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We present a computer program based on bistellar operations

that provides a useful tool for the construction of simplicial man-

ifolds with few vertices. As an example, we obtain a 16-vertex

triangulation of the Poincaré homology 3-sphere; we construct

an infinite series of non-PL d-dimensional spheres with d + 13

vertices for d � 5; and we show that if a d-manifold, with d � 5,

admits any triangulation on n vertices, it admits a noncombina-

torial triangulation on n + 12 vertices.

1. INTRODUCTIONIn the early days of topology, manifolds were of-ten studied via triangulations. The combinatorialstructure makes the computation of various invari-ants possible, and theorems can be proved based onthe assumption of a suitable triangulation. See, forexample, [Kuiper 1979; Moise 1977; Stillwell 1993]for accounts of some main lines in the historical de-velopment. Since the manifolds themselves, and nottheir combinatorial structure, are the real objects ofinterest in topology, there was a growing desire toget away from triangulations. In the 1930's and 40'salgebraic tools gradually replaced the combinatorialones, and to the extent that from this time on therestill was an interest in decomposing a manifold, themore economical CW complexes gained popularity.While triangulations have always remained of in-terest to discrete geometers and geometric and PLtopologists, the emergence of computers has subtlychanged the general situation. It is now possible(at least in principle) to study compact manifoldsand compute their invariants on a machine. But afundamental question naturally arises: How do youpresent the manifold to a computer? It is clear thatsome �nite combinatorial encoding must be used.A decomposition as a CW complex may be elegantand also economical in terms of the number of cells,
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FIGURE 1. Bistellar moves for d = 2 (left) and d = 3 (right).but it is in general di�cult to explain the attach-ing maps to a computer. One needs something likea regular CW complex, where the attaching mapsare determined by the combinatorics of inclusion ofclosed cells. However, the conceptually easiest pre-sentation is as a simplicial complex, say, given as thelist of its facets (maximal faces). Such an encodingis clear and simple, as long as it is not too large.Thus, the matter of the size of a triangulation hastaken on practical signi�cance. It is of interest tosay something about the number of vertices, or thetotal number of faces, of a triangulation, and alsoto explicitly construct minimal or otherwise optimaltriangulations.For earlier work on the topic of minimal triangu-lations see [Altshuler and Steinberg 1974; 1976; Bar-nette and Gannon 1976; Brehm and K�uhnel 1987;Brehm and �Swiatkowski 1993; K�uhnel 1990; 1995;K�uhnel and Bancho� 1983; Walkup 1970]. For algo-rithmic approaches to recognition problems for man-ifolds see the papers [Matveev 1998; Nabutovsky1996; Thompson 1994].The work reported in this paper grew out of adesire to have a computer tool for experimentationwith triangulations. We had three purposes in mind:
1. to be able to start with some triangulation of amanifold and let the computer search for smallertriangulations;
2. to be able to determine heuristically the homeo-morphism type of a manifold and, in particular,to recognize (combinatorial) spheres; and

3. to be able to search for counterexamples to con-jectures, where such examples might be hard to�nd due to their size or complexity.Since to determine the homeomorphism type of amanifold is a delicate and much studied matter, thesecond point needs immediate clari�cation. Whatwe have in mind is a procedure for heuristically com-paring a given test manifold with reference man-ifolds having similar invariants from a library ofstandard manifolds on few vertices, with no guar-antee for success. In future work the combinatorialideas of this paper can hopefully be expanded andcombined with algorithms for computing topologicalinvariants (not only homology, but also fundamen-tal group, characteristic classes, intersection forms,multiplicative structure of cohomology, . . . ) to cre-ate a truly versatile tool for manipulation and iden-ti�cation of manifolds.A computer program, BISTELLAR [Lutz 1999a],was written which repeatedly modi�es a triangula-tion by local so called \bistellar operations". Suchoperations for dimensions 2 and 3 are illustrated inFigure 1; we defer the formal de�nition to Section 2.The program accepts as input a simplicial manifoldM (or any pure simplicial complex) presented viathe list of its facets. It then searches through othertriangulations of M via bistellar moves, using ran-domness controlled by a \simulated annealing" typestrategy, to be explained in Section 3.The program has turned out to be quite useful forthe �rst two purposes. For reasons that will be ex-plained later (searching for counterexamples to the
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\g-conjecture for spheres"), we needed non-PL tri-angulations of the d-sphere (d � 5) of manageablesize. As a stepping stone in the construction we gaveBISTELLAR the task to compute a small triangula-tion of what Rolfsen [Rolfsen 1976, p. 308] calls \theubiquitous Poincar�e homology sphere". As reportedin Section 5 the program produced a triangulationon 16 vertices which seems to be the smallest knowntriangulation of this manifold. It follows from workof Walkup [1970] that any triangulation must haveat least 11 vertices. Thus, it is at the moment im-possible to say where between 11 and 16 the truthabout the optimal number of vertices lies. However,after having run our program over millions of trian-gulations, we are prepared to believe that 16 verticesmight in fact be best possible for this manifold.The 16-vertex triangulation of the Poincar�e spaceis the starting point for a proof that there exist non-PL triangulations of the d-sphere on d+13 verticesfor all d � 5. This is in turn used to show that if anarbitrary d-manifold admits some triangulation onn vertices, then it admits a non-PL triangulation onn+12 vertices (d � 5). Also, the (d+13)-vertex non-PL spheres complement earlier theorems of Barnetteand Gannon [1976] and Brehm and K�uhnel [1987];see Section 6.The search for minimal triangulations using ourprogram has been continued by one of us (Lutz),and has led to several new results. They will bepresented elsewhere [K�ohler and Lutz 1999; K�uhneland Lutz 1999; Lutz 1999d], but we summarize themain �ndings.Combinatorial triangulations were found for� S2 � S2 on 11 vertices,� S3 � S2 on 12 vertices,� S3 � S3 on 13 vertices,� (S2�S2) # (S2�S2) on 12 vertices,� R P4 on 16 vertices.In all these cases, the theoretically minimal numbersof vertices for combinatorial triangulations of thesemanifolds are achieved.The triangulations of S3�S2 on 12 and of S3�S3on 13 vertices are of particular interest, since theyattain the minimal numbers of vertices that any(nonspherical) combinatorial 5- or 6-manifold canhave. They therefore establish that the lower bound

given in [Brehm and K�uhnel 1987] for the numberof vertices of combinatorial d-manifolds is sharp indimensions 5 and 6. For a statement of this boundsee Theorem 8 and the sentence following it.An extended version of the program, BISTEL-LAR EQUIVALENT [Lutz 1999b], was used to de-termine the homeomorphism type of a large numberof manifolds, including all triangulated 3-manifoldsthat have a vertex-transitive automorphism groupon n � 15 vertices [K�ohler and Lutz 1999; Lutz1999d]. The idea behind this is to �rst construct ref-erence triangulations of interesting manifolds withfew vertices. If then a test object has the same ho-mology as a particular reference manifold (this canbe checked with the computer program HOMOL-OGY by Heckenbach [1997]), it was possible in manycases to �nd a bistellar equivalence between the twomanifolds, and thus to show that they are PL home-omorphic. For this we �rst searched for a small tri-angulation of the test object, and then applied fur-ther bistellar ips until, eventually, we were able toshow that the modi�ed test object is combinatori-ally isomorphic to the reference manifold.Naturally, this works particularly well for mani-folds with a unique minimal triangulation, such asPL d-spheres that can be minimally triangulated asthe boundary complex of the (d + 1)-dimensionalsimplex. Therefore the program can be used, atleast as a heuristic, to determine whether a givensimplicial complex is a combinatorial manifold (i.e.,whether all vertex links are PL spheres). Othermanifolds that have a unique minimal triangula-tion are, for example, the twisted sphere product(or 3-dimensional Klein bottle) S2�S1 [Altshulerand Steinberg 1974; 1976; Walkup 1970] and thecomplex projective plane C P2 [K�uhnel and Bancho�1983], in both cases on 9 vertices.The program has not yet achieved any success forthe third purpose, that of �nding counterexamples.At the end of Section 2 we report on some experi-ments of this kind.The paper is structured as follows. In the nextsection we review some de�nitions and some gen-eral facts about triangulations of manifolds, bistel-lar ips and the counting of faces. Section 3 presentsthe program. In Section 4 we discuss the Poincar�e
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homology 3-sphere and construct some highly sym-metric triangulations for input into BISTELLAR.Section 5 presents the 16-vertex triangulation thatwas found. In Section 6 we derive via multiple sus-pensions the non-PL d-spheres on few vertices, anddiscuss how their existence relates to the existingtheoretical bounds for such objects. In Section 7 weconstruct a highly symmetric triangulation of R P3using the same general technique as in Section 4.
2. BACKGROUND AND DEFINITIONSWe collect here some de�nitions and discuss a bitmore the background to this paper, including somegeneral facts concerning triangulations of manifolds.For the general notions of topology we refer to [Still-well 1993] and for PL topology to [Glaser 1970; Hud-son 1969; Rourke and Sanderson 1972].All manifolds in this paper are compact, connectedand closed. Since PL concepts play such a role here,we recall the following de�nitions. A PL sphere is asimplicial complex which is piecewise linearly home-omorphic to the boundary of a simplex. A combina-torial manifold (or PL manifold) is a triangulationof a topological manifold such that the link at everyvertex is a PL sphere.For d 6= 4, a triangulation of the d-sphere is PLin the �rst sense if and only if it is a PL manifoldin the second sense. For d � 3 this follows from thework of Moise [1952] and for d � 5 from the workof Kirby and Siebenmann [1977]; namely, there is aunique PL structure for spheres in these dimensions.For d = 4 this question is not fully understood: Isa combinatorial manifold homeomorphic to the 4-sphere necessarily a PL sphere? Since in dimension4 the category of PL manifolds is equivalent to thesmooth category, the question is equivalent to: Doesthere exist an \exotic" 4-sphere? (We are gratefulto M. Kreck for clarifying this distinction.)It was shown by Rad�o [1925] that all 2-manifoldsand by Moise [1952] that all 3-manifolds can betriangulated; see also [Moise 1977; Stillwell 1993].Since the link of a vertex in a triangulated 2-mani-fold is a polygon and the link of a vertex in a trian-gulated 3-manifold is a 2-sphere (and therefore PL),all 2- and 3-dimensional manifolds are PL.The situation is much more subtle in four dimen-sions. Freedman constructed in 1982 a nondi�er-

entiable analogue of the complex projective plane(see [Freedman and Luo 1989; Freedman and Quinn1990, Sections 8.3 and 10.1]), and this fake C P 2 pro-vides an example of a 4-manifold that cannot betriangulated as a combinatorial manifold. By com-bining work of Casson with that of Freedman (see[Akbulut and McCarthy 1990, p. xvi]) one obtainsexamples of topological 4-manifolds that cannot betriangulated at all. For expositions of these trian-gulation questions and related matters see, for in-stance, [Kirby and Siebenmann 1977, Annex 2 and3; Kuiper 1979; Lashof 1965; Marin 1988; Moise1977; Stillwell 1993].In 1963 Milnor listed seven problems that he con-sidered the toughest and most important in geomet-ric topology (see [Lashof 1965]). Among them is thequestion whether every topological manifold can betriangulated, now known to have a negative answer.Also on the list is the double suspension problemthat asks whether the double suspension of a ho-mology 3-sphere is a topological sphere. This prob-lem was settled by Edwards [Edwards 1975] in 1974for the double suspension of the Mazur homology3-sphere which he proved is a topological 5-sphere(see [Daverman 1986, Chapter 12]). The theoremhas later been generalized:
Theorem 1 [Cannon 1979]. The double suspensionS2Hd of any d-dimensional homology sphere Hd ishomeomorphic to Sd+2.It follows that S2Hd, although homeomorphic toSd+2, has a non-PL structure, since Hd appears asthe link of some 1-simplex in S2Hd. This fact willbe of importance in Section 6.We now specialize the discussion to the conceptsand tools that will be needed in this paper.
Definition 2 [Pachner 1987]. Let M be a simpli-cial d-manifold (or any pure d-dimensional simpli-cial complex), and let A be a (d�i)-face ofM , where0 � i � d. If linkM(A) is the boundary BdB of ani-simplex B that is not a face of M , the operation�A on M de�ned by�A(M) := (M n (A � BdB)) [ ((BdA) �B)is called a bistellar i-move.We also say bistellar operations or bistellar ips forbistellar moves. Bistellar i-moves with i > bd=2c
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are also called reverse (d � i)-moves. Note that a0-move adds a new vertex to a triangulation, whilea reverse 0-move deletes a vertex; see Figure 1. Twopure simplicial complexes are bistellarly equivalent ifthere exists a �nite sequence of bistellar operationsleading from one triangulation to the other (and viceversa).It is easy to see that bistellar equivalence impliesbeing PL homeomorphic, for any simplicial mani-folds. For combinatorial triangulations the converseis also true.
Theorem 3 [Pachner 1987, Theorem 1]. Two combi-natorial manifolds are bistellarly equivalent if andonly if they are PL homeomorphic.De�ne the bistellar ip graph of a triangulable mani-foldM to have as nodes the triangulations ofM (or,more precisely, their isomorphism classes up to rela-beling the vertices), and an edge between two nodesif one triangulation can be obtained via a single bis-tellar ip from the other (and vice versa). If thedimension of M is at most 3, then this graph is con-nected, as shown by the work of Moise [Moise 1952]together with Theorem 3. We will see in Section 6that if d � 5 then this graph has in�nitely many con-nected components. Of course, the manifolds withineach connected component of the bistellar ip graphare pairwise PL homeomorphic. If M can be trian-gulated as a combinatorial manifold, then by Pach-ner's theorem the (in�nite) space of all combinato-rial triangulations of M is divided into equivalenceclasses of pairwise PL homeomorphic triangulationswhich coincide with connected components of thebistellar ip graph. For a discussion of Pachner'stheorem in a topological environment see [Lickorish1997].We now consider counting faces of all dimensions,not just vertices (dimension zero). For more detailsand references to this area see the survey [Billeraand Bj�orner 1997], and for triangulations of spheresand polytopes [Stanley 1985].Let fi be the number of i-dimensional faces ofa triangulated d-manifold M (with f�1 = 1), andde�ne numbers hi byd+1Xi=0 hi xd+1�i = d+1Xi=0 fi�1(x� 1)d+1�i: (2–1)

The sequence (f0; : : : ; fd) is called the f -vector ofM , and (h0; : : : ; hd+1) its h-vector. The correspond-ing g-vector (g0; : : : ; gb(d+1)=2c) is de�ned by g0 = 1and gi = hi � hi�1, for i � 1.It was shown by Klee [1964] for any triangulatedmanifoldM that the face numbers (f0; : : : ; fb(d�1)=2c)determine the remaining numbers (fb(d+1)=2c; : : : ; fd)via linear relations. From (2{1) we see that thismeans that (h0; : : : ; hb(d+1)=2c) determine the com-plete f -vector; therefore so does (g0; : : : ; gb(d+1)=2c).Thus the g-vector of a triangulated manifold con-tains complete information about its f -vector.The relevance of this for our program is the fol-lowing.
Theorem 4 [Pachner 1987, p. 83]. Suppose that M 0 isobtained from M by a bistellar k-move, where 0 �k � b(d�1)=2c. Thengk+1(M 0) = gk+1(M) + 1;gi(M 0) = gi(M) for all i 6= k + 1:Also, if d is even and k = d=2, then gi(M 0) = gi(M)for all i.This means that it is very easy to follow and controlthe successive f -vectors during a sequence of bistel-lar ips. In our program we compute and store theinitial g-vector, which is then updated with a +1(or �1) in position k+1 for each k-move (or reversek-move).
Remark. In the case of odd-dimensional manifoldsthe result implies that the bistellar ip graph is bi-partite| it can be colored by the sum (mod 2) ofthe entries of the g-vector. In even dimensions, d=2-moves do not change the g-vector and sometimeseven lead to a combinatorially isomorphic triangu-lation of a manifold, that is, the bistellar ip graphmay have loops.)The linear relations of Klee take on a particularly at-tractive form if M triangulates a sphere (the Dehn{Sommerville relations):

hi = hd+1�i: (2–2)

If furthermore M is polytopal (i.e., combinatoriallyisomorphic to the boundary complex of a simpli-
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cial convex polytope), then by a theorem of Stanley[Stanley 1980](g0; : : : ; gb(d+1)=2c) is an M-sequence. (2–3)The combinatorial condition of being anM-sequence(M for Macaulay) is de�ned as follows, showing thatit can easily be tested by machine. For integersk; n � 1 there is a unique way of writingn = �akk �+ � ak�1k � 1�+ � � �+ �aii �so that ak > ak�1 > � � � > ai � i � 1. Then de�ne@k(n) = �ak � 1k � 1 �+ �ak�1 � 1k � 2 �+ � � �+ �ai � 1i� 1 �:Also let @k(0) = 0. A sequence (n0; n1; : : :) of non-negative integers is an M-sequence ifn0 = 1 and @k(nk) � nk�1 for all k � 2.A nontrivial consequence of (2{3) is that gi � 0for polytopal spheres. The \g-theorem" states thatthe conditions (2{2) and (2{3) together characterizethe f -vectors of polytopal spheres. The su�ciencyof these conditions was proved by Billera and Lee[1981].The conjecture to which we wanted BISTELLARto search for counterexamples is the \g-conjecturefor spheres", which states that condition (2{3) isvalid for all triangulated spheres, not just polytopalones. If correct, this would imply a characterizationof the f -vectors of spheres.The g-conjecture can be deduced from known re-sults for all d-spheres up to dimension 4, but is openfor d � 5. Attempts during the last 20 years toprove it have so far been without success. It there-fore seemed to us that the possibility of its falsityshould be considered and tested.In order to look for counterexamples we startedwith non-PL triangulations of the 5- and 6-sphereand let the bistellar ip program search throughthousands of triangulations. This purpose is whatoriginally made us look for small triangulations ofthe Poincar�e 3-sphere and its suspensions; see Sec-tion 6 for a description of the spheres we used tostart the computer search. The bistellar ip pro-gram guarantees by Theorem 3 that all triangula-tions visited during the search are non-PL, and, inparticular, that they are not polytopal. At each stepthe g-vector is updated, as described in Theorem 4,

and tested for being an M-sequence. The parame-ters for the program can be set to put priority oncreating a g-vector that is not an M-sequence (ifpossible), for example a g-vector with some nega-tive entry.So, what was the result? No counterexamples tothe g-conjecture were found. Although no conclu-sions can be drawn, we hope that this is an indica-tion that the conjecture is correct.
3. THE BISTELLAR FLIP PROGRAMThe computer program that will now be presentedperforms walks on the bistellar ip graph of trian-gulations of a manifoldM . By necessity we must re-strict attention to some connected component of thisgraph. For a particular triangulation ofM from thiscomponent (the input) we want to perform bistellarmodi�cations with the objective to obtain \small"(hopefully even minimal), or otherwise sought-after,triangulations of M (within the component). Asan objective function that we want to optimize, wecould take for example the total number of facesof a triangulation. Nevertheless, the sum G of theentries of the g-vector seems to be a more appro-priate objective function, since any up-move|thatis, an i-move with 0 � i � b(d�1)=2c|increases Gby one and any down-move (reverse up-move) de-creases G by one, so that we have good control overG. (If d is even, then d=2-moves do not change G.)In addition to the goal of minimizing the objectivefunction G we perform moves according to priorityrules. Reverse 0-moves are given the highest priorityas they delete a vertex, then come reverse 1-moves,reverse 2-moves, etc. If no further reverse moves areavailable, this might be due to the fact that we haveachieved a global minimum for G within our com-ponent of triangulations. But we can as well havegotten stuck in some local minimum.A concept that is very useful in such situations issimulated annealing [Kirkpatrick et al. 1983]. In acontinuous version of simulated annealing (see [Rin-nooy Kan and Timmer 1989], for instance) one wantsto �nd a global minimum x� 2 R n for a real val-ued objective function f : R n ! R , i.e., x� 2 R nsuch that f(x�) � f(x) for all x 2 R n. Starting atsome initial point y one moves to a randomly pickedneighboring point y0 if �f = f(y0) � f(y) � 0. If
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�f > 0, then we move \uphill" to y0 with probabil-ity exp(��f=�) or otherwise stay put at y. In thenext step a new neighboring point y00 of y0 (or of y ifwe have not moved) is chosen at random and so on.The cooling parameter � > 0 describes how likelyit is to move \uphill" and is usually decreased withtime (the number of steps).We now describe an appropriate annealing-typestrategy for bistellar ips. As soon as we are trappedin a \local" minimum, we perform an up-move. (Up-moves are also performed according to priority rules,such as \perform a (k+1)-move before a k-move".)Sometimes, this already paves the way for furtherreverse moves that lead away from the local mini-mum. But we might also fall back into the samelocal minimum in the following round. After a cer-tain number of up-moves has become necessary (wecall this the relaxation parameter) we start \heatingup" the function G, i.e., for a number of steps givenby the heating parameter we perform only up-moves(as long as this is possible), with the exception thatwe usually do not perform 0-moves, since this wouldblow up the size of the complex too quickly. Thenwe let the system relax until we have to heat upagain. If there is more than one option for movesof a certain priority, we pick one of these optionsrandomly and then execute the move.
An Implementation of the Bistellar Flip ProgramWe start with some triangulation of a d-manifold,represented by the list of its facets, and determineall its faces and compute its f - and g-vector. Next,we check for every (d � i)-face of the triangulationwhether it is contained in precisely i+1 facets. Thecollection of these faces (together with their respec-tive links) form the raw options for bistellar i-moves.If we want to consider proper options for i-moves,then we include only those raw options for i-movesfor which in addition the links satisfy the conditionof being the boundary of an i-simplex that is not aface of the triangulation. This last condition is easyto check.When we determine the raw options at the be-ginning, we have to check for all fi i-faces how of-ten they are included in one of the fd facets. Thisamounts to fi � fd operations. Nevertheless, in thefollowing rounds we do not have to recompute theraw options from scratch, since with any bistellar

ip we simply cut out a ball locally and replace itby another ball. All raw options for faces in the in-terior of the ball that we remove have to be deletedand raw options for the faces in the interior of thenew ball have to be included. Raw options for faceson the common boundary of the balls might alsochange. But altogether, there is only a constantnumber of faces involved in updating the raw op-tions. Finally, to �nd out which of the raw optionsof a given priority are proper options, we have totest the condition on links mentioned above.We wrote the program BISTELLAR in GAP, asall required operations for sets and lists are availablein this computer algebra package [Sch�onert et al.1996]. See sidebar on the next page for an excerptdescribing our ip strategy for 3-manifolds. Forcomplete information about BISTELLAR, see [Lutz1999a].In higher dimensions, the strategy for the optionscan easily be adapted, although it takes time andexperiments to �gure out reasonable parameters forheating and relaxation. (This is a common problemwith simulated annealing algorithms.)
4. THE UBIQUITOUS POINCARÉ HOMOLOGY

3-SPHEREThe �rst example of a nonsimply connected mani-fold having the same homology as the ordinary 3-sphere was found by Poincar�e [1904]. It was con-structed from two solid double tori identi�ed alongtheir boundary surfaces of genus 2. For this andother constructions of this space, see [Rolfsen 1976,p. 244{250 and 308{311; Stillwell 1993, p. 263{266;Weber and Seifert 1933, p. 245]. This manifold,whose existence prompted the 3-dimensional Poin-car�e conjecture, has had an enormous inuence onthe subsequent development of topology. It is dis-cussed in many places; in addition to the sourcesalready mentioned, see, for example, [Dehn 1910;Kirby and Scharlemann 1979; Kneser 1929; Threlfalland Seifert 1931]. We particularly mention [Kirbyand Scharlemann 1979], where eight constructionsof this space are given and proved to be equiva-lent. Also, several of the given references discussthe fact that the fundamental group of the Poincar�ehomology 3-sphere is the binary icosahedral group,of order 120.
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## initial settings ##InputFacets;Compute_RawOptions;Compute_f_and_g_vector;g_min:=g;## parameters ##rounds:=1;relaxation:=0;heating:=0;while rounds <= 50000 do## strategy for options ##options:=[];if heating > 0 thenInclude_MoveOptions(1);if options = [] thenInclude_ReverseMoveOptions(1);heating:=0; fi;heating:=heating-1;elseInclude_ReverseMoveOptions(0);if options = [] thenInclude_ReverseMoveOptions(1);if options = [] thenInclude_MoveOptions(1);if options = [] thenInclude_MoveOptions(0); fi;relaxation:=relaxation+1;if relaxation = 10 thenheating:=15;relaxation:=0; fi; fi; fi; fi;## perform Move or ReverseMove ##ChooseOptionAtRandom;ExecuteOption;Update_RawOptions;Update_f_and_g_vector;Print(rounds," ",g,"\n");if g < g_min theng_min:=g;Print("f-vector = ",f,"\n");Print(facets,"\n"); fi;rounds:=rounds+1;od;Excerpt from the BISTELLAR program in dimen-sion 3, showing our version of the simulated anneal-ing algorithm for performing walks in the bistellarip graph of triangulations of a 3-manifold.

Triangulations of the Poincar�e homology 3-sphereon 17 and 18 vertices were constructed by Brehm.This is mentioned in the proof of Proposition 3.28 of[K�uhnel 1995, p. 55], but no details are given. The�rst task for our bistellar ip program was to try toimprove on this.In order to have a starting triangulation for theprogram at hand, we �rst construct a \small" trian-gulation of the Poincar�e homology 3-sphere. Forthis, we consider the description of the Poincar�esphere as the spherical dodecahedron space whichis the cell decomposition of the solid dodecahedronwhere opposite pentagons on the boundary are iden-ti�ed by a coherent twist of �=5 radians; see [Threl-fall and Seifert 1931] or [Weber and Seifert 1933].We triangulate the boundary of the dodecahedronby introducing a midpoint for every pair of identi�edopposite pentagons (see Figure 2).
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FIGURE 2. A5-invariant triangulation of the Poincar�e3-sphere.Into the interior of the dodecahedron we place anicosahedron in such a way that every vertex of theicosahedron corresponds to a copy of a midpoint ofa pentagon. For every vertex of the icosahedron weform the cone over the respective pentagon. Forevery edge of the icosahedron we include the tetra-hedron that is determined by this edge and the edgethat separates the two corresponding neighboringpentagons. Similarly, for any triangle on the bound-ary of the icosahedron we take the tetrahedron thatis made up by the triangle and the intersection-vertex of the three corresponding neighboring pen-
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tagons. Finally, we triangulate the interior of theicosahedron by introducing a center point and wetake the cone over the boundary of the icosahedronwith respect to the center point. The resulting tri-angulation of the Poincar�e homology 3-sphere has5 + 6 + 12 + 1 = 24 vertices and is invariant underthe 60-element group A5 of rotations of the icosahe-dron and the dodecahedron.Instead of an icosahedron, we could also place abipyramid over a pentagon into the interior of thedodecahedron. In this case, the north and southpole of the bipyramid are joined to the dark shadedsubcomplexes of Figure 3. Then take one vertexof the equatorial pentagon of the bipyramid andlet it correspond to the light shaded subcomplexof Figure 3. By rotations of the cyclic group Z 5we obtain four additional equatorial subcomplexes,and the seven subcomplexes that we have describedcover the boundary of the dodecahedron.
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FIGURE 3. Z 5-invariant triangulation of the Poincar�e3-sphere.
Now, triangulate the space between the bipyramidand the (identi�ed) boundary of the dodecahedronsimilarly as before. For the interior of the bipyramidwe introduce an edge connecting north and southpole and then slice the bipyramid like an orange.This provides us with a Z 5-invariant 18-vertex tri-angulation of the Poincar�e sphere. As was men-tioned, such a triangulation was previously foundby Brehm. By some modi�cation of the identi�ed

boundary it is not too di�cult to obtain nonsym-metric 17-vertex triangulations, but we were unableto reach 16 vertices by hand.
5. A NON-SYMMETRIC TRIANGULATION �3

16 ON 16
VERTICESWe applied the bistellar ip program to both theabove 18-vertex and the 24-vertex triangulation. Af-ter some running time we obtained a 16-vertex tri-angulation.

Theorem 5. There exists a triangulation (without anysymmetries) of the Poincar�e homology 3-sphere on16 vertices with f -vector f = (16; 106; 180; 90).
Proof. The list of facets1 2 4 91 2 4 151 2 6 141 2 6 151 2 9 141 3 4 121 3 4 151 3 7 101 3 7 121 3 10 151 4 9 121 5 6 131 5 6 141 5 8 111 5 8 131 5 11 141 6 13 151 7 8 10

1 7 8 111 7 11 121 8 10 131 9 11 121 9 11 141 10 13 152 3 5 102 3 5 112 3 7 102 3 7 132 3 11 132 4 9 132 4 11 132 4 11 152 5 8 112 5 8 122 5 10 122 6 10 12

2 6 10 142 6 12 152 7 9 132 7 9 142 7 10 142 8 11 152 8 12 153 4 5 143 4 5 153 4 12 143 5 10 153 5 11 143 7 12 133 11 13 143 12 13 144 5 6 74 5 6 144 5 7 15

4 6 7 114 6 10 114 6 10 144 7 11 154 8 9 124 8 9 134 8 10 134 8 10 144 8 12 144 10 11 135 6 7 135 7 9 135 7 9 155 8 9 125 8 9 135 9 10 125 9 10 156 7 11 12

6 7 12 136 10 11 126 12 13 157 8 10 147 8 11 157 8 14 157 9 14 158 12 14 159 10 11 129 10 11 169 10 15 169 11 14 169 14 15 1610 11 13 1610 13 15 1611 13 14 1612 13 14 1513 14 15 16determines a 3-dimensional (pure) simplicial com-plex �316 on 16 vertices with f -vectorf = (16; 106; 180; 90):Since this simplicial complex was obtained by meansof bistellar ips from a triangulation of the Poincar�esphere, it is PL homeomorphic to this space.Alternatively, we can assemble the 90 tetrahedrain the interior of the dodecahedron. Once again,we obtain a triangulation of the solid dodecahedronwhere opposite pentagons on the boundary are iden-ti�ed by a coherent twist of �=5 radians. Figure 4shows the corresponding triangulation of the bound-ary with the respective identi�cations. Vertices 1{11lie on the boundary of the dodecahedron, whereasvertices 12{16 lie in the interior.If a combinatorial manifold has a (combinatorial)symmetry, then the links of the vertices that are
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FIGURE 4. 16-vertex triangulation of the Poincar�e sphere.mapped onto each other must be combinatoriallyequivalent. For �316 the links of the vertices f3; 6g,f10; 13; 14g and f2; 4; 5; 7; 12g are pairwise combi-natorially equivalent within each group, and thereare no other such equivalences. Thus, the automor-phism group of �316 is a subgroup of S2 � S3 � S5.However, none of these 1440 permutations, apartfrom the identity, is in fact a symmetry, and there-fore �316 has trivial automorphism group. �Is there a 15-vertex triangulation of the Poincar�ehomology 3-sphere? It follows from [Walkup 1970,Theorem 4] that at least 11 vertices are needed. (Weare grateful to R. Forman for pointing this out tous.) We let our bistellar ip program run for upto 106 moves with changing relaxation and heatingparameters. From time to time the triangulation�316 appeared or other triangulations on 16 verticeswith larger f -vectors, but never any smaller triangu-lation or any nonequivalent triangulation with thesame f -vector.
Conjecture 6. The triangulation �316 of the Poincar�ehomology 3-sphere has the component-wise minimalf -vector f = (16; 106; 180; 90) for a triangulation ofthis manifold and is the unique triangulation withthis f -vector .The boundary of the identi�ed dodecahedron is aZ -acyclic space with the same fundamental groupas the Poincar�e homology 3-sphere [Bredon 1972,p. 57]. In particular, this 2-dimensional space isnot contractible. What is the minimal number of

vertices of a simplicial complex that is Z -acyclic butnot contractible?By taking the restriction of �316 to the boundaryof the identi�ed dodecahedron we obtain a trian-gulation on 11 vertices. The bistellar ip programbrought this number down to 10. The correspondingf -vector is f = (10; 40; 31). Subsequently anothertriangulation on 10 vertices with f = (10; 40; 31),shown in Figure 5, was found by hand. Its facetsare 1 2 41 2 51 3 61 3 81 3 101 4 8
1 4 91 5 71 5 101 6 71 6 92 3 5

2 3 72 3 82 4 62 4 102 6 72 6 82 8 10
3 5 63 5 93 7 93 7 104 5 64 5 7

4 5 84 7 94 7 105 8 95 8 106 8 9
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FIGURE 5. A Z -acyclic noncontractible complex on10 vertices.
We do not know if 10 vertices is best possible fora complex with these properties.

Remark. Taking instead the restriction of �324 (de-scribed in Section 4; see Figure 2) to the boundary ofthe identi�ed dodecahedron we obtain a triangula-tion on 11 vertices, on which A5 acts transitively onfacets and without stationary points. Its nerve com-plex provides an 11-dimensionalA5-invariant vertex-transitive Z -acyclic simplicial complex on 30 ver-tices [Lutz 1999c].
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6. A SERIES OF NON-PL d-SPHERES ON d+13 VERTICES
FOR d � 5It follows from Theorem 1 that if we suspend �316twice, then we obtain a non-PL 5-sphere. If we sus-pend further, we obtain non-PL spheres of higherdimensions.

Theorem 7. Let d � 5. Then there are non-PL tri-angulations of the d-dimensional sphere on d + 13vertices .
Proof. We �rst show that for d � 5 there exist par-ticularly simple non-PL triangulations of the d-di-mensional sphere on d + 14 vertices. For this, wesuspend �316 (d�3)-times, i.e., we form (d�3)-timesthe join product of �316 with S0. By the associativityof the join product with respect to the PL-structure[Rourke and Sanderson 1972, 2.24(1)],�(� � � ((�316 � S0) � S0) � � � � � S0) � S0�= �316 � (S0 � S0 � � � � � S0 � S0)= �316 � Sd�4:If we take for Sd�4 the boundary complex of the(d�3)-simplex, then the latter simplicial complexhas 16 + (d� 2) vertices. Note also that it has 90 �(d� 2) facets, and that the list of its facets is easilycompiled by concatenation from the list in Section 5of the 90 facets of �316 with the list of all (d�3)-subsets of a (d�2)-set.An improvement of the number of vertices by onecan be obtained if we use Datta's trick to constructone-point suspensions of triangulated manifolds M .(We thank W. K�uhnel for pointing out this trick tous.) The Datta construction is as follows. SuspendM by using two vertices w1 and w2. Then pick avertex v of M and replace the collection of facetsthat contain v by the facets that we obtain from the(d�1)-facets of the link of v by adding as an extravertex either w1 if w2 is already contained in the re-spective (d�1)-facet, or otherwise w2 if w1 is alreadycontained. The reverse procedure to this operationis called starring a vertex in \an edge" in [Bagchiand Datta 1998, Def. 9]. The authors of that paperremark that this generalized bistellar operation doesnot change the PL homeomorphism type of the sus-pension ifM is a manifold (or a pseudomanifold). Ifwe take (d�3)-times the one point Datta-suspension

of �316, then we obtain a non-PL d-sphere with d+13vertices. �Theorem 7 complements the following two results,which show that triangulated manifolds with \few"vertices must be PL spheres.
Theorem 8. Let M be a triangulated d-manifold on nvertices .(a) [Barnette and Gannon 1976] If n < d + 6 andd � 5, then M is a PL sphere.(b) [Brehm and K�uhnel 1987] If n < 3dd=2e+3 andM is combinatorial , then M is a PL sphere.Brehm and K�uhnel [1987] also show that if n =3d=2+3, thenM is either a PL d-sphere or a \man-ifold like a projective plane" (the latter case canoccur only for d = 2, 4, 8 or 16). The followingconsequence of Theorem 7 shows that the assump-tion \combinatorial" can not be removed from theBrehm{K�uhnel theorem.
Corollary 9. There exist non-PL d-spheres with n �3d=2 + 3 vertices for d � 19.
Question 10. Are there non-PL d-spheres for d � 5with less than d+ 13 vertices?We tried on this question with BISTELLAR for d =5. Starting with the (ordinary) double suspensionwith 20 vertices of the 16-vertex triangulation of thePoincar�e homology 3-sphere, we were able to getdown to 18 vertices, but not further. The f -vectorof the smallest non-PL 5-sphere that we found isf = (18; 139; 503; 904; 783; 261).We next show that for d � 5 there exists to anytriangulation of a d-manifold M a non-PL triangu-lation of M with few additional vertices.
Theorem 11. Let M be a topological d-manifold , ford � 5, that can be triangulated with n vertices . Thenthere are non-PL triangulations of M with n + 12vertices .Proof: Let M be a simplicial d-manifold with nvertices and d � 5. If the triangulation of M isnon-PL, then nothing has to be done. So assumethat M is combinatorial. Let (by Theorem 7) �dbe a simplicial non-PL sphere on d + 13 vertices.Then there exists a vertex v of �d for which thecorresponding link is not a combinatorial sphere.Choose a facet of �d that is not contained in the
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star of v and delete this facet from �d. Also deletesome facet from M and glue the remaining com-plexes together along the boundaries of the deletedsimplices. The resulting manifold is the connectedsum �d #M . Topologically, �d #M is homeomor-phic toM , but on the PL level it provides a non-PLtriangulation of M , since link�d(v) = linkM(v). Wecount the vertices of �d#M . The complexesM and�d contribute n and d+13 vertices respectively. Bythe identi�cation of the boundaries of the two d-simplices, we loose d+1 vertices. Thus, �d#M hasn+ (d+ 13)� (d+ 1) = n+ 12 vertices. 2Finally, we prove the result on connected compo-nents of the bistellar ip graph referred to in Sec-tion 2.
Theorem 12. Let M be a triangulable manifold of di-mension d � 5. Then there are in�nitely many con-nected components of the bistellar ip graph of M .
Proof. LetH be any homology 3-sphere with nontriv-ial fundamental group �1(H), such as the Poincar�ehomology 3-sphere. We construct in three steps in-�nitely many triangulations of M that cannot pair-wise be reached from one another by bistellar ips.First, we form k-fold connected sums of H . Theseconnected sums are again homology spheres, never-theless they are pairwise nonhomeomorphic for dif-ferent values of k. This is due to the fact that thefundamental group of a connected sumM#N of twomanifolds M and N , with (nontrivial) fundamentalgroups �1(M) and �1(N) respectively, is the freeproduct �1(M) � �1(N). Thus the connected sumsH#k and H#l have distinct fundamental groups ifk 6= l.In the second step, we take for k 6= l the join prod-ucts of the boundary complex of a (d�3)-simplexwith H#k and H#l. The resulting simplicial com-plexes, Sdk respectively Sdl , are non-PL spheres (asin the proof of Theorem 7) that have the homologyspheres H#k and H#l sitting in their respective tri-angulations as the links of some (d�4)-faces. Fromthe combinatorics of the join construction it is easyto see that the links of (d�4)-faces in Sdk are all non-homeomorphic to H#l, and the links of (d�4)-facesin Sdl are all nonhomeomorphic to H#k. Now, focuson a copy of H#k that sits in Sdk as the link of a(d�4)-face F . If we apply any bistellar ip to Sdk ,

then this operation may alter but not delete thiscopy of H#k. This is so, because the de�nition ofbistellar ips shows that the face F , or any subfaceof F , cannot be the pivot face of a bistellar move,and the link of F will itself be altered at most bya bistellar move and thus its homeomorphism typeis preserved. The same argument used in reverseshows that the bistellar ip will not produce H#l asthe link of some (d�4)-faces in Sdk . It thus followsthat Sdl cannot be reached from Sdk via bistellar ips,and vice versa.Finally, we will use the in�nite number of exam-ples of pairwise nonbistellarly equivalent triangula-tions of d-spheres Sdk to obtain an in�nite numberof pairwise nonbistellarly equivalent triangulationsof M . For this, let � be the set of those spheres Sdksuch that H#k is not homeomorphic to the link ofany of the (d�4)-faces of M . The set � is in�nite,since there are only �nitely many links inM . Then,just as in the proof of Theorem 11, form connectedsums Sdk #M of the spheres Sdk 2 � with M in away that guarantees that H#k remains as the link ofsome (d�4)-face of Sdk #M . By the same argumentas in the second step, Sdk #M and Sdl #M cannotbe reached from one another via bistellar ips. �
7. AN A5-INVARIANT TRIANGULATION of IRIP3 WITH

29 VERTICESThe idea of coherent twists on the dodecahedroncan be used to create other interesting 3-manifoldsbesides the spherical dodecahedron space. For in-stance, Weber and Seifert [1933] constructed a hy-perbolic dodecahedron space, a manifold with ho-mology H� = (Z ;Z 35; 0;Z ), by again identifying theboundary of the solid dodecahedron, this time witha coherent twist of 3�=5 instead of �=5 radians.If we twist by 5�=5, we obtain R P3 . Figure 6gives a triangulation of the identi�ed boundary forthe latter manifold (where the identi�ed boundaryis the nonorientable surface R P2).As done previously for the spherical dodecahedronspace, we place an icosahedron with additional cen-ter point into the interior of the dodecahedron. Thisyields an A5-invariant triangulation of R P 3 with 29vertices. Moreover, there is also an A5-invariant tri-angulation of R P3 on 6 + 12 + 1 vertices that isde�ned by placing an icosahedron with center point
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FIGURE 6. 29-vertex triangulation of R P3 .into the interior of an outer icosahedron with identi-�cations on the boundary by reection at the origin.For a vertex-minimal triangulation of R P3 on 11 ver-tices see [Brehm and �Swiatkowski 1993; K�ohler andLutz 1999; Walkup 1970].
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