rameter Lowest Effective Levels (LEL, mg/kg/day) leading to

a miscarriage on administration by gavage. The final consen-

sus QSAR model was adequate (R2= 0.89), with acceptable

predictive power (R2
test = 0.72). The most interesting result is

the identified toxiforic fragments that determine reproductive

toxicity (Fig. 15).

The work in [58], featured several different computatinal

techniques to predict drug hepatotoxicity in rats. The models

were built using both chemical descriptors (including SiRMS

descriptors) and toxicogenomics profiles. The external test set

displayed a correct classification rate of 68–77% after 5-fold

external cross validation and points towards the ability of

models to both predict chemical factors and respond to acute

treatment-induced changes in transcript levels accurately on

short term assays.

Despite the common idea that QSAR models are “black

boxes,” [61] displays direct interpretability of the models

and the meaning of structural alerts. Regardless of whether

the derivation of strucural alerts were based on QSAR model-

ing or expert-based, experimental case studies displayed that

alerts were simply hypotheses of possible toxicological effects

and were not entirely trustworthy. To combat this, the authors

propose a synergistic method that utilizes both structural alerts

and highly validated QSARmodels to accurately assess which

chemicals may cause skin sensitization from repeated

exposure.

To examine a chemically diverse set of compounds for skin

sensitizers, a QSARmodel using the Random Forest, SiRMS,

and Dragon descriptor techniques was developed. The model

was able to discrimate sensitizers from nonsensitizers 77–88%

of the time after external validation while maintaining a broad

AD, specificity of 85%, and sensitivity of 79% and has

screened the Scorecard database for experimental validation

[64].

The relationship and thought to be correlation between

skin permeability and skin sensitization has been

discreditied both experimentally and through QSAR

modeling [65].

QSAR models of pharmacokinetic parameters of
biologically active substances

Pharmacokinetic parameters are important characteristics of

biologically active substances that describe the entry of a drug

into the body, its transformation, and excretion from the body.

It is obvious that any potential drug, in addition to its specific

activity, must be non-toxic and have acceptable pharmacoki-

netic characteristics. The prediction of such characteristics and

the estimation of the influence of structural parameters is an

important part of QSAR modeling. A number of our works

(see Table 1) are devoted to solving these problems on the

basis of SiRMS. In particular, [42, 43] discuss the influence

of structure on the pharmacokinetic properties of 1,4 - benzo-

diazepine tranquilizers.

Fig. 15 Structural fragments increasing toxicity. The symbol * in structural fractures correspond to the binding site of this fragment with another part of

the molecule
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Originally, QSAR models were intended to approximate

bioavailability, elimination half-life, clearance, and distribu-

tion volume in the human organism for the development of

benzodiazepine drugs. Certain trends, such as lipophilic aro-

matics having high τ1/2 values, similar patterns in distribution

volume, clearance, and refractivity, and opposite patterns be-

tween bioavailability and clearance emerged from these

models. Now in modern production, drugs are classified by

the Biopharmaceutics Classification System [97] based on thir

water solubility andmembrane permeability. This largely con-

cerns the solubility, intestinal permeability, and dissolution

rate of oral drug absorption. Like other chemical properties,

QSAR tools can be used to model the properties responsible

for these trends to help expedite preliminary screening of new

compounds into their respective BCS classification [41].

Furthermore, using SiRMS, QSARmodels can also contribute

to the planning and production of compounds that would ef-

fectively permeate the blood-brain barrier (BBB). Based on

[45], highly polar groups discourage the molecules ability to

cross the BBB, and the presence of halogens and aromatic

fragments increases this permeation.

QSAR models of the affinity of molecules (ligands) to
various receptors

The biological action of a molecule requires its interaction

with a biological target. One possible type of biological target

is a receptor. The efficacy of most drugs depends on the af-

finity to the corresponding receptors. Thus, the prediction of

affinity and the analysis of the structural factors determining it

are important tasks of medicinal chemistry and QSARmodel-

ing in particular. Even with the advances in mental illness

treatments, anxiolytics and antidepressants remain an impor-

tant field to investigate and evolve. In particular, the explora-

tion of serotonin 5-HT1A receptors works to discover ligands

to help regulate anxiety, fear conditions, and depression. We

utilized SiRMS methodology to test 346 ligands (Fig. 16) in

an affinity QSAR model for 5-HT1A receptors [46].

Тhe relative influences (Tj ) of simplex descriptors were

calculated (Table 4). Some of the simplexes and correspond-

ing structural fragments are summarized in Table 4.

See work [46] for further details, but the main trends

percieved include the low affinity of 5-HT1A receptors towards

substituents in the para-position and polycyclic aromatic and

heteroaromatic fragments, and their high affinity for p-

electronodonor substituents in the ortho-position, bulky

saturaed fragments, and polymethyl chains of 4 or 5monomers.

This information could prove extremely useful in the design or

optimization of compounds with a desired affinity.

The high polyfunctionality of peripheral benzodiazepine re-

ceptors (PBDRs) involved in immunomodulation, cholesterol

and porphyrin transport, heme and neurosteroid biosynthesis,

calcium homeostasis, mitochondrial oxidation, cell prolifera-

tion, apoptosis, neurological and psychiatric disorders, raises

interest in these receptor ligands.

For the quantitative analysis of the structure-affinity rela-

tionship to PBDR with the synthesized compounds (Fig. 17),

a QSAR approach based on the simplex representation of the

molecular structure was used [47].

It follows from the analysis of QSAR models that the pres-

ence of an amide or carboxyl group in the substituent R1 and

piperazyl and acylpiperazyl groups in position R2 of the 1,2-

dihydro-3H-1,4-benzadiazepine-2-one molecule leads to a de-

crease in affinity. The presence of a nitroaniline fragment in

position R3, bromine in position R4, and a methoxycarbonyl

group in the R1 substituent contribute to an increase in affinity.

To antagonize the inhibition of platelet aggregation

through αIIbβ3, [50] detailed the in silico and in vitro testing

of QSAR nominated compounds. The consensus screening

highlighted three hits against the closed form of the receptor.

These results were validated experimentally after synthesis

NN ArLY

Fig. 16 The general formula of investigated compounds is, where Ar is

the aromatic substituents, Y is the different cyclic substituents, and L is a

carbohydrate linker –(CH2)n–

Table 4 The values of the relative influence of simplex descriptors and

the corresponding ranges of their values

Simplex Atom property Examples of structural fragments Relative influence (Tj)
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Fig. 17 1,2-dihydro-3H-1,4-benzadiazepine-2-one derivatives
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and exhibited higher affinity than Tirofiban, a commercial

antithrombotic (Table 5).

QSAR models in which stereochemical features of the mole-

cules were directly taken into account (the so-called 2.5D-QSAR

models, see the “Simplex descriptors for solving various QSAR/

QSPR tasks” section) were developed to study the affinity of

steroids to the CBG receptor (Cramer sample of 31 steroids)

using a sample of 78 ecdysteroids whose affinity to the ecdysone

receptor (EcR) was studied based on cell line indicators for

Drosophila melanogaster BII [4]. The relative contribution of

chiral simplexes in bothmodels was 18–19%,which implies that

the stereochemical features of the ligands play an essential role in

the interaction of steroids with the corresponding receptors.

The stereochemical interpretation of the QSAR models

performed allowed us to identify the chiral centers in steroid

molecules and the changes in the stereochemical configura-

tion that are the most critical for affinity. For example, for

ecdysone receptors, changing the S-configuration at atom 22

of the steroid skeleton to R significantly decreases activity,

while changing the configuration at atom 25 has almost no

effect on the affinity; both enantiomers exhibit almost identi-

cal activity.

QSPR models based on simplex descriptors

As follows from Table 1, SiRMS-based descriptors have been

used to solve a wide variety of QSPR challenges. In this

section, we consider the lipophilicity and aqueous solubility,

thermodynamic properties of substances, properties of ionic

compounds, and the properties of nanoparticles.

QSPR models of lipophilicity and aqueous solubility

Lipophilicity, and consequentially the quantitative character-

istic of lipophilicity, LogKow, is a crucial component in the

understanding of the absorption, distribution, metabolism and

elimination of many chemicals. This makes it a vital datapoint

in most studies, however the experimental estimation of

LogKow is very costly. Hence, the determination of LogKow

prior to experiments is a worthy endeavor. As a result, many

theoretical approaches have attempted this feat, but have done

so incorrectly by assuming the LogKow of molecules follows

additive schemes. Therefore, [69] applies SiRMS methodolo-

gy with Random Forest modeling into a 2D-QSPR of nearly

11000 organic compounds. The model was validated four

times externally and was particularly strong in predicting

strongly polar nitrogen containing compounds. Here it is cru-

cial to highlight once again that the additive scheme would

only account for 33% of the important parameters for these

calculations.

Similarly, the aqueous solubility of organic compounds is

paramount across several disciplines but is again highly costly

both in time, labor, and money, not to mention difficult and

dangerous. Accordingly, in [70] the authors created a SiRMS

QSPRmodel to first predict the value of k parameter in the linear

equation lgSw=kT+c, where Sw is the value of solubility and T is

the value of temperature and to secondly use Random Forest to

create a robust and efficient model. Following cross validation

and external testing, the model delivered slightly better predic-

tive abilities compared to the quantum chemical and thermody-

namically driven COSMO-RS approximation [98].

A number of our publications are devoted to more specific

questions pertaining to aqueous solubility [66 - 68]. In one

situation, we considered nitroaromatic compounds for mili-

tary purposes, as its solubility in water poses a serious envi-

ronmental threat. Particularly, in [68], PLS models were built

on 135 training compounds and SiRMS methods. For the 155

tested compounds, the R2test = 0.81 (comparable to the ability

of EPI SuiteTM 4.0) and the 2D descriptors produced a well-

fitted and robust QSPR model with R2= 0.90 and a Q2= 0.87.

The complex salts, ammonium hexafluorosilicates [71],

proved to be interesting objects for the study of aqueous solu-

bility. Understanding that the presence of hydrophilic groups

plays a key role in H-bonding and increases the aqueous solu-

bility of compounds, we paid special attention to the influence

of hydrogen bonds in the dissolution process. The conclusions

readily apply to organic compounds but are complicated when

considering organic salts or ammonium compounds [99]. [71]

worked to develop SiRMS QSPR models to screen for the

water solubility of ammonium hexafluorosilicates and to

Table 5 Experimentally determined affinity of αIIbβ3 computationally

suggested antagonists on the closed form receptor

Compound Affinity for IIb 3, IC50,nM

5.0 ± 0.8

2.2 ± 0.3

3.8 ± 0.4

Tirofiban 2.4 ± 0.4
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identify the main structural and physico-chemical factors

impacting these values. The QSPR models point towards the

negative influence of interionic H-bonds as well as the strength

of the ammonium hexafluorosilicates ion pair from the N+H ∙∙∙

(SiF6)
2– interaction.

These interpretations coincide with generally accepted

physico-chemical theories surrounding the effect of ammoni-

um cations on the water solubility of the corresponding salts

along with qualitative data of previous experimental works.

QSPR models of thermodynamic properties of
substances

A series of publications where SiRMS descriptors were used

to build QSPR models were devoted to the thermodynamic

properties of substances: the boiling temperatures, critical pa-

rameters, second virial coefficients, and adsorption parameters

[74–80]. What distinguished these publications from other

similar works was the demonstration of applications to mix-

tures of compounds (SiRMS for mixtures is described in the

“Simplex descriptors for solving various QSAR/QSPR tasks”

section.). In particular, [74] are devoted to QSPR modeling of

boiling and condensation temperatures of two-component

mixtures. For mixtures, these temperatures coincide only for

compositions of azeotropes (Fig. 18).

The QSPR models were built using the 67 pure liquids and

167 mixtures from the Korean Data Base [100]. Due to the

variable nature of point representation, the 167 mixtures

translated to 3185 data points. The matrix managed a sparsity

degree of 92.5% by incorporating only 167 mixtures, with

some compounds appearing in different mixtures up to 25

times. The models were externally validated using “points

out”, the isolation of the boiling point temperature (Tb) pre-

dictions, then “mixtures out,” the prediction of the missing Tb

values within the matrix mixtures, and finally by “compounds

out,” the prediction Tb for mixtures formed by compounds not

included in the training set. The RMSE for “points out,” “mix-

tures out,” and “compounds out” were 3.6K, 7.2K, and 10.5K

respectively.

The comparison of calculated and experimental liquid-

vapor equilibrium curves (Fig. 19) confirmed the satisfactory

quality of the corresponding QSPR models.

Note that these models are applicable, among others, for

pairs of compounds forming azeotropic mixtures (Fig. 19 c,

d). In some cases, when the difference between the boiling

points of individual substances was less than the prediction

error, models of condensation/evaporation curves for the cor-

responding mixture models of condensation/evaporation were

not possible.

Even compared to the COSMO-RS approach, QSPR/

QSAR models have proven themselves effective for

predicting any property of binary mixtures, if the mixtures’

individual components were present in the modeling set.

SiRMS-based 2D-QSPR models attempting to predict the

critical temperatures (Tc), volumes (Vc), and pressures (Pc)

and Pitzer’s acentric factors (ω) of organic compounds used

407, 382, 309, and 331 compounds, respectively, all from

NIST WebBook [75, 76, 101]. Structurally diverse organic

compounds were used and this resulted in high statistics for

the QSPR model after 5-fold external cross validation (R2 =

0.97–0.99, R5f
2 = 0.86–0.95, predicted error Tc and Vc <3%,

predicted error Pc andω 3–10%). Conceptually, critical point

Fig. 18 Vapor-liquid equilibrium

curve showing the variation of

equilibrium composition of the

liquid mixture with the

temperature at a fixed pressure.

The dew-point curve represents

the temperature at which the sat-

urated vapor starts to condense

whereas the bubble-point is the

temperature at which the liquid

starts to boil
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parameters are reliant on the energy of intermolecular interac-

tions, and the analysis finding electrostatic and Van der Waals

interactions as the primary descriptors corroborates this

theory.

By combining the SiRMS methodologies for single com-

pounds and mixtures, the “quasi-mixture” approach desig-

nates a pure compound as a mixture of two molecules and

hence presents new unique mixture simplexes [76]. The

QSPR models of the “quasi-mixture” simplexes display

higher performance statistics and statistically significant dif-

ferences in RMSE (Fig. 20).

The development of QSPR models to predict the critical

properties of mixtures of organic compounds [80] has no an-

alogues. It was possible due to the use of special SiRMS

descriptors aimed at describing mixtures of compounds (see

the “Simplex descriptors for solving various QSAR/QSPR

tasks” section). Given 94 pure compounds and roughly 300

mixtures, the varying composition parameters resulted in

~1000 values each. The critical pressure, temperature, and

volumes ranged from 20 to 100 bar, 150–800 K and from

80 to 400 cm3/mol, respectively. Different machine learning

methods were used to build the QSPR models, with the best

results obtained from the RFmethod. Error was reported using

the mean absolute percentage error (MAPE):

Fig. 19 Examples of experimental (dashed lines) and predicted (continues lines) liquid-vapor equilibrium curves

Fig. 20 Percentage increase in “quasi-mixture” models prediction

accuracy relative to ‘single molecule’ models
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MAPE ¼ 1=m⋅ ∑
m

i¼1

yi−byi
� �

=yi

���
���⋅100%

Here, yi are observed values, ŷi are predicted values, andm

is the number of observations. The MAPE values are more

than satisfactory in determining the significance of this ap-

proach: MAPEts(Tc) = 6.8%, MAPEts(Pc) = 11.5%,

MAPEts(Vc) = 14.6%. These numbers ascertain the ability

of simplexes to predict thermodynamic properties of organic

compounds at expert levels.

Considering the successful modeling and interpretability of

the simplex descriptors, SiRMS methodology should be im-

plemented into models analyzing and predicting critical

properties.

Virial equations of state can be used to describe the p-v-t

behavior of real gases, which are known to deviate substan-

tially from ideal gas behavior. However, pVm=RT ¼ 1þ B=

Vm þ C=V2
m þ D=V3

m þ… has rigorous theoretical backing

until extremely high pressures. All virial coefficients are tem-

perature dependent and were established based on the real gas

deviations from ideal behavior. The second virial coefficient

accounts for molecular pair interactions, and therefore given

the prominence of these interactions in the above theory, this

is the most important coefficient. It is a calculated parameter

whose experimental trials are again, expensive and time

consuming. In the past, QSPR models have not been able

to model temperature dependent coefficients, but given

our success with these properties [70] (see above), we

look to apply the simplex methods to a QSPR model for

the second virial coefficient. Like any temperature depen-

dent data, careful thought is required to ensure thoughtful,

interpretable QSAR/QSPR modeling. One issue arises

with the inconsistency in the temperature values and

range of temperatures seen in the virial coefficients data.

To solve this problem, like in [77], we used physical

based methodologies that derive the following two simple

but rigorous equations from the Van-der-Waals equation

of state for real gases:

B ¼ b− a=RTð Þ ð1Þ

B ¼ b–exp a=RTð Þ ð2Þ

a, b = f (D1, D2, …Di, …), where B is the second virial

coefficient, a, b are the coefficients of van-der-Waals equa-

tion, D is the descriptors, and T is the temperature. Then, two

QSPR models were formed separately for parameters a and b.

The second virial coefficient B was calculated using equations

I or II for any given temperature. The data was taken from a

comprehensive reference book [102], which covers second

virial coefficients for more than 250 compounds. Given the

temperature dependence, the overall number of data points is

more than 4500. The “quasi-mixture” approach (see above)

was used to calculate the SiRMS descriptors, while the RF

method was used to develop quick models robust towards

overfitting. As a result, we managed good predictive ability,

with both approaches (1) and (2) being approximately equiv-

alent (see Table 6).

The “quasi-mixture”: model delivered the best consensus

from the exponential equation form and is therefore used to

represent variable trends in Fig. 21. Understanding a is repre-

sentative of the repulsion between particles and b is the volume

excluded by a mole of particles, the correlation is logical and

fits into the expected physical explanation of the relationships.

For binary mixtures of compounds, the second virial coef-

ficient has the following form: Bmixt ¼ x21B1 þ x22B2 þ 2x1 x2
B12, where x is the mole fraction of compounds 1 and 2, B1

and B2 are the second virial coefficients of pure compounds,

and B12 - is the second virial cross-coefficient. The second

virial cross-coefficient is a calculated property based solely

off the mixture’s component interactions and is only a measure

of interactions between the two molecules. This intrinsic prop-

erty opens up the opportunity to predict PVT for multicompo-

nent mixtures as well. To our knowledge, [78] is the first at-

tempt at a QSPRmodel for this coefficient. Dymond et al. [102]

compilation was the source of the data for the 126 mixtures and

1211 values (each mixture selected had at least 4 values) of B12

at different temperatures ranging from 200-600 K. The test set

comprised of compounds with less than 4 data values for a total

of 102 mixtures and 188 data points at different temperatures.

Given the sole focus of B12 on the heterogenousmixture values,

the SiRMS descriptors for individual components were re-

moved from the model. Similar to calculating the B coefficient

for individual compounds (see above), two-layer QSPRmodels

corresponding to the equation B12 = b - exp(a/RT) were used.

The best results were obtained using the GBM (Gradient

boosting machines) machine learning method for the 5-fold

external cross-validation (R2
test = 0.75, RMSE = 253 cm3/

mol). The external test set resulted in an R2
test = 0.65 and

RMSE = 224 cm3/mol. Illustrative examples of the predictions

of temperature dependences for B12 are shown in Fig. 22.

Contrary to other states, the QSPR models used 2D de-

scriptors but do not require additional experimental data.

[79] works to characterize the interactions of the surface

groups of A-300 aerosil with more than 40 different benzo-,

dibenzo-, and aliphatic crown ethers. The QSPR models

analyzed the Henry (KH ) and Langmuir (KL) constants in

Table 6 Statistical characteristics of the Random Forest consensus

models

Equation R
2
ws RMSEws R

2
ts RMSEts

Linear form 0.98 20 0.79 190±21

Exponential form 0.99 18 0.81 185±25
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addition to properties or fragments seen to impact the sur-

face group formation. The models were validated with five-

fold cross validation and the 2D-PLS models displayed a

sataisfactory R2 = 0.86–0.94, Q2 = 0.82–0.92 and R2
test =

0.65–0.88. The best 2D-QSPR models using SiRMS de-

scriptors were for KH. The analysis concluded that electron

polarizability (33%) and electrostatics (29%) are the most

influential on the Henry constant, and once again this

concurred with the accepted general knowledge of polar

molecule interactions with aerosil surfaces.

QSPR models of the luminescent properties of
complex compounds

In [73], the QSPR analysis of the luminescence properties of

complexes of Eu(III) and Tb(III) ions with 2-oxo-4-

Fig. 21 Relative variable

importance

Fig. 22 Examples of temperature curves for B12 prediction

1385Struct Chem (2021) 32:1365–1392



hydroxyquinoline-3-carboxylic acid amides was detailed. In

these works, the information-topological version of SiRMS

descriptors was used. For these tasks, it proved to be much

more efficient than the standard 2D SiRMS descriptors. The

properties under study were lifetime и quantum yield lumines-

cence of the above complexes, with a total of 42 compounds

being studied. All models were built by the PLS method and

the five-fold procedure was used to evaluate the predictive

ability of the models. The R2test = 0.92–0.97, so the models

were used for virtual screening of new promising compounds.

Structural interpretation of the QSPR models showed that the

most promising ligands for luminescence where those con-

taining unsubstituted cyclohexane or benzene rings as a frag-

ment “A” (Fig. 23). Unbranched alkyls and furfuryl fragment

are the most promising as the “B” fragment (С2 - С6).

Alkylsubstituted 1,3,4-thiadiazoles and picolines are beyond

competition for complexes of Eu(III) and Tb(III) ions as the

"D" fragment.

As a result of this work, a terbium (III) complex with one of

the best model predicted ligands has been used as an analytical

form for the highly sensitive luminescent determination of ter-

bium in high-purity lanthanum, yttrium, and gadolinium oxides.

QSPR models of the properties of ionic inorganic
compounds

Even though cheminformatics approaches are frequently used

in the study of organic compounds, there are almost no pub-

lications devoted to QSPR models of inorganic compounds.

Objectively, typical molecular descriptor schemes rarely ap-

ply to inorganics. A few reasons for this include the signifi-

cantly smaller variety of elements in organic compounds as

opposed to inorganic compounds and the molecular diversity

of organic compounds. Interestingly, aside from coordination

complexes, isomerism is not as prevalent for many crystalline

inorganics, and therefore the term “molecule” is rather

conditional.

Overall, QSPR approaches are uncommon in the study of

inorganic compounds. However, the information provided

from them is undeniably valuable, especially given the current

limited development.

QSPRmodels were developed to predict the melting points

(MP) and refractive indices (RI) of various inorganic com-

pounds in [81]. These data points are essential for the

development of new optical materials. The authors point out

that the language of structural formulas, which is the basis for

the calculation of 2D descriptors of organic molecules, is often

not suitable for the description of inorganic compounds. A

typical example of such a situation is shown in Fig. 24.

Despite the allowance of different structural formulas due

to valence, inorganic crystals do not typically conform to for-

mulas (Fig. 24). Thus, given that information on the spatial

structure (3D) of inorganic compounds is not always avail-

able, and 2D structures are not correct, 1D descriptors were

used to build appropriate QSPR models (see the “Simplex

descriptors for solving various QSAR/QSPR tasks” section).

In fact, the number of different combinations of atoms (twos,

threes, fours, etc.) included in the gross formulation of an

inorganic compound was calculated. The estimation of weight

parameters characterizing atoms took into account the speci-

ficity of inorganic compounds, so as the key atomic charac-

teristics were used, including the group number, oxidation

level, nuclear charge, belonging to s-, p-, d-, f- elements, and

the electronegativity. Information on melting points and re-

fractive indices of various inorganic compounds was collected

from reference books [103, 104]. In total, about 400 com-

pounds were studied and 13 QSPR models were built using

the RF method. The predictive ability of these models, evalu-

ated by the "out-of-bag" (oob) procedure, was quite satisfactory

with the R2oob = 0.66–0.88. The mean relative error of these

predictions was 6–15%, and our models demonstrated that

even simple 1D-QSPRmodels can both screen important prop-

erties non-experimentally, as well as provide meaning and di-

rect interpretations. These interpretations suggest the relevance

of electrostatic factors on the considered properties and while

this may seem obvious due to the ionic nature of inorganic

compounds, it only validates the interpretation of QSPR

models. It should also be noted that these QSPR models are

more practical for preliminary nonexperimental screening of

inorganics compared to quantum-chemical based models.

QSPR models have also been built to consider qualitative and

quantitative values of superconducting critical temperature and

geometrical features helping/hindering criticality [82].

QSPR modeling of nanoparticle properties

Some of the most complex objects for QSPR modeling are

nanoparticles. Herein, it is necessary to distinguish two types

of nanoparticles :

& large nanoscale individual molecules (e.g., fullerenes,

nanotubes, etc.)

& aggregates or agglomerates of molecules (atoms) forming

nanoscale particles.

Obviously, the approaches to modeling different types of

nanoparticles must be different. In the first case, knownFig. 23 Structure of investigated ligands

1386 Struct Chem (2021) 32:1365–1392



descriptor systems can be used. Although, in the second

case, it is necessary to know both the information about

the molecules composing the nanoparticle as well as the

parameters of the nanoparticle, such as the size, surface

area, shape, etc. of the integral object. Solving QSPR prob-

lems of the first type, the researcher nevertheless faces the

problem of atom differentiation in carbon skeletons of ful-

lerenes or nanotubes. The information-topological 2D

SiRMS descriptors developed by us (see above the

“QSAR models of various types of toxicity” section) suc-

cessfully solve this problem. This can be demonstrated by

the results of [84], where the QSPR model for the solubility

of 27 fullerene (C60 and C70) derivatives in chlorobenzene

was developed.

The developed PLS model is characterized by good statis-

tical characteristics as for the training set R2 = 0.939 and

RMSE = 0.120, for the validation set Q2 = 0.904 and RMSE

= 0.141, for the test set R2 = 0.873 and RMSE = 0.146, and

lastly with scrambling, the R2 = 0.026 and the Q2 = 0.031.

Interpretation of the QSPR model shows that when varying

the aromatic fragment solubility decreases in the series: furan

> benzene > thiophene. The greater number of lipophilic frag-

ments (-C-C=) also promotes better solubili ty in

chlorobenzene.

The results indicate that the SiRMS informational descrip-

tors are sufficient to encode and describe the variation of the

experimental solubility of fullerene.

QSPR models for type II nanoparticles (nanoaggregates)

are discussed in [63, 83]. In these studies, in vitro cytotoxicity

data (EC50 and LC50) of metal oxide nanoparticles (ZnO,

CuO, V2O3, Y2O3, Bi2O3, In2O3, Sb2O3, Al2O3, Fe2O3,

SiO2, ZrO2, SnO2, TiO2, CoO, NiO, Cr2O3, La2O3) against

Escherichia coli bacteria and the human keratinocyte cell line

HaCaT was considered. 1D SiRMS descriptors were used to

describe the chemical nature of the nanoparticles, similar to

those for ionic inorganic compounds. We developed the «liq-

uid drop model» (LDM) to characterize these nanoparticles

[83]. The LDM represents each nanoparticle as a spherical

drop so that elementary particles (molecules) can be densely

packed and the mass density can be calculated. It is important

to note that this model assumes the minimum radius of

interactions between the molecules in the cluster is the

Wigner-Seitz radius.

Using the HaCaT and E. Coli cell lines, we developed two

nano-QSAR models. The HaCaT model displayed an R2 =

0.83, Q2
cv = 0.71, R2

ext = 0.91 and RMSE = 0.12, while the

E. colimodel showed R2 = 0.93,Q2
cv = 0.90, R2

ext = 0.97, and

RMSE = 0.12.

These results suggest the combinatorial 1D and size-

dependent descriptors are capable of producing meaningful

nano-QSAR models as it applied to metal oxide cytotoxicity

on HaCaT and E. coli. The weighted cross product of descrip-

tors revealed that while both size-dependent parameters and

the chemical nature of metal ions are important to cytotoxic-

ity, the magnitude of the charge of the metal ion is the most

important.

Conclusions

In conclusion, the authors are pleased to note that the SiRMS

approach is quite popular among our colleagues who are solv-

ing various QSAR/QSPR problems. A list of some works

known to us is presented in the final Table 7.

To summarize, the simplex representation of the molecular

structure is a sufficiently versatile and flexible tool for solving

a variety of structural problems from detailed stereochemical

analysis to QSAR/QSPR. The multiplicity of simplex descrip-

tors based on well-understood physical-chemical principles

allows for not only predictive modeling, but also detailed

structural and physical-chemical interpretations of thesemodels.

The list of objects to which SiRMS can be applied is also very

broad, ranging from simple inorganic compounds to complex

organic molecular and supramolecular systems, including nano-

particles. Thus, SiRMS was successfully used for wide variety

(all major types of bioactivities and toxicities, phys-chem prop-

erties, etc.) of 1-4DQSAR/QSPR tasks described in this review.

Moreover, we have pioneered the development of both SiRMS-

based descriptors for chemical mixtures [137] and strategies for

robust validation of QSAR models for mixtures [137, 138].

These approaches were successfully applied to the modeling

of mixtures of organic solvents [74], drug delivery systems

Fig. 24 The formula-based issue

in the structural modeling of in-

organic compounds
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[139], inorganic materials [140], and drug-drug interactions

[141]. Importantly, we have addressed the very difficult task

of predicting the synergistic effects in drug mixtures [27].

Advances of the Simplex approach related to modeling of mix-

tures and interpretation of QSAR models were highlighted in

two highly cited perspectives of QSAR field [142, 143].
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