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Ideas of a simplicial variable dimension restart algorithm to approximate zero points on R"
developed by the authors and of a linear complementarity problem pivoting algorithm are
combined to an algorithm for solving the nonlinear complementarity problem with lower and
upper bounds. The algorithm can be considered as a modification of the 2n-ray zero point finding
algorithm on R". It appears that for the new algorithm the number of linear programming pivot
steps is typically less than for the 2n-ray algorithm applied to an equivalent zero point problem.
This is caused by the fact that the algorithm utilizes the complementarity conditions on the
variables.
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1. Introduction

For a mapping f from the n-dimensional Euclidean space R" into itself, the
nonlinear complementarity problem (NLCP) is to find a vector x in R" such that

xz0, f(x)=0 and x"f(x)=0,

i.e., x and f(x) are orthogonal and have nonnegative components. The NLCP can
be solved by methods for finding a zero point in several ways. Converting the NLCP
into a zero finding problem, Merrill [16] and several other authors (see e.g. [1])
utilized simplicial fixed point algorithms to find an approximate solution. Using a
reformulation of the NLCP due to Mangasarian [15], in which the zero finding
problem can be made as smooth as desired, Watson [23] applied the homotopy or
continuation method of Chow, Mallet-Paret and Yorke {2] to solve the problem.
Instead of reformulating the NLCP as a zero finding problem, other authors adjusted
simplicial fixed point algorithms to solve the NLCP directly, see e.g. [4], [5], [7]
or [14]. This approach will be followed in this paper.

This work is part of the VF-program “Equilibrium and Disequilibrium in Demand and Supply,” which
has been approved by the Netherlands Ministry of Education and Sciences.
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Simplicial methods are based on a subdivision of R" into n-dimensional simplices
and on a function assigning to each vertex of the subdivision a label. Then the
algorithm searches for a so-called completely labelled simplex. Such a simplex yields
an approximate solution to the problem. A special subclass of algorithms of this
type are the variable dimension algorithms initiated by van der Laan and Talman
[11]. These algorithms generate a path of simplices of varying dimension starting
with a zero-dimensional simplex being a grid point of the subdivision, the starting
point, and terminating in a completely labelled simplex yielding an approximate
solution x*. In a finer subdivision a restart can be made with x* as the new starting
point. The various algorithms of this type differ in the number of rays along which
the arbitrarily chosen starting point v can be left. Until now, algorithms of this type
have been developed with n-+1 rays [11], 2n rays [12], 2" rays [24], 3" —1 rays
[10], and with 2 rays [18, 25].

The 2n-ray algorithm has been adapted in Talman and Van der Heyden [20] to
solve the linear complementarity problem. In this paper we will modify the 2n-ray
algorithm in a similar way such that it can be applied to solve the NLCP directly.
Therefore we utilize explicitly the complementarity conditions on the variables.
Doing so the number of linear programming steps will be typically less than for the
original 2n-ray algorithm applied to the equivalent zero finding problem.

It should be observed that our approach differs completely from another “‘variable
dimension” algorithm to solve the NLCP, namely the direct algorithm of Habetler
and Kostreva [6]. This algorithm moves among subsets of {1, ..., n} until a subset
I* is found which leads to a complementarity point s* in R%. Such a point yields
a solution point x*. For each subset I in the sequence, a zero of the function f’
defined by f{(x)=f(x) if ie I and f(x)=x; if i I has to be approximated. Since
for a zero x’ of f holds that x{=0 if i £ I, it follows that then an |I|-dimensional
problem has to be solved with |I| the cardinality of L So, a sequence of problems
of varying dimensions has to be solved. Each zero point problem in this sequence
can be solved by a simplicial algorithm.

This paper is organized as follows. In Section 2 the steps of the 2n-ray algorithm
for the zero point problem on R" are given and we discuss how the (generalized)
nonlinear complementarity problem can be solved by converting the problem in a
zero-point problem on R". In Section 3 the piecewise linear path of the modified
2n-ray algorithm is derived in order to solve the NLCP directly, whereas Section 4
gives the steps of the algorithm in terms of a path of simplices generating procedure.
Some concluding remarks are made in Section 3.

2. The 2n-ray algorithm and the generalized NLCP

In this section we give a short description of the 2n-ray algorithm to solve the
zero point problem f(x) =0 with f a continuous function from R” into itself. For
a more detailed description we refer to [12] and [19]. In the sequel, let I, be the
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set of integers {1,..., n} and let K, be the set {~n, ~n+1,...,—1,1,...,n}. The
h-th unit vector in R" (R"") will be denoted by e(h) (e'(h)), and for he I, we
define e(—h)=—e(h). Furthermore, let Z be the collection of subsets of K, such
that for each T € Z not both j and ~j belongto T,j=1,...,n For Te Z, s(T)e R"
is the sign vector with s(T)=1 when je T, 5(T)=-1 when —je T, and with
5,(T)=0 otherwise. Finally, ¢ or |T| denotes the cardinality of T and T =
{jeI,|neither j nor —j isin T}, Te Z

Definition 2.1. Given some ve R", for each Te Z, A(T) is the subset of R" such
that
(i) x;=v, when je T,
(i) x;=v; when je T,
(iii) x;<v; when —jeT.

Observe that A(T) is a f-dimensional subset of R". When T=¢, A(T)={v},
where v is the point where the algorithm will start. Furthermore, for all T'e Z, we
have bd A(T) =,c+ A(T\{j}). Now, let I" be a triangulation of R" such that each
subset A(T) is triangulated by I" into ¢-simplices. Such a triangulation is e.g. the
K'-triangulation, proposed by Todd [21] and used in [12]. For TeZ we call a

t-simplex a(w',..., w™") in A(T), with vertices w',..., w'*!, T-complete if the
(n+1)x (n+2)-system of linear equations (see e.g. Todd [22])
;/\,,f’(w")+.ZT wie' (i) +Bs'(M=¢e'(n+1) (2.1)
1 g

where f'(x)=(f(x)",1)7 and s'(T)=(s(T)",1)7, has a solution A¥=0, h=
l,...,t+1, p*=0, and - B¥=suf<p* ieT

Assuming nondegeneracy, the system (2.1) has two basic solutions, if any, i.e.,
two solutions with exactly one of the constraints binding. The whole line segment
between these two solutions forms the set of solutions to (2.1). Except when T=¢
or B* =0, each basic solution to (2.1) is also a basic solution with respect to exactly
one other simplex adjacent to o. This new simplex is uniquely determined by the
binding constraint. When, at a basic solution, 8% =0, then the point ¥; A¥w' is an
approximate zero point of f and the algorithm terminates. The 2n-ray algorithm
generates the sequence of adjacent simplices with T-complete common facets in
A(T), T e Z, which starts for T=§ in v and terminates with a simplex where 8* =0
at a basic solution.

In fact the line segment of solutions to (2.1) determines a piecewise linear path
of points x =Y, A,w'/Y; A; in o with the following properties. Let F be the piecewise
linear approximation of f induced by the triangulation I, i.e. F(x)=3,\,f(w")
whenx=3,A\,w' with ¥, A,=1and A;=0,i=1,...,t+1,and where a(w', ..., w'*")
is a t-simplex in I" containing x. Then, according to (2.1), for certain o =0
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|F(x)|<a and x;=v, whenjeT,
F(x)=-a and x;=v; whenjeT, (2.2)
F(x)=a and x;<v; when —jeT

When T #§, a is equal to a(x) = max; | Fy(x) |. For varying T € Z, starting with T =

at v, the algorithm therefore generates a piecewise linear path of points satisfying

(2.2). The path either goes to infinity or terminates at an x* where F(x*)=0.

In this paper we will modify the 2n-ray algorithm in order to solve the following

problem which is a slight generalization of the original NLCP. For given vectors a
and b in R" with a,<b; for all i, find x, as<x <), such that forall i=1,...,n,

X =aq implies fi{x)=0,
a;<x;<b; implies fj(x)=0, (2.3)
x;=b; implies fi(x)=<0,

where f is a continuous function from the set C ={x e R"|a<x< b} into R". Such
problems arise in game theory, economic modelling and constrained optimization.
We allow components of a to be minus infinity and components of b to be plus
infinity. When a =0 and all components of b are plus infinity, we have the classical
NLCP on RY.

First we will discuss how the above described 2n-ray algorithm on R” can be
used in order to solve problem (2.3) by converting the latter into a zero finding
problem. For z€ R", let p(z) be the projection on C defined by

pi(z)=a,' lf Zi<ai,
p(z)=2z ifa=sz<bh,
pi(z)=b, ifz;> b,

Then, x in C is a solution to problem (2.3) if and only if there is a z in R” which
satisfies both x = p(z) and the system of equations (see e.g. Kojima and Saigal [8])

g(z)=f(p(z)) - p(2) +z=0. (24)

So, to find a solution to problem (2.3) we could apply the 2n-ray algorithm on R"
to problem (2.4). Notice that the system (2.4) has a special structure in the sense
that the left hand side g(z) is partial linear on each piece of R™ which consists of
the points which are projected onto a commen face of C. More precisely, g is linear
in the variables z; for those indices j with z & [a;, b;] given the other variables. This
allows for combining simplices outside C to polyhedra. In this way the partial linear
structure canbe exploited in the 2n-ray algorithm in orderto save linear programming
steps when tracing the piecewise linear path from v to an approximate solution z*
of g(z) =0. The projection p(z*) is then an approximate solution to problem (2.3).
Assuming nondegeneracy the point z* always lies in the interior of a polyhedron
of the underlying subdivision, although the projection p(z*) may lie on a lower-
dimensional face of C. In the latter case, in order to improve the accuracy of the
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approximation the algorithm has to be restarted outside C and needs as in the case
that z* lies in C at least n+1 linear programming and replacement steps to find a
new approximate solution to (2.4).

in the next section we propose a modification of the 2n-ray algorithm on C which
exploits explicitly the complementarity structure on the variables. In fact the modified
algorithm will follow the (piecewise linear) projection on C of the piecewise linear
path generated by the 2n-ray algorithm applied to (2.4). In particular, if the 2n-ray
method on R" restarts outside C at say z*, the modified algorithm on C starts at
the point x* = p(z*) in a lower dimensional face of C. If k is the dimension of this
face, then the minimum number of linear programming steps reduces from n+1 to
k1. So, the 2n-ray algorithm applied to (2.4) typically needs more Lp. pivot steps
than the algorithm on C, especially when the dimension of the face of C on which
the latter method is (re)started is rather low.

3. The piecewise linear path

In this section we derive the piecewise linear path of the algorithm on C from
the path followed by the 2n-ray algorithm applied to system (2.4). Therefore we
need a trianguiation of R" satisfying the following properties:

(a) the restriction of the triangulation to C is a triangulation of C itself;

(b) for any t-dimensional simplex 7 with vertices y',...,»"*" not in C the
projection of = on C is a k-simplex ¢ (k<t) in the boundary of C such that the
set of projections of the vertices of 7 coincides with the set of vertices of .

Such a triangulation is obtained from the K'-triangulation by choosing an
appropriate grid size. In the sequel we restrict ourselves to this triangulation.
Therefore, let m,, my,...,m, be n positive integers and let d; be defined by
dy=(b;—a;)/m, i=1,.., n Furthermore, let D be the n X n diagonal matrix with
the jth diagonal element equal to d;, j=1,..., n. The set of grid points of the
K’-triangulation is the set

{xe R"|x=a+Y kDe(i), k; is the integer for all i}.

Then for an arbitrarily chosen grid point v in R" the set A(T), T e Z, is triangulated
by the collection of i-dimensional simplices (t=]|T]|) o(y', y{T)) with vertices
y'y .., such that
(i) y'is a grid point in A(T)

(ii) »(T)=(v(,..., v) is a permutation of the elements of T

(iii) y™*'=y'+De(y,), i=1,..., L

Now, let G be the piecewise linear approximation to g defined in (2.4) with
respect to the triangulation of R” and let F be the piecewise linear approximation
to the function f Since g(z)=f(p(z))—p(z)+z and the triangulation satisfies
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property (b) it follows that
G(z)=F(p(z))—p(z) +z (3.1)
Furthermore, let the grid point v be the starting point of the 2n-ray algorithm to
find a zero point of G. As shown in Section 2 the algorithm traces a piecewise linear

path from v to a solution point. Suppose that z is a point on this path. From (2.2)
we know that for certain a > 0 the following holds:

Condition N
|Gi(z)|<a if z=v,
G(z)=—a if >,
Gz)=a if z <y,

Now consider the projection x = p(z) on C and suppose for simplicity that ve C.
If a;<x;<b; then x;=z and hence F(x)= G;(z). However, if x;=b5; then z; = x;
and hence Fj(x)=G(z)+x—2z<G(z). If vy,<b; then G;(z)=—a and hence
Fj(x)<—a. If v;="b; (and hence > @) then either z;=b; and |F;(x)|=|G;(z)|< «
or z;> b; and Fj(x)< Gj(z) = —a. Analogously it follows for the case that x; = g; = z;

that F;(x) =« if a;<v; and Fy(x)=—a if a;=v;. Combining these cases we obtain
from condition N that at x = p(z) for some a > 0 the following holds:

Condition P

Fi(x)=—a if y;<x;<b,
FEx)sa ifx=v>aq,
F(x)<-a if x=b>y,

E(x)=a if aj<x]<vj,
F(x)za if x;=a<v.
Observe that | F(x)|<a if q;<x=v<b;.
In the next section we will derive an algorithm to follow the piecewise linear path
of points x in C which satisfy condition P and which is the projection on C of the

piecewise linear path followed by the 2n-ray algorithm. As soon as « becomes equal
to zero in a point x* we obtain that

F(x*)=0 if a;<xf <},

F(x*)=0 if xf=a,

F(x*)=<0 if x}=1b,.
So, such a point x* is a solution to the NLCP with respect to the piecewise linear
approximation F to f and is an approximate solution to problem (2.3). It is well

known that this approximation will be more accurate when the mesh of the triangula-
tion becomes smaller.
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4. The path following algorithm

The piecewise linear path of points from v satisfying condition P is traced by a
sequence of adjacent simplices of varying dimension in the triangulation K’ of R"
restricted to C. Each such simplex is the projection on C of one or a sequence of
simplices generated by the 2n-ray algorithm. Let A'(T’) be the restriction of A(T")
to C and let x be a point in A(T"), T'e Z. Then the projection p(x) on C lies in
the face A'(T, U) of the set A'(Tu U) defined by

A(T, U)={xe A(Tu U)Ixj=aj if —jeU and x;=b; if je U},
with T and U given by

T={jeT|x<blu{—jeT|x>aq}
and

U={jeT|y<b<x}u{-jeT|x<q<y}

Clearly, Tu U< T', while T U =@. Moreover, if U ={ we have that A(T, U) =
A'(T), while A'(§)={v}. The K'-triangulation subdivides the region A'(T, U) into
t-simplices o(w', 7w(T)) with #(T) a permutation (#, ..., 7,) of the ¢ elements of
T and with vertices w',..., w'™" where v'is a grid point in A(T, U) and w'*'=
w+De(m),i=1,...,1

The piecewise linear path from v satisfying condition P is traced by a sequence
of so-called (T, U)-complete simplices in A(T, U) for various T and U such that
TnU=@and (Tu U)nJ(v)=0, where

J(w)={ilv,=b}u{-ilv;=a}.

The definition of a (T, U)-complete simplex is derived from a T'-complete simplex
7in A(T’) in the same way that condition P is derived from condition N. So, for
some T, let 7(y',..., y"*") be a T'-complete simplex 7(y', y(T")) in A(T") with
respect to the function g(z) in (2.4). From Section 2 we know that the n+1 system
of linear equations

t'+1

’Z_;l rg' (™ + 'ZT' wie'(N+Bs'(TY=¢e'(n+1) (4.1)
where g'(z) =(g(z)", 1) has a solution A¥=0, h=1,...,t+1, B*=0, and —B*=<
pfE<p* ie T, while e A(T’) implies that for all x in 7, x;=v, when je T', x; = v
il je T" and x;< v, if —je T'. Now, for some x in the relative interior of 7, let U
and T be the disjoint subsets of T as defined above. Then the projection p(7) of
(3", y(T")) on C is the t-simplex o(w', 7(T)) in A(T, U) with w'=p(y') and
with 7(T) the permutation of the t elements of T such that the components of
7r(T) are in the same order of succession as they appear in y(T").



8 G. van der Laan, A. J. J. Talman | Simplicial method for solving the NCLP

We now derive from (4.1) the system of linear equations corresponding to the
t-simplex ¢ in A'(T, U). Since g(x)=f(p(x))+x—p(x) the first term of (4.1) can
be written as

TGO T MG P00 )

From the definition of A'(T, U) it follows that for all h there are nonnegative
numbers «(i, h), i€ T'\T, such that
Y =pO") = T alihe().
ieT\T
Recall that e(i) = —e(~ i) if i <0. With & =Y 4c u(; As where H(j) ={h|p(y") = w'}
the first term in (4.2) becomes

t+1

T O (w).
j=1
Furthermore, for ke T'\T we define

Mo = ,Z Awee (K, h) sign(k) + Bs (T'\ T).

Then we can combine the second term of (4.2) with the second and third term of
(4.1) to
Y we'(i)+Bs'(T).

ieT

This gives us the next definition of a (T, U)-complete simplex.

Definition 4.1. For T and U in Z, such that TnU=¢, Tu Ue Z, v; = b; implies
JETUU and v=q; implies —jg Tu U, a t-simplex o(w',..., w™"), t=|T|, is
(T, U)-complete if the system of n+1 linear equations

1

.};1 19jf’(wj)+IZT pne'(h)+Bs'(T)=e€'(n+1) (4.3)

has a solution 9Y,..., 9%, u¥, he T, and B* satisfying
TL 9%,..., 9%, 20
T2. B*=0.
T3. pwfz-p*if he TU U and v,> a,.
T4 pf<B*ifhe TUU and v, <b,.
T5. p¥=pg*ifhe U
T6. pufi<—-B*if —he U,

The nextlemma shows the relation between a (T, U)-complete simplexin A'(T, U)
and condition P.
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Lemma 4.2. A t-simplex o(w', .., w™) in A(T, U) is (T, U)-complete if and only
if the point x =}, &;w’ in o satisfies condition P.

Proof. Let (x, F(x), a) be a triple satisfying condition P so that xe A'(T, U),
T={jly<x<blu{-jlg<x<u} and U={jlx=b>v}u{~jlx=a<y)
Then o is a (T, U)-complete t-simplex in A'(T, U) with solution 9%,j=1,..., t+1,
w¥, heT, and B* given by

B¥*=a/(1+a), OF=8(1-p%), j=1,...,1+1,
wi=-~F,(x)(1-p*), hel (4.4)

Conversely, if o(w',..., w™") is a (T, U)-complete simplex in A'(T, U) with sol-

ution (&%, u*, B*), then the triple (x, F(x), @) given by
X=ZT9}"WJ/(1—3*), F(x)=-%(T)/(1-B%), jeT,
J

Fy(x)=—pi/(1=-B%), hel, a=p*/(1-p%), (4.5)

satisfies condition P.
Without loss of generality we can make the next nondegeneracy assumption.

Assumption 4.3. Any (T, U)-complete simplex a(w',...,w™") in A'(T, U) has
exactly two solutions (9, u, B) with just one of the constraints T1-T6 binding.

A solution with one of the constraints binding is called a basic solution. Each
point on the line segment between these two basic solutions is also a solution to
(4.3), but with none of the inequalities in T1-T6 binding. In fact, a line segment of
solutions to (4.3) in a (T, U)-complete simplex in A'(T, U) corresponds to a linear
piece of points x in o for which the triple (x, F(x), @) as given in (4.5) satisfies
condition P. Consequently, the piecewise linear path of points x for which
(x, F(x), @) satisfies condition P can be followed by moving in the system (4.3)
from basic solution to basic solution with respect to a sequence of adjacent (T, U)-
complete simplices in A'(T, U) for varying feasible sets T and U. A (T, U)-complete
simplex having a basic solution in which 8* =0 is called a complete simplex. From
T1-T6 and (4.5) it follows that for such a basic solution the point x* =Y, &F w’ is
an approximate solution to problem (2.3).

We now describe the steps of the algorithm to follow the sequence of (T, U)-
complete adjacent simplices in A'(T, U) for varying T and U from the zero-
dimensional simplex {v} in A’(§, @) to a complete simplex. In case v lies not in C,
the algorithm starts at p(v). For some feasible sets 7 and U, let o(w',..., w'™") be
a (T, U)-complete simplex o(w', #(T)) in A'(T, U) generated by the algorithm and
fet x' and x” be the two points in o corresponding to the two basic solutions of
system (4.3). So, for both points x' and x> exactly one of the inequalities in T1-T6
is binding. Moving from x' to x” is nothing else than making a linear programming
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pivot step in the system of n+1 linear equations (4.3). When by this pivot step &,
becomes zero for some index h, x* lies in the interior of the facet 7 of o opposite
the vertex w" so that 7 is also (7, U)-complete. Then the vertex w” of o is replaced
by the vertex w not in 7 of the unique simplex o' in A'(T, U) sharing the facet =
with o, unless 7 lies in the boundary of A’(T, U). The algorithm is continued by
pivoting f'(w) into the system of linear equations with respect to the new o”, etc.
In this way, by alternating replacement steps and linear programming pivot steps,
a sequence of adjacent (T, U)-complete simplices in A’(T, U) is followed until 8
becomes zero, one of the inequalities in T3-T6 becomes binding or until a facet
opposite to the vertex to be replaced lies in the boundary of A'(T, U). In the first
case a solution to (2.3) is found with respect to F. In the second case we have that
at a basic solution to (4.3) |u}| = B* for some h € T. Then, for k = h or — h depending
on whether uff = B* or uj = —B* respectively, the simplex is also (T”, U’)-complete
with T'=Tu{k}, U'=U if he Tu U and U'= U\{k} if ke U. The algorithm
continues by replacing the columns e'(h) and s'(T) by s'(Tuik}),
while a pivot step is made with f'(w), where w is the vertex of the unique (¢+1)-
simplex in A'(T’, U’) having o as facet opposite w. This unique simplex is given
in the next lemma. The proof of the lemma follows directly from the structure of
the K'-triangulation, see e.g. [19].

Lemma 4.4. Let o(w', w(T)) be a (T, U)-complete t-simplex in A'(T, U) with at a
basicsolution | u}f| = B* forsomelie Tandletk = hifu}=p* andk=—hifu}=—B*
Then the unique (t+1)-simplex v in A'(T', U') having o as a facet is given by

r=r(w', (7(T), k)) ifheTLU
7=1(w' = De(k), (k, m(T))) if ke U.

Finally, let us consider the case that a t-simplex o(w', #(T)) in A(T, U) has a
(T, U)-complete facet 7 in the boundary of A'(T, U). Then for some h € T and with
k =|h| holds that for all x in  either x; = vy, or X, = b, > v and h> 0 or X = a, <,
and h <0. In the first case 7 is also a (7", U’)-complete (¢ — 1)-simplex in A(T’, U")
with T'=T\{h} and U'=U. In the other two cases 7 is a (7", U")-complete
(t—1)-simplex in A'(T', U’) with T'=T\{h} and U'=Uu{h}. The algorithm
continues by generating (7", U’)-complete simplices in A'(T", U"). To do so the
column 5'(T) in the system (4.3) is replaced by s'( T\{h}), while e'(k) is reintroduced
into the new system. The next lemma shows how to recognize that a facet 7 of o
lies in the boundary of A'(T, U). We refer again to [19] for the proof of a similar
result.

Lemma 4.5. Let o(w', w(T)) be a t-simplex in A'(T, U) having a (T, U)-complete
facet 7 in the boundary. Then either 7 is the (t— 1)-simplex (W', (ary, ..., m,_,)) in
A'(T\{h}, U) if = lies opposite w'*', m,=h and Wl = v or 7 is T(w'+ De(h),
(72 ..., m)) in A'(T\{h}, U{h}) if 7 lies opposite w', 7, =h and w2 = b, when
h>0 and wi, = a), when h<0.
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The results given above show how the path of points satisfying condition P can
be followed by a sequence of (T, U)-complete adjacent t-simplices in A'(T, U} with
varying T and U and how a change in the sets T and U can be performed. The
formal steps of the algorithm are given in the appendix. Under Assumption 4.3 all
steps of the algorithm are unique, so that no simplex can be generated more than
once. Assuming that all the g,’s and b;’s are finite and hence that C is compact, the
algorithm must terminate within a finite number of steps with a complete simplex
yielding a solution to (2.3) with respect to the piecewise linear approximation F.
By restarting the algorithm in a grid point close to this approximate solution point
for a triangulation with a smaller mesh, the accuracy of the approximation can be
improved.

If at least one of the a;’s is minus infinity or one of the b;’s is plus infinity, the
path of generated simplices could go to infinity. The following theorem gives
conditions guaranteeing that the path of simplices will be finite. These conditions
are closely related to those of Eaves [3], Kojima [7] and Moré [17] (see also [9]).

Theorem 4.6. Let I_ be the set of indices i such that a; is minus infinity and let I. be
the set of indices i such that b, is plus infinity. Suppose that for all i € I_ there exists a
;< b; such that f;(x) <0 when x; <, and that for all i € I, there exists a u;> a; such
that fi(x)>0 when x,>u;, where [<u; if ieI_ul,. Then the modified 2n-ray
algorithm for solving (2.3) with respect to F converges for any starting point v in C
and for any grid size vector d.

Now taking a sequence of triangulations of C with mesh going to zero, we obtain
the next corollary.

Corollary 4.7. Under the conditions of Theorem 4.6, problem (2.3) has a solution and
each solution lies in the set C* defined by

C*={xeR"|x;=a, wheni¢ I_, x;> I, when i€ ]_,

x;<b whenigl,, x;<u when icl.)}.

5. Concluding remarks

The 2n-ray algorithm applied to solve (2.4) needs at least n + 1 linear programming
steps to find a completely labelled simplex. This number is generally lower for the
modified algorithm described in the previous section. In fact, let w be the starting
point for the orignal 2n-ray algorithm and let v = p(w) be the starting point for the
modified algorithm. At the first cycle w will be chosen in C. Hence v=p(w)=w
and the number of linear programming steps will be the same for both algorithms
providing that the zero point algorithm utilizes the partial linear structure of g
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outside C. However, unless the solution point is in the interior of C, the found
approximate solution to (2.4) lies in general outside C. So, except for the first cycle
the starting point w will typically lie outside C and the starting point v = p(w) of
the modified algorithm on the boundary of C. In this case, the number of linear
programming steps may differ a lot. The zero point finding algorithm still needs at
least n+1 Lp. steps, whereas the modified algorithm needs at least k+1 Lp. steps,
where k is the dimension of the face of C on which v lies. This is caused by the
fact that due to the projection on C of the path followed by the 2n-ray algorithm
a sequence of generated adjacent cells or simplices outside C can reduce to just
one (lower-dimensional) simplex in the boundary of C. In this way each time a
whole sequence of I.p. pivot steps in (2.1) is reduced to only one step in (4.1). It
may even occur that the new algorithm needs exactly k+1 steps and the zero point
algorithm more than n+1. An example is sketched in Fig. 1, where we assume that
g,(w) <—~| g2(w)|. The modified algorithm finds the approximate solution x* after
2 L.p. steps, with f'(v) and f'(z) respectively. The zero point algorithm first traces
in A({1}) a path from w to W since g,(w)<—|g,(w)| and then from W to the
approximate zero w*. However, going from w to w* the ray A({2}) = {x € R*|x,;=w,,
X, = wy} has to be passed, which takes two additional Lp. steps, so that the total
number of L.p. steps is 5. Observe that x* = p(w™).

= = X =W b
x1 a1 X1 b1 1 | 1> 1
X, =b
2 2 |
z
W *
x*=pw ")
v = p(w) —
wi oW
X =a
2 2
Fig. 1. C={xeR* a;<x;<b, i=1,2} and is triangulated with m, = m,=4. The zero-point algorithm

starts in w outside C and terminates after 5 iterations in w*. The modified algorithm on C starts in
v=p(w) on the boundary of C and terminates after 2 iterations in x* = p(w*).

Besides the 2n-ray algorithm several other variable dimension algorithms have
been developed to approximate a zero of a continuous function from R" to R".
Given some triangulation of R” these algorithms generate from an arbitrarily chosen
starting point v a path of adjacent simplices of varying dimensions. Each algorithm
is characterized by the number of rays from which the starting point can be left.
All these algorithms can be modified for solving (2.3) in the same way as described
in this paper for the 2n-ray algorithm so that also for these methods many l.p. steps
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can be saved. Especially the so-called 2"-ray algorithm (see Wright [24]) is probably
very attractive.

As done in [13] for the simplicial zero point algorithms on R” also the modified
algorithm can be interpreted as following a path of stationary points with respect
to an expanding set being a convex polyhedron having as much as vertices as the
number of rays of the algorithm. In addition we have to intersect the expanding set
with the set C. Therefore the modified 2n-ray algorithm follows the piecewise linear
path of points x(¢) which starts at x(0) = v satisfying, for =0,

x(1)TF(x(1)) < xTF(x(1))
for all x in Cn D(t) where

D(t)= {xe R"|¥|x—vl= t}.

As soon as for some t* the point x(#*) lies in the interior of D(+*) we have
x(1)=x{*) for all t> ¢* and x(t*) solves problem (2.3) with respect to F. In case
of the 2"-ray algorithm the expanding set is equal to

D(t)={xe R"|max;|x; —v,|<t}.

Appendix. The steps of the algorithm

Step 0. Set T=9, U=@, m(T)=0, t=0, w' =9, o=a(w', #(T)), p=1.

Step 1. Calculate f'(w”) and perform a linear programming pivot step by bringing
f'(w") into the system of n-+1 linear equations

; )\.-f’(wi)+lZT pe'(h)+pB's(T)=e'(n+1).
i#p he T

Step 2. When B becomes zero, the algorithm terminates and ¥; Aw' is an approxi-
mate solution to problem (2.3). When g, becomes —8 for some he T, go to step 4.
When u;, becomes B for some he T, go to step 5. Otherwise, A, becomes zero for
some unique index ¢, g # p, and go to step 3.

Step 3, When g=1t+1 and wj, =, with h =|7-r,|, go to step 6. When g=1 and,
with h=|m|, w,=b, —d, if v, >0, or wj, = a, +d, if 7, <0, go to step 7. Otherwise,
adapt w' and #(T) according to Table 1 by replacing w? and return to step 1 with
p the index of the new vertex of o(w', #(T)).

Table 1

g is the index of the vertex of o{w', m(T)) to be replaced

w! becomes a(T)=(m(,..., ) becames
g=1 w'+ De(,) (s eves 7y, )
1<g<t+1 w! () ey Ty Tymts e o5 )

g=t+1 w' — De(,) (7, g ey Ticy)
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Step 4. Adapt the current system of linear equations by introducing s'(Tu{-h})
and eliminating e'(h) and s'(T). When he Tu U, set T=Tu{-h} and «(T)=
(w1y...,m, ~h). When —h e U, set w'=w'—De(—h), T=Tu{-h}, U=U\{-h}
and w(T)=(—h,m,...,m). Set t=t+1, o=c(w', w(T)), and return to step 1
with p the index of the new vertex of o.

Step 5. Adapt the current system of linear equations by introducing s'(Tu {h})
and eliminating e'(h) and s'(T). When he Tu U, set T=Tu{h} and #(T)=
(m,..,m,h). When he U, set w'=w'—De(h), T=Tu{h}, U=U\{h} and
w(T)=(hmy,...,m). Set t=t+1, o=0o(w', w(T)), and return to step 1 with p
the index of the new vertex of o

Step 6. Let k==, and adapt the current system of linear equations by introducing
s'(T\{k}) and e'(h) and eliminating s'(T). Set T=T\{k}, w(T)=(my,..., m_),
o=a(w', m(T)), t=t—1and perform alinear programming pivot step by decreasing
Wy, from B when k>0 and increasing w, from —8 when k<0 in the system of
linear equations

t+1

El /\,-f'(W")+IZT pye'(h)+Bs'(T) = e'(n+1).

Return to step 2.

Step 7. Let k=1, and adapt the current system of linear equations by introducing
§'(T\{k}) and e'(h) and eliminating s'(T). Set T=T\{k}, U=Uu{k}, w(T)=
(72 .e.,m), w=w'+De(k), o=o(w', 7(T)), t=1—1 and perform a linear pro-
gramming pivot step by increasing u; from 8 when k>0 and decreasing u,, from
—pB when k <0 in the system of linear equations

+1

_gl MW+ L e’ (h)+Bs'(T)=e'(n+1).

heT

Return to step 2.
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