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ABSTRACT. This paper concerns the facial geometry of the set of n ×n correlation matrices. The main result

states that almost every set of r vertices generates a simplicial face, provided that r ≤
p

cn, where c is an

absolute constant. This bound is qualitatively sharp because the set of correlation matrices has no simplicial

face generated by more than
p

2n vertices.

1. MOTIVATION

A correlation matrix is a positive-semidefinite (psd) matrix whose diagonal entries are identically equal

to one. The set of all correlation matrices with a fixed dimension is called the elliptope. As we will explain,

the elliptope arises naturally in combinatorial optimization as an approximation to the cut polytope.

Motivated by this application, we may ask how well the elliptope approximates the cut polytope. In

particular, it is valuable to understand what faces the elliptope and the cut polytope have in common.

The purpose of this paper is to investigate this question. We will demonstrate that the elliptope and the

cut polytope share an enormous number of low-dimensional simplicial faces.

1.1. Graphs and Cuts. Let G := (V ,E ) be an undirected graph with vertex set V = {1, . . . ,n}. To each subset

S of vertices, we associate the vector cS ∈R
n whose entries are given by

(cS)i :=
{

+1, i ∈ S;

−1, i ∈ S̄.

We have written S̄ :=V \ S for the set complement. The Laplacian of the graph is the n ×n psd matrix

L := LG :=
1

4

∑

{i , j }∈E

(ei −e j )(ei −e j )t (1.1)

where the vector ei ∈R
n has a one in the i th coordinate and zeros elsewhere. For a subset S of vertices, we

can easily evaluate the quadratic form defined by the Laplacian L at the vector cS :

cS
tLcS =

1

4

∑

{i , j }∈E

(

(cS)i − (cS) j

)2 = #
{

(i , j ) ∈ S × S̄ : {i , j } ∈ E
}

. (1.2)

In words, the value cS
tLcS of the quadratic form equals the number of edges that connect S and its

complement S̄, which is called the weight of the graph cut induced by S.

1.2. Combinatorial and Semidefinite Formulations of the Maximum Cut. This discussion suggests that

we can use a mathematical program to optimize the weight of a cut. Let us introduce some definitions.

Definition 1.1 (Cuts). Let n be a natural number. An n-dimensional cut vector is a member of set {±1}n .

An n ×n cut matrix takes the form cc t where c is an n-dimensional cut vector. The cut polytope Cn is the

convex hull of the n ×n cut matrices:

Cn := conv
{

cc t : c ∈ {±1}n
}

. (1.3)

These objects are sometimes called signed cut vectors, matrices, and polytopes.
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2 J. A. TROPP

Let A be an n ×n real psd matrix, and consider three equivalent mathematical programs:

maximize xtAx subject to x is a cut vector.

maximize trace(AX ) subject to X is a cut matrix.

maximize trace(AX ) subject to X ∈Cn .

(1.4)

To see that the first two are equivalent, write X = x xt for a cut vector x and cycle the trace. As for the third,

the construction (1.3) implies that the extreme points of the cut polytope Cn are precisely the n ×n cut

matrices. Therefore, the third program attains its optimal value at a cut matrix.

In view of (1.2), we can try to find the maximum weight of a cut in the graph G by solving (1.4) with

A = LG , where LG is the graph Laplacian (1.1). Finding the maximum weight of a cut in a general graph is

NP-hard [Kar72], so we cannot accomplish this task with a polynomial-time algorithm unless P=NP.

One remedy is to relax (1.4) to reach a tractable computational problem. To do so, notice that each cut

matrix is a real psd matrix whose diagonal entries are equal to one. This motivates another definition.

Definition 1.2 (Elliptope). Let n be a natural number. The elliptope En is the convex set

En :=
{

X ∈S
n
+ : diag(X ) = 1

}

. (1.5)

The set Sn
+ comprises the n ×n real psd matrices, and each entry of the vector 1 ∈ R

n equals one. The

members of the elliptope are called correlation matrices.

The elliptope En contains every n ×n cut matrix, so it also contains the cut polytope Cn . Therefore, we

may attempt to approximate the value of (1.4) by means of the semidefinite programming problem

maximize trace(AX ) subject to X ∈ En . (1.6)

The elliptope En is an affine slice of the psd cone S
n
+, so there are polynomial-time algorithms for

completing the optimization (1.6) to a fixed accuracy in the real arithmetic model [BTN01, Lec. 5].

1.3. Analysis of the Semidefinite Relaxation. How well does the tractable formulation (1.6) work? For

psd A, a randomized rounding argument [Nes98] shows that the optimal values of (1.4) and (1.6) satisfy

2

π
·val(1.6) ≤ val(1.4) ≤ val(1.6). (1.7)

The constant 2/π cannot be improved. But it has been observed empirically that the value of (1.6) is

usually within a few percent of the value of (1.4). For example, see [DP93, PR95, GW95, MT11].

Results like (1.7) are often attributed to Goemans & Williamson [GW95] or to Nesterov [Nes98], but the

provenance is longer. Indeed, the bound (1.7) is equivalent to the “little” Grothendieck theorem [Gro53,

Thm. 4]. See the surveys [KN12, Pis12] for a modern introduction to Grothendieck’s work.

1.4. Facial Geometry of the Elliptope and Optimization. From the bound (1.7), we learn that the ellip-

tope En is a uniformly good relaxation of the cut polytope Cn . Yet the elliptope approximates the cut

polytope far more accurately than (1.7) suggests.

Indeed, it is fruitful to think of the elliptope as a “shrink-wrapped” cut polytope. By this, we mean that

the elliptope En adheres to low-dimensional faces of the cut polytope Cn , while it curves away from the

higher-dimensional faces. Figure 1.1 illustrates this claim for C3 and E3. We see that both C3 and E3 have

the same vertices and edges, while the facets of C3 are not preserved in the relaxation E3.

This paper demonstrates that a similar phenomenon holds more broadly. We will prove that many

low-dimensional simplicial faces of the cut polytope Cn are also faces of the elliptope En .

This geometric observation provides a heuristic understanding of why the semidefinite relaxation (1.6)

often performs better than (1.7) suggests.
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FIGURE 1.1: The Cut Polytope and the Elliptope. Define the linear map T : S3 →R
3 that extracts the strict

lower triangle of a 3×3 symmetric matrix as a 3-dimensional vector. [left] The image T (C3) of the cut

polytope C3. The closest vertex is the image of the cut matrix 11t ∈ S
3
+. [right] The image T (E3) of the

elliptope E3, seen from the same vantage.

1.5. Notation. We write ‖·‖ for the Euclidean norm on R
d . The standard basis vector ei has a one in the

i th coordinate and zeros elsewhere. The symbol 1 refers to a vector whose entries are identically equal

to one. The dimensions of these special vectors are determined by context. The notation t represents

the transpose of a vector. We frequently use the componentwise product ⊙ of two vectors, which is also

known as the Hadamard or Schur product.

The set Sn contains the n ×n real symmetric matrices, and S
n
+ is the subset of n ×n real psd matrices.

The map λmin : Sn →R computes the smallest eigenvalue of a symmetric matrix. The letter I refers to the

identity matrix, and the letter J := 11t denotes a square matrix of ones. The dimensions of these special

matrices are determined by context. The symbol ∨ refers to the symmetric tensor product of vectors or

matrices; see [Bha97, Chap. I] for an overview of multilinear algebra.

The operator P returns the probability of an event, while E computes the expectation of a random

variable, a random vector, or a random matrix. The abbreviation iid means independent and identically

distributed. Small capitals (e.g., SBERN) are used for the names of probability distributions. The symbol ∼
means “has the distribution.”

2. BACKGROUND AND RESULTS

This section outlines our results on the facial structure of the elliptope (1.5). We begin with a review of

the definition of a simplicial face of a convex set, and we summarize known results about the simplicial

faces of the elliptope. Next, we describe a random model that generates candidates for simplicial faces.

The main results delineate situations where this construction is likely to be successful.

2.1. Facial Geometry of Convex Sets. We begin with a reminder about some relevant definitions from

convex geometry. For further background, see [Roc70, HUL01].

Definition 2.1 (Dimension). Let K be a convex set in R
d . The dimension of K is defined as the dimension

of the affine hull of K .



4 J. A. TROPP

Definition 2.2 (Face). Let K be a convex set in R
d . A face F of K is a convex subset of K for which

x , y ∈ K and θx + (1−θ)y ∈ F for some θ ∈ (0,1) imply that x , y ∈ F.

A face is also called an extreme set. A 0-dimensional face is commonly called an extreme point.

Definition 2.3 (Simplicial Face). A k-dimensional face F of a convex set is simplicial if F is the convex

hull of an affinely independent family of k +1 points.

Definition 2.4 (Vertex). Let K be a convex set in R
d . A point x ∈ K is a vertex of K if the normal cone

N (x ;K ) has dimension d . For reference, N (x ;K ) := {z ∈R
d : z t(y −x) ≤ 0 for all y ∈ K }.

Heuristically, a vertex is a sharp corner of a convex set. Vertices are always extreme points, but extreme

points need not be vertices!

2.2. Facial Geometry of the Elliptope. The literature contains a lot of information about the facial geom-

etry of the elliptope. Let us present some key results, which are due to Laurent & Poljak [LP95, LP96].

Fact 2.5 (Vertices). The elliptope En has 2n−1 vertices. These vertices are precisely the n ×n cut matrices

cc t, where c ∈ {±1}n is a cut vector.

The most natural candidate for a face of the elliptope is the convex hull of a set of vertices. This

construction does not always yield a face, but—when it does—that face is always simplicial.

Fact 2.6 (Faces Generated by Vertices are Simplicial). Let c1, . . . ,cr ∈ {±1}n be cut vectors. Consider the set

F := conv
{

c1c1
t, . . . ,cr cr

t
}

⊂ En .

If F is a face of the elliptope En , then F is a simplicial face of En .

Fact 2.6 does not assert that every simplicial face of the elliptope is generated by vertices. Even so, we

can bound the possible dimension of a simplicial face, regardless of its structure.

Fact 2.7 (Dimension of Simplicial Faces). The elliptope En has a simplicial face of dimension k if and only

if k(k +1) ≤ 2(n −1). In particular, it is necessary that the dimension k <
p

2(n −1).

Our interest in the facial structure of the elliptope is motivated by its connection with the facial structure

of the cut polytope (1.3).

Fact 2.8 (Coincidental Faces). If F is a face of the elliptope En generated by vertices, then F is also a face of

the cut polytope Cn .

Indeed, Fact 2.8 follows directly from the definition of a face, the fact that the elliptope contains the cut

polytope, and the fact that the vertices of the elliptope are elements of the cut polytope.

2.3. A Random Model for Simplicial Faces. We will study the extent to which the elliptope En approxi-

mates the cut polytope Cn by identifying a large number of simplicial faces of the elliptope. Our approach

is based on the probabilistic method. In view of Fact 2.6, we can attempt to construct simplicial faces of

En by drawing a collection of random vertices and forming its convex hull.

For a parameter p ∈ [0,1], we define the signed Bernoulli distribution:

SBERN(p) :=
{

+1, with probability p;

−1, with probability 1−p.

We extend this distribution to vectors of length n by taking a direct product:

SBERN(p,n) := SBERN(p)×·· ·×SBERN(p) ∈ {±1}n .

That is, a random vector from SBERN(p,n) has n entries, each drawn independently from SBERN(p).
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p = 0 or p = 1 p ≈ 0 or p ≈ 1 p = 0.5
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FIGURE 2.1: Balance of Random Cut Matrices. Let ξ∼ SBERN(p,n). The balance parameter p controls the

(average) proportion of entries in the random cut matrix ξξt that are positive and negative. This display

gives a nominal illustration of the effect. We have abbreviated the numbers ±1 by their signs ±.

Fix the parameter p ∈ (0,1), the number r of vertices, and the dimension n. Let us present a ran-

dom model FACE(p,r,n) for a prospective face F of the elliptope En . Draw random vectors ξ1, . . . ,ξr

independently from the distribution SBERN(p,n). Construct the random convex set

F := conv
{

ξ1ξ1
t, . . . ,ξrξr

t
}

⊂ En . (2.1)

Our goal is to understand when F is likely to be a simplicial face of En . The parameter p controls the

typical “balance” of positive and negative entries that appear in the random vertices ξiξi
t. See Figure 2.1

for a simple illustration.

2.4. Simplicial Faces: Quantitative Results. Our first set of results gives quantitative bounds on the

probability that the random model FACE(p,r,n) generates a simplicial face of En . By this, we mean that

the bounds contain explicit and reasonable constants, but the form of the bounds is suboptimal. The first

statement concerns the special case where the balance parameter p = 0.5.

Theorem 2.9 (Simplicial Faces I). Fix the balance parameter p = 0.5, the number r of vertices, and the

dimension n. Draw a random set F from the distribution FACE(p,r,n) described in (2.1). Then

P
{

F is a simplicial face of En with dimension r −1
}

≥ 1 − r 2 exp
(−n

r 2

)

.

The proof of Theorem 2.9 begins in Section 3 and continues in Section 4.

Here is the most noteworthy consequence of Theorem 2.9. When r 2 logr 2 < n, there is a positive

probability that a random set F ∼ FACE(0.5,r,n) is a simplicial face of En with dimension r −1. The stricter

bound r ≤
√

n/logn is also sufficient for F to be a simplicial face. It follows from Fact 2.8 that En and Cn

share a large number of simplicial faces with dimension up to
√

n/logn.

Next, we generalize to the case where the balance parameter p is general. This result has slightly larger

constants than Theorem 2.9.

Theorem 2.10 (Simplicial Faces II). Fix the balance parameter p ∈ (0,1), the number r of vertices, and the

dimension n. Draw a random set F from the distribution FACE(p,r,n) described in (2.1). Then

P
{

F is a simplicial face of En with dimension r −1
}

≥ 1 − r 2 exp

(−4p2(1−p)2n

r 2

)

.

The proof of Theorem 2.10 begins in Section 3 and continues in Section 4.

Theorem 2.10 yields simplicial faces when the number r satisfies r ≤ 2p(1−p)
√

n/logn. In particular,

for any fixed choice of the balance parameter p and the number r of vertices, the model FACE(p,r,n)

produces simplicial faces whenever the dimension n is sufficiently large.
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2.5. Simplicial Faces: Qualitative Result. Our last result gives a qualitative bound on the probability that

the random model FACE(p,r,n) generates a simplicial face of En . By this, we mean that the form of the

bound improves on Theorem 2.10, but the analysis incurs large constant factors.

Theorem 2.11 (Simplicial Faces III). Fix the balance parameter p ∈ (0,1), the number r of vertices, and the

dimension n. Draw a random set F from the distribution FACE(p,r,n) described in (2.1). Then

P
{

F is a simplicial face of En with dimension r −1
}

≥ 1 − 4exp

(

r 2 −cp2(1−p)2n

4

)

.

The number c is a positive, absolute constant that satisfies c ≥ 0.0003.

The proof of Theorem 2.11 begins in Section 3 and continues in Section 5.

Here is the key consequence of Theorem 2.11. When r +3 ≤ p(1−p)
p

cn, there is a positive probability

that a random set F ∼ FACE(p,r,n) is a simplicial face of En with dimension r −1. Fact 2.7 shows that this

bound is qualitatively optimal when p = 0.5.

We see that Theorem 2.11 removes a parasitic logarithmic term from Theorem 2.9. In addition, the

probability bound in Theorem 2.11 is significantly stronger. On the other hand, the relative size of the

constants ensures that Theorem 2.9 gives a quantitative benefit for any realistic dimension n.

2.6. Counting Faces. Theorems 2.9, 2.10, and 2.11 also have an enumerative interpretation. Draw a

random vector ξ∼ SBERN(0.5,n). Then ξ is uniformly distributed over the set {±1}n of cut vectors, and

Fact 2.5 implies that ξξt is a uniformly random vertex of the elliptope En . These observations yield an

alternative procedure for drawing a random set F from the model FACE(0.5,r,n): Let F be the convex

hull of r vertices of En , chosen uniformly at random, with replacement.1 We obtain roughly (e2n−1/r )r

different sets in this manner. When r ≪
p

n, most of these sets are simplicial faces of En .

2.7. Related Work. We can articulate the heuristic that a “small” collection of “generic” vertices of the

elliptope induces a simplicial face. Theorems 2.9, 2.10, and 2.11 are all instantiations of this principle. In

fact, this idea is already visible in a combinatorial construction of Laurent & Poljak [LP96, Cor. 4.5].

Fact 2.12 (Combinatorial Construction of Simplicial Faces). Let c1, . . . ,cr ∈ {±1}n be cut vectors in general

position. That is,
[

⊙

i∈I
(1+ci )

]

⊙
[

⊙

i∉I
(1−ci )

]

6= 0 for each subset I of {1, . . . ,r }.

Then conv{c1c1
t, . . . ,cr cr

t} is a simplicial face of the elliptope En .

Fact 2.12 only has content when the number r of cut vectors satisfies r ≤ log2 n. In contrast, our

probabilistic argument is valid in a wider parameter range. Theorem 2.9 operates in the regime r ≤
√

n/logn, and Theorem 2.11 has implications when r ≤
p

cn. Even so, our analysis depends on the same

sufficient condition (Fact 3.1, below) that Laurent & Poljak use to establish Fact 2.12.

3. PROOF STRATEGY

This section outlines our technique for proving Theorems 2.9, 2.10, and 2.11. The argument begins with

a sufficient condition, due to Laurent & Poljak [LP96], for a family of cut vectors to generate a simplicial

face. The challenge is to understand the probability that a collection of random cut vectors satisfies the

sufficient condition. We explain how to reduce this question to a problem that can be addressed using

matrix concentration inequalities. In Sections 4 and 5, we carry out this program.

1In our parameter regime, it is unlikely that any vertex of En is chosen more than once, so this model is not substantially different

from drawing vertices without replacement.
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3.1. Deterministic Condition for a Simplicial Face. The first ingredient in our argument is a sufficient

condition [LP96, Thm. 4.2] for a family of cut vectors to generate a simplicial face of the elliptope.

Fact 3.1 (Sufficient Condition for a Simplicial Face). Assume that r ≥ 2. Let c1, . . . ,cr ∈ {±1}n be cut vectors,

and consider the set

F := conv
{

c1c1
t, . . . ,cr cr

t
}

⊂ En .

Define R := 1+ r (r −1)/2, and introduce the two matrices

W :=W (c1, . . . ,cr ) :=
[

c1 . . . cr

]

∈R
n×r ;

Z := Z (c1, . . . ,cr ) :=
[

1 c1 ⊙c2 . . . ci ⊙c j . . . cr−1 ⊙cr

]

∈R
n×R where 1 ≤ i < j ≤ r .

(3.1)

If W and Z both have full column rank, then F is a simplicial face of En with dimension r −1.

For our purposes, it is more natural to consider the dual form of the condition that W and Z have full

column rank. Express these two matrices in terms of their rows:

W =







w1
t

...

wn
t






∈R

n×r and Z =







z1
t

...

zn
t






∈R

n×R .

Suppose that

span{w1, . . . , wn} =R
r and span{z1, . . . , zn} =R

R . (3.2)

Then Fact 3.1 implies that the F is a simplicial face of En .

Remark 3.2 (Variant Sufficient Condition). Let R ′ := r (r −1)/2. Using the same notation as in Fact 3.1, we

define the matrix

Y := Y (c1, . . . ,cr ) :=
[

1−c1 ⊙c2 . . . 1−ci ⊙c j . . . 1−cr−1 ⊙cr

]

∈R
n×R ′

.

The indices lie in the range 1 ≤ i < j ≤ r . Using the fact that the ci are cut vectors, Laurent & Poljak [LP96,

Condition (iii), p. 540] show that Y has full column rank if and only if Z has full column rank.

3.2. Sufficient Condition for the Random Model. Fix the balance parameter p ∈ (0,1), the number r of

vertices, and the ambient dimension n. Draw independent random vectors ξ1, . . . ,ξr from the distribution

SBERN(p,n), and construct the random set

F := conv
{

ξ1ξ1
t, . . . ,ξrξr

t
}

∼ FACE(p,r,n).

We need to determine the probability that ξ1, . . . ,ξr satisfy the sufficient condition from Fact 3.1. This

gives a lower bound on the probability that F is a simplicial face of En .

We can check the dual form (3.2) of the sufficient condition. Consider the matrix W =W (ξ1, . . . ,ξr ) ∈
R

n×r , defined in (3.1). Observe that the coordinates of the ξi are iid, so the matrix W has iid rows. More

precisely, the n rows of W are iid copies of a random vector w ∈R
r where w ∼ SBERN(p,r ).

In a similar vein, consider the matrix Z = Z (ξ1, . . . ,ξr ) ∈ R
n×R , defined in (3.1). Introduce a random

vector z ∈R
R , whose entries are derived from the random vector w ∈R

r as follows.

z0 := 1 and zi j := wi w j for 1 ≤ i < j ≤ r . (3.3)

Then the n rows of Z are iid copies of the random vector z .

Therefore, to verify (3.2), we must compute the probability that n iid copies of the random vector

w span the space R
r and that n iid copies of the random vector z span the space R

R . The following

proposition summarizes this discussion.

Proposition 3.3 (Sufficient Condition for Random Model). Fix the balance parameter p ∈ (0,1), the

number r of vertices where r ≥ 2, and the dimension n. Define R := 1+ r (r −1)/2. Introduce a random

vector w ∼ SBERN(p,r ), and define z ∈R
R by the formula (3.3).
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Draw iid copies w1, . . . , wn of the random vector w ∈ R
r and iid copies z1, . . . , zn of the random vector

z ∈R
R . Then a random set F ∼ FACE(p,r,n) satisfies

P
{

F is not a simplicial face of En

}

≤ P
{

span{w1, . . . , wn} 6=R
r
}

+ P
{

span{z1, . . . , zn} 6=R
R
}

.

The easiest way to complete the calculations required by Proposition 3.3 is to invoke methods from

the field of matrix concentration inequalities [Tro15b]. Among other things, this theory gives practical

estimates for the minimum singular value of a random matrix with iid rows. This type of result leads

directly to a bound on the probability that an iid family of random vectors spans a linear space. In the

next two sections, we complete our program by combining Proposition 3.3 with two different types of

matrix concentration.

Remark 3.4 (Variant Sufficient Condition for Random Model). Instate the notation from Proposition 3.3.

Define R ′ := r (r −1)/2, and derive a random vector y ∈R
R ′

from the vector w ∈R
r as follows.

yi j := 1−wi w j for 1 ≤ i < j ≤ r . (3.4)

In view of Fact 3.1, Remark 3.2, and Proposition 3.3,

P
{

F is not a simplicial face of En

}

≤ P
{

span{w1, . . . , wn} 6=R
r
}

+ P
{

span{y1, . . . , yn} 6=R
R ′}

.

4. METHOD 1: THE MATRIX CHERNOFF INEQUALITY

This section contains the proofs of Theorem 2.9 and 2.10. The approach relies on a well-known

consequence of the matrix Chernoff inequality [AW02, Tro12].

4.1. Tools. Let us present a specialization of the lower tail bound from the matrix Chernoff inequality.

This result was first obtained by Ahlswede & Winter [AW02, Thm. 19], and it later received a significant

upgrade [Tro12, Thm. 1.1].

Fact 4.1 (Ahlswede & Winter; Tropp). Consider a random vector x ∈ R
d with second-moment matrix

Σ := E[x xt]. Assume that

λ :=λmin(Σ) and ‖x‖2 ≤ B almost surely.

Draw iid copies x1, . . . , xs of the random vector x . Then

P

{

span{x1, . . . , xs} 6=R
d
}

≤ d ·exp

(−λs

2B

)

.

Proof Sketch. This statement follows immediately by applying the simplified form [Tro12, Rem. 5.3] of the

matrix Chernoff inequality for the minimum eigenvalue to the random matrices Xi = xi xi
t. We set the tail

parameter t = 0. �

Remark 4.2 (Refined Probability Bounds). Fact 4.1 gives a good estimate for how large s must be to make

the probability bound nontrivial. To obtain more accurate bounds when s is larger, one must combine the

matrix Chernoff bound with a scalar concentration inequality. We omit these developments.

4.2. Proof of Theorem 2.9. For this result, the balance parameter p = 0.5. We may also assume that r ≥ 2,

or else the result holds trivially because of Fact 2.5. We instate the notation of Proposition 3.3.

Let w1, . . . , wn be iid copies of w ∈R
r . Fact 4.1 readily implies that

P
{

span{w1, . . . , wn} 6=R
r
}

≤ r ·exp
(−n

2r

)

. (4.1)

Indeed, since w ∼ SBERN(0.5,r ), we quickly determine that ‖w‖2 = r and that E[w w t] = I.

Now, let z1, . . . , zn be iid copies of z ∈R
R . In this case, Fact 4.1 yields

P
{

span{z1, . . . , zn} 6=R
R
}

≤ R ·exp
(−n

2R

)

. (4.2)

To establish this point, recall that the random vector z ∈ R
R is derived from w via the formula (3.3).

Therefore, ‖z‖2 = R and a short calculation yields E[z z t] = I.
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To complete the proof, combine the bounds (4.1) and (4.2):

P
{

span{w1, . . . , wn} 6=R
r
}

+P
{

span{z1, . . . , zn} 6=R
R
}

≤ r 2 ·exp
(−n

r 2

)

.

We have used the relations 2r ≤ r +R ≤ 2R ≤ r 2, which are valid because R = 1+ r (r −1)/2 and r ≥ 2. An

application of Proposition 3.3 completes the proof of Theorem 2.9.

4.3. Proof of Theorem 2.10. As before, we may assume that r ≥ 2. This time, we need the alternative

sufficient condition from Remark 3.4, and we instate the notation from this remark. It is also productive

to abbreviate α := (2p −1)2, which is the squared expectation of an SBERN(p) random variable.

Let w ∼ SBERN(p,r ). It is immediate that ‖w‖2 = r . By direct calculation, the second-moment matrix

of the random vector w ∈R
r takes the form

Mr := E[w w t] = (1−α) · I+α · J ∈S
r
+. (4.3)

Recall that J is the matrix of ones. It follows immediately that λmin(Mr ) = 1−α. Fact 4.1 delivers

P
{

span{w1, . . . , wn} 6=R
r
}

≤ r ·exp

(

−
(1−α)n

2r

)

, (4.4)

where w1, . . . , wn are iid copies of the random vector w .

Next, consider the random vector y ∈R
R ′

, derived from w ∈R
r via the formula (3.4). Note that ‖y‖2 ≤

4R ′ because the entries of y takes values in the set {0,2}. We assert the following bound on the minimum

eigenvalue of the second-moment matrix of y .

Claim 4.3. Let Σ := E[y y t] be the second-moment matrix of y . Then λmin(Σ) ≥ (1−α)2.

We will verify Claim 4.3 in Section 4.4. Granted this result, Fact 4.1 provides

P
{

span{y1, . . . , yn} 6=R
R ′}

≤ R ′ ·exp

(

−
(1−α)2n

8R ′

)

, (4.5)

where y1, . . . , yn are iid copies of the random vector y .

Combine (4.4) and (4.5) to reach

P
{

span{w1, . . . , wn} 6=R
r
}

+P
{

span{y1, . . . , yn} 6=R
R ′}

≤ r 2 ·exp

(−(1−α)2n

4r 2

)

.

We have also used the relations 2r ≤ r +R ′ ≤ 2R ′ ≤ r 2, which hold because r ≥ 2 and R ′ = r (r −1)/2. This

calculation also depends on the bound (1−α)2 ≤ (1−α), which is valid because α ∈ (0,1). Finally, note

that 1−α= 4p(1−p). In view of Remark 3.4, we arrive at Theorem 2.10.

4.4. Proof of Claim 4.3. The argument is expressed most easily in the language of multilinear algebra;

see [Bha97, Chap. I] for more background. This approach was inspired by conversations with Richard

Küng.

Introduce the linear space V := R
r ∨R

r of symmetric tensors, equipped with the real inner product

〈·, ·〉. Let ∨ : Rr ×R
r →V be the symmetric bilinear map that constructs an elementary symmetric tensor

u ∨v ∈V from two vectors u, v ∈R
r . We always have the relation u ∨v = v ∨u. The space V admits the

orthonormal basis {ei ∨e j : 1 ≤ i ≤ j ≤ r }, where the ei are the standard basis vectors in R
r . For linear

operators A,B acting on R
r , we can define a linear operator A ∨B acting on V by the rule

A ∨B : ei ∨e j 7−→ (Aei )∨ (B e j ) for 1 ≤ i ≤ j ≤ r .

If A and B are both psd, then A ∨B is a psd operator on V .

Consider the subspace W := span{ei ∨e j : 1 ≤ i < j ≤ r } of the inner product space V . It is natural to

treat the random vector y ∈R
r (r−1)/2 as an element of W by identifying 〈y , ei ∨e j 〉 = yi j for 1 ≤ i < j ≤ r .

Similarly, Σ= E[y y t] is the linear operator on W given by

〈

ei ′ ∨e j ′ , Σ(ei ∨e j )
〉

= E
[〈

ei ′ ∨e j ′ , y
〉〈

y , ei ∨e j

〉]

where
1 ≤ i < j ≤ r ;

1 ≤ i ′ < j ′ ≤ r.
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Using the definition (3.4) of y and the fact that w ∼ SBERN(p,r ), we quickly compute that

〈

ei ′ ∨e j ′ , Σ(ei ∨e j )
〉

=























(1−α)2 + (1−α
2), i = i ′ and j = j ′

(1−α)2 +α(1−α), i = i ′ xor j = j ′

(1−α)2 +α(1−α), i = j ′ xor j = i ′

(1−α)2, i 6= i ′ and j 6= j ′

where
1 ≤ i < j ≤ r ;

1 ≤ i ′ < j ′ ≤ r.

This expression is useful, but it takes more work to expose the spectral properties of Σ.

The key idea is to identify the operator Σ on W as the restriction of an operator Σ̌ on V . Define

Σ̌ := (1−α)2 · (I∨ I)+α(1−α) · (I∨ J+ J∨ I)+ 1
2

(1−α)2 · (J∨ J). (4.6)

Using the fact that Jei = 1 =
∑r

k=1
ek for each index 1 ≤ i ≤ r , we can check that

〈

ei ′ ∨e j ′ , Σ̌(ei ∨e j )
〉

=
〈

ei ′ ∨e j ′ , Σ(ei ∨e j )
〉

where
1 ≤ i < j ≤ r ;

1 ≤ i ′ < j ′ ≤ r.

As promised, Σ is the restriction of Σ̌ to W .

The representation (4.6) of the operator Σ̌ allows us to determine its spectrum with ease. The operators

I and J are both psd, so the operators I∨ J and J∨ I and J∨ J are also psd. Weyl’s monotonicity principle

implies that

λmin(Σ̌) ≥λmin

(

(1−α)2 · (I∨ I)
)

= (1−α)2.

The first inequality depends on the fact that α ∈ [0,1], and the second relation holds because I∨ I is the

identity operator on V . Finally, the operator Σ is a restriction of Σ̌, so we conclude that

λmin(Σ) ≥λmin(Σ̌) ≥ (1−α)2.

This establishes Claim 4.3.

5. METHOD 2: OLIVEIRA’S LOWER TAIL INEQUALITY

This section contains the proof of Theorem 2.11. The argument depends on a recent matrix concentra-

tion inequality due to Oliveira [Oli16].

5.1. Tools. We begin with a summary of the technical tools that we require. The key result is a specializa-

tion of Oliveira’s lower tail inequality [Oli16, Thm. 1.1].

Fact 5.1 (Oliveira). Consider a random vector x ∈R
d whose second-moment matrix E[x xt] is nonsingular.

Compute the hypercontractive parameter

h := h(x) := max
u 6=0

E(xtu)4

[

E(xtu)2
]2

.

Draw iid copies x1, . . . , xs of the random vector x . Then

P

{

span{x1, . . . , xs} 6=R
d
}

≤ 2exp

(

d

2
−

s

162h

)

.

To bound the parameter h that appears in the last result, we need the following hypercontractive

inequality. For example, see [O’D14, Thm. 10.21].

Fact 5.2 (Hypercontractivity). Consider a polynomial q : {±1}n → R with real coefficients and degree k.

Draw a random vector ξ∼ SBERN(p,n) where p ∈ (0,1). Then the random variable X := q(ξ) satisfies

EX 4

(

EX 2
)2

≤
[

9

p(1−p)

]k

.
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5.2. Proof of Theorem 2.11. As usual, assume that r ≥ 2. We also instate the notation from Proposition 3.3.

Recall that the random vector w ∼ SBERN(p,r ). It is easy to verify that the second-moment matrix E[w w t]

is nonsingular; see (4.3). The entries of the random vector z ∈ R
R are derived from w by means of the

formula (3.3). The second-moment matrix E[z z t] is also nonsingular; indeed, for fixed u ∈R
R , the random

variable (z tu)2 is identically zero only if u = 0.

Let us begin with the probability that n iid copies w1, . . . , wn of the random vector w ∈R
r span all of Rr .

We will use Oliveira’s result, Fact 5.1, to establish that

P
{

span{w1, . . . , wn} 6=R
r
}

≤ 2exp

(

r

2
−

p(1−p)n

1458

)

. (5.1)

Observe that, for any vector u ∈R
r , the linear form w tu =

∑r
i=1

wi ui is a polynomial of degree one in the

entries of w . Fact 5.2 implies that
E(w tu)4

[

E(w tu2)
]2

≤
9

p(1−p)
.

Therefore, the hypercontractive parameter h(w ) ≤ 9p−1(1−p)−1. The claim (5.1) now follows from Fact 5.1.

Second, we study the probability that iid copies z1, . . . , zn of the random vector z ∈R
R span all of RR .

We will apply Fact 5.1 to obtain

P
{

span{z1, . . . , zn} 6=R
R
}

≤ 2exp

(

R

2
−

p2(1−p)2n

13122

)

. (5.2)

For any vector u ∈R
R , we can express z tu = u0 +

∑

i< j wi w j ui j . This is a polynomial of degree two in the

entries of w . Fact 5.2 implies that

E(z tu)4

[

E(z tu)2
]2

≤
[

9

p(1−p)

]2

.

Therefore, the parameter h(z) ≤ 81p−2(1−p)−2, and the claim (5.2) follows from Fact 5.1.

To complete the argument, combine the inequalities (5.1) and (5.2) to arrive at the estimate

P
{

span{w1, . . . , wn} 6=R
r
}

+P
{

span{z1, . . . , zn} 6=R
R
}

≤ 4exp

(

r 2

4
−

p2(1−p)2n

13122

)

.

We have used the bounds r ≤ R ≤ r 2/2, which are valid because r ≥ 2 and R = 1+r (r −1)/2. Introduce this

inequality into Proposition 3.3 to complete the proof of Theorem 2.11.

Remark 5.3 (Alternative Proof). Let us mention an alternative approach to Theorem 2.11 based on

Mendelson’s Small Ball Method [KM15, Tro15a]. This technique yields a comparable outcome, but it takes

more steps to apply.

ACKNOWLEDGMENTS

The author thanks Richard Küng and Benjamin Recht for helpful conversations related to this work.

This research was partially supported by ONR award N00014-11-1002 and the Gordon & Betty Moore

Foundation.

REFERENCES

[AW02] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory,

48(3):569–579, 2002.

[Bha97] R. Bhatia. Matrix analysis. Springer-Verlag, New York, 1997.

[BTN01] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. MPS/SIAM Series on Optimization. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia,

PA, 2001. Analysis, algorithms, and engineering applications.

[DP93] C. Delorme and S. Poljak. The performance of an eigenvalue bound on the max-cut problem in some classes of graphs.

Discrete Math., 111(1-3):145–156, 1993. Graph theory and combinatorics (Marseille-Luminy, 1990).

[Gro53] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo, 8:1–79,

1953.



12 J. A. TROPP

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems

using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115–1145, 1995.

[HUL01] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag,

Berlin, 2001. Abridged version of ıt Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420

(95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)].

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc. Sympos., IBM

Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New York, 1972.

[KM15] V. Koltchinskii and S. Mendelson. Bounding the smallest singular value of a random matrix without concentration. Int.

Math. Res. Not. IMRN, (23):12991–13008, 2015.

[KN12] S. Khot and A. Naor. Grothendieck-type inequalities in combinatorial optimization. Comm. Pure Appl. Math., 65(7):992–

1035, 2012.

[LP95] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the cut polytope. Linear Algebra Appl., 223/224:439–

461, 1995. Special issue honoring Miroslav Fiedler and Vlastimil Pták.

[LP96] M. Laurent and S. Poljak. On the facial structure of the set of correlation matrices. SIAM J. Matrix Anal. Appl., 17(3):530–

547, 1996.

[MT11] M. McCoy and J. A. Tropp. Two proposals for robust PCA using semidefinite programming. Electron. J. Stat., 5:1123–1160,

2011.

[Nes98] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw., 9(1-3):141–160,

1998.

[O’D14] R. O’Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.

[Oli16] R. I. Oliveira. The lower tail of random quadratic forms with applications to ordinary least squares. Probab. Theory

Related Fields, 166(3-4):1175–1194, 2016.

[Pis12] G. Pisier. Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.), 49(2):237–323, 2012.

[PR95] S. Poljak and F. Rendl. Solving the max-cut problem using eigenvalues. Discrete Appl. Math., 62(1-3):249–278, 1995.

Partitioning and decomposition in combinatorial optimization.

[Roc70] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J.,

1970.

[Tro12] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389–434, 2012.

[Tro15a] J. A. Tropp. Convex recovery of a structured signal from independent random linear measurements. In Sampling theory,

a renaissance, Appl. Numer. Harmon. Anal., pages 67–101. Birkhäuser/Springer, Cham, 2015.

[Tro15b] J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning,

8(1-2):1–230, 2015.


	1. Motivation
	1.1. Graphs and Cuts
	1.2. Combinatorial and Semidefinite Formulations of the Maximum Cut
	1.3. Analysis of the Semidefinite Relaxation
	1.4. Facial Geometry of the Elliptope and Optimization
	1.5. Notation

	2. Background and Results
	2.1. Facial Geometry of Convex Sets
	2.2. Facial Geometry of the Elliptope
	2.3. A Random Model for Simplicial Faces
	2.4. Simplicial Faces: Quantitative Results
	2.5. Simplicial Faces: Qualitative Result
	2.6. Counting Faces
	2.7. Related Work

	3. Proof Strategy
	3.1. Deterministic Condition for a Simplicial Face
	3.2. Sufficient Condition for the Random Model

	4. Method 1: The Matrix Chernoff Inequality
	4.1. Tools
	4.2. Proof of Theorem 2.9
	4.3. Proof of Theorem 2.10
	4.4. Proof of Claim 4.3

	5. Method 2: Oliveira's Lower Tail Inequality
	5.1. Tools
	5.2. Proof of Theorem 2.11

	Acknowledgments
	References

