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Abstract

We prove that, for simple modules M and N over a quantum affine algebra, their tensor
product M⊗N has a simple head and a simple socle if M⊗M is simple. A similar result
is proved for the convolution product of simple modules over quiver Hecke algebras.

Introduction

Let g be a complex simple Lie algebra and Uq(g) the associated quantum group. The
multiplicative property of the upper global basis B of the negative half U−q (g) was investigated

in [BZ93, Lec03]. Set qZB = {qnb | b ∈ B, n ∈ Z}. In [BZ93], Berenstein and Zelevinsky
conjectured that, for b1, b2 ∈ B, the product b1b2 belongs to qZB if and only if b1 and b2
q-commute (i.e. b2b1 = qnb1b2 for some n ∈ Z). However, Leclerc found examples of b ∈ B such
that b2 6∈ qZB [Lec03].

On the other hand, the algebra U−q (g) is categorified by quiver Hecke algebras [KL09, KL11,
Rou08] and also by quantum affine algebras [HL10, HL13, KKK13a, KKK13b]. In this context,
the products in U−q (g) correspond to the convolution or the tensor products in quiver Hecke
algebras or quantum affine algebras. The upper global basis corresponds to the set of isomorphism
classes of simple modules over the quiver Hecke algebras or the quantum affine algebras [Ari96,
Rou12, VV11] under suitable conditions. Then Leclerc conjectured several properties of products
of upper global bases and also convolutions and tensor products of simple modules. The purpose
of this paper is to give an affirmative answer to some of his conjectures.

In this introduction, we state our results in the case of modules over quantum affine algebras.
Similar results hold also for quiver Hecke algebras (see § 3.1).

Let g be an affine Lie algebra and U ′q(g) the associated quantum affine algebra. A simple
U ′q(g)-module M is called real if M ⊗M is also simple.

Conjecture [Lec03, Conjecture 3]. Let M and N be finite-dimensional simple U ′q(g)-modules.
We assume, further, that M is real. Then M ⊗ N has a simple socle S and a simple head H.
Moreover, if S and H are isomorphic, then M ⊗N is simple.

In this paper we shall give an affirmative answer to this conjecture (Theorem 3.12 and
Corollary 3.16). In the course of the proof, R-matrices play an important role. Indeed, the
simple socle of M ⊗N coincides with the image of the renormalized R-matrix r

N,M
: N ⊗M →

M ⊗N and the simple head of M ⊗N coincides with the image of the renormalized R-matrix
r
M,N

: M ⊗N → N ⊗M .
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Denoting by M �N the head of M ⊗N , we also prove that N 7→ M �N is an automorphism
of the set of the isomorphism classes of simple U ′q(g)-modules (Corollary 3.14). The inverse is
given by N 7→ N �∗M , where ∗M is the right dual of M . It is an analogue of [Lec03, Conjecture 2]
originally stated for global bases.

1. Quiver Hecke algebras

In this section, we briefly recall the basic facts on quiver Hecke algebras and R-matrices
following [KKK13a]. Since the grading of quiver Hecke algebras is not important in this paper,
we ignore the grading. Throughout the paper, modules mean left modules.

1.1 Convolutions
We recall the definition of quiver Hecke algebras. Let k be a field. Let I be an index set. Let Q
be the free Z-module with a basis {αi}i∈I . Set Q+ =

∑
i∈I Z>0αi. For β =

∑n
k=1 αik ∈ Q+, we

set ht(β) = n. For n ∈ Z>0 and β ∈ Q+ such that ht(β) = n, we set

Iβ = {ν = (ν1, . . . , νn) ∈ In | αν1 + · · ·+ ανn = β}.

Let us take a family of polynomials (Qij)i,j∈I in k[u, v] which satisfy

Qij(u, v) = Qji(v, u) for any i, j ∈ I,

Qii(u, v) = 0 for any i ∈ I.

For i, j ∈ I, we set

Qij(u, v, w) =
Qij(u, v)−Qij(w, v)

u− w
∈ k[u, v, w].

We denote by Sn = 〈s1, . . . , sn−1〉 the symmetric group on n letters, where si := (i, i+ 1) is
the transposition of i and i+ 1. Then Sn acts on In by place permutations.

Definition 1.1. For β ∈ Q+ with ht(β) = n, the quiver Hecke algebra R(β) at β associated with a
matrix (Qij)i,j∈I is the k-algebra generated by the elements {e(ν)}ν∈Iβ , {xk}16k6n, {τk}16k6n−1
satisfying the following defining relations:

e(ν)e(ν ′) = δν,ν′e(ν),
∑
ν∈Iβ

e(ν) = 1,

xkxm = xmxk, xke(ν) = e(ν)xk,

τme(ν) = e(sm(ν))τm, τkτm = τmτk if |k −m| > 1,

τ2k e(ν) = Qνk,νk+1
(xk, xk+1)e(ν),

(τkxm − xsk(m)τk)e(ν) =


−e(ν) if m = k and νk = νk+1,

e(ν) if m = k + 1 and νk = νk+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)e(ν) =

{
Qνk,νk+1

(xk, xk+1, xk+2) if νk = νk+2,

0 otherwise.

For an element w of the symmetric group Sn, let us choose a reduced expression w =
si1 · · · si` , and set

τw = τi1 · · · τi` .
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In general, this depends on the choice of reduced expressions w. Then we have the PBW
decomposition

R(β) =
⊕

ν∈Iβ ,w∈Sn

k[x1, . . . , xn]e(ν)τw. (1.1)

We denote by R(β)-mod the category of R(β)-modules M such that M is finite-dimensional over
k and the action of xk on M is nilpotent for any k.

For an R(β)-module M , the dual space

M∗ := Homk(M,k)

is endowed with the R(β)-module structure given by

(r · f)(u) := f(ψ(r)u) for f ∈M∗, r ∈ R(β), u ∈M,

where ψ denotes the k-algebra anti-involution on R(β) which fixes the generators {e(ν)}ν∈Iβ ,
{xk}16k6n, {τk}16k6n−1.

For β, γ ∈ Q+ with ht(β) = m and ht(γ) = n, set

e(β, γ) =
∑

ν∈Im+n,
(ν1,...,νm)∈Iβ ,

(νm+1,...,νm+n)∈Iγ

e(ν) ∈ R(β + γ).

Then e(β, γ) is an idempotent. Let

R(β)⊗R(γ) → e(β, γ)R(β + γ)e(β, γ)

be the k-algebra homomorphism given by

e(µ)⊗ e(ν) 7→ e(µ ∗ ν) (µ ∈ Iβ, ν ∈ Iγ),

xk ⊗ 1 7→ xke(β, γ) (1 6 k 6 m),

1⊗ xk 7→ xm+ke(β, γ) (1 6 k 6 n),

τk ⊗ 1 7→ τke(β, γ) (1 6 k < m),

1⊗ τk 7→ τm+ke(β, γ) (1 6 k < n).

Here µ ∗ ν is the concatenation of µ and ν, i.e.

µ ∗ ν = (µ1, . . . , µm, ν1, . . . , νn).

For an R(β)-module M and an R(γ)-module N , we define their convolution product M ◦N by

M ◦N = R(β + γ)e(β, γ) ⊗
R(β)⊗R(γ)

(M ⊗N). (1.2)

Set m = ht(β) and n = ht(γ). Set

Sm,n := {w ∈ Sm+n | w|[1,m] and w|[m+1,m+n] are increasing}.

Here [a, b] := {k ∈ Z | a 6 k 6 b}. Then we have

M ◦N =
⊕

w∈Sm,n

τw(M ⊗N). (1.3)

We also have (see [LV11, Theorem 2.2(2)])

(M ◦N)∗ ' N∗ ◦M∗. (1.4)
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1.2 R-matrices for quiver Hecke algebras
1.2.1 Intertwiners. For ht(β) = n and 1 6 a < n, we define ϕa ∈ R(β) by

ϕae(ν) =



(τaxa − xaτa)e(ν)

= (xa+1τa − τaxa+1)e(ν)

= (τa(xa − xa+1) + 1)e(ν)

= ((xa+1 − xa)τa − 1)e(ν) if νa = νa+1,

τae(ν) otherwise.

(1.5)

They are called the intertwiners.

Lemma 1.2.

(i) ϕ2
ae(ν) = (Qνa,νa+1(xa, xa+1) + δνa,νa+1)e(ν).

(ii) {ϕk}16k<n satisfies the braid relation.

(iii) For w ∈ Sn, let w = sa1 · · · sa` be a reduced expression for w and set ϕw = ϕa1 · · ·ϕa` . Then
ϕw does not depend on the choice of reduced expressions for w.

(iv) For w ∈ Sn and 1 6 k 6 n, we have ϕwxk = xw(k)ϕw.

(v) For w ∈ Sn and 1 6 k < n, if w(k + 1) = w(k) + 1, then ϕwτk = τw(k)ϕw.

For m,n ∈ Z>0, let us denote by w[m,n] the element of Sm+n defined by

w[m,n](k) =

{
k + n if 1 6 k 6 m,

k −m if m < k 6 m+ n.
(1.6)

Let β, γ ∈ Q+ with ht(β) = m, ht(γ) = n, and let M be an R(β)-module and N an R(γ)-
module. Then the map M ⊗N → N ◦M given by u⊗v 7−→ ϕw[n,m](v⊗u) is R(β)⊗R(γ)-linear
by the above lemma, and it extends to an R(β + γ)-module homomorphism

RM,N : M ◦N −−→ N ◦M. (1.7)

Then we obtain the following commutative diagrams:

L ◦M ◦N
RL,M //

RL,M◦N ))

M ◦ L ◦N
RL,N
��

M ◦N ◦ L

and

L ◦M ◦N
RM,N //

RL◦M,N ))

L ◦N ◦M
RL,N
��

N ◦ L ◦M

(1.8)

1.2.2 Spectral parameters.

Definition 1.3. For β ∈ Q+, the quiver Hecke algebra R(β) is called symmetric if Qi,j(u, v)
is a polynomial in u − v for all i, j ∈ supp(β). Here, we set supp(β) = {ik | 1 6 k 6 n} for
β =

∑n
k=1 αik .

Assume that the quiver Hecke algebra R(β) is symmetric. Let z be an indeterminate, and
let ψz be the algebra homomorphism

ψz : R(β) → k[z]⊗R(β)

given by

ψz(xk) = xk + z, ψz(τk) = τk, ψz(e(ν)) = e(ν).
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For an R(β)-module M , we denote by Mz the (k[z]⊗R(β))-module k[z]⊗M with the action
of R(β) twisted by ψz. Namely,

e(ν)(a⊗ u) = a⊗ e(ν)u,

xk(a⊗ u) = (za)⊗ u+ a⊗ (xku),

τk(a⊗ u) = a⊗ (τku)

(1.9)

for ν ∈ Iβ, a ∈ k[z] and u ∈ M . For u ∈ M , we sometimes denote by uz the corresponding
element 1⊗ u of the R(β)-module Mz.

For a non-zero M ∈ R(β)-mod and a non-zero N ∈ R(γ)-mod,

let s be the order of zero of RMz ,N : Mz ◦ N −−→ N ◦Mz, i.e. the
largest non-negative integer such that the image of RMz ,N is contained
in zs(N ◦Mz).

(1.10)

Note that such an s exists because RMz ,N does not vanish [KKK13a, Proposition 1.4.4(iii)].

Definition 1.4. Assume that R(β) is symmetric. For a non-zero M ∈ R(β)-mod and a non-zero
N ∈ R(γ)-mod, let s be an integer as in (1.10). We define

r
M,N

: M ◦N → N ◦M

by
r
M,N

= (z−sRMz ,N )|z=0,

and call it the renormalized R-matrix.

By the definition, the renormalized R-matrix r
M,N

never vanishes.

We define also
r
N,M

: N ◦M → M ◦N
by

r
N,M

= ((−z)−tRN,Mz)|z=0,

where t is the multiplicity of zero of RN,Mz .
Note that if R(β) and R(γ) are symmetric, then s coincides with the multiplicity of zero of

RM,Nz , and (z−sRMz ,N )|z=0 = ((−z)−sRM,Nz)|z=0. Indeed, we have

RMz1 ,Nz2
((u)z1 ⊗ (v)z2) = ϕw[n,m]((v)z2 ⊗ (u)z1)

∈
∑
w,u′,v′

k[z1 − z2]τw((v′)z2 ⊗ (u′)z1) (1.11)

for u ∈M and v ∈ N . Here w ranges over

Sn,m := {w ∈ Sm+n | w|[1,n] and w|[n+1,n+m] are strictly increasing}

and v′ ∈ N and u′ ∈M . Hence, r
M,N

is well defined whenever at least one of R(β) and R(γ) is
symmetric.

The proof of (1.11) will be given later in § 4.

2. Quantum affine algebras

In this section, we briefly review the representation theory of quantum affine algebras
following [AK97, Kas02]. When concerned with quantum affine algebras, we take the algebraic
closure of C(q) in

⋃
m>0C((q1/m)) as a base field k.
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2.1 Integrable modules

Let I be an index set and A = (aij)i,j∈I be a generalized Cartan matrix of affine type.

We choose 0 ∈ I as the leftmost vertices in the tables in [Kac90, pp. 54, 55] except in the

A
(2)
2n case where we take the longest simple root as α0. Set I0 = I\{0}.

The weight lattice P is given by

P =

(⊕
i∈I

ZΛi

)
⊕ Zδ,

and the simple roots are given by

αi =
∑
j∈I

ajiΛj + δ(i = 0)δ.

The weight δ is called the imaginary root. There exist di ∈ Z>0 such that

δ =
∑
i∈I

diαi.

Note that di = 1 for i = 0. The simple coroots hi ∈ P∨ := HomZ(P,Z) are given by

〈hi,Λj〉 = δij , 〈hi, δ〉 = 0.

Hence we have 〈hi, αj〉 = aij .

Let c =
∑

i∈I cihi be a unique element such that ci ∈ Z>0 and

Z c =

{
h ∈

⊕
i∈I

Zhi
∣∣∣∣ 〈h, αi〉 = 0 for any i ∈ I

}
.

Let us take a Q-valued symmetric bilinear form (• , •) on P such that

〈hi, λ〉 =
2(αi, λ)

(αi, αi)
and (δ, λ) = 〈c, λ〉 for any λ ∈ P .

Let q be an indeterminate. For each i ∈ I, set qi = q(αi,αi)/2.

Definition 2.1. The quantum group Uq(g) associated with (A,P ) is the k-algebra generated by
ei, fi (i ∈ I) and qλ (λ ∈ P ) satisfying the following relations :

q0 = 1, qλqλ
′

= qλ+λ
′

for λ, λ′ ∈ P,
qλeiq

−λ = q(λ,αi)ei, qλfiq
−λ = q−(λ,αi)fi for λ ∈ P, i ∈ I,

eifj − fjei = δij
Ki −K−1i
qi − q−1i

where Ki = qαi ,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

e
1−aij−r
i eje

r
i = 0 if i 6= j,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

f
1−aij−r
i fjf

r
i = 0 if i 6= j.
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Here, we set [n]i = qni − q
−n
i /qi − q−1i , [n]i! =

∏n
k=1[k]i and

[
m
n

]
i

= [m]i!/[m− n]i![n]i! for
each n ∈ Z>0, i ∈ I and m > n.

We denote by U ′q(g) the subalgebra of Uq(g) generated by ei, fi, K
±1
i (i ∈ I), and call it a

quantum affine algebra. The algebra U ′q(g) has a Hopf algebra structure with the coproduct:

∆(Ki) = Ki ⊗Ki,

∆(ei) = ei ⊗K−1i + 1⊗ ei,
∆(fi) = fi ⊗ 1 +Ki ⊗ fi.

(2.1)

Set

Pcl = P/Zδ

and call it the classical weight lattice. Let cl : P → Pcl be the projection. Then Pcl =
⊕

i∈I Z cl(Λi).
Set P 0

cl = {λ ∈ Pcl | 〈c, λ〉 = 0} ⊂ Pcl.
A U ′q(g)-module M is called an integrable module if:

(a) M has a weight space decomposition

M =
⊕
λ∈Pcl

Mλ,

where Mλ = {u ∈M | Kiu = q
〈hi,λ〉
i u for all i ∈ I};

(b) the actions of ei and fi on M are locally nilpotent for any i ∈ I.

Let us denote by U ′q(g)-mod the abelian tensor category of finite-dimensional integrable
U ′q(g)-modules.

If M is a simple module in U ′q(g)-mod, then there exists a non-zero vector u ∈M of weight
λ ∈ P 0

cl such that λ is dominant (i.e. 〈hi, λ〉 > 0 for any i ∈ I0) and all the weights of M lie
in λ −

∑
i∈I0 Z>0αi. We say that λ is the dominant extremal weight of M and u is a dominant

extremal vector of M . Note that a dominant extremal vector of M is unique up to a constant
multiple.

Let z be an indeterminate. For a U ′q(g)-module M , let us denote by Mz the module
k[z, z−1]⊗M with the action of U ′q(g) given by

ei(uz) = zδi,0(eiu)z, fi(uz) = z−δi,0(fiu)z, Ki(uz) = (Kiu)z.

Here, for u ∈M , we denote by uz the element 1⊗ u ∈ k[z, z−1]⊗M .

2.2 R-matrices
We recall the notion of R-matrices [Kas02, § 8]. Let us choose the following universal R-matrix.
Let us take a basis {Pν}ν of U+

q (g) and a basis {Qν}ν of U−q (g) dual to each other with respect
to a suitable coupling between U+

q (g) and U−q (g). Then for U ′q(g)-modules M and N define

Runiv
MN (u⊗ v) = q(wt(u),wt(v))

∑
ν

Pνv ⊗Qνu, (2.2)

so that Runiv
MN gives a U ′q(g)-linear homomorphism from M ⊗ N to N ⊗M provided that the

infinite sum has a meaning.
Let M and N be U ′q(g)-modules in U ′q(g)-mod, and let z1 and z2 be indeterminates.

Then Runiv
Mz1 ,Nz2

converges in the (z2/z1)-adic topology. Hence we obtain a morphism of
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k[[z2/z1]]
⊗

k[z2/z1]
k[z±11 , z±12 ]⊗ U ′q(g)-modules

Runiv
Mz1 ,Nz2

: k[[z2/z1]] ⊗
k[z2/z1]

(Mz1 ⊗Nz2) → k[[z2/z1]] ⊗
k[z2/z1]

(Nz2 ⊗Mz1).

If there exist a ∈ k((z2/z1)) and a k[z±11 , z±12 ]⊗ U ′q(g)-linear homomorphism

R : Mz1 ⊗Nz2 → Nz2 ⊗Mz1

such that Runiv
Mz1 ,Nz2

= aR, then we say that Runiv
Mz1 ,Nz2

is rationally renormalizable.

Now assume further that M and N are non-zero. Then we can choose R so that, for any
c1, c2 ∈ k×, the specialization of R at z1 = c1, z2 = c2,

R|z1=c1,z2=c2 : Mc1 ⊗Nc2 → Nc2 ⊗Mc1 ,

does not vanish. Such an R is unique up to a multiple of k[(z1/z2)
±1]× =

⊔
n∈Z k×zn1 z

−n
2 . We

write

r
M,N

:=R|z1=z2=1 : M ⊗N → N ⊗M,

and call it the renormalized R-matrix. The renormalized R-matrix r
M,N

is well defined up to

a constant multiple when Runiv
Mz1 ,Nz2

is rationally renormalizable. By the definition, r
M,N

never

vanishes.
Now assume that M1 and M2 are simple U ′q(g)-modules in U ′q(g)-mod. Then the universal R-

matrix Runiv
(M1)z1 ,(M2)z2

is rationally renormalizable. More precisely, letting u1 and u2 be dominant

extremal weight vectors of M1 and M2, respectively, there exists a(z2/z1) ∈ k[[z2/z1]]
× such that

Runiv
(M1)z1 ,(M2)z2

((u1)z1 ⊗ (u2)z2) = a(z2/z1)((u2)z2 ⊗ (u1)z1).

Then Rnorm
M1,M2

:= a(z2/z1)
−1Runiv

(M1)z1 ,(M2)z2
is a unique k(z1, z2)⊗ U ′q(g)-module homomorphism

Rnorm
M1,M2

: k(z1, z2) ⊗
k[z±1

1 ,z±1
2 ]

((M1)z1 ⊗ (M2)z2) −−→ k(z1, z2) ⊗
k[z±1

1 ,z±1
2 ]

((M2)z2 ⊗ (M1)z1) (2.3)

satisfying

Rnorm
M1,M2

((u1)z1 ⊗ (u2)z2) = (u2)z2 ⊗ (u1)z1 . (2.4)

Note that k(z1, z2)⊗k[z±1
1 ,z±1

2 ] ((M1)z1 ⊗ (M2)z2) is a simple k(z1, z2)⊗U ′q(g)-module [Kas02,

Proposition 9.5]. We call Rnorm
M1,M2

the normalized R-matrix.

Let dM1,M2(u) ∈ k[u] be a monic polynomial of the smallest degree such that the image
of dM1,M2(z2/z1)R

norm
M1,M2

is contained in (M2)z2 ⊗ (M1)z1 . We call dM1,M2(u) the denominator

of Rnorm
M1,M2

. Then we have

dM1,M2(z2/z1)R
norm
M1,M2

: (M1)z1 ⊗ (M2)z2 −−→ (M2)z2 ⊗ (M1)z1 , (2.5)

and the renormalized R-matrix

r
M1,M2

: M1 ⊗M2 −−→ M2 ⊗M1

is equal to the specialization of dM1,M2(z2/z1)R
norm
M1,M2

at z1 = z2 = 1 up to a constant
multiple.
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Note that Runiv satisfies the following properties. For M , M1, M2, N , N1, N2 in U ′q(g)-mod,
the diagrams

M1 ⊗M2 ⊗N
M1⊗Runiv

M2,N

//

Runiv
M1⊗M2,N

++
M1 ⊗N ⊗M2

Runiv
M1,N

⊗M2

// N ⊗M1 ⊗M2,

M ⊗N1 ⊗N2
Runiv
M,N1

⊗N2

//

Runiv
M,N1⊗N2

++
N1 ⊗M ⊗N2

N1⊗Runiv
M,N2

// N1 ⊗N2 ⊗M

commute. Hence, ifRuniv
(M1)z1 ,Nz2

andRuniv
(M2)z1 ,Nz2

are rationally renormalizable, thenRuniv
(M1⊗M2)z1 ,Nz2

is also rationally renormalizable. Moreover, we have

(r
M1,N

⊗M2) ◦ (M1 ⊗ r
M2,N

) = c r
M1⊗M2,N

for some c ∈ k. (2.6)

Note that c may vanish. In particular, if M1, M2 and N are simple modules in U ′q(g)-mod, then

Runiv
(M1⊗M2)z1 ,Nz2

is rationally renormalizable.

3. Simple heads and socles of tensor products

In this section we give a proof of the conjecture in the Introduction for the quiver Hecke algebra
case and the quantum affine algebra case.

3.1 Quiver Hecke algebra case
We first discuss the quiver Hecke algebra case.

Lemma 3.1. Let βk ∈ Q+ and Mk ∈ R(βk)-mod (k = 1, 2, 3). Let X be an R(β1 +β2)-submodule
of M1◦M2 and Y an R(β2+β3)-submodule of M2◦M3 such that X◦M3 ⊂M1◦Y as submodules
of M1 ◦M2 ◦M3. Then there exists an R(β2)-submodule N of M2 such that X ⊂ M1 ◦N and
N ◦M3 ⊂ Y .

Proof. Set nk = ht(βk). Set N = {u ∈M2 | u⊗M3 ⊂ Y }. Then N is the largest R(β2)-submodule
of M2 such that N ◦M3 ⊂ Y . Let us show that X ⊂M1 ◦N . Let us take a basis {va}a∈A of M1.

By (1.3), we have

M1 ◦M2 =
⊕

w∈Sn1,n2

τw(M1 ⊗M2).

Hence, any u ∈ X can be uniquely written as

u =
∑

w∈Sn1,n2 ,a∈A
τw(va ⊗ ua,w)

with ua,w ∈M2. Then, for any s ∈M3, we have

u⊗ s =
∑

w∈Sn1,n2 , a∈A
τw(va ⊗ ua,w ⊗ s) ∈ X ◦M3 ⊂M1 ◦ Y.
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Since
M1 ◦ Y =

⊕
w∈Sn1,n2+n3

τw(M1 ⊗ Y )

and Sn1,n2 ⊂ Sn1,n2+n3 , we have

ua,w ⊗ s ∈ Y for any a ∈ A and w ∈ Sn1,n2 .

Therefore we have ua,w ∈ N . 2

Theorem 3.2. Let β, γ ∈ Q+ and M ∈ R(β)-mod and N ∈ R(γ)-mod. We assume, further, the
following condition:

(a) R(β) is symmetric and r
M,M

∈ k idM◦M ;

(b) M is non-zero;

(c) N is a simple R(γ)-module.

(3.1)

Then:

(i) M ◦ N has a simple socle and a simple head. Similarly, N ◦M has a simple socle and a
simple head;

(ii) moreover, Im(r
N,M

) is equal to the socle of M ◦ N and also equal to the head of N ◦M .

Similarly, Im(r
M,N

) is equal to the socle of N ◦M and to the head of M ◦N .

In particular, M is a simple module.

Proof. Let us show that Im(r
N,M

) is a unique simple submodule of M ◦ N . Let S ⊂ M ◦ N
be an arbitrary non-zero R(β + γ)-submodule. Let m and m′ be the multiplicity of zero of
RN,(M)z : N ◦(M)z → (M)z◦N and RM,(M)z : M ◦(M)z → (M)z◦M at z = 0, respectively. Then

by the definition, r
N,M

= (z−mRN,(M)z)|z=0 : N ◦M → M ◦N and r
M,M

= (z−m
′
RM,(M)z)|z=0 :

M ◦M → M ◦M . Now we have a commutative diagram

S ◦ (M)z
z−m−m

′
RS,(M)z //

��

��

(M)z ◦ S
��

��
M ◦N ◦ (M)z

M◦z−mRN,(M)z //M ◦ (M)z ◦N
z−m

′
RM,(M)z◦N // (M)z ◦M ◦N

Therefore z−m−m
′
RS,(M)z : S ◦ (M)z → (M)z ◦ S is well defined, and we obtain the following

commutative diagram by specializing the above diagram at z = 0:

S ◦M //
��

��

M ◦ S
��

��
M ◦N ◦M

M◦r
N,M //M ◦M ◦N idM◦M◦N //M ◦M ◦N

Here, we have used the assumption that r
M,M

is equal to idM◦M up to a constant multiple.

Hence we obtain (M ◦ r
N,M

)(S ◦M) ⊂M ◦ S, or equivalently

S ◦M ⊂M ◦ (r
N,M

)−1(S).

By the preceding lemma, there exists an R(γ)-submodule K of N such that S ⊂ M ◦ K and
K ◦M ⊂ (r

N,M
)−1(S). By the first inclusion, we have K 6= 0. Since N is simple, we have K = N
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and we obtain N◦M ⊂ (r
N,M

)−1(S), or equivalently, Im(r
N,M

) ⊂ S. Noting that S is an arbitrary

non-zero submodule of M◦N , we conclude that Im(r
N,M

) is a unique simple submodule of M◦N .

The proof of the other statements in (i) and (ii) is similar.
The simplicity of M follows from (i) and (ii) by taking the one-dimensional R(0)-module k

as N . Note that r
M,k

and r
k,M

coincide with the identity morphism idM . 2

A simple R(β)-module M is called real if M ◦M is simple. Then the following corollary is
an immediate consequence of Theorem 3.2.

Corollary 3.3. Assume that R(β) is symmetric and M is a non-zero R(β)-module in
R(β)-mod. Then the following conditions are equivalent:

(a) M is a real simple R(β)-module;

(b) r
M,M

∈ k idM◦M ;

(c) EndR(2β)(M ◦M) ' k idM◦M .

We have also the following corollary.

Corollary 3.4. If R(β) is symmetric and M is a real simple R(β)-module, then M◦n :=
n︷ ︸︸ ︷

M ◦ · · · ◦M is a simple R(nβ)-module for any n > 1.

Proof. The quiver Hecke algebra version of (2.6) implies that r
M◦m,M◦n

is equal to idM◦(m+n) up

to a constant multiple. 2

Thus we have established the first statement of the conjecture in the Introduction in the
quiver Hecke algebra case.

Lemma 3.5. Let β, γ ∈ Q+, and let M ∈ R(β)-mod and L ∈ R(β+ γ)-mod. Then there exist X,
Y ∈ R(γ)-mod satisfying the following universal properties :

HomR(β+γ)(M ◦ Z,L) ' HomR(γ)(Z,X), (3.2)

HomR(β+γ)(L,Z ◦M) ' HomR(γ)(Y,Z) (3.3)

functorially in Z ∈ R(γ)-mod.

Proof. Set X = HomR(β+γ)(M ◦R(γ), L). Then

HomR(β+γ)(M ◦ Z,L) ' HomR(β)⊗R(γ)(M ⊗ Z,L)

' HomR(γ)(Z,HomR(β)(M,L)).

Similarly, set Y = (HomR(β+γ)(M
∗ ◦R(γ), L∗))∗. Then, by using (1.4), we have

HomR(β+γ)(L,Z ◦M) ' HomR(β+γ)(M
∗ ◦ Z∗, L∗)

' HomR(β)⊗R(γ)(M
∗ ⊗ Z∗, L∗)

' HomR(γ)(Z
∗, Y ∗) ' HomR(γ)(Y, Z). 2

Proposition 3.6. Let β, γ ∈ Q+. Assume that R(β) is symmetric, and let M be a real simple
module in R(β)-mod, and L a simple module in R(β + γ)-mod. Then the R(γ)-module X :=
HomR(β+γ)(M ◦R(γ), L) is either zero or has a simple socle.
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Proof. The R(γ)-module X satisfies the functorial property (3.2). Assume that X 6= 0. Let
p : M ◦ X → L be the canonical morphism. Since L is simple, it is an epimorphism. Let Y
be as in Lemma 3.5, and let i : L → Y ◦ M be the canonical morphism. For an arbitrary
simple R(γ)-submodule S of X, since HomR(β+γ)(M ◦ S,L) ' HomR(γ)(S,X), the composition

M ◦ S → M ◦X p−→ L does not vanish. Hence, by Theorem 3.2, L is the simple head of M ◦ S
and is the simple socle of S ◦M . Moreover, L ∼= Im(r

M,S
). Since the monomorphism L → S ◦M

factors through i by (3.3), the morphism i : L → Y ◦M is a monomorphism.
As in the proof of Theorem 3.2, we have a commutative diagram

M ◦ L //
��
M◦i
��

L ◦M
��
i◦M
��

M ◦ Y ◦M
r
M,Y
◦M

// Y ◦M ◦M

Then we obtain M ◦ i(L) ⊂ (r
M,Y

)−1(i(L)) ◦M . Hence, by Lemma 3.1, there exists an R(γ)-

submodule Z of Y such that r
M,Y

(M ◦Z) ⊂ i(L) and i(L) ⊂ Z ◦M . The last inclusion induces a

morphism L → Z ◦M and a morphism Y → Z by (3.3). Since the composition Y → Z → Y is
the identity again by (3.3), we have Z = Y . Hence Im(r

M,Y
) ⊂ i(L), which gives the commutative

diagram

M ◦ Y //

rM,Y

((
L //

i
// Y ◦M

By the argument dual to the above one (see also the proof of Proposition 3.8), we have a
commutative diagram

M ◦X p
// ////

rM,X

((
L

ξ
// X ◦M

Hence ξ : L → X ◦M is a monomorphism, and Im(r
M,X

) is isomorphic to L. By (3.3), there

exists a unique morphism ϕ : Y → X such that ξ factors as

L //
i

//

ξ

))
Y ◦M

ϕ◦M
// X ◦M

Let us show that Im(ϕ) is a unique simple submodule of X. In order to see this, let S be an
arbitrary simple R(β)-submodule of X. We have seen that L is isomorphic to the head of M ◦S
and isomorphic to Im(r

M,S
). Since the composition M ◦ S → M ◦ X

rM,X−−−−→ X ◦M does not

vanish, we have a commutative diagram by [KKK13a, Lemma 1.4.8]:

M ◦ S
rM,S //

��

��

S ◦M
��

��
M ◦X

rM,X // X ◦M
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Since Im(r
M,S

) ' Im(r
M,X

) ' L, the morphism ξ : L → X ◦M factors as L → S ◦M → X ◦M .

Hence (3.3) implies that ϕ : Y → X factors through Y → S → X. Thus we obtain Im(ϕ) ⊂ S.

Since S is an arbitrary simple submodule of X, we conclude that Im(ϕ) is a unique simple

submodule of X. 2

Let β, γ ∈ Q+. For a simple R(β)-module M and a simple R(γ)-module N , let us denote by

M �N the head of M ◦N .

Corollary 3.7. Let β, γ ∈ Q+. Assume that R(β) is symmetric, and let M be a real simple

module in R(β)-mod. Then the map N 7→ M � N is injective from the set of the isomorphism

classes of simple objects of R(γ)-mod to the set of the isomorphism classes of simple objects of

R(β + γ)-mod.

Proof. Indeed, for a simple R(γ)-module N , M �N is a simple R(β+γ)-module by Theorem 3.2,

and N ⊂ X := HomR(β+γ)(M ◦R(γ),M �N) is the socle of X by the preceding proposition. 2

If L(i) is the one-dimensional simple R(αi)-module, then L(i) is real and M�L(i) corresponds

to the crystal operator f̃iM and L(i) �M to the dual crystal operator f̃i
∨
M in [LV11]. Hence,

� is a generalization of the crystal operator as suggested in [Lec03].

Proposition 3.8. Let β, γ ∈ Q+. Assume that R(β) is symmetric, and let M be a real simple

module in R(β)-mod, and N a simple module in R(γ)-mod. Then EndR(β+γ)(M ◦N) ' k idM◦N .

Proof. Set L = M ◦ N . Let X,Y ∈ R(γ)-mod be as in Lemma 3.5. Let p : M ◦ X → L and

i : L → Y ◦ M be the canonical morphisms. Then the isomorphism M ◦ N → L induces a

morphism j : N → X such that the composition M ◦N M◦j−−−→ M ◦X p−→ L is that isomorphism.

Hence p : M ◦X → L is an epimorphism. Since N is simple and j does not vanish, the morphism

j : N → X is a monomorphism.

We have a commutative diagram

M ◦M ◦X
r
M,M

◦X
//

M◦p
����

M ◦M ◦X
M◦ r

M,X //M ◦X ◦M
p◦M
����

M ◦ L // L ◦M

Since r
M,M

is idM◦M up to a constant multiple, we obtain the commutative diagram

M ◦ (M ◦X)
M◦ r

M,X //

M◦p
����

M ◦X ◦M
p◦M
����

M ◦ L // L ◦M

Therefore

M ◦ (r
M,X

(Ker p)) ⊂ (Ker p) ◦M.

Hence Lemma 3.1 implies that there exists Z ⊂ X such that r
M,X

(Ker p) ⊂ Z ◦M and M ◦Z ⊂
Ker p. The last inclusion shows that M ◦Z →M ◦X → L vanishes. Hence by (3.2), the morphism
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Z → X vanishes, or equivalently, Z = 0. Hence we have r
M,X

(Ker p) = 0. Therefore r
M,X

factors

through p:

M ◦X p
// ////

rM,X

((
L

ξ
// X ◦M

Since r
M,X

6= 0, the morphism ξ does not vanish. By (3.3), there exists ϕ : Y → X such that

ξ : L → X ◦M coincides with the composition L
i−→ Y ◦M ϕ ◦M−−−−→ X ◦M . Then we have a

commutative diagram with the solid arrows:

M ◦N
rM,N //

��

M◦j
��

∼
**

N ◦M
��

j◦M
��

L ξ

**
M ◦X rM,X

//

p 44 44

X ◦M

Indeed, the commutativity follows from [KKK13a, Lemma 1.4.8] and the fact that the

composition M ◦ N M◦j−−−→ M ◦ X
rM,X−−−−→ X ◦ M does not vanish because it coincides with

M ◦N ∼−→L
ξ−→ X ◦M .

Thus ξ : L → X ◦M coincides with the composition

L 'M ◦N
rM,N−−−−−→ N ◦M j◦M−−−−→ X ◦M.

Hence (3.3) implies that ϕ : Y → X decomposes as

Y
ψ // N // j // X

Since N is simple, ψ is an epimorphism, and we conclude that N is the image of ϕ : Y → X.
Now let us prove that any f ∈ EndR(β+γ)(L) satisfies f ∈ k idL. By the universal

properties (3.2) and (3.3), the endomorphism f induces endomorphisms fX ∈ EndR(γ)(X) and
fY ∈ EndR(γ)(Y ) such that the following diagrams with the solid arrows commute:

M ◦X p
// //

M◦fX
��

rM,X
))

L

f

��

ξ
// X ◦M

fX◦M
��

M ◦X p // //

rM,X

55L
ξ // X ◦M

and

L
i //

f
��

Y ◦M
fY ◦M
��

L
i // Y ◦M

(3.4)

Since r
M,X

commutes with f , the left diagram with dotted arrows commutes. Hence, the following
diagram with the solid arrows commutes:

Y
ψ

// //

fY
��

ϕ

((
N

fN
��

//
j

// X

fX
��

Y
ψ // //

ϕ

66N // j // X

(3.5)
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Then we can add the dotted arrow fN so that the whole diagram (3.5) commutes. Since N is

simple, we have fN = c idN for some c ∈ k. By replacing f with f − c idL, we may assume from

the beginning that fN = 0. Then fX ◦ j = 0. Now f = 0 follows from the commutativity of the

diagram

M ◦N

∼

&&M◦j //

0 ((

M ◦X p //

M◦fX
��

L

f
��

M ◦X p // L

2

Corollary 3.9. Let β, γ ∈ Q+, and assume that R(β) is symmetric. Let M be a real simple

module in R(β)-mod, and N a simple module in R(γ)-mod.

(i) If the head of M ◦N and the socle of M ◦N are isomorphic, then M ◦N is simple and

M ◦N ' N ◦M .

(ii) If M ◦N ' N ◦M , then M ◦N is simple. Conversely, if M ◦N is simple, then M ◦N '
N ◦M .

Proof. (i) Let S be the head of M ◦N and the socle of M ◦N . Then S is simple. Now we have

the morphisms

M ◦N � S �M ◦N.

By the previous proposition, the composition is equal to idM◦N up to a constant multiple. Hence

M ◦N and N ◦M are isomorphic to S.

(ii) Assume first that M ◦ N ' N ◦M . Then the simplicity of M ◦ N immediately follows

from (i) because the socle of M ◦N is isomorphic to the head of N ◦M by Theorem 3.2.

If M ◦N is simple, then r
M,N

is injective. Since dim(M ◦N) = dim(N ◦M), r
M,N

: M ◦N →

N ◦M is an isomorphism. 2

Note that, when R(β) and R(γ) are symmetric, for a real simple R(β)-module M and a real

simple R(γ)-module N , their convolution M ◦N is real simple if M ◦N ' N ◦M .

3.2 Quantum affine algebra case

Similar results to Theorem 3.2 and Corollaries 3.7 and 3.9 hold also for quantum affine algebras.

Let U ′q(g) be the quantum affine algebra as in § 2. Recall that U ′q(g)-mod denotes the category

of finite-dimensional integrable U ′q(g)-modules.

First note that the following lemma, an analogue of Lemma 3.1 in the quantum affine algebra

case, is almost trivial. Indeed, a similar result holds for any rigid monoidal category which is

abelian and the tensor functor is additive.

Lemma 3.10. Let Mk be a module in U ′q(g)-mod (k = 1, 2, 3). Let X be a U ′q(g)-submodule of

M1 ⊗M2 and Y a U ′q(g)-submodule of M2 ⊗M3 such that X ⊗M3 ⊂ M1 ⊗ Y as submodules

of M1 ⊗M2 ⊗M3. Then there exists a U ′q(g)-submodule N of M2 such that X ⊂ M1 ⊗ N and

N ⊗M3 ⊂ Y .

Corollary 3.11. (i) Let Mk be a module in U ′q(g)-mod (k = 1, 2, 3), and let ϕ1 : L→M1⊗M2

and ϕ2 : M2 ⊗M3 → L′ be non-zero morphisms. Assume, further, that M2 is a simple module.
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Then the composition

L⊗M3
ϕ1⊗M3−−−−−→ M1 ⊗M2 ⊗M3

M1⊗ϕ2−−−−−→ M1 ⊗ L′ (3.6)

does not vanish.

(ii) Let M , N1 and N2 be simple modules in U ′q(g)-mod. Then the following diagram
commutes up to a constant multiple:

M ⊗N1 ⊗N2
r
M,N1

⊗N2

//

r
M,N1⊗N2

**
N1 ⊗M ⊗N2

N1⊗ r
M,N2

// N1 ⊗N2 ⊗M

Proof. (i) Assume that the composition (3.6) vanishes. Then we have Imϕ1⊗M3 ⊂M1⊗Kerϕ2.
Hence, by the preceding lemma, there exists N ⊂M2 such that Imϕ1 ⊂M1⊗N and N ⊗M3 ⊂
Kerϕ2. The first inclusion implies N 6= 0 and the last inclusion implies N 6= M2. This contradicts
the simplicity of M2.

(ii) By (i), (N1⊗ r
M,N2

) ◦ (r
M,N1

⊗N2) does not vanish. Hence it is equal to r
M,N1⊗N2

up to

a constant multiple by (2.6). 2

Since the proof of the following theorem is similar to the quiver Hecke algebra case, we just
state the result, omitting its proof.

Theorem 3.12. Let M and N be simple modules in U ′q(g)-mod. We assume, further, that

r
M,M

∈ k idM⊗M . (3.7)

Then we have:

(i) M ⊗N has a simple socle and a simple head;

(ii) moreover, Im(r
M,N

) is equal to the head of M ⊗N and is also equal to the socle of N ⊗M .

Recall that a simple U ′q(g)-module M is called real if M ⊗ M is simple. Hence M in
Theorem 3.12 is real.

For a module M in U ′q(g)-mod, let us denote by ∗M and M∗ the right dual and the left dual
of M , respectively. Hence we have isomorphisms

HomU ′q(g)
(M ⊗X,Y ) ' HomU ′q(g)

(X, ∗M ⊗ Y ),

HomU ′q(g)
(X ⊗ ∗M,Y ) ' HomU ′q(g)

(X,Y ⊗M),

HomU ′q(g)
(M∗ ⊗X,Y ) ' HomU ′q(g)

(X,M ⊗ Y ),

HomU ′q(g)
(X ⊗M,Y ) ' HomU ′q(g)

(X,Y ⊗M∗)

(3.8)

functorial in X, Y ∈ U ′q(g)-mod.

Corollary 3.13. Under the assumption of the theorem above, the head of Im r
M,N

⊗ ∗M is

isomorphic to N .

Proof. Set S = Im r
M,N

. Since HomU ′q(g)
(S,N ⊗ M) ' HomU ′q(g)

(S ⊗ ∗M,N), there exists a

non-trivial morphism S ⊗ ∗M → N . Since N is simple, we have an epimorphism

S ⊗ ∗M � N.

Since ∗M ⊗ ∗M ' ∗(M ⊗M) is a simple module, the tensor product S ⊗ ∗M has a simple head
by the preceding theorem. Hence, we obtain the desired result. 2
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For simple U ′q(g)-modules M and N , let us denote by M �N the head of M ⊗N .

Corollary 3.14. Let M be a real simple module in U ′q(g)-mod. Then the map N 7→ M � N
is bijective on the set of the isomorphism classes of simple U ′q(g)-modules in U ′q(g)-mod, and its
inverse is given by N 7→ N � ∗M .

Lemma 3.15. Let M be a real simple module in U ′q(g)-mod and N a simple module in U ′q(g)-mod.
Then we have EndU ′q(g)(M ⊗N) ' k idM⊗N .

Proof. By Corollary 3.11, we have a commutative diagram up to a constant multiple

M∗ ⊗M ⊗N
r
M∗,M⊗N

//

rM∗,M⊗N
**

M ⊗M∗ ⊗N
M⊗r

M∗,N

//M ⊗N ⊗M∗

By Theorem 3.12, Im(r
M∗,M

) is the simple socle of M ⊗M∗, and hence r
M∗,M

is equal to the
composition

M∗ ⊗M ε−−→ 1 −−→ M ⊗M∗

up to a constant multiple. Here 1 denotes the trivial representation of U ′q(g). Hence we have a
commutative diagram up to a constant multiple

M∗ ⊗M ⊗N
ε⊗N

// //

rM∗,M⊗N
))

N // // M ⊗N ⊗M∗

Let f ∈ EndU ′q(g)(M ⊗ N). Let us show that f ∈ k idM⊗N . Since r
M∗,M⊗N commutes with f ,

the following diagram with the solid arrows is commutative:

M∗ ⊗M ⊗N // //

M∗⊗f
��

N // //

fN
��

M ⊗N ⊗M∗

f⊗M∗
��

M∗ ⊗M ⊗N ε⊗N // // N // // M ⊗N ⊗M∗
(3.9)

Hence we can add the dotted arrow fN so that the whole diagram (3.9) commutes. Since N is
simple, we have fN = c idN for some c ∈ k. Then, by replacing f with f − c idM⊗N , we may
assume from the beginning that fN = 0. Hence the composition

M∗ ⊗M ⊗N M∗⊗f−−−−→ M∗ ⊗M ⊗N ε⊗N−−−→ N

vanishes. Therefore (3.8) implies that M ⊗N f−−→ M ⊗N vanishes. 2

Corollary 3.16. Let M be a real simple module in U ′q(g)-mod, and N a simple module in
U ′q(g)-mod.

(i) If the head of M ⊗N and the socle of M ⊗N are isomorphic, then M ⊗N is simple and
M ⊗N ' N ⊗M .

(ii) If M ⊗N ' N ⊗M , then M ⊗N is simple.

This corollary follows from the preceding lemma by an argument similar to that in the proof
of Corollary 3.9.
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4. Proof of (1.11)

We shall show (1.11). We retain the notation in § 1. We set

x̃a,b =
∑

ν∈Iβ+γ ,
νa,νb∈supp(β)∩supp(γ)

(xa − xb)e(ν) and τ̃c =
∑

ν∈Iβ+γ ,
νc∈supp(γ), νc+1∈supp(β)

τce(ν)

for 1 6 a, b 6 m+ n and 1 6 c < m+ n. They are elements of R(β + γ).
We denote by A the commutative subalgebra of R(β + γ) generated by x̃a,b and e(ν) where

1 6 a < b 6 m + n and ν ∈ Iβ+γ . Let us denote by R̃γ,β the subalgebra of R(β + γ) generated
by A and τ̃c where 1 6 c < m+ n.

Then ϕw[n,m]e(γ, β) belongs to R̃γ,β.
These generators satisfy the following commutation relations:

x̃a,bτ̃c − τ̃cx̃sc(a),sc(b)
=

∑
νc=νc+1∈supp(β)∩supp(γ)

(δ(a = c+ 1)− δ(a = c)− δ(b = c+ 1) + δ(b = c))e(ν),

τ̃2a =
∑

νa,νa+1∈supp(β)∩supp(γ)

Qνa,νa+1(xa, xa+1)e(ν),

τ̃aτ̃b − τ̃bτ̃a = 0 if |a− b| > 1,

τ̃a+1τ̃aτ̃a+1 − τ̃aτ̃a+1τ̃a

=
∑

νa,νa+1∈supp(β)∩supp(γ), νa=νa+2

Qνa,νa+1
(xa, xa+1, xa+2)e(ν).

(4.1)

Indeed, the last equality follows from

τ̃a+1τ̃aτ̃a+1 =
∑
ν

τa+1τaτa+1 e(ν),

τ̃aτ̃a+1τ̃a =
∑
ν

τaτa+1τa e(ν).

Here the sums in both formulas range over ν ∈ Iβ+γ , satisfying the conditions νa ∈ supp(γ),
νa+1 ∈ supp(β) ∩ supp(γ), and νa+2 ∈ supp(β).

Note that the error terms (i.e. the right-hand sides of the equalities in (4.1)) belong to the
algebra A because we assume that R(β) and R(γ) are symmetric. Hence we have

x̃a,bτ̃c − τ̃cx̃sc(a),sc(b) ∈ A
τ̃2a ∈ A,
τ̃aτ̃b = τ̃bτ̃a if |a− b| > 1,

τ̃a+1τ̃aτ̃a+1 − τ̃aτ̃a+1τ̃a ∈ A.

(4.2)

Now for each element w ∈ Sm+n let us choose a reduced expression w = sa1 · · · sa` . We then
set

τ̃w = τ̃a1 · · · τ̃a` .

Then, similarly to a proof of the PBW decomposition (1.1) (see, for example, [KL09, Rou08]),
the commutation relations (4.2) imply

R̃γ,β =
∑

w∈Sm+n

τ̃wA.
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In particular, we obtain

R̃γ,β ⊂
⊕

w∈Sn,m,
w1∈Sn,w2∈Sm

τw(τw1 ⊗ τw2)A.

Thus immediately implies (1.11), because we have, for 1 6 a < b 6 m + n, ν ∈ Iγ , µ ∈ Iβ,
v ∈ e(ν)N and u ∈ e(µ)M ,

x̃a,b((v)z2 ⊗ (u)z1)

=



((xa − xb)v)z2 ⊗ (u)z1 if 1 6 a < b 6 n and νa, νb ∈ supp(β),

(z2 − z1)((v)z2 ⊗ (u)z1)

+ (xav)z2 ⊗ (u)z1 − (v)z2 ⊗ (xb−nu)z1 if 1 6 a 6 n < b 6 m+ n and

νa ∈ supp(β), µb−n ∈ supp(γ),

(v)z2 ⊗ ((xa−n − xb−n)u)z1 if n < a < b 6 m+ n and µa−n, µb−n ∈ supp(γ),

0 otherwise,

and (τw1 ⊗ τw2)((v)z2 ⊗ (u)z1) = (τw1v)z2 ⊗ (τw2u)z1 .

Acknowledgement
We would like to thank Bernard Leclerc for many fruitful discussions and his kind explanations
of his work.

References

AK97 T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras,
Publ. Res. Inst. Math. Sci. (RIMS), Kyoto 33 (1997), 839–867.

Ari96 S. Ariki, On the decomposition numbers of the Hecke algebra of G(M, 1, n), J. Math. Kyoto
Univ. 36 (1996), 789–808.

BZ93 A. Berenstein and A. Zelevinsky, String bases for quantum groups of type Ar, in
I. M. Gel’fand seminar, Advances in Soviet Mathematics, vol. 16 (American Mathematical
Society, Providence, RI, 1993), 51–89.

HL10 D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J.
154 (2010), 265–341.

HL13 D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine
Angew. Math., to appear; doi:10.1515/crelle-2013-0020.

Kac90 V. Kac, Infinite dimensional Lie algebras, 3rd edition (Cambridge University Press, Cambridge,
1990).

KKK13a S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of
quantum affine algebras, Preprint (2013), arXiv:1304.0323v1.

KKK13b S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of
quantum affine algebras II, Duke Math. J., to appear, arXiv:1308.0651v1.

Kas02 M. Kashiwara, On level zero representations of quantum affine algebras, Duke. Math. J. 112
(2002), 117–175.

KL09 M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups
I, Represent. Theory 13 (2009), 309–347.

KL11 M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups
II, Trans. Amer. Math. Soc. 363 (2011), 2685–2700.

LV11 A. Lauda and M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011),
803–861.

395

https://doi.org/10.1112/S0010437X14007799 Published online by Cambridge University Press

http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://dx.doi.org/10.1515/crelle-2013-0020
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1304.0323
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
http://www.arxiv.org/abs/1308.0651
https://doi.org/10.1112/S0010437X14007799


S.-J. Kang et al.

Lec03 B. Leclerc, Imaginary vectors in the dual canonical basis of Uq(n), Transform. Groups 8 (2003),
95–104.

Rou08 R. Rouquier, 2-Kac-Moody algebras, Preprint (2008), arXiv:0812.5023v1.

Rou12 R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), 359–410.

VV11 M. Varagnolo and E. Vasserot, Canonical bases and KLR algebras, J. Reine Angew. Math. 659
(2011), 67–100.

Seok-Jin Kang sjkang@snu.ac.kr

Department of Mathematical Sciences and Research Institute of Mathematics,
Seoul National University, Seoul 151-747, Korea

Masaki Kashiwara masaki@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

and

Department of Mathematical Sciences and Research Institute of Mathematics,
Seoul National University, Seoul 151-747, Korea

Myungho Kim mhkim@kias.re.kr

School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Korea

Se-jin Oh sj092@snu.ac.kr

Department of Mathematical Sciences and Research Institute of Mathematics,
Seoul National University, Seoul 151-747, Korea

396

https://doi.org/10.1112/S0010437X14007799 Published online by Cambridge University Press

http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
http://www.arxiv.org/abs/0812.5023
https://doi.org/10.1112/S0010437X14007799

	1 Quiver Hecke algebras
	1.1 Convolutions
	1.2 R-matrices for quiver Hecke algebras
	1.2.1 Intertwiners
	1.2.2 Spectral parameters


	2 Quantum affine algebras
	2.1 Integrable modules
	2.2 R-matrices

	3 Simple heads and socles of tensor products
	3.1 Quiver Hecke algebra case
	3.2 Quantum affine algebra case

	4 Proof of (1.11)
	Acknowledgement
	References

