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Abstract. If all the edges of a-simplex T have the same length, thédnis regular.
However, ifd > 3, then it is clear that the facets fmay have the sam@ — 1)-volume
without T being regular. Here, the question of the extent to which the equalitwofumes
of ther -faces ofT implies regularity ofT is investigated, the case= d — 2 proving most
fruitful.

1. Introduction

In private communications, Horst Martini and Robert Connelly have both raised the
following question. Let 1< r < d — 1, and letT be ad-simplex, all of whose -faces
have the same-volume; we then say thak is r-equiareal It is natural to ask: is an
r-equiareal-simplex necessarily regular? In what follows, we give a partial solution of
this problem, and pose some resulting further questions.

Of course, the case = 1 of the problem is trivial—if all the edges ofdxsimplex
T have the same length, thé&nis regular. Henceforth, therefore, we may assume that
r>2.

It is also fairly clear that, ifd > 3, then there are many simplices whose facets all
have the same areéd(— 1)-volume); we discuss this case in detail in Section 4. The
complete solution in cag = 3 then implies that 2-equiaredisimplices are regular if
d > 4. The interest therefore centres on the casgs 3< d — 2 (and hence > 5). The
central question here is whether, tbe> 5, a(d — 2)-equiareal-simplex is necessarily
also(d — 1)-equiareal. We should say at once that there is no obvious reason why this
should be so. However, the only examples thrown up by computer searches (admittedly
in small dimensions) all have this property. We discuss this question in Section 6.

Conversely, though, in Section 5 we show how to construct ngdny 2)-equiareal
d-simplices; naturally, in view of what we have just said, these argdlsd)-equiareal.
There are non-regular examples tbr= 5 and eachd > 7, and even an example for
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d = 11 which has no symmetry whatsoever. Further, as we show in Section 6, if the
central question has a positive answer, then-aquiaread-simplex would be regular
whenever I<r <d — 3.

General references to the theory of convex polytopes are [1] and [4]; results about
polytopes for which no specific citation is made can be found there.

2. Standardization

We begin the discussion with some preliminary remarks, and a useful normalization
convention.
A d-simplex inE® may be written in the form

T={xeEY | (x,u) <mnfori =0,...,d}, 2.1

whereU = (uo, ..., Ug) is a set of vectors which positively sp&f. (It is convenient
alwaysto think ofJ as ordered. Furthermore, we often also identtifyith the(d+1) xd
matrix whose rows arey, . . . , Ug, coordinatized with respect to an orthonormal basis of
E9.) We calln; thesupport parameteof T corresponding toy;. Note that if we replace
u; by some positive multipleu;, then we must similarly replacg by An;.

Up to a constant factor, there is a unique linear relation anugng . , ug, say

ajuUj = 0O,

-

i=0

the zero vector. If they; are unit vectors, then the Minkowski relation for areas and
normal vectors of polytopes says that we may takéo be the area(l — 1)-volume)
voly_1 § of the corresponding fac§ of T.

Here, we find it more convenient to take an alternative normalization. If we assume
the vectorsy; scaled so that

Ui =0, (2.2

M=

i=0

then we call the sdtl standardizedThis clearly means that, for some fixed> 0,
lujll = x voly_1 §

forj =0,...,d. If we wish, we may suppose that= 1, but later other scalings will
prove more convenient.

All simplices withU as their sets of normal vectors are homothetic. One advantage
of standardizingJ is the following.

Proposition 2.1. LetT be ad-simplexwith U as its standardized set of normal vectors
Then the expression of T {&.1)is such that); = » is constant for j=0, ..., d ifand
only if the centroid of T is 0
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Proof. Forj =0,...,d, letthe vertex ofl oppositeS bea;, so that we have
(Ui, &) =i

foreachi # j. Thus
(uj.a)=—) n
i#]
foreachj =0, ..., d. It follows that the condition for the centroid @fto beo, namely
¢ & = o, reduces to
- Z ni = —dnj,

i#]
foreachj =0, ..., d. Itis easy to see that the only solutions satigfy= - - - = nq, as
claimed. 0O

We say thaf is in standard fornif its normal vectors are standardized and its support
parameters are equal (so thas the centroid off ). For the most part, the actual common
value of the support parameters will not interest us, so that the standardizédo$et
normal vectors determinds up to positive scalar multiple.

In fact, we shall invariably be concerned with the congruence classes of simplices
under euclidean isometry. In this case, the actual veataran be replaced by the matrix
UUT = ((ui, uj)) of their inner products. This is explained by

Proposition 2.2. There is a one to one correspondence between standardized sets of
normal vectors to d-simplices and positive semi-definite symnietric1) x (d + 1)
matrices of rank d whose rows sum to the zero vector o

Proof. Certainly the matrix U T has the given properties. For the converseZldte
such a matrix. Then there exists an invertifde+ 1) x (d 4+ 1) matrix V such that

r _[I o
vzZVv _|:O ol

wherel is thed x d identity matrix. We see at once that tfee+ 1) x d matrix

o]

satisfiesZz = UUT, as required. O

An important criterion forr -equiareality of a simpleX will be expressed in terms
of the polar simplext *. Recall that ifo € int T (the interior of T), then itspolar is

T :={yeE?| (x,y) <1forallx e T}.

Proposition 2.3. If the d-simplex T is in standard forrthen so is its polar T.
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Proof. Thisisclear, sinceifthereisaconstant 0, suchthai; = nforj =0,...,d,
then the set of normals t&* is justU* = (ntay, ..., n tag), and we know that
Zi":o a; = o from the definition of standard form. O

As we shall see in Section 3, equiareality Totranslates into a very similar property
for T*.

3. Volumes of Faces

Let T be ad-simplex in standard form. Thus the normal veaipto the jth facet§ of
T is normalized so that (2.2) holds, afidtself is then of the form

T=TWU,n:={xeE| (x,u) <nfori =0,...,d}

for somen > 0. We calculate the volumes of the various face§ dh terms ofU =
(Up, ..., Ug) andn. Such expressions were previously found in [2], but the earlier forms
are not well suited to our applications. In any case, we give a quicker proof here.

If {ay,...,a ) € EYis any set, then we define

Det(ay, ..., a) = det((a;. g))"?,
ther -volume of the parallelotope
r
Zkia,- |0<Ar <1lfori=1,...,r¢,
i=1

asinthe geometry of numbers. (Of course, this volume is positive if and only if the vectors
ai, ..., a are linearly independent.) Let := Det(uy, ..., Ug). Then we observe the
following.

Lemma3.1. If j(2),..., j(d) are any distinct indiceghen

Det(u; ), ..., Uj@) = A.

Proof. Indeed, letj (0), ..., j(d)beQ...,dinsome order. Then
d
Det(Uj o, Uj@, - - -» Uj@) = Det{ = uji, Ui, -+ - Uja)
i=1
= Det(—u,- > Uj@), - -+ Uj@))
= Det(uj), Uj2, - .-, Uj@)),
and the lemma follows at once. O

Observe, by the way, that such calculations as occur in the proof are easily justified
from the original definition; we employ them again below. An alternative way of looking
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at this result is the following. Since the only eigenvectors of{thé¢ 1) x (d + 1) matrix
UUT corresponding to the eigenvalue 0 are multiples of (1, 1, ..., 1), the adjoint
of UUT must beA J, with J the(d + 1) x (d + 1) matrix all of whose entries are 1. Of
course, Ddiug, Uy, ..., uq) = 0.

In preparation for our general result, we first calculate the volume iof terms of
the normal vectors; and the support parameter

Lemma 3.2. The volume of the standard simplex T is

(d + 1)dp¢
d!Det(uy, ..., Uq)

V0|d T=

Proof. We adopt our earlier notation, so ttegtis the vertex ofl opposite the face
with outer normali;. We see easily that, for j =1,...,d,

(@ —ao, Uj) = —(d + Dndij,
with &;; the usual Kronecker delta. There follows immediately
Det(a; — ao, . .., ag — ao) Det(uy, ..., ug) = ((d + 1)n)".
Sincevoy T = Det(a; — ay, ..., a4 — ag)/d!, we obtain the result we sought. O

Next we have the easily proved

Lemma 3.3. Suppose that the orthogonal projection gfipon the orthogonal com-
plement ofin{uj ¢+, ..., Uj@} iS vj). Then for any distinct indices (1), ..., j(d),

Det(u;j ), . .., Uj@) = Detvjq, ..., vjr)) DetUj¢+1), - .., Uj@))-
We now have the main result.

Theorem 3.4. Fordistinctindices jr +1), ..., j(d), ther-volume of the r-face F=
S+ NN S is given by
VOlr F— (d + 1)!‘ nr Det(uj (r+1), - -5 Uj (d)) ‘
r!Det(uy, ..., Uq)

Proof. Let j(0),..., j(r) be the missing indices. ThelR = convaj(), - -, &)).
with the usual notation, so that ydf = Det(&;1) — 80, ---» &) — &) /r!. With
vj () defined as in Lemma 3.3, we have

@) — &), Vi) = —(d + Dndi

fori, k=1,...,r,since(@ i — 8, vja) =0fori =1,...,randk =r+1,...,d.
Exactly similar calculations to those of Lemma 3.2 then lead to
d 1I‘ r
vol, F = @+ bn .
r! Det(v,— L)» -5 Y (r))

Substituting for Detw; (y, . . ., vj)) from Lemma 3.3 yields the theorem at once.
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If a d-simplexT is in standard form, then we may take its Sedf normal vectors as
the vertex-set of the polar simpl@x‘, up to some positive scaling factor. In fact,
T, n)* =n"*convu, ..., ug}.

To anr-faceF of T then corresponds@ —r — 1)-facefof T*, and hence &d —r)-
simplex

F := convF U {0}).
Theequiareality criterionis then

Theorem 3.5. The d-simplex T is r-equiareal if and only if all titd — r)-simplices
F corresponding to the r-faces of T have the sgohe- r)-volume

Proof.  This is clear when we observe thatFf= S11 N --- N §(q) as before, then
F = n~tconvo, Uj¢+1), - - -, U@}, SO that

— Det(n~1u; s 07U
Volg_, F = (n "Ujr+1) N Uj@))
(d—r)!
_ Det(ujg+p, - - -5 Uj@)
(d —r)l nd-r '

In other words, from Theorem 3.4,
(d+ 1) n" Detuj( 11y, - - -, Uj))

vol, F =
' r!Det(uy, ..., Ug)
d+1)"(d—r)ypd —
_@+vd-nta? oo
riDet(uq, ..., uq)
from which the criterion follows immediately. O

Theorem 3.4 shows thetequiareality impos ﬂ) conditions on the; or, rather, in
view of Proposition 2.2, onthe matri& := UUT. Thusitis far from surprising that, as we
shall see in Section 4¢ — 1)-equiareality is frequent. However, witt — 2)-equiareality,

we have exactly the same number of equations as variables, néﬂﬁglyd +1= (szrZ)

on the(d;rz) distinct entries ofZ; we should therefore expect finitely many solutions.
(The same applies to the case- 1, but we recall that this implies regularity ®f) On

the other hand, when 2 r < d — 3, we have more equations than variables, and so
we would be surprised to find any but trivial solutions (that is, again wheregular).

We have already confirmed this for the case- 2. We investigate these problems in
subsequent sections.

4. Equiareal Facets
In this section we use the term “equiareal” (without any qualification) to mé&hn-‘1)-

equiareal”. We shall see that equiareal simplices (in this sense) are very common. We
begin with a general result.
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Theorem 4.1. The following conditions on a d-simplex T are equivalent

() T is equiareal
(b) the in-centre and centroid of T coincide
(c) the altitudes of T are equal

Proof. To see this, we tak& in standard form. For the equivalence of conditions (a)

and (b), note that equality of facet areas just says that the standardized normal vectors
have the same length, and since the support parameters are equal, this says that the facets
of T touch a sphere whose centre is the centroid oThe equivalence of (a) (or (b))

with (c) is trivial. O

As we said in Section 1, fl > 3, then there are many different similarity classes of
equiaread-simplices. To see this, we make a simple observation. There is no harm in
scaling such a simplex, so that its normalidetomprises unit vectons, which satisfy
(2.2). Of course, sincd is the normal-set to some simplex, the vectgrmust spark?
(linearly), and hence must belinearly general positionmeaning that nd of them lie
in any hyperplane through

Sinced > 3, there are many ways of partitionir@, . .. , d} into two setsl and J,
each of which contains at least two elements. Then

iel ied
say, a hon-zero vector. L@t be any sufficiently small rotation aboatwhich fixes the
line throughw, and define

. L if iel,
T u @, if ied
Sincew® = w, itis clear thatv := (vo, ..., vq) also consists of unit vectors satisfying

(2.2), and sinc@ is small, they remain in linearly general position (indeed, the smallness
of @ is irrelevant, as long as this condition holds). Observe that this idea actually gives
continuous families of solutions.

We now look at some small valuesahfWe begin withd = 3; here we have a complete
characterization.

Theorem 4.2. Atetrahedron is equiareal if and only if its opposite pairs of edges have
the same lengths

Proof.  First, let the tetrahedroh be equiareal, with) = (uo, .. ., u3) its standardized
set of normal vectors. Thus the vectars have the same length. Now we have (for
example)up + u; = —(uy + uz), from which it is easy to see that the half-turn about
the line joining=+(ug + u;) permutes the pairBlg, u;} and{u,, uz}. It follows that the
opposite pairs of edges determined by the remaining four pairs of normals have the same
length. The condition of the theorem follows at once.

Conversely, if the opposite edgesbfhave the same length, then its four faces are
congruent, and so have the same area. This completes the proof. |
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Of course, tetrahedra with all facets having a fixed area can have volumes varying
from O to the maximum, at a regular tetrahedron. This is in contrast with the result of
Sabitov [3], which says that a flexible polyhedron, which can vary continuously while
keeping its edge-lengths fixed, has a fixed volume.

There is an immediate consequence of Theorem 4Ridfa 2-equiareal 4-simplex,
with verticesay, . . . , a4, say, then consideration of the facetsTofvhich contain a given
edge conya;, a;} shows that the opposite triangular faceTofs equilateral. Henc&
must be regular. An easy induction argument then leads to

Theorem 4.3. Ifd > 4, then a2-equiareal d-simplex is regular

We return to equiareality (the case= d — 1) for generall > 4. To focus our ideas,
we pose the following question: given(d — 1)-simplex S, under what conditions is
S a facet of an equiarea-simplex T, and to what extent i unique? Wherd = 3,
the question has a straightforward answer—the trialgyheust be acute-angled, and
uniqueness is guaranteed by Theorem 4.2. We look at the general case first, and then
describe specific examples when= 4.

Let § := Sbe a(d — 1)-simplex with vol_; S = 1, situated with its centroid
at o in the hyperplaned orthogonal to the unit vectar,. Let S have facetsRy; and
corresponding standardized normajs for j = 1, ..., d. We try to make thdry; ridges
of an equiareatl-simplexT lying in the half-spacéd ~ := {x € E9 | (x, up) < 0}. So,
we wish to find unit vectorsy, . .., ugq of the form

Uj = pjvoj — ojUo,

which satisfy>"® | u; = o.

The first observationisthat = --- = pq =: p, Say, a constant, becauzje?:1 voi =
ois essentially the only linear relation among tgg Further, we mustha\Eid=1 oi = 1.
Finally, the condition thaju;|| = 1 is p?||vj||2 + ojz =1forj=1,...,d.

Solving the last equations gives

oj = &jy/ 1= p?|lvojII?,
withg; = £1forj =1,...,d. The range of possible is clearly
0<p<minfllug ™| j=1,....d}
for a predetermined choice of thg there may or may not be a suitaklenamely one

satisfying
d

> ey 1= p2luojl2 = 1.

i=1

However, in principle, we may determine all the (finitely many) solutions of the equations.
In fact, if we replaceS by its scaled copy

{xe H| (X, vwj) <lforj=1,...,d},
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and let the vertices of beay, ..., a4 (with a; opposite§ as usual), then, for each
j # 0, we have(ag, uj) = (&, Uj) = (&, pvoj — ojUp) = p, with anyi # 0, j. Since
Ug = — Z?:l uj, there follows

_<a()7 Uo) = dlo

Becauseg is a unit vector, this says thathas altitudedp.
For our first example, we choose &s tetrahedron in the linear hyperplaHeof E*

orthogonal toey; we takeug := —ey4. In H, the normal-set t&is given by
178 if j=123,
O le+et+e if j=4

A brief inspection shows that we only obtain a solution faf exactly one of thes; is
—1forj =1, 2,3 (ande4 = 1). This yields three equiareal 4-simplicE®f which Sis
a facet.

We now varyS a little. We redefine

[, it =
O = | arer + azen + azes, if ]

with a1 > a2 > a3 > 0 all close enough to 1. The same analysis applies, and we obtain
three mutually non-congruent equiareal 4-simplices of wi8dh a facet. Indeed, the
three corresponding values pfare distinct, and so, by the remark above, the resulting
4-simplices have different volumes.

Similar examples may be constructed for edch 5, with the conclusion that, even
if an equiareatl-simplex exists with a gived — 1)-simplex as facet, generally it will
not be unique.

5. Equiareal Ridges

We now show how to constru@tl — 2)-equiareal-simplices. The examples presented
here demonstrate that such simplices need not have much (or indeed any) symmetry. We
begin with

Lemma5.1. LetT be a(d — 1)-equiareal d-simplexThen T is(d — 2)-equiareal if
and only if there is some angde such that each dihedral angle of T is eitheor 7 — .

Proof. LetT have standardized normal vectags. . ., uq. SinceT is (d—1)-equiareal,
we may assume thiit; || = 1 foreach =0, ..., d. Let the dihedral angle between the
facetsS and§ of T bed;j. The criterion of Theorem 3.5 fad — 2)-equiareality says
that, fori # |,

sif % = 1—cos %j = [[uilI”[lu; |12 — (ui, u;)? = Det(u;, uj)?

is constant, independent bfand j. In other words, for some fixed angte we have
% = v orw — ¥. The converse is clear, which proves the lemma. O
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Henceforth, we suppose that tesimplexT is (d — 1)- and(d — 2)-equiareal, and
also that the anglé of Lemma 5.1 is acute (it clearly cannot b¢2). Take any face§
of T. Letm of the dihedral angles;; at S be obtuse, and the remainidg— m acute.
Let each§ have area. Consider the areas of the projections of Sewvith j # i on
the hyperplane aff; these are counted with sigil according ag;; is acute or obtuse.
Hence we have

V= Z v cosvi; = (d — m)v cosy — mv cos? = (d — 2m)v cosv,
j#
giving

costy =

i (5.1)

Observe thain must thus be the same for each faeif T, and that, to avoid degeneracy,
we must havel — 2m > 1, and hence — 2m > 2.
We deduce the followingngle criterion

Theorem 5.2. LetT be ad —1)- and(d — 2)-equiareal d-simplexThen there is some
number m> 1 with d > 2m + 2, such that at each facet of T there are-dn dihedral
angles® and m dihedral angles — ¢, where

cosy = .
d—2m

We now introduce th@btuseness graph Gf T its nodes are the facets @f, and
there is a branch joining two nodes if the dihedral angle between the corresponding facets
is obtuse. Thus& is anm-regulargraph (that is, each node &f has degreen), with m
given by Theorem 5.2. IM := M(G) is the adjacency matrix d& (so thatM is the
(d + 1) x (d + 1) matrix, whose(i, j) entry is 1 or 0 according as the nodeand j
are or are not joined by a branch), then the matrix of inner products between the pairs of
normal vectors is given by

(d=2mUUT = (d —2m+ 1)l — J + 2M. (5.2)

Here,l is the(d + 1) x (d + 1) identity matrix, and] is the(d + 1) x (d 4+ 1) matrix
all of whose entries are 1.
We now have th@djacency matrix criterion

Theorem 5.3. There exist unit vectorsgu. . ., ug (necessarily in linearly general po-
sition) which satisfy(5.2)if and only if the matrix Ki= (d —2m+ )| —J+2M is
positive semi-definite of rank d

Proof. This is clear; the sole eigenvector with eigenvalue®4s (1, ..., 1). |

Before we come to specific examples, we discuss this situation in general terms. Let
M be the adjacency matrix of an-regular graphG with d + 1 nodes. ThudJ is a
symmetric(0, 1)-matrix, with constant row (and column) sum Now clearlyM has
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the eigenvectoe = (1, ..., 1), with eigenvaluan; we call this eigenvectdrivial. Let
v = (B1,..., Ba) be any eigenvector d¥1. If 8 := max{|gi| |i =1,...,d+ 1}, with
the maximum achieved at= j, say, then, by considering thjecoordinate obM, we
conclude that the corresponding eigenvalusatisfies

luBl = miBl,

giving || < m.

We ask wherM gives rise to &d — 2)-equiareatl-simplex. We employ the adjacency
matrix criterion of Theorem 5.3. The trivial eigenvector Mf is also one ofK, with
eigenvalue 0. Thus we need only look at a non-trivial eigenvactidrM, belonging to
the eigenvalug: say, for whichvJ = o (we may always suppose thats orthogonal to
€). The corresponding eigenvalaeof K is given by

w=vK=d-2m+Dv—-—vI+20M =(d —2m+ 1+ 2u)v,

ori=d—2m+ 1+ 2u. Inview of 4| < m, we see that we can ensure that 0, if
d>2m— 1+ 2max|ul|, ord > 4m.

In fact, we can improve on this a little. The adjacency matlixan have eigenvalue
uw = —m if and only if G has a bipartite component. (This can be seen by a similar
argument to that giving mdx|; we thank Imre Leader for bringing this fact to our
attention.) In other words, & has no bipartite component, then, whenaler 4m— 1,
we have

A=d—-2m+1+2u>4dm—-1-2m+1+4+2u =2(m+ u) > 0,

Summarizing, we have

Theorem 5.4. Let G be an m-regular graph on-# 1 nodesThen G is the obtuseness
graph of a(d — 1)- and(d — 2)-equiareal d-simplex wheneverxd 4m, or, if G has no
bipartite componentvhenever ¢~ 4m — 1.

In particular cases, as we shall see below, an even smaller (relative) valugilbf
often work.

We now apply these techniques. First, we give a direct construction (this provided us
with our initial examples). Pick any proper divisor-1 of d + 1, such thain < %(d -2
(thus the quotient 2 is not permitted; this also implies tthat 5). Writen + 1 =
(d+1)/(m+1),and letL, Mo, ..., M, be mutually orthogonal linear subspace&6f
of dimensions, m, ..., m, respectively. (Note that + (n + 1)m = d, as required.) In
L, letvo, ..., vy be the unit normals to some regulassimplex, and similarly in each
M; let wig, ..., wim be the unit normals to some regularsimplex. Finally, for each
i=0,...,nandj =0,...,m,andA, u > 0to be determined, define

Uij ‘= Ay + pwij.
We first scale so that eacky is a unit vector, which implies that

M rui=1 (5.3)
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Let ;; be the dihedral angle of the resulting simpléxat its ridge ((d — 2)-face)
Rj = § N §, so that we shall have to hawg; = ¢ or r — ¥ for somed with
0 < ® < m/2. We can ensure this by setting

2

A2 — ol = (Ujj, Ujx) = cosy, (5.4)
m
fori =0,...,mand0< j <k <n,and
)\,2
= (Unj, Uik) = — cosd, (5.5)

forO < h <i < m, and anyj andk. Itis easy to see that these equations are satisfied by

n » d—-2m-—n
d-2m’ =

2= cosy =

d—2m ’ d—2m’

(The last equation is just as expected.) In other words, we h&de-a2)-equiaread-
simplex, whenevait+1 = (m+1)(n+1) for somemandn satisfying 1< m < %(d—Z)
andn > 2.

In this example, the obtuseness gr&plinasn + 1 components, each of which is a
complete graph om + 1 nodes. Notice that the case= 2, withd = 3m + 2, is not
covered by Theorem 5.4.

Next, we fill most of the gaps in the range of valuesl@overed by this construction.
Let the obtuseness grafhconsist of a single circuit d + 1 nodes and edges in order
0,1,...,d,0; thusm= 2. Then(d — 3)| + J — 2M is a circulant matrix, whose non-
zero eigenvalues arm — 3 + 4 cog2kz/(d + 1)) (corresponding to the eigenvectors
(1, 0%, 0%, ..., %) with @ := e@7/@tD) fork = 1,...,d. Ford > 8, these are
always positive, as required. The cake- 7, for whichk = 4 is not allowed, has been
dealt with by the case = 1 of the previous construction.

However, ford = 6, we have

cos(6m/7) < —3,

giving a negative eigenvalue. Itis not too hard to see that there is no obtuseness graph on
seven nodes which can make our construction work. @ndy 2 is permitted (because
we need th < 7 — 2 = 5), and the two possibilities fd& are a single heptagon (the
case just considered), and a triangle and a square (the latter component being bipartite,
which brings Theorem 5.4 into play).
Theorem 5.4 also permits an alternative obtuseness graphavien, namely that
with two circuits, a triangle and a pentagon. Two squares, on the other hand, are excluded.
Finally, as another example of what Theorem 5.4 will do for us, we take 3. It
is not too hard to find a connected 3-regular graph on 12 nodes (even planar) which is
not bipartite, and has no non-trivial automorphisms. (We rnkedd, becausm is odd.)
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For example, we can take the graph to be

Since 11> 4.3 — 1, and the graph has odd circuits (and so cannot be bipartite),
Theorem 5.4 tells us that the corresponding 11-simplex is 9-equiareal. However, as is
easy to see, the simplex has no non-trivial symmetries since the graph has none.

6. Open Questions

The constructions of Section 5, which gigeg— 2)-equiareat-simplices which are not
regular, lead us to pose several questions. The examples are all of one specific kind, and
it is unclear whether such simplices exist which are not of this kind. The constructions
thus raise what we call theentral question

Question 6.1. Letd > 5. Is a(d — 2)-equiareald-simplex necessarily als@ — 1)-
equiareal?

There is no obvious reason why the central question should have a positive answer
(which is why we have posed it as a question rather than a conjecture). As we remarked
in Section 1, a computer enumeration (by Robert Connelly) in small dimensions only
producedd —1)-equiareal examples. &l — 2)-equiareall-simplex which is notd — 1)-
equiareal would have to satisfy a number of somewhat curious extra conditions, but we
have not (so far) found any inconsistency in them. Indeed, as we saw in Sectiot 5, as
gets larger, &d — 2)-equiaread-simplex may be less and less regular, untiflat 11
it need have no symmetry whatsoever. Thus it is conceivable that, for evendatper
property of(d — 1)-equiareality may be lost as well.

Now, once again, lef be a(d — 1)- and(d — 2)-equiareal-simplex. LetG be the
obtuseness graph of, with degreem at each node. Sinaa < %(d — 2), given any two
nodes and j, say, there is a third nodewhich is joined inG to neitheri nor j. The
normal vectors to the facets @f may be chosen to be unit vectors, and (as we saw in
Section 5) the corresponding normal veaigrto the facet (ridgeRj = SN S of § at
S is then a vector of length sih (with cosy = 1/(d — 2m)). Hence the dihedral angle
¢ijk = @ikj In the facet§ between its two facet®; and R is given by

(vij » Vik)

Sir o

— COSgijk =
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(Uj — (Ui, UjHu;, Ug — (Uj, U)u;)

Sir 9
_ (Uj, Ux) — (Ui, uj){uj, Ug)
1—cog¥
Now (u;, ux) = (uj, Ux) = — cosy, whereasu;, U;) = £ cosy as the dihedral angle

betweenS and§ is obtuse or acute. The corresponding values are thus given by

— cost + cog ¥ cosy
1—co29 1+ cosy
1 .
s = TWd-D_2m_1D’ if obtuse
—cos® — cos ¥ cosy
1-cog9  1- cosy
1 .
=— m if acute

Observe that both possibilities must occur.
Closer inspection of what we have found above shows that the dihedral angiles
facetSof T are given by

1 1
=t +
cosp d—1-2m or d-1-2(m-1’°

with mgiven by Theorem 5.2; observe that these angles them fixparticular choice of
the dihedral angle of at any given facet o§as® orw — ¢ (with cosy = 1/(d — 2m))
then determines all the other dihedral angle$ pbnly one of the two choices will give
m obtuse dihedral angles. In other words,

Theorem 6.2. If a (d — 1)-simplex S is a facet of @ — 1)- and (d — 2)-equiareal
d-simplex T, then T is unique up to congruence

That is, we can effectively reconstruttfrom S.
It is thus natural to ask, more generally,

Question 6.3. Isthere, up to congruence, at most ¢de- 2)-equiaread-simplex, one
of whose facets is a givetd — 2)-equiareald — 1)-simplex?

Of course, if the central Question 6.1 has a positive answer, then Theorem 6.2 shows
that Question 6.3 has also.

We now glance at-equiareatl-simplices, when < d—2. However, since the central
guestion is still open, the discussion is necessarily somewhat tentative. Nevertheless, it
is worth posing the following

Conjecture 6.4. If 3 <r <d — 3,then anr-equiareal d-simplex is regular
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We have already observed, in Section 3, that the normal vectors ioeguiareal
d-simplex, with 3< r < d — 3, satisfy more more equations than they have degrees of
freedom, and thus the conjecture is likely to hold.

Itis clearly enough, to prove Conjecture 6.4, to consider thercasd —3. (Clearly, if,
for a givenr, it holds for a particular dimensiah then it holds for all larger dimensions.)
The results above establish

Theorem 6.5. If Question6.3 (or Question6.1) has a positive answethen Conjec-
ture 6.4 holds
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Note added in proof We have recently constructed examplegf- 2)-equiaread-
simplices which are nad — 1)-equiareal, even for rather smdllthus giving a negative
answer to Question 6.1. Details will appear later.



