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Abstract

Although simplicity (parsimony) seems to be important in scientific inference, it is
difficult 1o find a satisfactory operational definition that can be used 1o implement an
optimal level of simplicity.  Many  statisticians  and  cconometricians  agree  that one of
their goals is the reduction of data (i.e. formulating models that contain the relevant
information in the data, for example, by means ol sufticient statistics). However, it is
not generally agreed how this goal should be achieved if the specification of the model
is not given a priori. Two issues are discussed in this paper. The first is whether a
tormal definition and justification of simplicity in scientific inference can be found,
and whether an optimal level of simplicity is obtainable. A definition of simplicity is
possible, as are the optimum conditions for the desired degree of simplicity. The model
of inference used here relates Bayesian inference to algorithmic information theory.
Simplicity is examined in the light of induction, the Duhem-Quine thesis, and bounded
rationality. The second issue relates to the role that simplicity might play in
econometric modelling. This is elucidated with some remarks on the ‘general to specific’
approach to modelling and discussions on the purpose of a model.

Keywords: simplicity, Occam’s Razor, information criteria, general to specific.
JEL-codes: BO, B4, C5.
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"is it not natural to begin any attempt at analysing the economic mechanism by making the
simplest assumption compatible with general theory?"
Jan Tinbergen (1940).

0. Preamble

“The march ol science is towards unity and simplicity.” (Poincaré, 1902/1952, p. 173). In
econometrics, this march threatens to become lost in a maze of specification uncertainty.
The familiar problem of data mining is that there are many different ways to deal with
specification uncertainty.  Reductionism  (Hendry, 1993), sensitivity analysis (Leamer,
1978) and profligate Vector Autoregressive (VAR) modelling (Sims, 1980) share, as their
starting point, a general, high-dimensional model. The reductionist approach attacks
specification uncertainty by means of a general to specific ‘simplification search® (in
the terminology of Leamer, 1978) of conditioning and marginalizing, in which a sequence
of (possibly) asymptotically independent significance tests is used. However, the notion
of ‘simplicity’ is not explicitly formalized, but instead, a conventionally chosen
significance level is used. Sims’ VAR approach uses information criteria in order to
obtain models with ‘optimal’ lag lengths, but no effort is made to use such criteria for
imposing additional zero restrictions on the parameters of the model. As a result, VAR
models  are  often  criticized  for  being  ‘over-parameterized,”  or  insufficiently
parsimonious (i.e. simple).

In this paper, an effort is made to formalize simplicity (parsimony) and to show how
it relates to scientific inference and econometric modelling. In particular, use will be
made of insights in algorithmic information theory, the theory of inductive reasoning,
and Kolmogorov complexity theory. It will be argued that simplicity is a vital element in
a theory of scientific inference. A definition of simplicity is possible, as are the
optimum conditions for the desired degree of simplicity. Understanding simplicity is seen
to he important for specifying hypotheses and selecting models.

The paper is organized as follows. Three main sections discuss the background and
formalization of simplicity with regard to a priori probability and information theory
(Section 1), its meaning for scientific inference in  general and its relation (o
induction. the Duhem-Quine thesis and bounded rationality (Section 2), and its meaning
for econometric modelling in particular (Section 3). Concluding comments are given in
Section 4.



1. Formalizing simplicity
1.1 Buckground: Occam's Razor and the Law of Parsimony

A lamous maxim ol both  philosophy, in gencral, and scientific  inference, in
particular, is  Occam's  Ruzor: “Entia non  sunt multiplicanda  practer  necessitatem’
(entities are not to be multipliecd beyond necessity). This maxim is usually attributed to
the Oxford Franciscan scholasticist William of Ockham (£1285-1349), although it cannot be
found in his writings.] Perhaps for this reason, different versions of the principle
circulate.2 and even the spelling of Ockham’s name varies—the razor has been used to
shave it to Occam. Occam’s razor is supposed to be one of the canons of scholasticism
(see, e.g. Pearson, 1911, p. 393), although Thorburn (1918) argues that, apart from its
commonsense as a sound rule of methodology, the razor has little to do with mediaeval
scholasticism. Related canons, cited by Pearson (1911, p. 393), are Principia non sunt
cumulanda, and a statement that cen be found in the writings of Ockham as well as those
of his teacher Duns Scotus (£1266-1308), Frustra fit per plura, quod potest fieri per
pauciora (it is in vain to do by many what can be done by fewer).3 This is known as the
Law of Parsimony (or Parcimony).

Whatever the antecedents of Occam’s Razor, as a methodological principle it is useful
but vague. Other things equal, a more elaborate model cannot fit the data worse than a
specific (restricted) version of it Occam’s razor suggests deleting those extensions of
a model that are irrelevant o the aim of the model, examples of aims being description
and prediction. It is a recurring theme in the writings of early positivists, such as
Mach, Poincaré, and Pearson (see e.g. Pearson, 1911). If two hypotheses H; and H,
describe facts D equally well, i.e. P(DIH) = P(DI|H), the principle says that the
simpler of the two should be preferred.

But what is the motivation? Some efforts have been made to base simplicity on
metaphysical grounds. An example is the view of Sir Isaac Newton (1642-1725) that ‘Natura

I A detailed historical account of Occam’s Razor is given in Thorburn (1918), who argues
that it is a modern myth. The formula was probably first used by John Ponce of Cork in
1639, and attributed to Ockham by the historian Tennemann in 1812. The English title
‘Occam’s Razor' was invented by the Scottish philosopher, William Hamilton (1788-1856:
not to be confused with the mathematician) in 1852.

2 For example. Quine (1987, p. 12) writes: ‘"Entia," William of Ockham had intoned, "non
multiplicanda sunt praeter necessitatem."” No reference is given. Rissanen (1983, p. 421)
represents ‘Ockham’s razor” as ‘plurality is not to be assumed without necessity.’ Again,
references are missing.

3 We traced the following versions of Occam's Razor in the economics literature. Friedman
(1953. p. 13n) discusses ‘Occam’s razor’' as an ‘arbitrary principle’, without citing the
Latin formula. Klant (1979, p. 49) presents ‘Occam’s Razor' as ‘Entia explicantia non
sunt amplificanda praeter necessitatem.’
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enim simplex est et rerum causis superfluis non luxuriat’ (Principia Mathematica, 1687,
cited in Pearson, 1911, p. 92).4 This amounts to the that nature is simple, and one ought
not seck superfluous causes. Such a view has remained popular among physicists. For
example, it can be found in a paper on the principles of scientific inquiry by Wrinch and
Jeffreys (1921, p. 380): ‘The existence of simple laws is, then, apparently, to be
regarded as a quality of nature.” We will return to their writings below. Another modern
version of Newton's view is given by the physicist Richard Feynman, who asks, How is it
possible that we can guess nature’s laws? His answer is: ‘I think it is because nature
has a simplicity and therefore a great beauty’ (Feynman, 1965, p. 173). One might object
that this view of the physicist is metaphysical speculation, not based on facts. A
diametrical speculation is expressed by Leamer and Hendry, who both hold that *Nature is
complex and Man is simple’ (Hendry ef al., 1990, p. 185).

Occam’s razor does not imply that nature is either simple or complex, but only
suggests that  simplicity is a sound device for inference. It serves as a rule of
methodology, not as a metaphysical dogma (Thorburn, 1918, p. 352). Such a view can be
found in the writings of positivists such as Mach and Pearson, and also in Peirce’s
publications on pragmatic philosophy:

‘Hypothesis in the sense of the more facile and natural, the one that instinct

suggests, that must be preferred; for the reason that, unless man have [sic] a

natural bent in accordance with nature’s, he has no chance of understanding
nature at all.’ (Peirce, Abduction and Induction, in Peirce, 1955, p. 156)

However, there is still the objection that Occam’s razor is not operational. When,
for example, are new elements in a theory ‘redundant’? To answer this question, it is
necessary 1o face the trade-off between simplicity and (descriptive) accuracy. This
trade-off has been studied by some of the founders of probability theory. To the best of
our knowledge, this attempt was made by Gottfried Wilhelm Leibniz (1646-1716).5 He argues
that an hypothesis is more probable than another in proportion to its simplicity (economy
of assumptions) and its power (number of phenomena that can be explained by the
hypothesis) (see Keynes, 1973, p. 303; Cohen, 1989, p. 27). Keynes does not say whether
Leibniz elaborates on the possibility of formalizing a trade-off, but it is unlikely that
Leibniz did. Keynes himselt did not. He needed a principle of parsimony for his own
(logical) probability theory. which is known as his principle of limited independent
varierv. This is a principle, invoked in order to ascertain non-zero probabilities

3 Thorburn (1918, p. 349) cites the third edition of the Principia Mathematica (1726, p.
387). where the formula ‘Natura nihil agit frustra, et frustra fit per plura quod fieri
potest per pauciora’ appears, with no mention of Ockham.

S Leibniz used the formula ‘Entia non esse multiplicanda praeter necessitatem’ in his
inaugural dissertation (see Thorburn, 1918, p. 346). without specific reference 1o
Ockham.
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priort il one attempts to make probabilistic inferences (see Keynes, 1973, and Section 2
below). Tt is not a methodological rule to trade-off simplicity and goodness of fit.
Keynes™ younger colleague, Frank Ramsey, mentioned the trade-off and supgested making use
ol maximum likelihood:
‘In choosing a system we have to compromise between two principles: subject
always to the proviso that the system must not contradict any facts we know, we
choose (other things being equal) the simplest system, and (other things being
equal) we choose the system which gives the highest chance to the facts we have
observed. This last is Fisher’s "Principle of Maximum Likelihood", and gives the
only method of verifying a system of chances.” (Cited in Edwards, 1992, p. 248)

Kemeny (1953) discusses the same issue. He defines compatibility of a theory with the
observations by the condition that the observations must lie within a 99 percent
confidence interval (Kemeny, 1953, Definition 1, p. 398). Kemeny suggests adopting a rule
of inference, which is to select the simplest hypothesis compatible with the observed
data. This is his ‘Rule 3" (Kemeny, 1953, p. 397), which has been named ‘Kemeny's Rule’
by Li and Vitinyi (1992). Although intuitively appealing, this is rather ad hoc. On the
suggestion of philosopher Nelson Goodman, Kemeny (1953, p. 408) remarks that it would be
of interest to find a criterion combining an optimum of simplicity and compatibility
based on first principles. The optimum trade-off is not presented. Hempel (1966, p. 40)
is equally unsuccessful in providing an optimal trade-off.

It s, therefore, often argued that Occam’s razor is arbitrary, even as a
methodological rule. For example, Friedman (1953, p. 13) argues that predictive adequacy
is the [first criterion to judge a theory, simplicity the second, while realism of
assumptions is of little interest. A well known problem of Friedman’s remarks on
methodology is his vagueness on terminology: prediction, realism and simplicity are not
defined. Moreover, some Bayesian philosophers of science do not support the view that
prediction is paramount in the sense that it provides greater support for a theory than
does, say. the testing of auxiliary hypotheses (for further details, see Dharmapala and
McAleer, 1994), Principles of simplicity that are used in econometrics (such as Theil’s
R®, or the information criteria of Akaike and Schwarz) are often discussed as being
useful but ad hoc (see e.g. Judge et al., 1985, p. 888; Amemiya, 1985, p. 55).

1.2 Simplicity and a priori probability

Wrinch and Jeffreys (1921) provide an explicit discussion on the relevance of
simplicity in scientific inference. They note that ‘it will never be possible to attach
appreciable  probability to an inference if it is assumed that all laws of an infinite
class, such as all relations involving only analytic functions, are cqually probable «
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priori.” (Wrinch and Jeffreys, 1921, p. 389). In order to enable inference, they invoke
two premises: “Every law of physics is expressible as a differential equation of finite
order and degree, with rational coefficients’ and ‘the simpler the law, the greater is
its prior probability’ (1921, p. 386). The first premise is like Russell's claim that
scientific laws of physics can only be expressed as differential equations (see Russell,
1927, p. 122). Once laws are expressed in differential form, they can be ordered. This is
where the two premises meet, as “The most natural way of well-ordering these are such
that those of low order and degree, and involving no numerical constants other than small
integers and  fractions with small numerators and denominators, come  earliest in the
sequence.” (1921, p. 390). Although highly informal, this is the first attempt to
operationalize the notion of simplicity. Once this is done, the ordering is used in a
probability ranking. using the second premise. In practice, Wrinch and Jeffreys (1921,
p. 386) argue, simplicity ‘is a quality easily recognizable when present’.

In his later writings, Jeffreys further developed his views on simplicity. Jeffreys
(1961) argues that there is good reason to give a simple hypothesis a higher prior
probability than a complex hypothesis, in particular because simple hypotheses tend to
yield berter  predictions than complex hypotheses (i.e. have superior inductive
qualities). The argument does not rest on a view that nature is simple. Simple hypotheses
are favoured @ priori on grounds of degrees of rational belief (Jeffreys, 1961, pp. 4-5).
As a result, hypotheses of interest can be analyzed using strictly positive prior
probabilitics. The argument is known as the Jeffreys-Wrinch Simplicity Postulate,
henceforth denoted as SP:

Simplicity Postulate (SP). ‘The set of all possible forms of scientific laws is

finite or enumerable, and their initial probabilities form the terms of a

convergent series of sum 1 (Jeffreys, 1957, p. 36)

Jeffreys (1961, p. 47) summarizes his view as ‘the simpler laws have the greater prior
probability’. The SP in the crude operational form given in Jeffreys (1961, p. 47) is to
attach prior probability 2° to the disjunction of laws of complexity ¢, where ¢ is
measured by the sum of the order, the degree, and the absolute values of the coefficients
of scientific laws, expressed as differential equations. Jeffreys proposes assigning  a
uniform prior probability distribution to laws with an equal degree of complexity. A
serious problem is that his measure of complexity is arbitrary, although more explicit
than the one presented in the paper with Wrinch.® Furthermore, as he acknowledges, it

6 As an example, Jeffreys (1961, p. 46) considers the hypothesis:
s=a+ut+(2)gr+a+ ... +a, .
If the first three terms on the right hand side can account for most variation in the

data. it would be ‘preposterous’ to increase the number of adjustable parameters to or
even beyond the number of observations: ‘including too many terms will [ose accuracy in
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rules out measures of complexity of hypotheses which cannot be formulated as differential
equations. Jeffreys provides neither a formal justification for the SP nor for the 2°
rule, and acknowledges that the prior probabilities assigned to scientific laws may not
he sufficiently precise (Jeffreys, 1961, pp. 48-49). The SP is an heuristic principle,
with one feature that has o be retained in any event:
‘I a high probability is ever to be attached 10 a general law, without needing a
change in the form of the law for every new observation, some principle that
arranges  laws  in an order of decreasing initial probability with increasing
number of adjustable parameters is essential’ (Jeffreys, 1961, p. 48).
A justification for a modified SP, and suggestions for obtaining sufficiently precise
prior probabilities needed to implement the modified SP, are given below.

1.3. Simplicity and information theory

A justification for the trade-off between descriptive accuracy and parsimony can be
found in the literature on algorithmic information theory. Think of an hypothesis as a

string of binary digits (bits), denoted by {().I}*. Similarly, the observations can be
represented by another string of bits. It is possible o0 show that the simplicity of an
hypothesis is related to the length of the string describing the hypothesis, and this
length in turn is related to a probability measure. A problem is that this length depends
on the language in which the hypothesis is expressed. It can be shown, however, that a
minimum code length for an hypothesis does exist (Rissanen, 1983), but this code length
is not computable. The problem then is to find a good approximation to this minimal code
length. Hence, a formal justification of Occam’s razor is feasible, although the
implementation of the resulting principle is arbitrary. Heuristic arguments will be
presented to substantiate this claim.7

According to Bayes’ Theorem, the posterior probability for an hypothesis H, given
data D is proportional to the prior times the likelihood:

P(H,|D) = P(H)P(D|H,). (N

prediction instead of gaining it.’

Jeffreys (1961, pp. 47-49) provides four examples for evaluating the complexity for
differential equations, two of them derived from special cases of the equation above.
Complexity is given by the sum of the order, degree and the absolute values of the
coefficients. For example, if s=a, ds/di=0, which results in a complexity of 1+1+1=3. For
the case s=a+ult+(2)er. he obtains d?s/dr?=0 (sic!). which yields a complexity of
24+1+1=4. A major problem with interpreting these calculations is that Jeffreys does not
define what is meant by order, degree and the absolute value of the coefficients. As
such, his measure is unclear.

7 Proofs can be found in Li and Vitinyi (1990, 1992).
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It is assumed that the hypotheses under consideration are at most countably infinite. 8
The goal is o maximize the posterior probability P(I;|D): the more elaborate is H,, the
better will the hypothesis fit the data and the larger is the likelihood, P(D|H).
Simultancously, however, according to the SP, the prior probability, P(H)), declines with
the increasing complexity of the hypothesis.

The more claborate is an hypothesis, the greater is the number ol bits required for
its binary representation.  Rewriting (1) in negative logarithms  (where  fog(.)  denotes

logarithms with base 2, and natural logarithms are indicated by In(.)), yields:
- logP(H, D) = - logP(D|H,) - logP(H,). 2)

Maximizing the posterior probability (selecting the hypothesis that has the highest
support of the data) is equivalent to minimizing the expression given in (2).

It can be shown that logP(H) is related to the descriptive complexity K of the
hypothesis H, and logP(D|H) is related to the ‘self-information’ of the data given model
H, (see e.g. Li and Vitanyi, 1992). Roughly speaking, K measures the minimum number of
bits required to encode a proposition. The relation between complexity and a probability
distribution has been established by Solomonoff (1964a) and Levin (see Rissanen, 1983).
Solomonoft discusses a general problem of induction: extrapolating a sequence of symbols
drawn from some finite alphabet. Given such a sequence, denoted by §. what is the
probability that it will be followed by a sequence a? Hence, the problem is to calculate:

P(S| Sa)P(Sa)

Sa =
P(Sals) P(S)

3)

One of the examples, presented in Solomonoff (1964b), is the extrapolation of a Bernoulli
sequence. The analytic approach starts from (2). The prior probability in (2) is obtained
by examining how the strings of symbols might be produced by a ‘Universal Turing Machine’
(UTM).9 The crucial insight is that strings with short and/or numerous descriptions
(program codes that yield the relevant string as output) are assigned high a priori

8 Such an assumption is made in many rival approaches to inference. Wrinch and Jeffreys
(1921) make it in the context of (necessarist) Bayesian induction. Popper (1959) invokes
it for his methodological falsificationism. Good (1968, p. 125), who is a subjective
Bayesian, argues that parameter values can, in practice, take only computable values in
the sense ol Turing, provided that they are specificd in a finite number ol words and
symbols, Ramsey (1974, p. 27), who gives a frequentist approach to model discrimination,
takes the number of models as countable for convenience.

9 A Turing Machine is basically a computer with infinitely expandable memory. A UTM is a
Turing Machine which can simulate any other Turing Machine. If a program code (a finite
string of O0's and 1's) ¢ which is fed to the UTM yields § as output, then this is
represented by UTM(¢) = § There may be many such strings ¢, but it may be the case that
the UTM is unable to produce output. This is known as the halting problem.



probability.  Solomonoff  gives intuitive as  well as  quasi-formal  motivations  for  this
assignment (a purely formal motivation can be found in Li and Vitinyi, 1992). The
intuitive  motivation is based on two arguments. First, the resulting approach of
inference is explicitly related to Occam’s razor, ‘one interpretation of which is that
the more "simple” or "economical” of several hypotheses is the more likely.” (Solomonoff,
19644, p. 3). Second, strings with many possible descriptions yield high « prior
probability because of the ‘feeling that if an occurrence has many possible causes, then
it is more likely.” (Solomonoff, 1964a, p. 8). The quasi-formal motivation for
Solomonoff’s argument to relate the prior probability to simplicity comes from coding
theory. from which a measure is derived about the likelihood that a will follow §. This
measure, characterized by the crucial insight presented above, obeys ‘most (if not all)
of the gualities desired in an explication of Carnap’s probability,.” (Solomonoff, 1964a,
p. 8). Later developments of algorithmic learning theory have improved upon Solomonoff’s
pioneering work, without losing the basic insights about the relation between simplicity
and probability. The result is known today as the Solomonoff-Levin distribution with
respect to a UTM, which will be denoted by P (H). In case of (3), it can be shown that
2K o poa(Sa) (e.g. Li and Vitdnyi, 1992). It turns out that Jeffreys’ prior
probability  distribution, based on the Jeffreys-Wrinch Simplicity Postulate, is an
approximation to the ideal (or ‘universal’, as Rissanen, 1983 calls it) prior probability
distribution 10 The  Solomonoff-Levin distribution is not based on subjective Bayesian
betting, but on ‘objective’ features of the problem of interest. Therefore, it may be
regarded as an element in a ‘necessarist’ theory of Bayesian inference.

An apparent weakness of the arguments given so far is that the resulting probability
distribution is not effectively computable in the sense of Turing. This is due to the
halting problem. There are limitations on the ability of the Turing machine to foresee
whether a particular program code ¢ will provide any output or will run forever, entering
infinite loops. Therefore, a computable approximation to Pypu(Se) in (3) must be
obtained. Solomonoff (1964b) contains a number of examples in which his insights are
applied. Rissanen (1983) and Li and Vitdnyi (1992) show how a number of approaches to
inductive inference can be derived from Solomonoff’s approach. These approaches include
Maximum Likelihood (ML), Maximum Entropy (ME)and Minimum Description Length (MDL, also
known as global maximum likelihood), and other approaches that are not used in economics,
such as Gold's inductive inference and Valiant learning. Among the most interesting

Wrjul'!'n.-ys' distribution has some undesirable properties, most importantly, it is
‘improper” (it does not sum to 1). An additional advantage of the Solomonoff-Levin
distribution is of course that in this case, a formally satisfactory definition of
complexity is given. The formalization has been advanced independently by other authors
than Solomonoff as well, in particular, by Kolmogorov - whence the current terminology of
‘Kolmogorov-complexity'. See Li and Vitinyi (1990) for a useful survey.
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computable approximations is Rissanen’s (1983) MDL principle.
1.4 Minimum Description Length and Maximum Likelihood

Rissanen (1983) shows the links between the MDL principle and ML and M,
respectively. The rather obvious link to the SP will also be presented. First consider
MDL. Recall the code length of a model, parameterized by @, and the data, represented by
x. The length l(x.8) consists of the self information plus the model code, and is given
by

l(x,0) = -logP(x|e) + le). (4)

The formula is related to Bayes' theorem, written in logarithmic form. If 270
written as ((8) (which can be shown to satisfy the conditions for a probability
distribution, see Rissanen, 1983), then

21%8) — pie)0e). (5)

The parameter for the code length, o, is an integer and must have a prior probability
distribution on all its possible values, i.e. on all integers. To cencode an  integer
scalar 0, approximately log,n(6) bits are required (where the integer n(0) is the binary
representation of 0 divided by its precision). The prior probability Q(m) = 2"
I/n scems a natural prior probability distribution (namely, the uniform  distribution
proposed by Jeffreys), but this is not a proper one as it does not sum to 1. Another
(related) problem is that the computer must be able to sépamtc different strings.
without dropping the binary character of encoding. The prefix property is needed to solve
this difficulty, where a prefix code is a program or the binary representation of a
model. This implies that a number greater than log,n bits is required to encode the
integer n. The exact number of minimally required bits of the prefix code is not
computable (see Chapter 4, subsection 4.5.3, of Keuzenkamp, 1994). The required code
length can be approximated by log*(n) = log,(n) + log,log,(n) +... (the finite sum
involves only the non-negative terms; see Rissanen, 1983, p. 424).11 The proper prior
probability that results is:

O(n)y = l/n x (Hlogyn) x ... x (1/log, ... log,n) x (1/c), (6)

11 Ris-sancn (1983) shows that functions other than the log+ function also have the desired

properties, but log® is the most efficient to represent the integers. These functions
share the property that the first term (log x) is dominant.
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where ¢ = 2.865... . The first (and dominant) [raction corresponds o Jeffreys’ non-
informative prior,

The universal prior probability distribution is used to construct an ‘objective’
method of inference, which is sometimes called global maximum likelihood, or the
principle of minimum description length (for derivations, see Rissanen, 1983, 1987). Let
P(x|18) be the likelihood of the N observations of data x, parameterized by the
k-dimensional parameter vector 8. I(e) = M(8)/N, where M(e) is the Hessian of -logP(x|e)
(the information matrix) evaluated at the maximum likelihood estimate. Then the minimal
description length MDL of the data encoded with help of the theory, and the theory
itself, is (up to a term of order (logk)/N):

; k 2neN
MDL = 'm"e,k{ JlogP(x18) + iIug( ": ) + kloglel } 5))

The third term containing the norm of 6, evaluated at the optimum, makes the criterion
invariant to all non-singular lincar transformations. As noted in Rissanen (1987, p. 94),
the first two terms in the minimized expression correspond to Schwarz's (1978) Bayesian

information criterion, which is:
. k
SIC = ming ( In P(x10) + 2 In N } (8)

A related information criterion which is slightly simpler and was derived earlier, is the
Akaike Information Criterion, AIC:

AIC = ming . { -In P(xl8) + k } 9

The AIC is derived as an asymptotic approximation to the Kullback-Leibler distance (or
entropy). Minimizing AIC has also been called the Principle of Parsimony (Sawa, 1978).
There are at least three problems related to the AIC. First, it does not define a proper
density (Rissanen, 1987, p. 92). Second, it fails to give a consistent estimate of k (see
also Schwarz, 1978). Finally, the dependence on some ‘true’ distribution is problematic
for its own sake, as it relics on an assumption that the pseudo-true model is nearly true
(Sawa, 1978, p. 1277; see Zellner, 1978, for a comparison of AIC with Bayesian posterior
odds; see also Judge er al., 1985; Amemiya, 1985).

Rissanen (1983, p. 428) remarks that applying the MDL principle, while retaining only
the first two terms of (7), has been used successfully for the analysis of autoregressive
(AR) and autoregressive moving average (ARMA) models. Furthermore,

‘In contingency tables, the criterion, measuring the total amount of information,

offers a perhaps speculative but nonetheless intriguing possibility to discover
automatically inherent links as “laws of nature” in experimentally  collected



11

data. In the usual analyses such links had to be first proposed by humans for a

statistical verification or rejection.” (Rissanen, 1983, p. 428)

In other words, Rissanen advocates the automation of science. However, his own methods
confirm the view that the smaller is the number of observations, the more arbitrary will
be the computable approximation to the ‘universal’ prior probability distribution.

For completeness, compare Rissanen's prior (6) to Jeffreys’ inference based on an
improper uninformative prior and his original simplicity postulate. This starts from
encoding an hypothesis H to an integer belonging to N+ = {1,2,...}. Examples of efficient
coding can be found in Solomonoff (1964b). Assign prior probability 1/ to integer i.

@
Although this results in an improper distribution, aszm‘ diverges from 1, the
i=1

procedure may work well if only a small number of hypotheses is being considered. The
prior is an (improper) approximation to the universal prior. To see this, note that /i =
2" whereas  Rissanen’s  (proper) approximation  to  the  universal  prior s Rl
The relation between MDL and the maximum cntropy principle of Jaynes (1989) is
established in Rissanen (1983, p. 429) and Li and Vitdnyi (1992, pp. 375-377).

Obviously. the method of ML is another special case of global maximum likelihood.
Given an hypothesis H that defines the parameters @ of a model, and given the data x, the
goal is o maximize [n P(x|o). Hence, if the total code length is given by [(x,0)=
JlogP(x|0)+/(n), then the ML approach amounts to minimizing the code length for a fixed
parameterization 0, as only logP(x|e) is evaluated under the ‘axiom of correct
specification”. In econometric practice, pure maximum likelihood (i.c. inference without
evaluating different specifications) is rarely applied. The attractive feature of global
maximum likelihood is that it provides a well-founded criterion for the trade-off between
goodness of fit and parsimony. The modified simplicity postulate is to minimize the total
code length needed to describe the data with respect o a particular maodel. Unlike
Jeffreys’ original simplicity postulate, the modified postulate is well  defined.  An
unavoidable arbitrariness in implementing this postulate remains, but the amount of

arbitrariness can be made precise and is easy to understand.
2. Simplicity and scientific inference
2.1 Simplicity and induction
Popper (1959, p. 385) argues that simple theories should have low (or zero) prior

probability: ‘simplicity, or paucity of parameters, is linked with, and tends to increase
with, improbability rather than probability.” He concludes that all theories of interest
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(in particular, theories that are simple and easy to falsify, i.e. theories with ‘high
empirical content’) are simple to such an extent that they even have zero prior
probability. It Popper is correct, then the Bayesian (inductive) approach to inference
cannot bhe sustained. as all posterior probabilities of non-tautological hypotheses would
be zero. This is why Popper (1959) argues in favour of falsificationism: if a degree of
support  Tor  scientific  propositions cannot  be  established, at least false propositions
can be climinated. Science thereby progresses by a sequence of conjectures and
refutations.

Such arguments have been criticized by the Bayesian philosopher Howson (1988), who
sees no role for simplicity in epistemology. Howson rejects the simplicity postulate,
arguing that it is as arbitrary as Popper’s opposing argument (see also Howson and
Urbach, 1989, p. 292). Howson and Urbach are not the only Bayesians to reject the
importance of simplicity. For example, Leamer (1978, p. 203) claims to be agnostic.
Leamer (in Hendry et al., 1990, p. 184) argues that simplicity may be helpful for the
purpose of communication, but not for inference. However, it will be argued that
simplicity is cssential for a theory of inference.

Two scholars of induction, Keynes and Jeffreys, emphasized that, in order 1o usc
probabilistic reasoning  for scientific inference. one has to map probabilities a priori
o probabilities @ posteriori.  Those probabilities  refer to  propositions  (scientific
hypotheses). The probability « priori of an hypothesis should not be negligible,
otherwise the posterior probability will be zero. If there is no prior information on the
merits of alternative hypotheses, it is necessary to make an ‘uninformative’ prior
probability assignment. The uniform distribution has been used for this purpose. If the
number of alternative hypotheses is unbounded, each hypothesis will have a prior
probability of zero. Hence, the posterior probability of scientific hypotheses will be
zero as well, so that inductive inference is not possible. Keynes and Jeffreys suggested
different approaches to solve this problem of induction, with Keynes invoking the
‘principle of limited independent variety’ and Jeffreys the ‘Simplicity Postulate’.

Keynes (1973, p. 277) argues that, if every separate configuration of the universe
were subject to its own governing law, prediction would become impossible and the
inductive method useless. The inductive hypothesis, as he calls his ‘principle of limited
independent variety’, states that, as the number of independent constituents of a system
together with the laws of necessary connection become more numErous, inductive arguments
become less applicable (pp. 279-280). He does not give a formal definition of these
terms, but the principle can be understood as stating that, for inductive inference, the
propositions that constitute the premises of an inductive argument must have a high
degree of homogeneity. In other words, an object of inductive inference should not be
infinitely complex or be determined by an infinite number of generators (p. 286-7). The
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reason for this fundamental requirement is that strictly positive prior probabilities are
needed for inductive inference. In Keynes' view, these prior probabilities are assessed
by reliance on analogy. If every fact would have its own cause or generator, then this
method of reasoning by means of analogy breaks down, and induction becomes impossible.

Keynes does not argue that this principle is always satisfied (the debate with
Tinbergen, for example, was inspired by Keynes' view that in the case of inference with
regard to investment, it is nof satisfied). Rather, Keynes holds that, given a priori
uncertainty, such a principle is needed if appreciable a posteriori  probabilities
regarding propositions of interest are to be obtained. How to assess the validity of
using the principle in specific problems of inference remains unclear. Keynes' colleague
at Cambridge, Jeffreys, also tried to solve the problem of obtaining non-arbitrary a
priori probabilities in the absence of information, but from a different perspective.
Even in cases ol a priori uncertainty, and in case of an unlimited number of possible
explanations  (‘independent  variety’, in Keynes'  theory),  strictly  positive  prior
probabilitics may be obtained by ranking the possible explanations in order of their
complexity.

Jeffreys (1961, p. 342) interprets the statement ‘entities are not to be multiplied

without necessity’ as follows:

“Variation is random until the contrary is shown; and new paramelers in laws,
when they are suggested, must be tested one at a time unless there is specific
reason to the contrary.” (italics in original)

In the preface to the third edition of his Theory of Probability. Jeffreys (1961, p.
viii) notes that the implications of this principle are contrary to ‘the nature of
induction as understood by philosophers” (presumably, Popper is implicated). The
important point, which can already be found in Pearson (1911), is that one starts with
the hypothesis that variation in the data is random, and then gradually elaborates upon a
model to describe the data in order to improve upon the approximation. Furthermore,

‘Any clearly stated law has a positive prior probability, and therefore an
appreciable  posterior probability until there is definite evidence against it’
(Jeffreys, 1961, p. 129).
The simplest hypothesis is that variation is random until the contrary is shown, the onus
of the proof resting on the advocate of the more complicated hypothesis (Jeffreys, 1961,
pp. 342-3).

It is now possible to compare Jeffreys’ approach with Popper’s. Although it is
acknowledged that Jeffreys' SP is made operational in an arbitrary way, the underlying
argument is not arbitrary. More recent advances, in particular duc to Rissanen (1983),
provide a non-arbitrary operational form of the SP. On the other hand, Popper’s critique
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of assigning positive probability a priori to simple propositions is self-defeating. The
argument is based on two points: first, the idea that the number of possible propositions
is infinite; second, that the empirical content of simple propositions is high, so that
the chances of falsification are also high. On the first point, if the number of
conjectures is indeed infinite, the chance that a sequence of conjectures and refutations
will come to an end by hitting the truth is zero. A methodology based on gradual
approximation does not suffer from such a weakness. The second point underlying Popper’s
argument is due to confusing P(H) and P(D) (see Section 1.3 above and, for further
details, Keuzenkamp, 1994, p. 74), a topic that is beyond the scope of this paper.

2.2 Simplicity and the Duhem-Quine thesis

The Duhem-Quine thesis of testing theories suggests that a negative test result
cannot disconfirm a theory: the rejection affects one (or more) element(s) of a whole
test system, but does not indicate which element is invalidated by the test. If a
prediction of a scientific theory is shown to be wrong, one can adjust any part of the
test system (sometimes called ‘web’ or ‘cluster’), and not just the hypothesis of
interest, The simplicity postulate reduces the impact of the Duhem-Quine thesis, although
its logical status is not altered.

According to the modified simplicity postulate, simple models have stronger a priori
predictive power (in the sense of minimizing a mean squared prediction error) than
complex models. Adding ad hoc auxiliary hypotheses to a model, and using them for
modified predictions based on the revised test system, will reduce the a priori
predictive power of the model. The reason is that ad hockery is unrelated to the other
theoretical notions that are used to establish a model. Hence, ad hoc alterations of
theory need a larger additional code (bits) and, therefore, increase the total
descriptive length. Negative test results should lead to efforts to adapt the model as
coherently as possible, minimizing ad hockery (hence, additional code length). This view
receives support from Quine’s (1987, p. 142) suggestion to introduce the ‘maxim of
minimum mutilation’ in responding to a fest result: ‘disturb science as little as
possible, other things equal’.

This is important for discussions of data mining. The data miner has absolute freedom
to make any changes in the specification of a model. As the best (perfect) fit that can
be obtained will be the one resulting from a model with as many parameters as there are
observations. the data miner tends to make an implicit trade-off between fit and
simplicity. For example, the SAS statistical package provides statistical routines where,
given a set of data for particular variables, the linear model yielding a maximum R?
corrected for degrees of freedom is selected. The stepwise regression algorithm is a
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simplified version of this automated modelling procedure. A major problem with such
routines is the ad hoc nature of the resulting models. Simplicity and fit are considered
and, i description of a particular set of data is the only purpose of interest, then the
resulting model may be satisfactory. Similarly, if a Box-Jenkins model is chosen by
optimizing a particular information criterion, a satisfactory model for describing the
given data may be obtained. However, such models are idiosyncratic and do not share
general results with other models. Hence, investigators with broader aims (such as
scientific inference, induction) are unlikely to opt for mechanical modelling using.
e.g.. stepwise algorithms. The role of economic theory is to highlight general
characteristics of different sets of data, in which case economic theory is a simplifying
device 12 This can be formulated in terms of the modified simplicity postulate. If an
investigator analyzes consumption in both the USA and the UK, applying Box-Jenkins
techniques is likely to yield two statistically adequate models with very different
specifications and, hence, a larger number of bits will be required to describe them.
However, a theoretical straitjacket is likely to yield models that are slightly worse in
terms of goodness of fit, but with greater simplicity in terms of the number of bits due
to the similar specifications involved. This analysis of the Duhem-Quine problem avoids
the problems that result from a Lakatosian interpretation of scientific research
programmes (advocated by Cross, 1982).13

2.3 Bounded Rationality

The theory of hounded rationality, due to Simon (see Simon, 1986, for references). is
currently experiencing a revival in game theory, as well as in the theory of learning in
rational expectations models. Siwations of boundedly rational choice emerge for
basically the same reasons as those that prevent use of the Solomonoff-Levin distribution
directly. Some problems are not computable. In microeconomic phenomena, this bears on
situations of strategic behaviour: in complex situations, one may opt for simple
strategies. In  macroeconomics, disputes on the validity of some economic theories
originate from different views on where exactly to locate bounded rationality: for
example. consumers who suffer from money illusion, or entrepreneurs who are unable to
discriminate between relative and absolute price changes. These implications for economic

12 Recall that the information criteria, presented above, are derived by starting from
prior ignorance about rival models. Once an investigator has been able to extract general
information from specific data, the assumption of prior ignorance is no longer valid and
informative probability distributions may be used.

13 This interpretation, due to Lakatos (1970), depends on the notions of a hard core,
protective belt and positive heuristic, which are hard to define. The criteria to decide

whether to continue supporting a research programme, or to drop it, are arbitrary and
undefined.
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theory extend beyond the scope of this paper, but there is a relation with (econometric)
inference.

Keynes™ (1973) famous example of the beauty contest is related to this argument.
According 1o Keynes, the probability that one model will be chosen as the newspaper
readers’ heauty queen cannot be calculated. Tt involves infinite regress on behalf of the
readers of the newspaper, who not only have to state their own preferences, but also 1o
guess the preferences and guesses of other readers (the newspaper game was not to choose
the beauty queen, but to guess who would be chosen). Keynes' example is an intuitive
version of the halting problem. His conclusion is that, in a broad class of applications,
it is not possible to formulate numerically precise probability judgments. However, it
may still be feasible to assign probability orderings. 14

If the problem of deriving explicit and non-arbitrary prior probability distributions
did not exist. then most philosophers (perhaps even statisticians) would agree that
Bayesian inference is optimal (namely, it results in coherent probability judgments and
satisfies the likelihood principle). Bayesian prediction is an instance of Solomonoff’s
predictor which is considered ideal for the purpose of predictive inference (Li and
Vitanyi, 1992). However, these optimal qualities may be oo good to be true. The Bayesian
inference machine (conditioning, marginalizing and mapping) is similar to Laplace’s
demon. !5 The demon is empirically omniscient and knows the deterministic laws of physics
(such as gravitation). A Bayesian demon, to paraphrase the metaphor, is logically
omniscient by having an cxhaustive set of hypotheses with their ideal universal prior
probabilities. The Bayesian demon knows in advance how to respond to every new piece of
information: there can be no surprises (this is similar to the complete markets
hypothesis of an Arrow-Debreu economy, where it is possible to make perfect contingency
plans).

Kolmogorov complexity theory suggests why this fiction of the Bayesian demon must be

defective. Kemeny expresses his doubts as follows:

‘Few. if any modern philosophers still expect fool-proof rules for making
inductive inferences. Indeed, with the help of such rules we could acquire
infallible knowledge of the future, contrary to all our empiricist beliefs.’
(Kemeny, 1953, p. 711).

Laplace’s demon did not survive the quantum revolution in physics. Similarly, the
Bayesian demon is set back by Godel's incompleteness theorem or, which amounts to the
same thing, the non-computability of the universal prior (Li and Vitinyi, 1990, pp. 208-

14 Good (1965) and Leamer (1978) have continued this line of thought.

I5 Laplace’s deterministic view on the character of the universe can be found in his
Théorie analytique des probabilités, not in his Traité de Mécanique Céleste; see Suppes
(1970, p. 32). Laplace uses probability theory for problems where ignorance of complex
causes prevails.
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214, establish the link between complexity and Godel's theorem). Even the most extreme
‘objectivist” or necessarist” version ol Bayesianism,  based on the notion ol i universal
prior, must allow lor a pinch ol subjectivism.

The possibility of indeterminate decision problems, due to the non-computability
problem, has recently been discussed by game theorists (e.g. Binmore, 1991; Rubinstein,
1990). The problem is relevant for situations of strategic decision making. Examples are
tax wars. interest rate and exchange rate policy on the macro level, or currency and
stock market speculation at the micro level. Complexity considerations affect the choice
of strategies (see Rubinstein, 1990, p. 17). Although outcomes of decisions need not be
completely chaotic (namely random without following a probability law), they may well be.

3. Simplicity and econometric modelling
3.1 General to specific modelling

An implication of the argument on bounded rationality given in the preceding section
is that the search for ‘the’ Data Generating Process, by those who hold the DGP as more
than a convenient fiction, is in vain. Such a process does not exist: it is a
metaphysical fiction, so that the DGP has the same fate as Laplace’s long-deceased demon.
Bounded rationality implies that some decisions are made on arbitrary grounds, yielding
arbitrary consequences. Of course, it is also possible that ‘rules of thumb’ emerge,
perhaps conventions that have proved themselves in previous instances. Such rules may
generate  relative  stability until  they eventually collapse due to some shock. The
characteristics of the successive process are not determined, and a regime shift may
result. Hence, a stable DGP is either a fiction or a meaningless tautology. As a formal
tool for modelling, the less suggestive terminology ‘general model” is to be preferred.

If the data are represented by a statistical model, it is desired that the error
terms and residuals of the model are stable, and obey certain probability laws. However,
unlike the claims of reductionists, nothing forces the (metaphysical) DGP to being
stable. Although constant parameters may be desirable, this is not because human nature
or society is stable. Models with time varying parameters may be less useful in physics,
but can be helpful in the social sciences.

The frequentist interpretation of probability, which presumes the existence of a
stable umiverse (consider for example Von Mises” conditions of convergence and
randomness. discussed in Keuzenkamp. 1994), does not apply to the social domain. This
does not make inference impossible, but one should explicitly acknowledge the cognitive
limitations in the theory of inference that is used. Bayesian inference with a ‘human

face’ can deal with those limitations.
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Now consider  the  reductionist  approach to cconometrics.  This  starts  from  the
presumption of the DGP and views econometrics as the reduction of this DGP to a
parsimonious model. Tt is argued that one has to start from a general model and test
downward (i.¢. test successive restrictions on the general model). The general model is,
in fact, a set of models containing all possible simplifications as clements. Hence, the
larger is the set of models, the higher is the joint prior probability of all enclosed
models. In Poirier’s (1988) terminology, the ‘window’ is wide. However, there is no
particular reason why the most general model considered deserves special credence. The
argument that test statistics are not valid, in the Neyman-Pearson sense, if they are
applied within the context of invalid reductions, is problematic, since even the most
general conceivable model is likely to be ‘wrong’. This is so even if the reductionist
econometrician obeys Haavelmo's (1944) imperative of not choosing the general model by
ohserving the data. Testing downward is sensible if one favours parsimony, but the theory
of reduction does not offer satisfactory principles of simplicity. This critique is
amplified by the fact that Neyman-Pearson tests treat the null and the alternative
hypotheses in a quite arbitrary asymmetric way. In contrast, inference based on the
modificd simplicity postulate does not suffer from this bias (see Keuzenkamp and Magnus,
forthcoming, for discussion of different approaches to testing in econometrics).

In empirical investigations, simple models can inspire knowledge, while complex
models rarely do. According to the modified simplicity postulate, simple models should
come first to mind (or, what is not quite the same, have lower descriptive complexity,
hence higher prior probability). It may be the case, of course, that the investigator
chooses a ‘microcosm’ (in the words of Savage, 1954) that is too small. The investigator
may become aware of this if, for example, the chosen set of models does not perform
satisfactorily. There is presently no formal theory that provides an objective criterion
to suggest when the ‘microcosm’ should be enlarged, but misspecification tests seem to be
relevant for this purpose. As soon as a wider set of models is considered, however, the
MDL principle can be applied to evaluating these new models.

The idea that the only valid way of inference proceeds by testing downward, starting
from maximal attainable complexity, rests on a misconception of scientific inference.
Jeffreys (1961, p. vii) remarks that

‘scientific method depends on considering at the outset the hypothesis that

variation of the data is completely random, and modifying it step by step as the

data are found to support alternatives.’
Furthermore, Jeffreys (1957, p. 78) argues that the starting point for inference is to
regard all variation in data as random. and

‘then successive significance tests warrant the treatment of more and more of it
as predictable, and we explicitly regard the method as one of successive



approximation,’

Jeffreys (1957, p. 76) also argues that if the method of successive approximation is not
used, one is committed to explaining in detail every separate residual. Jaynes (1989) has
a similar view on scientific progress, which is based on the Maximum Entropy Principle.
Rosenkrantz (1983, p. 78) defends such a strategy, and calls it ‘structured focusing’.
His approach starts with constructing a good first-order approximation (representation,
in the terminology of Hacking). Anomalies are observed and accommodated by more refined
approximations. The reverse approach, from general to simple, may be very cumbersome, and
may even lead the researcher astray (see the views of DNA researcher Watson, cited in
Rosenkrantz, 1983). In econometrics, Zellner is a rare exception in support of the
simplicity postulate: Zellner (1982) opposes a ‘top-down’ (general to specific) approach.

There  exists  widespread  disagreement  on  the role  of simplicity in  inductive
(cconometric) inference. The basic insight presented here is that simplicity, or ils
mirror image complexity, can be measured by the minimum number of bits needed in a
computer program  that describes o theory and its observations. Note that Lucas (1980)
states as an explicit goal ol cconomics o write such a computer program. At the optimum
level, the joint complexity of data, as described by the model, and the model description
itself, are minimized.

This way of formalizing simplicity is instructive for various reasons. It clarifies a
limitation 1o induction, due to the non-computability of an ideal universal prior. The
skillful (but subjective) hand of the econometrician is indispensable. Econometric
inference is boundedly rational, The general to specific approach suffers from the
weakness that it is not possible in empirical applications to estimale a general model
incorporating  all conceivable variables that may affect the variables of interest.
Obviously. one cannot estimate the DGP, even if it were to exist. A general empirical
model is. literally, false. What is of interest is how well the model is able to
represent the data. predict new data, or provide insights to cconomic policy. Whether the
model mimics the DGP is a problem of metaphysics. If there is reason to think that models
of different complexity might be equal candidates for some given purpose, all of them
should be considered and their quality evaluated using a modified simplicity postulate.

3.2 The purpose of the model

Has simplicity a virtue independent of the goal of inference? Rissanen's earlier
cited remark. wherein he reveals a hope for the automation of science, suggests that
simplicity is an objective characteristic independent of subjective judgments of an
investigator or independent of the context of modelling. Rissanen (1987, p. 96) argues
that the introduction of subjective judgments in inferential problems make the resulting
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inferences ‘strictly speaking unscientific’. Keuzenkamp (1994, Chapter 4) deals with
problems of objectivity, and argues that such objectivity is misleading (this is
particularly true for economic inference, where data information is limited and value
Jjudgments are inevitable). The modified simplicity postulate may help, however, to yield
greater agreement on how to trade off parsimony and descriptive accuracy. Algorithmic
information theory shows why certain constraints to objective knowledge may exist, but it
does not lead to the conclusion that subjective judgments are unscientific.

Subjective judgments matter, and so does the context of inference. Prediction is
different from regulation and control, for example. In general, more complex models are
needed i policy intervention is the purpose of modelling (this conviction at least
stimulated large scale macroeconometric modelling in the '60s and "70s, and subsequently
their complex successors with more elaborate microfoundations). Nevertheless, this does
not violate the (modified) SP. Given the goal of inference, the rule should be to select
the set of models that is able to meet the goal, so that the SP is used in order to
choose the appropriate model.

It might be objected that the MDL principle does not pay sufficient attention to the
purpose of the modeller. If, from the MDL perspective, Einstein’s relativity theory is
superior to classical mechanics in describing red shifts in the spectra emitted by stars,
should it be used to predict the position at time f of a football that has been set in
motion at t-/? The answer is negative: if the input data are macroscopic, then it is
likely that inductive inference related to the position of the football will yield
superior results using classical mechanics. The MDL principle would suggest that the
extra bits to describe the relativity part of the more complex model do not improve the
predictions  and  should, therefore, be disregarded. No physicist would be likely to
consider starting from the relativity model and test downwards, in this case.

It the goal of inference is to make money, for example, by predicting stock prices,
the criterion 18 not to maximize simplicity but to maximize dollars. The example in
Rissanen (1987) is interesting in this respect: applying the MDL principle leads to the
random walk model of stock prices. A model with trend fits the data better, but the extra
storage code needed to describe the trend parameter does not weigh against the
improvement in the fit of the model. Rissanen (1987, p. 97) concludes, wrongly, that this
proves that ‘any successful stock advice must either utilize inside information, which is
not in the data, or it is entirely the result of luck’. While the quoted remark may be
true, this cannot be inferred from the fact that the trend in the data has only limited
descriptive power. A money-maker might still prefer the model with trend (but even then,
transaction costs are probably higher than the expected returns).
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4. Concluding comments

In this paper, the concept of simplicity and its effect on different approaches to the
problem of specification uncertainty were evaluated. Currently, statistical reductionism
is in vogue. It argues that proper inference starts with a general model, or ideally,
even the Data Generating Process, and descends step by step to the more specific and
simple model, until a critical line on loss of information is crossed. However, general
to simple is an inversion of the history of scientific inference. Scientific progress in
physics illustrates a sequence of increasing complexity: consider planetary motion, from
circles to ellipses, to even more complicated motions based on relativity; from molecules
to atoms, and to even smaller particles. Keplers' laws were misspecifications, but were
they invalid? The same question can be raised for cases in empirical econometrics, such
as the investigation of consumer demand. The first econometric studies were based on very
simple models, with few observations. Current investigations are not infrequently based
on more than 10,000 observations, and are much more general in being less aggregated with
more flexible functional forms. Were the pioneers wrong and misguided by their simple
misspecifications? Although reductionism does not pretend to be a theory of scientific
development, such questions point to the defect it has as a modelling strategy. All
models are wrong: Keppler's, Tinbergen's, and Hendry’s alike. Some, however, are useful.
Keppler's clearly were, as were Tinbergen's. Whether the same applies to the models (and
hence, the modelling strategies) of reductionist econometricians still has to be shown.
Given the limited amount of data, a general to specific approach (i.e. starting from
a very large dimensional parameter space) is not feasible: one typically commences
inference with relatively simple models. However, this may not be the most important
problem with reductionism. Following the arguments of this paper, a relatively complex
model  should  receive  low  prior  probability if inductive inference is  the goal 16
Therefore, the only justification for making models more complex is upon empirical
observation that the simple model is defective. This does not imply that practical
researchers have to follow a simple to general approach instead. Box (1980, p. 425)
suggests that scientific progress involves an iterative inductive-deductive course.
Although this point of view has merit, it would be useful to add another iterative
process, namely between approximation (inspired by the simple to general approach) and
reduction. Applied econometricians usually start with relatively simple models, which
become gradually more complicated if additional data become available or if the simple
models are unable to cope with the specific demands of the investigator. Adding variables

16 For deductive inference, ¢.g. refining general equilibrium theory, complexity does not
have to receive a penalty, as there is no trade-off such as the one that inspires the
modified simplicity postulate.
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(or lags) may also result in the belief that some others may be redundant, resulting in a
simplifying iteration (such as the ‘simplification search’ of Leamer, 1978). The
iteration is also between Savage's (1954) grand world and the search for a small world
microcosm. Specification freedom is a nuisance to purists, but is an indispensable aid to
practical cconometricians. The key to coping with specification uncertainty is to obtain

a better understanding of the importance of simplicity.
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