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Abstract. If all the edges of ad-simplex T have the same length, thenT is regular.
However, ifd ≥ 3, then it is clear that the facets ofT may have the same(d − 1)-volume
withoutT being regular. Here, the question of the extent to which the equality ofr -volumes
of ther -faces ofT implies regularity ofT is investigated, the caser = d− 2 proving most
fruitful.

1. Introduction

In private communications, Horst Martini and Robert Connelly have both raised the
following question. Let 1≤ r ≤ d − 1, and letT be ad-simplex, all of whoser -faces
have the samer -volume; we then say thatT is r -equiareal. It is natural to ask: is an
r -equiareald-simplex necessarily regular? In what follows, we give a partial solution of
this problem, and pose some resulting further questions.

Of course, the caser = 1 of the problem is trivial—if all the edges of ad-simplex
T have the same length, thenT is regular. Henceforth, therefore, we may assume that
r ≥ 2.

It is also fairly clear that, ifd ≥ 3, then there are many simplices whose facets all
have the same area ((d − 1)-volume); we discuss this case in detail in Section 4. The
complete solution in cased = 3 then implies that 2-equiareald-simplices are regular if
d ≥ 4. The interest therefore centres on the cases 3≤ r ≤ d−2 (and henced ≥ 5). The
central question here is whether, ford ≥ 5, a(d− 2)-equiareald-simplex is necessarily
also(d − 1)-equiareal. We should say at once that there is no obvious reason why this
should be so. However, the only examples thrown up by computer searches (admittedly
in small dimensions) all have this property. We discuss this question in Section 6.

Conversely, though, in Section 5 we show how to construct many(d − 2)-equiareal
d-simplices; naturally, in view of what we have just said, these are also(d−1)-equiareal.
There are non-regular examples ford = 5 and eachd ≥ 7, and even an example for
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d = 11 which has no symmetry whatsoever. Further, as we show in Section 6, if the
central question has a positive answer, then anr -equiareald-simplex would be regular
whenever 1≤ r ≤ d − 3.

General references to the theory of convex polytopes are [1] and [4]; results about
polytopes for which no specific citation is made can be found there.

2. Standardization

We begin the discussion with some preliminary remarks, and a useful normalization
convention.

A d-simplex inEd may be written in the form

T = {x ∈ Ed | 〈x,ui 〉 ≤ ηi for i = 0, . . . ,d}, (2.1)

whereU = (u0, . . . ,ud) is a set of vectors which positively spanEd. (It is convenient
always to think ofU as ordered. Furthermore, we often also identifyU with the(d+1)×d
matrix whose rows areu0, . . . ,ud, coordinatized with respect to an orthonormal basis of
Ed.) We callηj thesupport parameterof T corresponding touj . Note that if we replace
uj by some positive multipleλuj , then we must similarly replaceηj by ληj .

Up to a constant factor, there is a unique linear relation amongu0, . . . ,ud, say

d∑
i=0

αi ui = o,

the zero vector. If theuj are unit vectors, then the Minkowski relation for areas and
normal vectors of polytopes says that we may takeαj to be the area ((d − 1)-volume)
vold−1 Sj of the corresponding facetSj of T .

Here, we find it more convenient to take an alternative normalization. If we assume
the vectorsuj scaled so that

d∑
i=0

ui = o, (2.2)

then we call the setU standardized. This clearly means that, for some fixedκ > 0,

‖uj ‖ = κ vold−1 Sj

for j = 0, . . . ,d. If we wish, we may suppose thatκ = 1, but later other scalings will
prove more convenient.

All simplices withU as their sets of normal vectors are homothetic. One advantage
of standardizingU is the following.

Proposition 2.1. Let T be a d-simplex with U as its standardized set of normal vectors.
Then the expression of T in(2.1) is such thatηj = η is constant for j= 0, . . . ,d if and
only if the centroid of T is o.



Simplices with Equiareal Faces 399

Proof. For j = 0, . . . ,d, let the vertex ofT oppositeSj beaj , so that we have

〈ui ,aj 〉 = ηi

for eachi 6= j . Thus

〈uj ,aj 〉 = −
∑
i 6= j

ηi

for eachj = 0, . . . ,d. It follows that the condition for the centroid ofT to beo, namely∑d
i=0 ai = o, reduces to

−
∑
i 6= j

ηi = −dηj ,

for each j = 0, . . . ,d. It is easy to see that the only solutions satisfyη0 = · · · = ηd, as
claimed.

We say thatT is instandard formif its normal vectors are standardized and its support
parameters are equal (so thato is the centroid ofT). For the most part, the actual common
value of the support parameters will not interest us, so that the standardized setU of
normal vectors determinesT up to positive scalar multiple.

In fact, we shall invariably be concerned with the congruence classes of simplices
under euclidean isometry. In this case, the actual vectorsui can be replaced by the matrix
UUT = (〈ui ,uj 〉) of their inner products. This is explained by

Proposition 2.2. There is a one to one correspondence between standardized sets of
normal vectors to d-simplices and positive semi-definite symmetric(d + 1) × (d + 1)
matrices of rank d whose rows sum to the zero vector o.

Proof. Certainly the matrixUUT has the given properties. For the converse, letZ be
such a matrix. Then there exists an invertible(d + 1)× (d + 1) matrix V such that

VZVT =
[

I oT

o 0

]
,

whereI is thed × d identity matrix. We see at once that the(d + 1)× d matrix

U := V−1

[
I
o

]
satisfiesZ = UUT, as required.

An important criterion forr -equiareality of a simplexT will be expressed in terms
of the polar simplexT∗. Recall that ifo ∈ int T (the interior ofT), then itspolar is

T∗ := {y ∈ Ed | 〈x, y〉 ≤ 1 for all x ∈ T}.

Proposition 2.3. If the d-simplex T is in standard form, then so is its polar T∗.
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Proof. This is clear, since if there is a constantη > 0, such thatηj = η for j = 0, . . . ,d,
then the set of normals toT∗ is just U ∗ = (η−1a0, . . . , η

−1ad), and we know that∑d
i=0 ai = o from the definition of standard form.

As we shall see in Section 3, equiareality forT translates into a very similar property
for T∗.

3. Volumes of Faces

Let T be ad-simplex in standard form. Thus the normal vectoruj to the j th facetSj of
T is normalized so that (2.2) holds, andT itself is then of the form

T = T(U, η) := {x ∈ Ed | 〈x,ui 〉 ≤ η for i = 0, . . . ,d}
for someη > 0. We calculate the volumes of the various faces ofT in terms ofU =
(u0, . . . ,ud) andη. Such expressions were previously found in [2], but the earlier forms
are not well suited to our applications. In any case, we give a quicker proof here.

If {a1, . . . ,ar } ⊆ Ed is any set, then we define

Det(a1, . . . ,ar ) := det(〈ai ,aj 〉)1/2,
ther -volume of the parallelotope{

r∑
i=1

λi ai | 0≤ λi ≤ 1 for i = 1, . . . , r

}
,

as in the geometry of numbers. (Of course, this volume is positive if and only if the vectors
a1, . . . ,ar are linearly independent.) Let1 := Det(u1, . . . ,ud). Then we observe the
following.

Lemma 3.1. If j (1), . . . , j (d) are any distinct indices, then

Det(uj (1), . . . ,uj (d)) = 1.

Proof. Indeed, letj (0), . . . , j (d) be 0, . . . ,d in some order. Then

Det(uj (0),uj (2), . . . ,uj (d)) = Det

(
−

d∑
i=1

uj (i ),uj (2), . . . ,uj (d)

)
= Det(−uj (1),uj (2), . . . ,uj (d))

= Det(uj (1),uj (2), . . . ,uj (d)),

and the lemma follows at once.

Observe, by the way, that such calculations as occur in the proof are easily justified
from the original definition; we employ them again below. An alternative way of looking
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at this result is the following. Since the only eigenvectors of the(d+1)× (d+1)matrix
UUT corresponding to the eigenvalue 0 are multiples ofe := (1,1, . . . ,1), the adjoint
of UUT must be1J, with J the(d+ 1)× (d+ 1)matrix all of whose entries are 1. Of
course, Det(u0,u1, . . . ,ud) = 0.

In preparation for our general result, we first calculate the volume ofT in terms of
the normal vectorsuj and the support parameterη.

Lemma 3.2. The volume of the standard simplex T is

vold T = (d + 1)dηd

d! Det(u1, . . . ,ud)
.

Proof. We adopt our earlier notation, so thataj is the vertex ofT opposite the facetSj

with outer normaluj . We see easily that, fori, j = 1, . . . ,d,

〈ai − a0,uj 〉 = −(d + 1)ηδi j ,

with δi j the usual Kronecker delta. There follows immediately

Det(a1− a0, . . . ,ad − a0)Det(u1, . . . ,ud) = ((d + 1)η)d.

Since vold T = Det(a1− a0, . . . ,ad − a0)/d!, we obtain the result we sought.

Next we have the easily proved

Lemma 3.3. Suppose that the orthogonal projection of uj (i ) on the orthogonal com-
plement oflin{uj (r+1), . . . ,uj (d)} is vj (i ). Then, for any distinct indices j(1), . . . , j (d),

Det(uj (1), . . . ,uj (d)) = Det(vj (1), . . . , vj (r ))Det(uj (r+1), . . . ,uj (d)).

We now have the main result.

Theorem 3.4. For distinct indices j(r +1), . . . , j (d), the r-volume of the r-face F:=
Sj (r+1) ∩ · · · ∩ Sj (d) is given by

volr F = (d + 1)r ηr Det(uj (r+1), . . . ,uj (d))

r ! Det(u1, . . . ,ud)
.

Proof. Let j (0), . . . , j (r ) be the missing indices. ThenF = conv(aj (0), . . . ,aj (r )),
with the usual notation, so that volr F = Det(aj (1) − aj (0), . . . ,aj (r ) − aj (0))/r !. With
vj (i ) defined as in Lemma 3.3, we have

〈aj (i ) − aj (0), vj (k)〉 = −(d + 1)ηδik

for i, k = 1, . . . , r , since〈aj (i ) − aj (0), vj (k)〉 = 0 for i = 1, . . . , r andk = r +1, . . . ,d.
Exactly similar calculations to those of Lemma 3.2 then lead to

volr F = (d + 1)r ηr

r ! Det(vj (1), . . . , vj (r ))
.

Substituting for Det(vj (1), . . . , vj (r )) from Lemma 3.3 yields the theorem at once.
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If a d-simplexT is in standard form, then we may take its setU of normal vectors as
the vertex-set of the polar simplexT∗, up to some positive scaling factor. In fact,

T(U, η)∗ = η−1 conv{u0, . . . ,ud}.
To anr -faceF of T then corresponds a(d− r − 1)-faceF̂ of T∗, and hence a(d− r )-
simplex

F := conv(F̂ ∪ {o}).
Theequiareality criterionis then

Theorem 3.5. The d-simplex T is r-equiareal if and only if all the(d − r )-simplices
F corresponding to the r-faces of T have the same(d − r )-volume.

Proof. This is clear when we observe that, ifF = Sj (r+1) ∩ · · · ∩ Sj (d) as before, then
F = η−1 conv{o,uj (r+1), . . . ,uj (d)}, so that

vold−r F = Det(η−1uj (r+1), . . . , η
−1uj (d))

(d − r )!

= Det(uj (r+1), . . . ,uj (d))

(d − r )! ηd−r
.

In other words, from Theorem 3.4,

volr F = (d + 1)r ηr Det(uj (r+1), . . . ,uj (d))

r ! Det(u1, . . . ,ud)

= (d + 1)r (d − r )! ηd

r ! Det(u1, . . . ,ud)
vold−r F,

from which the criterion follows immediately.

Theorem 3.4 shows thatr -equiareality imposes
(d+1

r+1

)
conditions on theuj or, rather, in

view of Proposition 2.2, on the matrixZ := UUT. Thus it is far from surprising that, as we
shall see in Section 4,(d−1)-equiareality is frequent. However, with(d−2)-equiareality,
we have exactly the same number of equations as variables, namely

(d+1
d−1

)+d+1= (d+2
2

)
on the

(d+2
2

)
distinct entries ofZ; we should therefore expect finitely many solutions.

(The same applies to the caser = 1, but we recall that this implies regularity ofT .) On
the other hand, when 2≤ r ≤ d − 3, we have more equations than variables, and so
we would be surprised to find any but trivial solutions (that is, again whenT is regular).
We have already confirmed this for the caser = 2. We investigate these problems in
subsequent sections.

4. Equiareal Facets

In this section we use the term “equiareal” (without any qualification) to mean “(d−1)-
equiareal”. We shall see that equiareal simplices (in this sense) are very common. We
begin with a general result.
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Theorem 4.1. The following conditions on a d-simplex T are equivalent:

(a) T is equiareal;
(b) the in-centre and centroid of T coincide;
(c) the altitudes of T are equal.

Proof. To see this, we takeT in standard form. For the equivalence of conditions (a)
and (b), note that equality of facet areas just says that the standardized normal vectors
have the same length, and since the support parameters are equal, this says that the facets
of T touch a sphere whose centre is the centroid ofT . The equivalence of (a) (or (b))
with (c) is trivial.

As we said in Section 1, ifd ≥ 3, then there are many different similarity classes of
equiareald-simplices. To see this, we make a simple observation. There is no harm in
scaling such a simplex, so that its normal-setU comprises unit vectorsui , which satisfy
(2.2). Of course, sinceU is the normal-set to some simplex, the vectorsui must spanEd

(linearly), and hence must be inlinearly general position, meaning that nod of them lie
in any hyperplane througho.

Sinced ≥ 3, there are many ways of partitioning{0, . . . ,d} into two setsI and J,
each of which contains at least two elements. Then∑

i∈I

ui = −
∑
i∈J

ui =: w,

say, a non-zero vector. Let8 be any sufficiently small rotation abouto which fixes the
line throughw, and define

vi :=
{

ui , if i ∈ I ,
ui8, if i ∈ J.

Sincew8 = w, it is clear thatV := (v0, . . . , vd) also consists of unit vectors satisfying
(2.2), and since8 is small, they remain in linearly general position (indeed, the smallness
of 8 is irrelevant, as long as this condition holds). Observe that this idea actually gives
continuous families of solutions.

We now look at some small values ofd. We begin withd = 3; here we have a complete
characterization.

Theorem 4.2. A tetrahedron is equiareal if and only if its opposite pairs of edges have
the same lengths.

Proof. First, let the tetrahedronT be equiareal, withU = (u0, . . . ,u3) its standardized
set of normal vectors. Thus the vectorsuj have the same length. Now we have (for
example)u0 + u1 = −(u2 + u3), from which it is easy to see that the half-turn about
the line joining±(u0 + u1) permutes the pairs{u0,u1} and{u2,u3}. It follows that the
opposite pairs of edges determined by the remaining four pairs of normals have the same
length. The condition of the theorem follows at once.

Conversely, if the opposite edges ofT have the same length, then its four faces are
congruent, and so have the same area. This completes the proof.
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Of course, tetrahedra with all facets having a fixed area can have volumes varying
from 0 to the maximum, at a regular tetrahedron. This is in contrast with the result of
Sabitov [3], which says that a flexible polyhedron, which can vary continuously while
keeping its edge-lengths fixed, has a fixed volume.

There is an immediate consequence of Theorem 4.2. IfT is a 2-equiareal 4-simplex,
with verticesa0, . . . ,a4, say, then consideration of the facets ofT which contain a given
edge conv{ai ,aj } shows that the opposite triangular face ofT is equilateral. HenceT
must be regular. An easy induction argument then leads to

Theorem 4.3. If d ≥ 4, then a2-equiareal d-simplex is regular.

We return to equiareality (the caser = d− 1) for generald ≥ 4. To focus our ideas,
we pose the following question: given a(d − 1)-simplex S, under what conditions is
S a facet of an equiareald-simplexT , and to what extent isT unique? Whend = 3,
the question has a straightforward answer—the triangleS must be acute-angled, and
uniqueness is guaranteed by Theorem 4.2. We look at the general case first, and then
describe specific examples whend = 4.

Let S0 := S be a(d − 1)-simplex with vold−1 S = 1, situated with its centroid
at o in the hyperplaneH orthogonal to the unit vectoru0. Let S have facetsR0 j and
corresponding standardized normalsv0 j , for j = 1, . . . ,d. We try to make theR0 j ridges
of an equiareald-simplexT lying in the half-spaceH− := {x ∈ Ed | 〈x,u0〉 ≤ 0}. So,
we wish to find unit vectorsu1, . . . ,ud of the form

uj = ρj v0 j − σj u0,

which satisfy
∑d

i=0 ui = o.
The first observation is thatρ1 = · · · = ρd =: ρ, say, a constant, because

∑d
i=1 v0i =

o is essentially the only linear relation among thev0 j . Further, we must have
∑d

i=1 σi = 1.
Finally, the condition that‖uj ‖ = 1 isρ2‖vj ‖2+ σ 2

j = 1 for j = 1, . . . ,d.
Solving the last equations gives

σj = εj

√
1− ρ2‖v0 j ‖2,

with εj = ±1 for j = 1, . . . ,d. The range of possibleρ is clearly

0< ρ ≤ min{‖v0 j ‖−1 | j = 1, . . . ,d};

for a predetermined choice of theεj , there may or may not be a suitableρ, namely one
satisfying

d∑
i=1

εi

√
1− ρ2‖v0 j ‖2 = 1.

However, in principle, we may determine all the (finitely many) solutions of the equations.
In fact, if we replaceSby its scaled copy

{x ∈ H | 〈x, v0 j 〉 ≤ 1 for j = 1, . . . ,d},
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and let the vertices ofT be a0, . . . ,ad (with aj oppositeSj as usual), then, for each
j 6= 0, we have〈a0,uj 〉 = 〈ai ,uj 〉 = 〈ai , ρv0 j − σj u0〉 = ρ, with any i 6= 0, j . Since
u0 = −

∑d
j=1 uj , there follows

−〈a0,u0〉 = dρ.

Becauseu0 is a unit vector, this says thatT has altitudedρ.
For our first example, we choose asSa tetrahedron in the linear hyperplaneH of E4

orthogonal toe4; we takeu0 := −e4. In H , the normal-set toS is given by

v0 j :=
{−ej , if j = 1,2,3,

e1+ e2+ e3, if j = 4.

A brief inspection shows that we only obtain a solution forρ if exactly one of theεj is
−1 for j = 1,2,3 (andε4 = 1). This yields three equiareal 4-simplicesT of which S is
a facet.

We now varySa little. We redefine

v0 j :=
{−αj ej , if j = 1,2,3,
α1e1+ α2e2+ α3e3, if j = 4,

with α1 > α2 > α3 > 0 all close enough to 1. The same analysis applies, and we obtain
three mutually non-congruent equiareal 4-simplices of whichS is a facet. Indeed, the
three corresponding values ofρ are distinct, and so, by the remark above, the resulting
4-simplices have different volumes.

Similar examples may be constructed for eachd ≥ 5, with the conclusion that, even
if an equiareald-simplex exists with a given(d − 1)-simplex as facet, generally it will
not be unique.

5. Equiareal Ridges

We now show how to construct(d− 2)-equiareald-simplices. The examples presented
here demonstrate that such simplices need not have much (or indeed any) symmetry. We
begin with

Lemma 5.1. Let T be a(d − 1)-equiareal d-simplex. Then T is(d − 2)-equiareal if
and only if there is some angleϑ , such that each dihedral angle of T is eitherϑ or π−ϑ .

Proof. LetT have standardized normal vectorsu0, . . . ,ud. SinceT is(d−1)-equiareal,
we may assume that‖ui ‖ = 1 for eachi = 0, . . . ,d. Let the dihedral angle between the
facetsSi andSj of T beϑi j . The criterion of Theorem 3.5 for(d − 2)-equiareality says
that, fori 6= j ,

sin2 ϑi j = 1− cos2 ϑi j = ‖ui ‖2‖uj ‖2− 〈ui ,uj 〉2 = Det(ui ,uj )
2

is constant, independent ofi and j . In other words, for some fixed angleϑ , we have
ϑi j = ϑ or π − ϑ . The converse is clear, which proves the lemma.
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Henceforth, we suppose that thed-simplexT is (d − 1)- and(d − 2)-equiareal, and
also that the angleϑ of Lemma 5.1 is acute (it clearly cannot beπ/2). Take any facetSi

of T . Let m of the dihedral anglesϑi j at Si be obtuse, and the remainingd −m acute.
Let eachSj have areaν. Consider the areas of the projections of theSj with j 6= i on
the hyperplane affSi ; these are counted with sign±1 according asϑi j is acute or obtuse.
Hence we have

ν =
∑
j 6=i

ν cosϑi j = (d −m)ν cosϑ −mν cosϑ = (d − 2m)ν cosϑ,

giving

cosϑ = 1

d − 2m
. (5.1)

Observe thatmmust thus be the same for each facetSi of T , and that, to avoid degeneracy,
we must haved − 2m> 1, and henced − 2m≥ 2.

We deduce the followingangle criterion:

Theorem 5.2. Let T be a(d−1)- and(d−2)-equiareal d-simplex. Then there is some
number m≥ 1 with d ≥ 2m+ 2, such that at each facet of T there are d−m dihedral
anglesϑ and m dihedral anglesπ − ϑ , where

cosϑ = 1

d − 2m
.

We now introduce theobtuseness graph Gof T ; its nodes are the facets ofT , and
there is a branch joining two nodes if the dihedral angle between the corresponding facets
is obtuse. ThusG is anm-regulargraph (that is, each node ofG has degreem), with m
given by Theorem 5.2. IfM := M(G) is the adjacency matrix ofG (so thatM is the
(d + 1) × (d + 1) matrix, whose(i, j ) entry is 1 or 0 according as the nodesi and j
are or are not joined by a branch), then the matrix of inner products between the pairs of
normal vectors is given by

(d − 2m)UUT = (d − 2m+ 1)I − J + 2M. (5.2)

Here,I is the(d + 1)× (d + 1) identity matrix, andJ is the(d + 1)× (d + 1) matrix
all of whose entries are 1.

We now have theadjacency matrix criterion:

Theorem 5.3. There exist unit vectors u0, . . . ,ud (necessarily in linearly general po-
sition) which satisfy(5.2) if and only if the matrix K:= (d − 2m+ 1)I − J + 2M is
positive semi-definite of rank d.

Proof. This is clear; the sole eigenvector with eigenvalue 0 ise= (1, . . . ,1).

Before we come to specific examples, we discuss this situation in general terms. Let
M be the adjacency matrix of anm-regular graphG with d + 1 nodes. ThusM is a
symmetric(0,1)-matrix, with constant row (and column) summ. Now clearlyM has
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the eigenvectore= (1, . . . ,1), with eigenvaluem; we call this eigenvectortrivial . Let
v = (β1, . . . , βa) be any eigenvector ofM . If β := max{|βi | | i = 1, . . . ,d + 1}, with
the maximum achieved ati = j , say, then, by considering thej -coordinate ofbM, we
conclude that the corresponding eigenvalueµ satisfies

|µβ| ≤ m|β|,
giving |µ| ≤ m.

We ask whenM gives rise to a(d−2)-equiareald-simplex. We employ the adjacency
matrix criterion of Theorem 5.3. The trivial eigenvector ofM is also one ofK , with
eigenvalue 0. Thus we need only look at a non-trivial eigenvectorv of M , belonging to
the eigenvalueµ say, for whichvJ = o (we may always suppose thatv is orthogonal to
e). The corresponding eigenvalueλ of K is given by

λv = vK = (d − 2m+ 1)v − vJ + 2vM = (d − 2m+ 1+ 2µ)v,

or λ = d − 2m+ 1+ 2µ. In view of |µ| ≤ m, we see that we can ensure thatλ > 0, if
d > 2m− 1+ 2 max|µ|, or d ≥ 4m.

In fact, we can improve on this a little. The adjacency matrixM can have eigenvalue
µ = −m if and only if G has a bipartite component. (This can be seen by a similar
argument to that giving max|µ|; we thank Imre Leader for bringing this fact to our
attention.) In other words, ifG has no bipartite component, then, wheneverd ≥ 4m−1,
we have

λ = d − 2m+ 1+ 2µ ≥ 4m− 1− 2m+ 1+ 2µ = 2(m+ µ) > 0,

Summarizing, we have

Theorem 5.4. Let G be an m-regular graph on d+ 1 nodes. Then G is the obtuseness
graph of a(d− 1)- and(d− 2)-equiareal d-simplex whenever d≥ 4m, or, if G has no
bipartite component, whenever d≥ 4m− 1.

In particular cases, as we shall see below, an even smaller (relative) value ofd will
often work.

We now apply these techniques. First, we give a direct construction (this provided us
with our initial examples). Pick any proper divisorm+1 ofd+1, such thatm≤ 1

2(d−2)
(thus the quotient 2 is not permitted; this also implies thatd ≥ 5). Write n + 1 =
(d+ 1)/(m+ 1), and letL ,M0, . . . ,Mn be mutually orthogonal linear subspaces ofEd

of dimensionsn,m, . . . ,m, respectively. (Note thatn+ (n+ 1)m= d, as required.) In
L, let v0, . . . , vn be the unit normals to some regularn-simplex, and similarly in each
Mi let wi 0, . . . , wim be the unit normals to some regularm-simplex. Finally, for each
i = 0, . . . ,n and j = 0, . . . ,m, andλ, µ > 0 to be determined, define

ui j := λvi + µwi j .

We first scale so that eachui j is a unit vector, which implies that

λ2+ µ2 = 1. (5.3)
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Let ϑi j be the dihedral angle of the resulting simplexT at its ridge ((d − 2)-face)
Ri j = Si ∩ Sj , so that we shall have to haveϑi j = ϑ or π − ϑ for someϑ with
0< ϑ < π/2. We can ensure this by setting

λ2− µ
2

m
= 〈ui j ,uik〉 = cosϑ, (5.4)

for i = 0, . . . ,m and 0≤ j < k ≤ n, and

− λ
2

n
= 〈uhj ,uik〉 = − cosϑ, (5.5)

for 0≤ h < i ≤ m, and anyj andk. It is easy to see that these equations are satisfied by

λ2 = n

d − 2m
, µ2 = d − 2m− n

d − 2m
, cosϑ = 1

d − 2m
.

(The last equation is just as expected.) In other words, we have a(d − 2)-equiareald-
simplex, wheneverd+1= (m+1)(n+1) for somemandn satisfying 1≤ m≤ 1

2(d−2)
andn ≥ 2.

In this example, the obtuseness graphG hasn + 1 components, each of which is a
complete graph onm+ 1 nodes. Notice that the casen = 2, with d = 3m+ 2, is not
covered by Theorem 5.4.

Next, we fill most of the gaps in the range of values ofd covered by this construction.
Let the obtuseness graphG consist of a single circuit ofd+ 1 nodes and edges in order
0,1, . . . ,d,0; thusm= 2. Then(d − 3)I + J − 2M is a circulant matrix, whose non-
zero eigenvalues ared − 3+ 4 cos(2kπ/(d + 1)) (corresponding to the eigenvectors
(1, ωk, ω2k, . . . , ωdk) with ω := e2iπ/(d+1)) for k = 1, . . . ,d. For d ≥ 8, these are
always positive, as required. The cased = 7, for whichk = 4 is not allowed, has been
dealt with by the casem= 1 of the previous construction.

However, ford = 6, we have

cos(6π/7) < − 3
4,

giving a negative eigenvalue. It is not too hard to see that there is no obtuseness graph on
seven nodes which can make our construction work. Onlym= 2 is permitted (because
we need 2m ≤ 7− 2 = 5), and the two possibilities forG are a single heptagon (the
case just considered), and a triangle and a square (the latter component being bipartite,
which brings Theorem 5.4 into play).

Theorem 5.4 also permits an alternative obtuseness graph whend = 7, namely that
with two circuits, a triangle and a pentagon. Two squares, on the other hand, are excluded.

Finally, as another example of what Theorem 5.4 will do for us, we takem = 3. It
is not too hard to find a connected 3-regular graph on 12 nodes (even planar) which is
not bipartite, and has no non-trivial automorphisms. (We needd odd, becausem is odd.)
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For example, we can take the graph to be

Since 11≥ 4 · 3 − 1, and the graph has odd circuits (and so cannot be bipartite),
Theorem 5.4 tells us that the corresponding 11-simplex is 9-equiareal. However, as is
easy to see, the simplex has no non-trivial symmetries since the graph has none.

6. Open Questions

The constructions of Section 5, which give(d− 2)-equiareald-simplices which are not
regular, lead us to pose several questions. The examples are all of one specific kind, and
it is unclear whether such simplices exist which are not of this kind. The constructions
thus raise what we call thecentral question.

Question 6.1. Let d ≥ 5. Is a(d − 2)-equiareald-simplex necessarily also(d − 1)-
equiareal?

There is no obvious reason why the central question should have a positive answer
(which is why we have posed it as a question rather than a conjecture). As we remarked
in Section 1, a computer enumeration (by Robert Connelly) in small dimensions only
produced(d−1)-equiareal examples. A(d−2)-equiareald-simplex which is not(d−1)-
equiareal would have to satisfy a number of somewhat curious extra conditions, but we
have not (so far) found any inconsistency in them. Indeed, as we saw in Section 5, asd
gets larger, a(d − 2)-equiareald-simplex may be less and less regular, until atd = 11
it need have no symmetry whatsoever. Thus it is conceivable that, for even largerd, the
property of(d − 1)-equiareality may be lost as well.

Now, once again, letT be a(d − 1)- and(d − 2)-equiareald-simplex. LetG be the
obtuseness graph ofT , with degreem at each node. Sincem≤ 1

2(d− 2), given any two
nodesi and j , say, there is a third nodek which is joined inG to neitheri nor j . The
normal vectors to the facets ofT may be chosen to be unit vectors, and (as we saw in
Section 5) the corresponding normal vectorvi j to the facet (ridge)Ri j = Si ∩ Sj of Si at
Sj is then a vector of length sinϑ (with cosϑ = 1/(d− 2m)). Hence the dihedral angle
ϕi jk = ϕik j in the facetSi between its two facetsRi j andRik is given by

− cosϕi jk = 〈vi j , vik〉
sin2 ϑ
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= 〈uj − 〈ui ,uj 〉ui ,uk − 〈ui ,uk〉ui 〉
sin2 ϑ

= 〈uj ,uk〉 − 〈ui ,uj 〉〈ui ,uk〉
1− cos2 ϑ

.

Now 〈ui ,uk〉 = 〈uj ,uk〉 = − cosϑ , whereas〈ui ,uj 〉 = ± cosϑ as the dihedral angle
betweenSi andSj is obtuse or acute. The corresponding values are thus given by

cosϕi jk =



− cosϑ + cos2 ϑ

1− cos2 ϑ
= − cosϑ

1+ cosϑ

= − 1

(d − 1)− 2(m− 1)
, if obtuse,

− cosϑ − cos2 ϑ

1− cos2 ϑ
= − cosϑ

1− cosϑ

= − 1

(d − 1)− 2m
, if acute.

Observe that both possibilities must occur.
Closer inspection of what we have found above shows that the dihedral anglesϕ of a

facetSof T are given by

cosϕ = ± 1

d − 1− 2m
or ± 1

d − 1− 2(m− 1)
,

with mgiven by Theorem 5.2; observe that these angles then fixm. A particular choice of
the dihedral angle ofT at any given facet ofSasϑ orπ −ϑ (with cosϑ = 1/(d−2m))
then determines all the other dihedral angles ofT ; only one of the two choices will give
m obtuse dihedral angles. In other words,

Theorem 6.2. If a (d − 1)-simplex S is a facet of a(d − 1)- and (d − 2)-equiareal
d-simplex T, then T is unique up to congruence.

That is, we can effectively reconstructT from S.
It is thus natural to ask, more generally,

Question 6.3. Is there, up to congruence, at most one(d−2)-equiareald-simplex, one
of whose facets is a given(d − 2)-equiareal(d − 1)-simplex?

Of course, if the central Question 6.1 has a positive answer, then Theorem 6.2 shows
that Question 6.3 has also.

We now glance atr -equiareald-simplices, whenr < d−2. However, since the central
question is still open, the discussion is necessarily somewhat tentative. Nevertheless, it
is worth posing the following

Conjecture 6.4. If 3≤ r ≤ d − 3, then an r-equiareal d-simplex is regular.
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We have already observed, in Section 3, that the normal vectors of anr -equiareal
d-simplex, with 3≤ r ≤ d − 3, satisfy more more equations than they have degrees of
freedom, and thus the conjecture is likely to hold.

It is clearly enough, to prove Conjecture 6.4, to consider the caser = d−3. (Clearly, if,
for a givenr , it holds for a particular dimensiond, then it holds for all larger dimensions.)
The results above establish

Theorem 6.5. If Question6.3 (or Question6.1) has a positive answer, then Conjec-
ture6.4holds.
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Note added in proof. We have recently constructed examples of(d − 2)-equiareald-
simplices which are not(d−1)-equiareal, even for rather smalld, thus giving a negative
answer to Question 6.1. Details will appear later.


