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ABSTRACT. The classical transportation problem is the study of the
set of nonnegative matrices with prescribed nonnegative row and column sums.
It is aesthetically satisfying and perhaps potentially useful to study more general
higher dimensional rectangular arrays whose sums on some subarrays are
specified.  We show how such problems can be rewritten as problems in homol-
ogy theory.  That translation explains the appearance of bipartite graphs in
the study of the classical transportation problem.  In our generalization, higher
dimensional cell complexes occur.  That is why the general problem requires a
substantial independent investigation of simplicial geometry, the name given to
the class of theorems on the geometry of a cell complex which depend on a
particular cellular decomposition.  The topological invariants of the complex
are means, not ends.  Thus simplicial geometry attempts to do for complexes
what graph theory does for graphs.  The dual title of this paper indicates that
we shall spend as much time studying simplicial geometry for its own sake as
applying the results to transportation problems. Our results include formulas
for inverting the boundary operator of an acyclic cell complex, and some in-
formation on the number of such subcomplexes of a given complex.

1. Introduction. We begin our study with a careful statement of the
general transportation problem. Notation has been chosen to simplify the re-
formulation of the problem as one in homology theory in §2. This paper is
self-contained, although many of the graph theoretical precursors of the simplicial
geometric techniques introduced here appear, in different notation, in [1] .(1)

Fix integers r and n0, nx.nr. Let N0, Nx.Nr be disjoint sets
with cardinalities #N¡ = n¡. Then an n0 x • • • x nr "matrix" is just a function
/on the cartesian product K = N0 x • • • x Nr. Let A = {0,1,..., r}. Then
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(t)This seems a reasonable place to correct three errors in [1].  Equation (1) should

read "xx i = rx + cx, xXj = c¡ (j > 1), x¡x = r¡ (/ > 1), xy = 0 otherwise."  In the last
line on p. 253, 18 should be 12.  At the bottom of p. 261, p(q; 6, 3) should be 64q2 +
954? + 180 rather than 64<72 + 834<j + 120.  This last error was discovered by Dean Bandes,
whose work on counting vertices in the classical problem will appear elsewhere.
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122 E. D. BOLKER

for any subset 7 C A there is a natural projection

/e/

Aj-subarray is a pair (7, t) with r G 717(F) for some 7 for which #1 = r + 1 -j.
We often write r for (/, t).  Let

(!) *,-/ = U {7T/(F)|#7 = r 4-1 - /}
be the set of/-subarrays. Let P¡ = 7)f(«0, . . . , nr) be the elementary symmetric
function of degree i in the r + 1 variables nQ,. . . , nr. Then there are Pr+ x_.
/-subarrays. A j-sum transportation problem is a nonnegative function g on K   ■.
The problem is to describe the answer, the set A/(g) of nonnegative matrices /
for which for all t E K^,

(2) Z        f(o)=g{r).
oGK ;n j(o)=T

The left member of (2) is called a j-sum off.  When / is 1 or 2 we naturally
speak of line or plane sums.

There are necessary conditions g must satisfy in order that there be any
function / whose /-sums are given by g.  We shall see what they are, and that
they suffice, in § §2 and 5. Then M(g) is a bounded convex polytope in Rx.
Describing M{g) is nontrivial even in the classical case r = / = 1 (see [1] and
[5] ). What we shall do is to find a topological setting in which the vertices of
M(g) correspond to some acyclic subcomplexes of a cell complex. Then we will
be able to compute the dimension of Affe) when it is not empty. Partial informa-
tion about when it cannot be empty is obtained as well. Then for the cases in
which no more than two of the n¡ exceed 2, we will show that the most symmet-
rical line sum problems have answers with the maximum number of vertices, and
find an upper bound for that number by a "tree count" for simplicial complexes
analogous to Cayley's tree count for graphs. When more than two n¡ exceed 2,
topological questions of torsion and shellability enter in an essential way which
is not yet understood.  Better understanding might yield more information on
orthogonal latin squares [4].  But before we turn to topology, we shall sketch a
hypothetical problem in which line sums are specified.

Let N0, Nx and Af2 be sets of sources, sinks and commodities respectively.
Let g be a positive function on 1-subarrays (lines) which we interpret as follows:

g(v0, vx) = capacity of channel from source u0 G Af0

to sink vx G Afj.

g{vo> v2) = quantity of commodity v2 available

at source v0.
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SIMPLICIAL GEOMETRY AND TRANSPORTATION POLYTOPES 123

8ivi > v2) = quantity of commodity v2 to be

consumed at sink vx.

A nonnegative / with line sums g is a feasible scheme: move f(vQ, vx, v2) units
of commodity v2 to sink vx from source u0. If the cost of a scheme is a con-
cave function then the cheapest scheme is one of the vertices of M(g). In order
that there be any schemes, nonnegative (feasible) or not, g must satisfy three
kinds of conditions. One kind is that

Z     ^u0'ül)=     Z    £(U0'Ü2)
vx&fx v2BN2

for each fixed source vQ. That says that the total capacity of the channels
leaving each source is just what is required to move all the commodities available
there. We leave it to the reader to formulate the other two kinds of conditions.
When those conditions are also satisfied there will always be a matrix / whose
line sums are given by g, but there need not always be a nonnegative /  Schemes
with negative values can be thought of as requiring rerouting. We shall investigate
when M(g) can be empty at the end of §3.

It is not clear whether the theorems which follow are of practical significance
in finding feasible schemes for problems like this. There are no algorithms
presented. Perhaps this geometric rather than computational view of transporta-
tion problems will help others devise algorithms. Our job now is to rewrite the
Une sum problem as a problem in homology theory.

2. Multipartite complexes. Let K(N0,. . . , Nr) be the r-dimensional
simplicial complex which is the join of the disjoint vertex sets N0,. . . , Nr.
That is, the r-simplexes of K(N0, . . . , Nr) ate the Simplexes with one vertex in
each N¡. They are thus in one to one correspondence with K = N0 x • • • x Nr.
We shall identify K(N0.TV,.) with K, the set of its r-simplexes.  For d < r,
the tf-simplexes of K are the faces of its r-simplexes. They are just the elements
of the partial products ttjOO = ñieIN¡. Thus Kd, which we defined in the in-
troduction as the set of r - cf-subarrays, is the d-skeleton of K when K is regarded
as a simplicial complex. Here our usage varies slightly from topological tradition,
where the ¿-skeleton would denote the complex of all Simplexes of K of dimen-
sion not exceeding d.  We augment K by allowing a unique (- l)-simplex. When
r — 1, K is the complete bipartite graph on the vertex sets NQ,NX. When r =
n0 = nx = n2 = 2, K is an octahedron.

Lemma 1. The d-simplex (I, f) is a face ofoEK just when 7tj(o) = t, or,
equivalently, when a lies on the subarray r.

Proof.  Just unravel the definitions.   D
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124 E. D. BOLKER

Each r-simplex of K comes equipped with an orientation since its vertices
form an ordered r + 1-tuple. We call this orientation of K coherent because
every r - 1-simplex of K inherits the same orientation from each r-simplex of
which it is a facet. (A facet is a face of codimension 1.) To see that, suppose
t G Kr^í is an r - 1-simplex with no vertex in Aff. Then t inherits the orientation
(-1)' from each of the n¡ Simplexes o with 717(0-) = r. Thus the facets of the
octahedron above are oriented so that no edges cancel.

A simplicial complex has a coherent orientation if and only if it is vertex
(r + l)-colorable so that every r-simplex has one vertex of each color. Conse-
quently, as Andrew Gleason observed, the barycentric subdivision of any simplicial
complex has a coherent orientation, and can be regarded as a subcomplex of
F(Af0,.. . , Af,) for suitable sets Af,-. (For graphs, that statement says merely
that if you insert a new vertex in the center of each edge of a graph the resulting
graph is 2-colorable, hence bipartite.) Therefore the existence of a coherent
orientation for a complex has no topologically invariant geometric significance.
However, for us the particular triangulation matters. We are about to see that a
coherently orientable triangulation allows us to compute (r - l)-boundaries as
ordinary incidence sums, ignoring signs.

We write Cd{K) for the d-chains on K.  They are just functions on Kd, but
we shall follow topological usage and write / G Cd{K) as a formal sum

/= Z f(°)-°-
o&Kd

The r-chains on K are just the matrices we studied in §1. The next easy theorem
explains the point of what seems a digression into topology.

Theorem 2.  When the matrix f is regarded as an r-chain on K then its
line sums are just the coefficients of the r - l-chain 3/

Proof.  In the sum 3/ = 2a€JC f(a)do collect the terms corresponding to
each t G Kr_x. Since K is coherently oriented, the result is

(3) 3/(t) = £ {f{o)\T a facet of o].
The theorem follows when we use Lemma 1 to couple equations (2) and (3).   D

We shall study /-sums for / > 1 in §5. We know now that the line sum
problem is equivalent to specifying a g G C^jíF) and asking about d~xg C Cr(K).
That is a question about the homology of K.  In order for b~xg to be nonempty
it is necessary that bg = 0 in C^2(F). That is, g must be an r - 1-cycle,
an element of Z^^K). Those are the necessary conditions we mentioned in
the introduction. They generalize equations (2.15) and (2.16) in [4]. When
r = l,gE Z0{K) just when the sum of the specified row sums equals the sum of
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SIMPLICIAL GEOMETRY AND TRANSPORTATION POLYTOPES 125

the specified column sums. When r > 2 the condition bg = 0 asserts the same
thing for each 2-subarray.

To discover whether the necessary condition suffices we must compute
Hr^t(K). The next lemma and theorem may seem obvious to a topologist, but
they were not to me, a functional analyst turned combinatorist, so I include
proofs. They illuminate the geometry of K while computing its homology.

Lemma 3. Let K be a cell complex and N a finite set disjoint from K.
Let K *N be the join of K and N.  Then

H^K*N)^ißd.l(K)f11-1.

Proof. Suppose #N = 1, so N = {u}. Then K0 = K * N is the cone
over K.  It is contractible, hence for all d, Hd(K0) = {0}. Note that even
H0(K0) = {0} since K is augmented.

Suppose #N = 2; say N = {v, w}. Then Kx = K * N is the suspension of
K and the theorem is true.

Finally, when #A7 > 2 we proceed by induction on #N. Let N = {v,w,... },
define KQ and Kx as above and let K2 = K * (N- {w}), for which we may
assume the theorem is true. Then Kx U K2 = K *N and Kx n K2 = K0 so
the Mayer-Vietoris sequence

(4)-► Hd(K0) — Hd(Kx) x Hd(K2) — Hd(K * N) — Hd_x(K0) — • • •

is exact. Since all homology of K0 vanishes we have, in all dimensions d,

Hd(K*N)*Hd(Kx)xHd(K2)
and the theorem follows.   D

The multipartite complexes K we are interested in are just such multiple
suspensions.

Theorem 4. Hd(K) is free of rank («0 - 1) • • • («, - l)ifd = r and is
{0} otherwise.

Proof. The theorem is true when r = 0 because for an augmented com-
plex, Hq is free of rank one less than the number of components. Lemma 3
applied r - 1 times then proves the theorem.   D

The Euler characteristic x of K is the alternating sum both of the ranks of
Hd(K) and of the numbers of d-simplexes, so

(5) X = ("o - 1) ••'(», - 1) =Pr+i -Pr + Pr-i-'-   ■
The last equality is obvious when we expand the product. The whole computa-
tion of x is then an immediate consequence of the fact that all the homology
groups of K except Hr(K) are {0}.
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126 E. D. BOLKER

Now we wish to study the affine geometry of the chain groups of K.   For
us, Cr(K, R) and C^fF, R) are not abstract vector spaces. Our fixed, coherent
orientation gives us particular bases in those spaces. We are interested in how
the affine flat d~xg meets the positive orthant in Cr(K, R): the intersection is the
answer M(g) to the line sum problem g.

Corollary 6. For every g G Z^íF, R), d~xg is a flat in Cr(K) of
dimension x-

Proof.   Since F^jfF) = {0}, every r - 1-cycle is a boundary. Since
there are no boundaries in dimension r, Hr(K) « Zr(K) C Cr(K) is just the kernel
of 3; it has dimension x- 3-1# is just a translate of that kernel.   D

Now to study M(g) we study how the coordinate hyperplanes in Cr(K, R)
intersect in d~xg.  For each a G F let

vo = va(g)={fE<rxg\f(o) = 0}.

Then {Va} is an arrangement of n0 • • • nr hyperplanes in the flat d~xg, which
has dimension x = (no ~ I) ' ' ' (nr ~ I)- We shall study that arrangement.

3. Simplicial geometry: Inverting 3. In this section we fashion tools for
inverting the boundary operator of a cell complex. The constructions generalize
those used to solve the classical transportation problem in [1]. I found clues to
the generalizations in the study of simplicial geometry begun by Crapo and Rota
[3]. We shall study here cell complexes more general than the multipartite
simplicial complexes of §2 for two reasons. First, we will want to apply the
results to study /-sum problems in §5. Second, the material is intrinsically
interesting.  It tells how to invert 3 when 3 is injective, and should be useful for
more than the study of transportation problems. We shall try to follow the
language of [6] for cell complexes.

Let F be a finite, normal, regular, augmented cell complex which is purely
r-dimensional: every ¿-cell for d < r is a face of some r-cell. As usual, we shall
identify F with the set of its r-cells. Whenever a, a' G K, o n o is a face of a.
We write Kd for the set of ¿-cells of K and call Kd the ¿-skeleton. Suppose K is
coherently oriented, so that every t G Kr_x inherits the same orientation from
each a G F of which it is a facet. The multipartite complexes of §2 are
examples of such cell complexes in which each ¿-cell is a ¿-simplex.

For each cell complex K the chain complex Cr(K) —► C^jiF) —► • • •
is well defined; in it the spaces of r- and r - 1-chains have natural bases, so we
may speak of nonnegative chains. Moreover, (3) remains true: for/G Cr(K) and
tGF^,

(6) 3/(t) = £ {/(a)|r a facet of o}.
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Much of what follows can be proved for chain complexes with prescribed bases
for Cr and Cr^x. But that much generality is not useful now and replacing
geometry by algebra would obscure much of the motivation.

Whenever L C K we shall identify L with the subcomplex of K whose
r-cells are the elements of L and whose ¿-cells, for d < r, are all the ¿-cells of K.
In particular, K and L have the same r - 1-skeleton. When d < r, Cd(L) = Cd(K),
while Cr(L) is the subspace of Cr(K) containing those r-chains supported by L.
We write ßd(L) = rank Hd(L) and x(L) = 2f(-1)^,(1) for the Betti numbers
and Euler characteristic of L.  For xOO we write just x- We shall also assume
ßd(K) — 0 for d < r.  That makes the formulas which follow cleaner. It is easy
to restore their more general form when necessary.

Theorem 7. For subcomplexes L C K,

(7) ßr(L)-ßr.x(L) = X-M.K-L) = X(L).
Proof. Since Lr_x=Kr_x, Hd(L) = Hd(K) = {0} and thus ßd(L) = 0

for d < r - 2. Thus the left member of (7) is x(L)- But x(£) is also the alter-
nating sum

x(i) = #¿ + Z(-i)'#(Vi)i>\
= #£-#(*-£)+Zei/^,.)i>\
= X-#{K-L).   U

Think of Theorem 7 as saying "When you remove the interior of an r-cell
of K you either kill an r-cycle, decreasing ßr by 1, or you prevent an r - 1-cycle
which used to bound from so doing, increasing ßr_x by 1."

When ßr(L) = 0, L is independent; when ßr_x (L) = 0,L spans. That usage
is suggested by combinatorial geometry. When r = 1, L is a graph. It is then
independent when it is free of loops, and spans when it is connected. A sub-
complex T which is independent and spans is, of course, a basis.  Bases are
almost acyclic: all the Betti numbers of a basis are 0, but a basis may have
torsion. When r = 1, so that K is a graph, a basis is known as a rree.  That is
the nomenclature we shall use for r > 1 as well. It follows from Theorem 7
that all trees in K ate equicardinal: since x(T) = 0, x = #(K - T) and thus #T =
#K - x- For multipartite complexes trees contain

(& »O ' * * ", "(«O - 1) ' • • («r~ 1) = Z i-O'Pr-i
V°' />0

Simplexes.
Write dL for the boundary operator of the subcomplex L.  IfgE Z^^K)
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128 E. D. BOLKER

= Z^j(7) then dLx(g) is the set of r-cycles f of K with support L and 3/ = g.
In the language of §2, a^fr) = C\a9L Va.

Corollary 8. When ß^L) = 0,

dim blxig) = X-#{K-L) = ßr{L).

Proof.  This is Theorem 6 of [1], which was left unproved there. It is
now obvious.   D

Corollary 9.  When T is a tree in K, dTx{g) is a vertex of the arrange-
ment {Va} of hyperplanes in d~xg.

Proof.   Corollary 8 shows d^ig) has dimension zero.   D
Let T be a tree in K.  Then for g E Zr_x there is a unique / G Cr{T) with

3/ = g.  We want formulas expressing the numbers f{o) in terms of g.  To that
end we study maximal nonspanning subcomplexes. We say A C K is a copoint
if ßr-X{A) = 1 and A is maximal with that property. When F = F(Af, Af) is a
complete bipartite graph, a copoint is a disjoint union of two complete bipartite
subgraphs. It is determined by partitions {A, A'} and {F, F'} of Af and Af re-
spectively. The name "copoint" is from combinatorial geometry.  I do not know
whether topologists have made sufficient use of the notion to name it.

Let A be a copoint. Then H^X(A, Z) « Z x G, where G is a finite group.
Choose a generator f of the free part of Hr_x. Let c be an r-cell of K.  Then
3a G Z^^A), so there is an integer m(o, A) and a 7 G G such that

(9) 3d ~ (m(o, A)t, y);

Here "~" means "homologous in H^X(A, Z)." The nonnegative integer
\m(o, A)\ is the multiplicity of o at A. Only \m(o, A)\ is well defined, for the
opposite choice of generator reverses the sign of m(o, A).

Lemma 10. The integer \m(o, A)\ is the order o/f in H^^A U {a}).
m(a, A) = 0 // and only if 0 E A.

Proof. We have

(10) H,_X(A U {a}) « Z/(m(a, A)) x Gf(y).

That group has rank 1 (respectively 0) when oEA (respectively o#A).   D
Now suppose g E Z^^K, R). Then in H^^A, R) « R, g is homologous

to a scalar multiple of f. That multiple is unique and depends linearly on g.
Thus we have constructed a linear functional pA : Zr_x —* R such that

(") g~ßAig)S   mH^x(A,R).
When F is a bipartite graph the functionals pA axe what I called pA B in [1,
Equation (4)].
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SIMPLICIAL GEOMETRY AND TRANSPORTATION POLYTOPES 129

Theorem 11. Let f E Cr(K, R). 27k?«

(12) VA(bf) = £ f(o)m(o,A).= Z fi°M°,A).
0<ZK oÇA

Proof. We have

3/= Z fio)oo~ Z f(oyn(o,A)S;
o&K oGK

the first half of the theorem then follows from the definition of pA. The second
half is a consequence of Lemma 10.   D

Corollary 12. m(o, A) = uA(do).

Proof.  Apply Theorem 11 to the fE Cr which is 1 at a and 0 otherwise .D

Corollary 13. Suppose o$A,fE Cr(A U {a}) and bf = g.  Then

(13) f(a) = PA(g)lm(o,A).

Proof. Substitute in (12).   D
Note that the sign in (13) is correct and does not depend on the choice of

generator J, which affects the signs of the numerator and denominator the same
way.

The copoint functionals tell us how to compute on trees.

Theorem 14. Let Tbe a tree and o ET.  Then there is a unique copoint
A containing T - {o}. Then

(14) o~T1g(o) = uA(g)lm(o,A).

Proof.  Since T is a tree, Theorem 7 implies ßr(T - {o}) = 0 and
ßr.x(T-{o}) = l. Then let

A = {o'EK\ ß^x(T- {o} U {o'}) = 1} = CUT - {o}),

the closure of T- {a} in the sense of combinatorial geometry. Then T — {o} C
A, o £ A and T C A U {o}, so CoroUary 13 applies to b^g E Cr(A U {o}).   □

When T and A are related as in Theorem 14 we say T uses A.  We have so
far attached multipUcities to pairs (o, A), where A is a copoint and a ^ A.  If F
is a tree we define the multiplicity of o in T to be

m(o, T)=\m(o,d(T-{o}))\.
A tree T is multiplicity free when m(o, T) = 1 for aU o E T.

Lemma 15. A tree Tis multiplicity free if it is torsion free; that is, if
H^CT) = {0}.

Proof.   Suppose o ET.  Let A = cl(T - {o}). Then H^X(T - {o}) =
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H^^iA) because adding to T- {o} those r-cells which increase ßr does not
change Hr_x. Then H^T) = H^A U {a}). If that group is {0} then (10) implies
\m(a,A)\ = l.   D

We are ready to study the vertices of the answer

Mig) = {/ G Cr(F)|3/ = g and / > 0}

to the problem g > 0. The tree F is honest for the problem g when the vertex
3yJ^ of the arrangement {Va} of hyperplanes is nonnegative.

Theorem 16.  The vertices ofM(g) are those vertices of {Va} which
correspond to honest trees.

Proof.   Clearly every vertex of M(g) corresponds to an honest tree.
Conversely, the vertex corresponding to an honest tree is in M(g) and must be
one of its vertices.   D

For each copoint A the kernel of pA » which is well defined even though
the sign of pA is ambiguous, is called the degeneracy hyperplane corresponding
to A.  The degeneracy hyperplanes carve Zr_x into open regions of nondegeneracy;
g is degenerate if for some A, pA(g) = 0.

Theorem 17. As g varies in Zr_x, the combinatorial type of Mig) is
constant on regions of nondegeneracy.

Proof.  On such a region none of the functions pA changes sign, and none
is 0. Hence the honest trees are the same throughout the region. The combina-
torial type of a polytope is determined by the incidence relation between its
vertices and its facets. The vertices of Mig) we have just identified. The facets
are the nonempty intersections Mig) n Va. Since b~^g G V0 if and only if o ^
T the incidence relation and hence the combinatorial type is constant on regions
of nondegeneracy.   D

We can study how honest trees become dishonest or vice versa as g crosses
a degeneracy hyperplane. Let us say two trees T, 7' are in the same grove at a
copoint A when there are r-cells o, a' in T, T' respectively such that T- {a} =
T' - {o}. If we start with a tree T and a o E T and let A = cl(T - {a}) then
the other trees in the grove with T at A axe the trees

(15) 7" = r-{a}U {a'},      a'G A
In the language of combinatorial geometry a simple basis exchange converts T to
r.

Lemma 18. Let R+ and R~ be regions of nondegeneracy which share a
facet lying on the degeneracy hyperplane ker pA. Adjust the sign of pA so that
it is positive on R+. Let The a tree honest on R+. Then the tree T' = T-
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{a} U {a'} in the grove with Tat A is honest on R+ or R  according to whether
m(o, A)>0or m(o. A) < 0.

Proof.   Since d^g(o) = pA(g)/m(o', A) is positive for g E R+ when
m(a, A) > 0 and for gER~ when m(o', A) < 0 we need only show that b^g
is positive on S = T - {o} = T' - {o'}. Find a small baU B which meets both
the regions of nondegeneracy /?* and no others. Then B also meets ker pA ; we
may suppose its center g0 lies on ker u.A. Then iïjïg is a continuous function of
g and is positive on 5 throughout B.  Thus on S, bT}(g0) = bj1 (gQ) > 0. Since
9yî is continuous too, it is positive on S throughout B or some smaUer ball and
hence is, in fact, positive on all of R+ U R~.   O

Let 1 E Cr(K) be the r-chain aU of whose coefficients are 1: 1 = 2a£Jf a.
We call 31 the center of Z^_j; it is the most symmetrical positive problem. Let
us choose the sign of each copoint functional uA so that pA(bl) ^ 0. Then
Theorem 11 tells us

(16) ^m(o,A) = uA(b\)>0.

Theorem 19. Ifg0is degenerate there is a nondegenerate problem g
near g0 for which M(g) has at least as many vertices as M(g0).

Proof.   Suppose pA(g0) = 0; for convenience we give the proof only for
a g0 which Ues on just one degeneracy hyperplane. If a tree T is honest at g0
and does not use A then it is honest for aU g neat g0. If a tree T honest at gQ
uses A, then in the grove with T at A suppose there are v trees T O A U {o}
for which «2(0-, A) > 0. Equation (16) implies v > 0. For g neat g0 with uA (g)
> 0 there are thus v distinct vertices of M(g) which coalesce into the single vertex
3^Vo as g approaches g0.   D

Theorem 20. Let K be a cell complex in which all trees are multiplicity
free. Let R* be a region of nondegeneracy whose closure contains the center
31. Then among all problems, those in R* have answers with the maximum
number of vertices.

Proof.  Let g E Z^x be any nondegenerate problem. Pick a problem
g* E R* so that the directed line segment joining g to g* crosses degeneracy
hyperplanes one at a time. Suppose that at one such point we cross ker uA
from RT to R+. Since R+ and R* lie on the same side of ker uA,uA > 0 on
R+. Let v+  (v~) be the number of vertices of the answer to any problem in
R+  (R~). We shaU show v+ -v~> 0. Any tree T which is honest on R~ and
does not use A is honest on R+ too and so does not contribute to the difference,
so suppose T uses A.   Then the trees T' in the grove with T at A ate given by
(15). Lemma 18 shows that T' is honest on R+  (R~) when m(o. A) = +1
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(-1). Let t be the number of groves at A which contain a tree honest on F+ or
F-. Each of those groves consists entirely of such trees, and

u+ - v~ = t ( ¿2 m{o\ a\= tpA{bl) > 0.   D
\o'(?A J

When the center 31 is nondegenerate, Af(31) has the maximum number of
vertices. That is the case for F(Af0, Afx) when «0 and nx are relatively prime.
For multipartite complexes with r > 1, 31 is degenerate if for some i and /,
g.c.d.(«f, «•) > 1. I do not know if the converse is true.

The hypothesis in Theorem 20 that every tree be multiplicity free is quite
restrictive. We shall see just how restrictive in the next section. I do not know
whether the theorem is true without that hypothesis. There may be a way to
salvage the proof by counting honest trees T with multiplicities. The average or
the maximum of the set of numbers [m{a, T)\o E T) suggest themselves but do
not seem to work.

We close this section with an examination of a way in which M(g) can be
empty even when g E Z^_x, the set of nonnegative r - 1-cycles.

Lemma 21. Let t E Kr_x. Then the coordinate map g r—*■ g{r) is a
constant multiple of a copoint functional if and only if

AT= {oE K\r not a facet of o}

is a copoint.

Proof.  Suppose AT is a copoint. Then for o, a $. AT, bo ~ 3a' in
Hr_x{AT, R) since ß^iAJ = 1 and 3a, 3a' have the same coefficient, namely 1,
at t. Thus m(o, AT) is a constant c for a G AT. Then for all a

!0,      oEAT,
c,      o$AT,

(17) P-A

= cg{ba).

Since the boundaries 3a span Br_x = Zr_x, (17) implies PATig) = cg{T) for all
gEZ^.

Conversely, suppose there is a copoint A and a constant c such that pA ig)
= cg{T) for all g E Z^j. Then for any a G F

m(a,^) = ju^(3a) = c3a(T)■Í0   ifaGv4T,

[c   ifo<£AT.

But m{o, A) ¥= 0 just when a £ A, so A = AT.   O
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Corollary 22. Z^_x is a union of regions of nondegeneracy if and only
if every AT is a copoint.

Proof.   Z^_x is such a union if and only if its bounding hyperplanes, the
coordinate hyperplanes, are the kernels of copoint functionals.   D

Corollary 23. If for some j, AT is not a copoint, then there are prob-
lems g E Z^_x for which M(g) is empty.

Proof.  Choose agQ GZr_l such that #0(t) - 0,gQ(T) > 0 for t # t,
and such that a neighborhood of g0 lies in a region of nondegeneracy F.  Then
F meets both Z^_x and its complement. But when g ^ Z^_x there can be no
f> 0 with 3/ = g, so M(g) is empty. Theorem 17 implies M{g) is empty for all
g ER, and some of those g lie in Z^_x.   D

Unfortunately, Corollary 23 does not locate all the regions of nondegeneracy
the answers to whose problems are empty. The following example is a perturba-
tion of one in [4]. Consider the 2 x 2 x 2 matrix given by

/c. •.»-(;_;)./(-. •.* -(■;;).
It is easy to check that the line sums of /are all positive. F(Af0, Nx, N2) is an
octahedron when n0 = nx = n2 = 2. The trees Tare just the complexes F - {a}
for each of the 8 triangles a. Putting a 0 in each of those 8 places in turn and
computing 3yX(3/) shows Ai(3/)has no vertices and hence is empty. To show
that this case is not covered by Corollary 23, we prove Theorem 24.

Theorem 24. In the multipartite Simplicia! complex K = K(NQ.Af,.),
n¡ > 2, every AT is a copoint, and Z^_x is a union of regions of nondegeneracy.

Proof. Whenever a ^ AT, bo is not homologous to 0 in AT so ß =
ßf-x{AT) > 1. We need only show ß = 1. That is equivalent to showing that
when o, o' £ AT, o - o ~ 0 in FI_104T, R). Suppose r G F(Afx,.... Af,.),
a = {v, t) and o = {w, t). Choose r' G K(NX,... , Nr) sharing no vertices
with r, that is possible since each n¡ >2. Let C C F consist of all Simplexes of
F whose vertices are among those of t, t', and {v, w}. Then C is a cross poly-
tope (the r-dimensional analogue of the octahedron, the join of r two element
sets), and C n AT = {a, a'}. In fact, a and a' axe adjacent facets of C, so when
the facets of C are oriented so as to make C the boundary of an r-cell, a and a'
have opposite signs.  Since 3C = 0, 3a ~ 3a' in F^j(4T).   D

We thus still lack a good criterion for deciding when M(g) is empty. Tech-
niques analogous to those developed in [1, §1] may lead to one. I conjecture
that if M(g) is not empty it has dimension x. the maximum possible. In [4],
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Jurkat and Ryser show that when r = 2 the answer to a positive plane sum
problem is never empty.  Their argument generalizes easily to prove the same
for the answer to a positive r-sum problem.

4. Multipartite complexes with multiplicity free trees. In this section we
prove that every tree of K = K(N0, . . . , Nj) is multiplicity free if and only if
at most two of the n¡ exceed 2, and count the number of trees in that case.

Construction 25. Suppose L is a subcomplex of K.  Let TV be a set of
« elements, disjoint from all the N¡. We shall systematically construct nx~x^L'
subcomplexes L* of K* = K(N0.Nr, TV) each of which satisfies

d«) ^(¿^«(Viwr1
for aU d.

To start the construction, let L' be the join L * TV.  L' is not yet a sub-
complex of K* because its r-skeleton is too smaU; we shaU repair that defect
after we observe that Lemma 3 applies to L', so (18) is true for L':

How much of the r-skeleton of K* is missing from L'l Suppose t* E (K*)r. If
r* $■ K then t* is the join of a vertex of TV and an r - 1-simplex t of K. Then
t E Lr_x = Kr_x so t* E L'r_x. If t* is one of the #L r-simplexes of L then it
is a facet of « r + 1-simplexes of L'. But the other #{K - L) = x - X(0 ''-Sim-
plexes t* of K are facets of no r + 1-simplex of L'. Each of these can be made
such a facet by adjoining to L' any one of the « r + 1-simplexes (r*, v), where
v EN. These adjunctions leave the homotopy type and hence the homology of
L' unchanged. The «x-x(¿) complexes L* which result from these independent
choices are the ones whose existence we have asserted.   D

Theorem 26. Suppose « = 2. Then Construction 25 applied in turn to
each of the trees of K yields all the trees of K*, once each.   Whatever torsion
appears in the trees of K appears in the same proportion in those of K*. If K
has t trees, K* has t • 2x(-K\

Proof.   If T is a tree of K then x(T) = 0 and each of the 2x(/c) subcom-
plexes T* of K* produced by Construction 25 is a tree for which Hr(T*) =
H^^T), and the trees r* are clearly distinct. Conversely, let 7* be a tree of K*.
Suppose TV = {v, w} and let Cv be the star of v, the r + 1-complex whose Sim-
plexes are all the simplexes of 7* which have v as a vertex. Note that (Cu)r *£
K*. Similarly define Cw. Let T = Cu D Cw C K.  We wiU be done once we
have shown T is a tree in K.   Since Cv and Cw ate cones, aU their homology
groups vanish. Then an easy application of the Mayer-Vietoris Theorem shows
Hd(T) = Hd+X(T*) for aU d.  Thus Thas the right homology; we need only show
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T,_x = Kr_x. Let t be an r - 1-simplex of K.  Then (r, v) and (r, w) ate r-sim-
plexes of K* and thus each is a facet of some r + 1-simplex in 7*. Hence t E
(CvnCw)_x.   D

Theorem 27. 7/«0 = m, nx = n, and n2 = «3 = • • • = nr = 2 then all
the trees of K are multiplicity free and there are

(19) mn-lnm-l2(r-l)x(K) = „f-irf»-ttfr-ÏHm-lK*-l)
trees.

Proof. When r = 1, K(N0, Nx) is a bipartite graph. It is known to have
mn-\nm-\ treeSj gjj 0f ^¿h are torsion free and hence multipUcity free. Then
Theorem 26 apphed r - 1 times and Lemma 15 imply Theorem 27.   D

Theorem 28. 7/n0, nx, n2 > 3 and n3, . . . , nr > 2, then K contains a
tree TandaoE Tfor which m(o, T) = 2.

Proof.  Figure 1 shows the projective plane P2 triangulated with 9 vertices
so as to Uve in K(X, Y, Z) where #X = #Y = #Z = 3. Then K(X, Y, Z) is
naturally a subset of K(N0, Nx, N2). There we can extend P2 to a tree TQ by
adjoining enough triangles to fiU out the 1-skeleton and reduce ßx to 0. Then
HX(T0) « Z2. Apply Construction 25 repeatedly to TQ to produce a tree T in
K with//^i(7) « Zp, p = («3 - 1) • • • («r - 1). Choose agEZ^T, Z)
which is not homologous to 0 and an fE Cr_x{T) with minimal support for
which 3/= 2g.  Then for any a in the support off, m(o, T) = 2.   O

The presence of torsion, and hence of multipücities, can cause M(g) to have
strange vertices. For example, consider K(X, Y, Z) as in Theorem 28 and the
line sum problem jsl.  ThenM(g) is the analogue for 3 x 3 x 3 matrices of
the polytope of doubly stochastic « x « matrices. The vertices of that polytope
have long been known to be the permutation matrices. Now let T be the com-
plex P2 shown in Figure 1 together with the triangles X2Y3Z2, X2Y2Z3 and
X2 Y2Z2. Then T is a tree. It is easy to check that b^ig) is the unique 2-chain
which has value Vi on all the triangles in P2, value 1 on X2Y2Z2, and value 0
elsewhere. That 2-chain is a vertex of M(g) which does not have integer entries.
I suspect it is torsion and the resulting nonintegrality of vertices which helps
make the search for orthogonal latin squares so hard [4].

It is tempting on numerological grounds to guess that, in general, K has

(20) »J0„xi...„

trees, where
r

X, = X(W0, . . . , TV,..TV,)) = T\(nj - 1).
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Figure 1

P2

A similarly tempting guess is that the r-skeleton of the « - 1-simplex has

(21) „O
trees. Both guesses are wrong. The second is right only when n < 5 or r = 0, 1,
n-2or«-l;the6 point triangulation of P2 fouls the tree count when n = 6
and r = 2. The first guess is right only when all the trees of K are multiplicity
free.

When trying to count trees, those with torsion do not present the only
problem. Call a tree shellable if it can be built from a single r-simplex by
successively attaching r-simplexes along contractible subcomplexes of their
boundaries. When r = 1, all trees can be shelled. Shellable trees are torsion free,
but not conversely: the dunce's cap [8], exhibited in Figure 2 as a subcomplex
of F(Af0, Afj, N2), n0 = 4, nx = n2 = 5, has no torsion but is not shellable.
Glenn Iba has constructed generalized Prüfer codes to count shellable trees. That
is how we know guesses (20) and (21) are wrong where they have not been
proved right. There are relations among the number of codes, the number of
trees, and the numbers in (20) and (21) which are not yet understood. In general,
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in counting subcomplexes, if anything can happen it will. That is because any
r-dimensional simplicial complex L is clearly a subcomplex of the r-skeleton of
the #L0 - 1-simplex, and the barycentric subdivision of L is a subcomplex of
F(Af0.Af.) when #Nt = #£,.

Figure 2

The dunce's cap

5. Face lifting and the /-sum problem. In this section we shall construct
a cell complex K analogous to F(Af0,... ,Nr) with which we can study the /-sum
problem for / > 1 as we have already studied the line sum problem. Let V be
the r-cell obtained by truncating each face of the regular r-simplex Ar in Euclidean
r-space. Figure 3 shows T3. In general, Tr is dual to the barycentric subdivision
of Ar. If we identify Ar with the set {0, 1, ..., r} of its vertices then each
proper subset 7 of Ar determines a face of Ar of dimension #7-1 and a facet
Fj of rr. That is why we call rr a face lifting of Ar. If we let the hyperplanes
which truncate Ar to yield Tr recede continuously, we see a continuous deforma-
tion of rr into Ar which simultaneously shrinks each F, to I. We call that opera-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



138 E. D. BOLKER

tion untruncating.   Every permutation a = (a0, . . . , ar) of the vertices of Ar
defines a vertex of Tr: the vertex a is on the facet F¡ if and only if 7 =
{a0,. . . , a#/}. Two faces 7 and 7 of Ar meet if and only if 7 n 7 ¥= 0. Two
facets Fj and Fj of rr meet if and only if 7 C 7 or J C 7.

Suppose 7 C Ar. Then F7 = \JjCi^j Is homeomorphic to an r - 1-cell on
the boundary of r"". When we untruncate, E¡ shrinks to 7.

Figure 3

r3

Now let Af0,.... Af. be as before. When we built F(Af0,.... Nr) we
started with an r-simplex for each oEK = N0 x ■ • • x Nr. Now we shall start
instead with an oriented copy of rr for each such a, and shall call that copy a.
When a, a' G F, let 7 = {i|7rf(a) = 7rf(a')}. Then paste together ö and a' by
identifying F/(ö) with Ejijj'), preserving orientation. We call the resulting cell
complex K =K(Af0,. . . , Afr), the face lifting of F.  One can perform this face
lifting operation on any coherently oriented, purely r-dimensional simplicial
complex. The resulting cell complex is finite, normal, regular, coherently oriented
and purely r-dimensional. Thus all of §3 applies to it.

Lemma 29. K and K have the same homotopy type, and hence the same
homology.

Proof.  Simultaneously untruncating each cell ö of K establishes the requir-
ed homotopy equivalence.   D
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Lemma 30. (7, 7) is a facet ofaEKif and only if itj(o) - t, or, equiva-
lently, o lies on the subarray r.

Proof. Just unravel the definitions; compare Lemma 1.   D
Lemma 30 estabUshes a natural correspondence between K^j and

U;<r-i K¡- The next theorem exploits that correspondence to show that the
boundary operator of K gives more visible information than that of K.

Theorem 31.  When the matrix fis regarded as an r-chain on K and
0, t) E K^ then

of(T)=    Z     /(5).
7T/(a)=T

the j-sum of fon the j-subarray t, where j — r + 1 - #7.

Proof.   Use Lemma 30 and (2) and (3).   D
When we are interested in the /-sums of a matrix we shall want to shrink

the elements of Y^_x which correspond to z'-subarrays for i </.  To that end we
define shrinking operators S¡ on the ceU rr.

Construction 32. Let S0 be the identity and r^j = rr. The operator
Sx retracts to a point each of the r + 1 disjoint facets F¡ of Tr^ for which
#7 = r.  The resulting r-cell r(2) has a facet FI for each 7 for which #7 < r - 1.
In Figure 4 we have sketched F*2y On r[2) there are Cj1) facets F¡ for which
#/ = r - 1. Each of these is an r - 1-ceU on whose boundary lie two distin-
giished points, the remnants of the two facets Fj of T'^xyJD I, which Sx collapsed
to points. Those two points are the boundary of a 1-ceU 71 essentiaUy orthog-
onal to the r - 2-cell / in F¡. Thus Fj in r^ is naturaUy a suspension of 7.
The shrinking operator 52 retracts each F¡ in r^2) for which #/ = r - 1 to the
1-ceU IL. The resulting r-cell is r^. Figure 4 shows r*3).

Inductively, suppose the shrinking operator Sj_x has been defined so that
its effect on r^j^ is to produce an r-ceU r[;^ with the following properties.
There is a facet F¡ of T[;) for each 7 for which #7 < r + 1 -/.   For C"1".1) of
those I, #1 = r + 1 -/.  Each of those Fj is an r - 1-ceU whose boundary con-
tains a distinguished / - 2-sphere, the remnant of the facets Fj of rr with J D I,
which were shrunk by earlier operators. That / - 2-sphere is the boundary of a
/ - 1-ceU IL essentiaUy orthogonal to the r -/-ceU I in Fr Thus F, in T^ is
naturally a/ - 1-fold suspension of 7.  The shrinking operator Sj retracts each
f} with #7 = r+ l-/tothe/-l-ceU7i.   D

We shaU write K^ for the cell complex which results when we apply the
shrinking operators Sx,. .. , Sj_x sequentiaUy to each of the copies ö of rr
from which K is buUt. Do not confuse K^ with K^, the /-skeleton of K. Next
we compute the homology of K/«.
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Figure 4

Theorem 33. Hd(K^ß) is free of rank 0 if d + r and of rank

(22)
r+ 1-j

X(j)=Pr+l-    Z    i-1)"
9 = 0

j + q- i\
r+l-j-q

when d = r. Here Xtß is just X(K(/))-

Proof.   When / = 1 the theorem says

X(K) = Pr+x -Pr + Pr-1--=fl (nt-l)
i=0

which is Theorem 4. When / = 2 it says

X(K(2)) = Pr+X -P,-X + 2/V_2 - 3F^3 + • • •

which confirms Corollary 3.4 of [4] in which the dimension of the answer to a
plane sum problem when r = 2 is shown not to exceed n0nxn2 -n0-nx -n2
+ 2. When / = r + 1 the theorem says

X(H-i) = "o«i '••"»•-I,

which is clearly correct for the dimension of the answer to an (r 4- l)-sum
problem: if the sum of all the elements of a matrix is specified then the space of
matrices is of codimension 1.

To prove the theorem we need only its correctness for / = 1, shown above,
and the following induction on /.  Suppose (22) correct for Xtn- To obtain
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K(/+1) we aPPly the shrinking operator Sj to each of the r-ceUs of K(/j. Suppose
7 = {/0,. . . , if-j}', there are C*.1) such subsets of Ar. Let

LI={FI(d(j))\oEK}.

Then L¡ is a subcomplex of the r - 1-skeleton of K^j.   Construction 32
shows Lj is just the /-fold suspension of AT(TV,0,. . . , TV,-   .). Then Theorem 4
implies Hd(Lj) is free of rank (niQ - 1) • • • («/r_;. - 1) if d = (r -j) + (j - 1)
= r - 1 and is {0} otherwise. When we apply 5.- to K/«, L¡ retracts to a single
/ - 1-ceU IL, which is contractible to a point. Thus

(23) 7/d(K(/), 5,1,) « 77d(K(/), L¡).
We can then infer from the exact relative homology sequence

-> Hd(SjLj) — 77d(K(/)) — 77d(K(/), S;I7) -» 77^,(5/,) — • • •
that

7/d(K(/), 5^) * 77d(K(/)) x H^iSjLj),

so that 77d(K(/), Syl7) is free of rank Xy) + (",0 - 1) • • • (»/,_,• - 1) if d = r
and is {0} otherwise.

Since Sj shrinks each F7 to IL independently of the others, it foUows that
77d(K(/+ j j) is {0} if d < r such that 77r(K(/+ x j) is free of rank

X(/+i) = *(/)+     Z     II ("i-i)
#/=r+1-/ tei

r+l-f
= x(/)+ Z ("D'

q=0

r+l-j
= Pr+l-   Z   (-D'

<7=0

r+1-/
= Pr+l-   Z   i"1)'

q=0

(24) / + ^

H-i-/-<r

H-!-/-</

When we replace q by q 4- 1 in the last member of (24), remembering that (™)
= 1 and ( ™i ) = 0, we get the right member of (22) for K(/+ x y   D

Our last task is to show that the complex K/«, to which aU of §3 appUes,
is the right one for studying the /-sum problem.

Lemma 34. If the j-sums of a matrix are known then values for all the
i-sums, i > j, can be computed.

Proof.  It suffices to show how to compute the / + 1-sums. Let (I, r) be
a/ + 1-subarray. Pick any í ^7.  Then
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f25) Z m =Z      £      /<*).
^J> irj(o)=T ueATf 7r/(o)=u;7r/(a)=r

so each / + 1-sum is a sum of/-sums.   D

Theorem 35. Let g G C^fK). Then g can be thought of as a function
on Ky_j C ÇK-tft)r-x. When so regarded, g extends to an r- l-cycle on Kyj if
and only if there is a matrix f whose j-sums are given by g. In that case the
extension is unique, and b~xg is the set of all matrices with j-sums g; it has di-
mension Xq). Thus when g>0, Xq) is the maximum possible dimension for
Mig).

Proof.  If g gives the /-sums of/then Theorem 31 shows the r - l-cycle
3/on (K/;))^j extends &  Conversely, if g extends to a cycle, which we shall
still call g, then since Hr_li¥iij-.) = {0}, 3g = 0 implies b~xg has dimension
X(/) = rank Fr(K(/)). Then for any /G b~xg, bf = g so the extension of g is
unique. In fact, Lemma 34 tells how to extend g; the condition bg = 0 says
precisely that the computation in that lemma is independent of the choice of

Acknowledgment. "That's wonderful. But now you have to learn more
topology." So ended each valuable, provocative talk with Victor Guillemin. He
thought I would need spectral sequences for §5; perhaps I should have taken his
advice.
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