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Abstract

Althuugh simplicity (parsimony) seems to be important in scientitic inferenee, it is

dilficull tu Iind a salislactury upcrational definiliun Ihat can Ix: uscd lo implcmcnt an

optimal Icvcl uf simplicily. Many stalislicians and ccunumclricians agrcc Ihat onc ul

thcir goals is the reductiun ul data (i.e. formulating mcxlels that cun[ain Ihe relevant

informatinn in the data, fur example, by means ul sufficienl stalislics). Ilowever, it is

not generally agreed how this goal should be achieved if the specification of the model

is not given cr priuri. Two issues are discussed in this paper. The first is whether a

formal definition and justification of simplicity in scientific inference can be found,

and whether an optimal level of' simplicity is obtainable. A definition of simplicity is

possible, as are the optimum conditions for the desired degree of simplicity. The model

of inference used here relates Bayesian inference to algorithmic intbrmation theory.

Simplicity is examined in the light of induction, the Duhem-Quine thesis, and bounded

rationality. The second issue relates to the role that simplicity might play in

econome[ric modelling. This is elucidated with some remarks on the `general to specitïc'

approach tu modelling and discussions on the purpose of a model.

Keywords: simplicity, Occam's Razor, information criteria, general to specific.
JEI. codes: B0, B4, C5.
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"is it not natural tu bcgin any attempt at analysing the economic mechanism by making the

simplest assumptiun cumpalihle with general theory'?"
Jan 'I'inbcrgcn (194t1).

0. Prcamble

"1'he march of science is lowards unity and simplicity.' (Puincaré, Ic~2?1952, p. f73). In

econometrics, this march threatens [o become lost in a maze of specitïcation uncertainty.

The familiar problem of data mining is that there are many different ways to deal with

specificatiun uncertainty. Reductionism (Hendry, 1993), sensitivity analysis (L.eamer,

1978) and profligate Vector Autoregressive (VAR) modelling (Sims, 1980) share, as their

starting point, a general, high-dimensional model. The reductionist approach attacks

specification uncertainty by means of a general to specific `simplitïcation search' (in

the terminology of Ixamer, 1978) of conditioning and marginalizing, in which a sequence

of (possibly) asymptotically independent significance tests is used. However, the notion

of 'simplicity' is not explicitly formalized, but instead, a conven[ionally chosen

significance level is used. Sims' VAR approach uses informa[ion criteria in order [o

obtain mudels with `optimal' lag lengths, but no eftbrt is made to use such criteria for

imposing additional zero restrictions on the parameters of the model. As a result, VAR

modcls arc often criticiud for being 'over-parameterized,' or insufficienlly

parsimoniuus (i.e. simple).

In this paper, an effort is made to formalize simplicity (parsimony) and to show how

it relates to scientific inference and econometric modelling. In particular, use will be

made of insights in algorithmic information theory, the theory of inductive reasoning,

and Kolmogorov complexity theory. It will be argued that simplicity is a vital element in

a theory of scientific inference. A definition of simplicity is possible, as are the

~iptirnum cundiliuns for the desired degree of simplicity. Llnderstanding simplicity is secn

to be impurtant for specifying hyputheses and selecting models.

The paper is organized as follows. Three main sections discuss the background and

furmalization of simplicity with regard to a priori probability and intiirmation theory

(Section I), its meaning ti~r scientitic inference in general and its relation to

inductiun, the Duhem-Quinc thesis and bounded rationality (Section 2), and its meaning

for econometric modelling in particular (Section 3). Concluding commcn[s are given in

Section 4.



1. Formalizing simplicity

L 1 Buckl;round: Occanr's KcrZur and the l.aw nf Parsimony

A fainuus maxim uf hrHh philcrsuphy, in gencral, and scicntilic infcrcncc, in

parlicul;u, is (Jccunr's Ilu;,,r: 'l'.nlia nun sunl multiplicanda pracler ncccssitalcm'

(cntitics arr nut tu hc mulliplicd bcyond necessity). "fhis maxim is usually atlributed tu

the Oxfurd l~ranciscan schulasticist William uf Ockhant (t1285-1349), althuugh il cannot be

found in his writings.l Perhaps for this reason, different versions of [he principle

circulate,' and even the spelling of Ockham's name varies-the razor has been used to

shave it tu Occam. Occam's razor is supposed to be one of the canons of scholasticism

(see, e.s~. Pearson, 1911, p. 393), although Thorburn (1918) argues that, apart from its

commonscnsc as a sound rule of inethodology, the razor has little to do with mediaeval

scholxsticism. Related canons, cited by Pearson (1911, p. 393), are Principia non sunt

cumulcurda, and a statement that run he found in the writings of (kkham as well as thosc

uf his tcacher Duns Scotux (t1266-1308), Frustra ft per plura, yuoc! pntes7 fieri per

puucinr~r (it is in vain to du by many what can he done hy fewer).3 This is known as the

Lurv r,~ 1'ru.cinrorn~ (ur 1'urc imonv).

Whatever the antecedents of Uccam's Rawr, as a me[hodological principle it is useful

hut vague. Other things equal, a more elaborate model canno[ fit the data worse than a

specific (restricted) version uf it. Occam's razor suggesls deleting those extensions ol'

a modcl that are irrclevant tu the aim of the model, examples of aims being description

and prediction. It is a recurring theme ín the writings of early positivists, such as

Mach, Poincaré, and Pearson (see e.g. Pearson, 1911). If two hypotheses H; and H~

descrihe facts D eyually well, i.e. P(DI H;) - P(DI H~), the principle says that the

simpler of the two should he preferred.

But what is the motivation'? Some efforts have been made to base simplicíty on

metaphysical grounds. An example is the view of Sir Isaac Newton (1642-1725) that `Natura

1 A detailed his[orical account of' Occam's Razor is given in Thorburn (1918), who argucs
that it is a modern myth. The formula was probably tïrst used by John Ponce of Cork in
1639, and attributed to Ockham by the historian Tennemann in 1812. The English title
'Occam's Razor' was invented hy the Scottish philosopher, William Flamilton (1788-1856;
not to be confused with the mathematician) in 1852.
~ For example, Quine (1987, p. 12) writes: "'Entia," William of Ockham had intoned, "non
multiplirandu sunt praeter necessitatem."' No reference is given. Rissanen (1983, p. 421)
represents 'Ockham's razor' as 'plurality is not to be assumed without necessity.' Again,
references are missing.
3 We traced the following versions of Occam's Razor in the economics literature. Friedman
(1953. p. 13n) discusses 'Occam's razor' as an `arbitrary principle', without citing the
F.:ttin formula. Klant (1979, p. 49) presents 'Occam's Razor' as 'Entia explicantia non
sunt cunplifcanda praeter necessitatetn.'



e~nim simplex es7 ct rerum ruusis superfluis non luxurlat' (Principia Ma[hematica, 1687,

cited in Pearson, 1911, p. 92).4 This amounts to the that nature is simple, and one ought

nut seek superfluous causcs. Such a view has remained popular among physicists. For

example, it can be found in a paper on the principles of scientific inyuiry by Wrinch and

Jeffreys (1921, p. 380): `The existence of simple laws is, then, apparently, to be

regarded as a yuality of nature.' We will return to their writings below. Ano[her modern

version of Newton's view is given by the physicist Richard Feynman, who asks, How is it

possible that we can guess nature's laws? His answer is: `I think it is because na[ure

has a simplicity and therefore a great beauty' (Feynman, 1965, p. 173). One might object

that this vicw ol the physicist is metaphysical speculation, not based on facts. A

diamctrical ~pcculatiun is cxpresscd ny l.camcr and Ilcndry, who both hcild that 'Naturc is

complex and Man is simple' (Hendry et al., 1990, p. l85).

Occam's razor does not imply that nature is either simple or complex, but only

wggests that simplicity is a sound device for inference. It scrves as a rule of

methcxlnlu~y, ncct as a mclaphysical dugma CI'horburn, 19I8, p. 352). Such a view can Fx~

found in thc writings of positivists such as Mach and Pearson, and also in Peirce's

publications on pragmatic philosophy:

'Hypothesis in the sense of [he more facile and na[ural, the one that instinct
suggests, that must be preferred; for the reason that, unless man have [sic] a
natural bent in accordance with nature's, he has no chance of understanding
nature at all.' (Peirce, Abduction and Induction, in Peirce, 1955, p. 156)

However, there is still the objection [hat Occam's razor is not opera[ional. When,

for example, are new elements in a theory 'redundant"? To answer this question, it is

necess:u-y to fac~ the trade-uff between simplicity and (descriptivc) accuracy. This

u~ade-off has been s[udied by some of the founders of probability lhcory. To the best of

uur knowledge, this attempt was made by Gottfried Wilhelm Leibniz (1646-1716).5 He argues

that :ui hypothesis is more prohahle than another in proportion to its simplicity (economy

of assumptiuns) and íts pciwcr (numhcr of phcnomena that can Fx: cxplaincd by thc

hypothcsisl (sec Kcynes, 1973, p. 303; Cohen, 1989, p. 27). Keyncs dcx~s not say whether

txibniz elahorates nn the pussibility of formalizing a trade-off, hut it is unlikely that

l.eibniz did. Keynes himsclf did not. He needed a principle of parsimony for his uwn

(logicalj probability theory, which is known as his princip[e of limited independent

rurieh~. This is a principle, invoked in order to ascertain non-zero probabili[ies a

4"Thurhurn (1918, p. 349) cites the [hird edition of the Principia Mathematica (1726, p.

387), where the formula 'Natura nihil agit frustra, et .frustra fit per plura yund fieri

pote.~t per puuciora' appean, with no mention of Ockham.

5[~c:ihnit used the formula 'F.ntia nnn esse mu[tip[icanda praeter necessitatem' in his

inaueural dissertation (see Thorburn, 1918, p. 346), without specitic referencc tu

Ockham.
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priori if one a[tempts to make probabilistic inferences ( see Keynes, 1973, and Section 2
helow). It is not a methodological rule to trade-off simplicity and goodness of fit.
Kcynes' yuungcr cullcaguc, I'rank Ramsey, mentiuned the trade-off and suggested making usc
uf maximum likclihocxl:

'In chcrcising a systcm wc have to comprumisc hctwccn lwu principlcs: subjcct
tdways tu the pruvisu that the system tnust not con[radict any facts wc know, we
chciosc (cithcr things hcing cyual) the simplcst systcm, and (othcr things being
eyual) we chuose the system which gives the highest chancc to the facts we have
t,htierved. rhis last is t~isher's "Principle uf Maximum Likelihood", and gives the
only method of verifying a system of chances.' (Cited in Edwards, 1992, p. 248)

Kemeny (1953) discusses the same issue. He defines compatibitity of a theory with the

observations by the condition that the observations must lie within a 99 percent

cunfidence interval (Kemeny, 1953, Definition 1, p. 398). Kemeny suggests adopting a tvle

of inference, which is to select the simplest hypothesis compatible wi[h [he observed

data. This is his `Rule 3' (Kemeny, 1953, p. 397), which has been named `Kemeny's Rule'

hy Li and Vitányi (1992). Althuugh intuitivcly appcaling, this is rathcr ud hoc. On thc

suggcstiun cif philusopher Nclson GoocJman, Kemeny (1953, p. 408) remarks tha[ it would tx;

uf interest lu find a critcrion cumbining an oplimum of simplicity and compatibitity

hased un first principles. The optimum trade-off is not presented. Hempel (1966, p. 40)

is eyually unsuccessful in providing an optimal trade-off.

It is, therefore, often argued tha[ Occam's razor is arhitrary, even as a

methodological rule. For example, Friedman (1953, p. 13) argues [hat predictive adequacy

is the first criterion to judge a theory, simplicity the second, while realism of

assumptions is of little interest. A well known problem of Friedman's remarks on

methodulogy is his vagueness on terminology: prediction, realism and simplicity are not

defined. Moreovcr, some Bayesixn philosophers of science do not support the view that

predictiun is paramuunt in the sense that it provides grea[er support for a theory than

does, say, thc tcstine of auxiliary hypotheses (tbr further details, sec Dharmapala and

McAleer, 1994). Principles of simplicity that are used in ecunometrics (such as Theil's

tt`, crr thc intirrmatiun critcria uf Akaike xnd Schwari) arc oflcn diswsscd as M:ing

useful but ud hnc (sec e.g. Judge et ul., 1985, p. 888; Amemiya, 1985, p. SS).

l.2 .Sintplicitv and u priuri probahifity

Wrinch and Jcffreys (1921) provide an explicit discussion on the relevance of

simplicity in scientific int~rence. They note that `it will never be possible to attach

:cpprcciahlc prohahility tu an inference if it is assumed that all laws of an infinite

~lass, wrh as :tll rclatiun. invulvine unly :rnalytic functions, aro cyually probable u
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priori.' (Wrinch and Jeffreys, 1921, p. 389). In order tu enable inference, they invoke

two premises: 'Every law of physics is expressible as a differential eyuation of tinite

urder and degree, with rational coefficien[s' and 'the simpler the law, the greater is

its prior probability' (1921, p. 386). The first premise is like Russell's claim that

scicntific lawti of physics can only be expressed as differential eyuations (see Russell,

1927, p. 1221. Oncc laws are expressed in differential form, they can he urdered. This is

wherc the twu premises mert, as 'The rnost natural way of well-ordering these are such

that thosc ~rf low urder and degree, and involving nu nurnerical constants other than small

integcrs ;uid fractions with smxll numerators and denominaturs, come earliest in thc

seyuence.' (1921, p. 390). Although highly informal, this is the tirst attempt to

operationalize the notion of simplicity. Once this is done, the ordering is used in a

pruhability ranking, using the second premise. In practice, Wrinch and Jeffreys (1921,

p. 386) argue, simplicity `is a yuality easily recognizabie when present'.

In his later writings, Jeffreys further developed his views on simplicity. Jeffreys

(1961) argues that there is good reason to give a simple hypothesis a higher prior

probability than a complex hypothesis, in particular because simple hypotheses tend [o

yield better predictions than complex hypotheses (i.e. have superior inductive

yualities). "['he argument dcxs not rest on a view that nature is simple. Simple hypotheses

are favoured ~ priori on grounds of degrees of rational belief (Jeffreys, 1961, pp. 4-5).

As a result, hypotheses of interest can be analyzed using strictly positive prior

probabilitics. The argument is known as the Jeffreys-Wrinch Simplicity Postulate,

henccforth dcnotcd as SP:

Simplicity Postulate (SP). 'Tite set of u!! possihle fi)rms uf srientifrr luw.~~ is
~nite or enwncruble, und their imttal probublhtles form the terms of u
cnnverKent .cerie.c [if sunt I' (Jeffreys, 1957, p. 36)

Jeffrcys (1961, p. 47) sununarites his view as `[he simpler laws havc the greater prior

probability'. The SP in the crude operational form given in Jeffreys (1961, p. 47) is to

attach priur probability 2` to the disjunction of laws of complexity c, where c is

measured hy the sum of the order, the degree, and the absolute values of the coefficients

of scientilic laws, expressed as differen[ial eyuations. Jeffreys proposes assigning a

uniform prior prohability distribution to laws with an eyual degrec of complexity. A

serious prublem is that his measure of complexity is arbitrary, although more explicit

than the one presented in the paper with Wrinch.6 Furthertrtore, as he acknowledges, it

6 As an example, ]effreys ( 1961, p. 46) considers the hypothesis:
s-u~utt(ir)gt'-ta,t?f... ta„f~~
If the first three terms on the right hand side can accoun[ for most variation in the
data, it would be `preposterous' to inerease the number of adjustable parameters to or

even bevond the number of observations: 'including too many terms will lose accuracy in
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rules out measures of complexity of hypotheses which cannot be tiirmulated as differential

cyuations. Jeffreys provides neither a formal justifica[ion for the SP nor for the 2`

rule, and acknowledges that the prior probabilities assigned to scicntitïc laws may not

he sufficienUy precise (leffrcys, 1961, pp. 48-49). The SP is an heuristic principle,

with onc Icalurc that has to be rctained in any cvent:

'If si high prohahility is cver lo be altached to a general law, wilhoul nceding a
chan~e in the furm of the law for every new observation, sume principle that
arrangcx laws in an nrdcr ot dccreasing initial prohahility with increasing
numhcr of adjustable p~u'~unctcrs is essential' (leffreys, 19Gt, p. 48).

A justification tiir a modifieJ SP, and suggestions for ohtaining sufticiently precise
prior prohahilities needed to implement the modified SP, are given helow.

1.3. Sirrtplic~ih' and infi~rntatinn theory

A justitïcation for the trade-off between descriptive accuracy and parsimony can he

found in the literature on algorithmic information theory. Think of an hypothesis as a

string of hinary digits (hits), denoted by {0,1}~. Similarly, thc ohservations can hc

represented by another string of hits. It is possihie to show that the simplicity of an

hypothesis is related to the length of the string describing the hypothesis, and this

length in turn is related to a probability measure. A problem is that this length depends

on the language in which the hypothesis is expressed. It can he shown, however, that a

minimum code length for an hypothesis dces exist (Rissanen, 1983), hut this code length

is not computable. The problem then is to find a good approximation to this minimal ccxle

length. Hence, a formal justitication of Occam's razor is feasible, although the

implementation of the resulting principle is arbitrary. fteuristic arguments will Ix;

presented to suhstantiate this claim.~

Accurding to Bayes' Theorem, the posterior probability for an hypothesis H; given

data D is proportional to the prior times the likelihood:

P(H, ID) a P(N,)P(D I H;). ( I)

~rediction instrtd uf gaining it.'
Jeffreys (19fit, pp. 47-49) provides four examples for evaluating the complexity fur
differential cyuations, two of them derived from special cases of the equation above.
Complexity is given by the sum of the order, degree and the ahsolute values of the
coefficients. For example, if s-u, dsldt-0, which results in a compfexity of 1 t 1 f 1-3. For

the catic s-ufutt(v,));t', he uh[ains dzs~dl-'-0 ( sic!), which yields a complexity of
2 t I f I-4. A major problem with interpreting these calculations is that lcffreys does not
define what is mcant hy order, degree and the absolute value of the coeffïcients. As
such, his mcasurc is unclear.
7 Prools can he tiwnd in l,i and Vitányi ( 1990, 1992).



It is ati~umed that the hyputheses under consideration are at most cuuntably intïnite.H
Thc goal is to maximize the posteriur probability P(H,ID): the more elaborate is H,, the
better will the hypothesis fit the data and the larger is the likelihood, P(DIH;).
Simultanenusly, however, according to the SP, the prior probability, P(H;), declines with
the incrcasing complexity uf the hypothesis.

'I'hc nurrc clahoratc is an hyputhcsis, [hc grcalcr is the numtxxr uf hits rcyuircd fur
its hinary representaliun. Kcwriting (1) in negalive logarilhms (wherc lu,~~(.) denutes
lugarithms with hasc 2, and natural logarithtns are indicated by In(.)), yields:

- !o);P(II;ID) - - ingP(UII[;) - lugP(H;). (?)

Maximizing the posterior prohahility (selecting the hypothesis that has the highest
support of the data) is eyuivalent tu minimizing the expression given in (2).

It can he shown that lo4P(H;) is related to the descriptive cnmp[exity K of the
hypothesis N; and (ogP(D I H,) is related to the 'self-infotmation' of the data given mcxlel
H; (see e.g. Li and Vitányi, 1992). Roughly speaking, K measures the minimum number of
hits required to encode a proposition. The relation between complexity and a probability
distrihution has heen established hy Solomonoff (19G4a) and L.evin ( see Rissanen, 19R3).
Solomunoff discusses a general problem of induction: extrapolating a scyucnce of symhols
drawn from some finite alphahet. Given such a sequence, denoted hy S, what is the
prohahility that it will he followed by a sequence a'? Hence, the problem is to calculate:

P(SaIS) - P(SISa)P(Sa),

P(~

One of the examples, presented in Solomonoff (1964h), is the extrapolation of a Bernoulli
seyuence. The analytic approach starts from (2). The prior probability in (2) is obtained
hy examining how the strings of symbols might be produced by a'Universal Turing Machine'
(UTM).9 "fhe crucial insight is that strings with short and~or numerous descriptions
(program cc~des that yield the relevant string as outpu[) are assigned high a prruri

x Such an assumption is made in many rival approaches to inference. Wrinch and Jeffreys
(1921) make it in the context of (necessarist) Bayesian induction. 1'opper ( 1959) invokes
it t~ir his mcthodological falsificationism. Good (1968, p. 125), whu is a suhjective
Baycsian, argucs that paramctcr valucs can, in practicc, takc only cumput:thle vaÍucx in
the scnse uf "furing, provided that they are speciticd in a finite numher uf words and
symhols. Ramsey (1974, p. 27), who gives a freyuentist approach lu nuxlel discrimination,
takes the number uf models as countable for convenience.
c~ A Turing Machine is basically a compu[er with intinitely expandahle memory. A UTM is a
"1'uring Machine which can simulate any other ~"uring Machine. If a prograrn cexle ( a finite
ctring uf ( 1's and I's) r which is fed [o the UTM yields S as output, [hen this is
rcprescnted hy UT!vt(c) - S. "I'here may M: many such strings c, hut it may hc~ the case that
[hc UTM is unahle to pruducc output. This is known as thc halting prohlcm.



probability. Sulomonoff givrs intuitivc as well as yuasi-furmal mulivalions fnr thix

assignment (a purely formal motivation can he t2~und in Li and Vitányi, 1992). The

intuitive motivation is based on two arguments. First, the resulting approach uf

inference is explicitly relatcd to Occam's razor, `one interpretation of which is that

thc nnirc "tiimplc" or "econumical" of several hypotheses is the rnorc likcly.' (Solornonoff,

1964:r, r. 3). Second, strings with many pussible descriplions yield high u priuri

probability tx:cause of the 'feeling that if an occurrence has many possible causes, then

it is more likely.' (Solomonoff, 1964a, p. 8). The yuasi-formal motivation for

Solomonoff's argument to relate the prior probability to simplicity comes from coding

theory, from which a measure is derived about the likelihood that a will follow S. This

measure, characterized by the crucial insight presented above, obeys `most (if not all)

of the yualities desired in an explication of Carnap's probabilityr.' (Solomonoff, 1964a,

p. 8). Later developments of algorithmic learning theory have improved upon Solomonoff's

pioneering work, without losing the basic insights about the relation between simplicity

and probability. The result is known today as the Solomonoff-Levin distribution with

respect to a UTM, which will be denoted by Pc,TM(H,). In case of (3), it can be shown that

2~K~s"~ ~ Pc,-r-tic(Su) (e.g. Li and Vitányi, 1992). It turns out that Jeffreys' prior

probability dislribution, based on [he Jeffreys-Wrinch Simplicity Postulate, is an

approxirnation to the ideal (or 'universal', as Rissanen, 1983 calls it) prior prohability

distrihution.l(~ The Solomonuff-t,e:vin distríbutiun is not based on subjective Bayesian

hctting, hut on 'objective' fcatures of the problem of interest. "fherefore, it may he

regarded as an elemen[ in a'necessarist' theory of 13ayesian inference.

An apparent weakness uf the arguments given so far is that the resulting probahility

distribution is not effectively computable in the sense of Turing. This is due to the

halting prohlem. There arc limitations on the ability of the Turing machine to foresee

whether a particular program axle c will provide any output or will run forever, entering

infinite loops. 'Cherefore, a computable approximation to Pc~.rM(Su) in (3) must he~

obtained. Solomonoff (1964b) contains a number of examples in which his insights are

applied. Rissanen (1983) and I,i and Vi[ányi (1992) show how a number of approaches to

inductivc infcrcncc can bc dcrivcd from Sulumonol~l's appruach. Thcsc approaches includc

Maximum Likclihuud (ML), Maximum Entrupy (M1;)arxl Minimum Ucuuriptiun l.ength (MDI., als~i

known as elohal maximum likelihocxi), and other approaches [hat are nut used in economics,

such as Gold's inductive inference and Valiant learning. Among the most interesting

l~ Jettreys' distribution has some undesirable properties, most importantly, it is
'impmper' (it does not sum to 1). An additional advan[age of the Solomonoff-Levin
distrihuticm is of coursc tha[ in this casc, a formally satisfactury detïnition of
complexity is given. The fiirmaliza[ion has been advanced independently by uther authon
than Solomonoff as well, in particular, by Kolmogorov - whence the current terminology of
'Kolmogorov-complexity'. See L.i and Vitányi (1990) for a useful survey.
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cumputahle approximations is Rissanen's (1983) MDL principle.

1.4 Minrnrum Descrrplrnn Lenkth und Mrzximum Likelihood

Rissancn (1983) shows lhc links hc~twcen thc Mlll, principk and ML and MI:,
respcclivcly. "I'hc rather uhviuus link to the SP will alsu tx: presented. Fint consider

MDL. Kecall [he cude length of a model, parameterized by o, and the data, represented by

x. The length !(r,o) consists of the self information plus the model ccxie, and is given
ny

!(x,e) - -IogP(x I e) t [(e). (4)

The formula is related to Bayes' theorem, written in logarithmic form. If 2-1(e) is
written as Q(o) (which can be shown to satisfy the conditions ti~r a probability
distribution, see Rissanen, 1983), then

2-1(x'e) - P(xle)Q(e). (5)

'I'he paramcter for the code length, e, is an integer and must have a prior probability

distrihutiun un all ils possiblc valucs, i.c. on all intcgcrs. 'fo cnaxJc an inlcgcr

scalar o, approximately lug,n(o) hits are rcyuired (where the integer n(o) is the binary

rcpresunation uf o dividcd hy its prccision). "1'he prior prohahility Q(n) - 2-~"~"" -

Iln sccros a natural prior prubability distribution (namcly, thc unifiinn Jistrihutiun

proposed hy lefrreys), but this is not a proper one as it Joes not sum to 1. Anolher
r

(related) problem is that the computer must be able to separale different strings,
without dropping the binary character of encoding. The prefix prolx:rty is needed to sulve
this difficulty, where a prefix code is a program or the binary representation of a
model. This implies that a number greater than logzn hits is reyuired to encode the
integer n. The exact number of minimally required bits of the prefix code is not

computable (see Chapter 4, subsection 4.5.3, of Keuzenkamp, 1994). The required code

length can be approximated by log'(n) - logz(n) f Iog2logZ(n) 4-... (the tïnite sum

involves only the non-negative terms; see Rissanen, 1983, p. 424).II The proper prior

prohability that results is:

Q(n) - Un x(Illogzn) x... x(Ulogi ... logzn) x (Ilc), (6)

II Rissanen (1983) shows that functions other than the loR~ func;tion also have the desired
propertics, but lo~' is the most efficient to represent the integers. These functions
share the property that the first term Uoq x) is dominant.
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where c- 2.865... .'Thc first (and dominant) fraction correspon~s tu Jcffrcys' mm-

informativc priur.

The univenal prior prubability distributiun is used to conslruct an 'objective'

method of inference, which is sometimes called global maximum likelihood, or the

principle of minimum descriptiun length (for derivations, see Rissanen, 1983, 1987). l,et

P(xle) be the likelihuod of the N observations of data x, parameterized by the

k-dimensional parameter vector e. I(e) - M(e)IN, where M(e) is the Hessian of -IugP(x l e)

(the infbrmatiun matrix) evaluated at the maximum likelihood estimate. Then the minimal

description length MDL of the data encoded with help of the theory, and the theory

itself, is (up to a term of order (logk)IN):

MDI. - mine k{ -IogP(xle) f k
log(2neN) } klogueu }.
2 k

(7)

The third tcrm cuntaining the nurm of t3, evaluated at the optimum, makes the criterion

invariant tu all nun-xingular lincnr Uansfurnuuiuns. As nutcd in Ritis:cncn ( 1987. p. 94).

the first twu terms in the minimized expression correspond to Schwarz's (1978) 13ayesian

informatiun criterion, which is:

SIC - mina k {-ln P(xl o) f 2 ln N}. (8)

A related intbrmation criterion which is slightly simpler and was derived earlier, is the

Akaike Information Criterion, AIC:

AIC - mine,k {-ln P(x I e) f- k}. (9)

The AIC is derived as an asymptotic approximation tu the Kullback-Leibler distance (or

entropy). Minimizing AIC has also been called the Prrnc~ip[e of Parc~imonv (Sawa, 1978).

There are at least three problems related to the AIC. First, it dues not detïne a proper

density (Rissanen, 1987, p. 92). Second, it fails to give a consistent cstimate uf k(sec

also Schwarz, 1978). Finally, the dependence on some 'true' Jistribution is problematic

fur its own sake, as it relies on an assumptiun that the pseudo-true model is nearly true

(Sawa, 1978, p. 1277; see "Lellner, 1978, for a comparison of AIC with 13ayesian posterior

odds; see also ludge et al., 1985; Amemiya, 1985).

Rissanen (1983, p. 428) remarks that applying the MDL principle, while retaining only

the first twu tenns of (7), has been used successfully for the analysis of autoregressive

(AR) and autoregressive muving average (ARMA) models. Furthermore,

'In contingency tahles, the criterion, measuring the total amount of information,
offers a perhaps speculative but nonetheless intriguing possibility to discover
automatically inherent links as "laws of nature" in experimentally collected
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data. In the usual analyses such links had to be lirst proposed hy humans for a
statistical veritïcation or rcjection.' (Rissanen, 1983, p. 428)

In other words, Rissanen advocates the automation of science. However, his own methods

confirm the view that the smaller is the number of observations, the more arbitrary will

be the computahle approximation to the `universal' prior probability distribution.

For completeness, compare Rissanen's prior (6) to Jeffreys' inference based on an

improper uninformative prior and his original simplicity postulate. This starts from

encoding an hypothesis H to an integer belonging to ~' -{1,2,...}. Examples of eff"icient

coding can be found in Solomonoff (1964b). Assign prior probability lli to integer i.

Although this results in an improper distrihution, as ~ lli diverges from 1, the
~-r

procedure rnay work well if only a small number of hypotheses is being considered. The

prior is an (improper) approximation to the universal prior. To see this, note that lli -

2~~~',~~~ whcrcas Rissancn's (propcr) appruximation lo thc univci:tial prior is 2~"'"~

The relatiun tx~twecn MDL and the maximum entropy principte uf Jaynes (1989) is

established in Rissanen (1983, p. 429) and Li and Vitányi (1992, pp. 375-377).

Ohviuusly, the method of ML is another special case of global maximum likelihocxi.

Givcn an hyputhcsis H that defines the parameters n of' a model, and given the data x, the

s'oal is to maximize (n Y(.rlo). tlence, if the to[al code leng[h is given by [(x,o)-

`IogP(.r I tt) f!(e), then the ML approach amounts to minimizing the uxlc length for a fixed

parameterization o, as only IogP(s I o) is evaluated under the 'axiom of correct

specification'. [n econometric practice, pure maximum likelihood (i.e. inference without

cvaluating different specifications) is rarely applied. The attractive feature of global

maximum likclihood is that it provides a well-founded criterion for thc trade-off between

goodness of fit and parsimony. "1'hc nrudiJied simpGc~ity postu[ate is to minimize the total

cudc Icnglh nccdcd lu dcsu~ihc thc data with respccl to a parlicular nxxlcl. lJnlikc

Jeffreys' original simplicity postulate, [he rnodified postulatc is well detined. An

unavoidable arbitrariness in implementing this postulate remains, but the amount of

arbitrariness can be made precise and is easy to understand.

2. Simplicity and scientific inference

?.1 Simplicit~~ ctnd induction

Popper (1959. p. 385) argues that simple theories should have low (ur cero) prior

prohability: 'simplicity, or paucity of parameters, is linked with, and tends to increase

with, improhahility rather than probability.' He concludes that all theories of interest
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(in particular, Ihcuries that are simple and easy to falsify, i.e. theories with 'high

empirical content') are simple to such an extent that they even have zero prior

prohahility. If Popper is correct, then the Bayesian (inductive) approach to inference

cannut hc wst:rincd, as all posterior prohabilities of non-tautological hypotheses would

he unr. 'I'his is why Poppcr (1959) argues in favour of falsil'icationism: if a degree uf

~upport fc~r scicntific propusilions cannut be cstablished, at Ieast false propositions

can he eliminated. Science thereby progresses by a seyuenee of conjectures and

refutatirms.

Such arguments have hcen cri[icized by the Baycsian philosopher Ilowson (1988), whu

sees no role fur simplicity in epistemology. Howson rejects the simplicity postulatc,

areuing that it is as arbitrary as Popper's opposing argument (see also Howson and

Urbach. 1989, p. 292). Howson and Urbach are not the only Bayesians to reject the

importance of simplicity. For example, Leamer (1978, p. 203) claims to be agnostic.

I~eamer (in Hendry et al., 1990, p. 184) argues that simplicity may be helpful for the

purpose of communication, but not for inference. However, it will be argued that

simplicity is cssential for a theory of inference.

'I'wcr ~cholars ol induction, Keynes and Jeffreys, emphasired thal, in order tu usc

pruhahilistic reasoning for scicntific inference, one has to map pruhabilities a prinri

lu prohahilitics u pu.~7e~rrnri. 'fhose prohahililics refer to prnpositiorn (scientific

hypotheses). The prohability a priori of an hypothesis shouW not he negligihle,

otherwise the posterior prohability will be zero. If there is no prior information on the

merits of alternative hypotheses, it is necessary ro make an `uninformative' prior

prohability assignment. Thc uniform distribution has been used for this purpose. If the

number of altcrnative hypotheses is unbounded, each hypothesis will have a prior

probability of r.ero. Hence, the posterior probability of scientific hypotheses will tx

zero as well, su that inductive inference is not possible. Keynes and leffreys suggested

different approaches to sulve this problem of induction, with Keynes invoking the

'principle of Iimited independent variety' and Jeffreys the 'Simplicity Postulate'.

Keynes (1973, p. 277) argues that, if every separate configuration of the universc

were suhject tu its uwn governing law, prediction wouW become impossible and thc

inductive method uticless. 'fhe inductive hypothesis, as he calls his 'principle of limited

independent variety', states that, as the numtxr ol independent cunstitucnts of a sys[em

toeether with the laws of necessary connection become more numerous, inductive arguments

hecomc less applicahle (pp. 279-280). He doc;s not give a formal definition of these

terms, hut the principle can be understocxl as stating that, for inductive inferenc:c, the

propotiitions Ihat constitule the premises of an inductive argumenl must have a high

degree ~if homogeneity. In uther words, an object of inductive inference should not he

infinitcly cumplex or he detennined hy an inf-inite number of generators (p. 286-7). The
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reason for this fundamental reyuirement is that strictly positive prior probabilities are
needed for inductive inference. In Keynes' vicw, these prior prohahilities are assessed
by reliance on unulnl;y. If every fact would have its own cause or generator, then this
method ot' reasoning by means of analogy breaks down, and induction becomes impossible.

Keynes does not argue that this principle is always satisfied (the debate with

Tinbergen, for example, was inspired by Keynes' view that in the case of inference with

regard to investment, it is no[ satistïed). Rather, Keynes holds that, given a priori

uncertainty, such a principle is needed if apprcciable a pnsteriuri probabilities

reearding propositions uf interest are to be obtained. How to assess the validity of

using the principle in specific problems of inference remains unclear. Keynes' colleague

at Cambridge, Jeffreys, also tried to solve the problem of ob[aining non-arbitrary a

priori prohahilities in the absence of information, but from a different perspective.

I:vcn in cascs c~f rr prinri unccrtainty, and in casc of an unlimitcd numtx:r of possihlc

cxplanaliom ('indcpendcnt variety', in Kcynes' theory), s[riclly positive priur

probahilities may he obtained hy ranking the possihle explanations in order of their

complexity.

Jeffreys (1961, p. 342) interprets the statement 'entities are not to be multiplied

without necessity' as follows:

'Vuriatinn is randum until the contrary is shown; und new purametens in laws,
when they are suRgested, utust be tested one at a time unless there Ls specific
reasnn to the cuntrary.' ( italics in original)

In the preface to the third edition of his Theorv of Probahilitv, Jeffreys (1961, p.

viii) nutcs that the implications of this principle are contrary to 'the nature of

inductiun as understoud hy philusophers' (presumably, Popper is implicated). "Che

important point, which can already be found in Pearson ( 1911), is that one starts with

the hypothesis that variation in the data is random, and then gradually elaborates upon a

model to describe the data in order to improve upon the approximation. F'vrthermore,

'Am~ rleurlti~ stuted luiv has a positive prior probubiliry, und therefore an
appreciuble posterior probubiliry until there is deftnite evidence against it'
(]effreys, 1961. p. 129).

The simplest hypothesis is that variation is random until the contrary is shown, the onus

of the proof resting on the advocate of the more complicated hypothesis (Jeffreys, 1961,

pp. 342-3 ).
It is now possihlc tu compare Jcffrcys' approach with Poppcr's. Although it is

acknowledgcd that lefireys' SP is made operational in xn arbitrary wtry, the underlying

argument is not arbitrary. More recent advances, in particular duc to Rissanen (1983),

provide a non-arhitrary operational form of the SP. On the other hand, Popper's critiyue
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of assigning positive probability a priori to simple propositions is self-defeating. The

argument is based on two points: first, the idea that the number of possible propositions

is infinite; second, that the empirical content of simple propositions is high, so that
the chances of falsification are also high. On the tïrst point, if the number of

conjectures is indeed infinite, the chance that a sequence of conjectures and refutations

will come tu an end hy hitting the truth is zero. A methcxiology based on gradual

approximation does not suffer from such a weakness. The second point underlying Popper's

argument is due to confusing P(Fn and P(D) (see Section 1.3 abovc and, for further

details, Keuzenkamp, 1994, p. 74), a topic that is beyond the scope of this paper.

2.2 Siny~licirv und the Duhem-Quine lhesi.r

The Duhem-Quine thesis of testing theories suggests that a negative test result

cannot disconfirm a theory: the rejection affects one (or more) element(s) of a whole

test system, but does not indicate which element is invalidated by the test. If a

prediction of a scientific theory is shown to he wrong, one can adjust any par[ of the

test system (sumetimes called `weh' or `duster'), and not just the hypothesis uf

interest. The simplicity postulate reduces the impact of the Duhem-Quinc thesis, although

its logical status is not altercd.
According to the modified simplicity postulate, simple models have stronger u priori

predictive power (in the sense of minimizing a mean squared prediction error) than

complex models. Adding ud hoc auxiliary hypotheses to a model, and using them for

modificd predictions based on the revised test system, will reduce [he a priori

predictive puwer of the mcxlel. The reason is that ud hockery is unrelated to the other

theoretical notions that are used to establish a model. Hence, ad hoc alterations of

theory need a larger additional code (bits) and, therefore, increase the total

descriptive length. Negative test results should lead to efforts [o adapt the model as

coherently as possible, minimizing ad hockery (hence, additional ccxle length). This view

receives support t7om Quine's (1987, p. 142) suggestion to intrcxluce the `maxim ol

minimum mutilation' in responding to a test result: `disturb science as little as

possible, other things equal'.

This is important for discussions of data mining. The data miner has absolute freedom

to make any changes in the specification of a model. As [he best (perfect) fit that can

be obtained will be the one resulting from a model with as many parameters as there are

observations, the data miner tends to make an implicit trade-off between fit and

simplicity. For example, the SAS statistical package provides statistical routines where,

given a set of data for particular variables, the linear model yielding a maximum R'-

corrected for deerees of freedom is selected. The stepwise regression algorithm is a
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simplified version of this automated modelling procedure. A major problem with such

routines is the uc! hnr nature of the resulting models. Simplicity and tït are considered

and, it description of a particular set of data is [he only purpose of interest, then the

resulting mc~dcl may be satisfactory. Similarly, if a Box-Jenkins model is chosen by

optimiring a particular information criterion, a satisfactory model for describing the

given data rnay be obtained. However, such models are idiosyncratic and do not sharc

general results with other models. Hence, investigators with hroader aims (such as

scientific inference, induction) are unlikely to opt for mechanical modelling using,

e.g., stepwise algorithms. The role of economic theory is to highlight general

charac[eristics of different sets of data, in which case economic theory is a simplifying

device.1z This can be formulated in terms of the modified simplicity postulate. If an

investigator xnalyzes consumption in both the USA and the UK, applying Box-Jenkins

techniyues is likely to yield two statistically adequate models with very different

specificationx and, hence, a larger number of bits will be required to describe them.

However, a theoretical straitjacket is likely to yield models that are slightly worse in

terms of goodness of fit, but with greater simplicity in terms of the number of bi[s duc

to the similar specifications invulved. This analysis of the Duhem-Quine problem avoids

the pruhluns that result from a I,akatosian interpretation of scientitïc research

prugrammes (advocated by Cross, 1982).13

2.3 Bnunded Rutionality

The theory of bounded rationality, due to Simon ( see Simon, 19R6, for references), is

currently experiencing a revival in game theory, as well as in the theory of learning in

rational expectations models. Situations of boundedly rational choice emerge for

hasically thc same reasons as those [hat prevent use of the Solomonoff-Ixvin distribution

directly. Sume prohlems are not computable. In microeconomic phenomena, this bears on

situations cif strategic behaviour: in complex situations, one may opt for simple

strategies. fn macroeconomics, disputes on the validity of some economic theories

originate from different views on where exac[iy to locate bounded rationality: for

example. consumers who suffer from money illusion, or entrepreneurs who are unable to

discriminate between relative and absolute price changes. These implications for economic

12 Recall that the information criteria, presented above, are derived by starting from
prior ignorance about rival models. Once an investigator has been able to extract general
informanon from specific data, the assumption of prior ignorance is no longer valid and
informative probability dis[ributions may be used.
13 This interpretation, due to Lakatos (1970), depends on the notions of' a hard core,
protective helt and positive heuristic, which are hard to define. The criteria to decide
whether to continue supporting a research programme, or to drop it, are arbitrary and
undefined.
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theory cxtcnd heyond the scupe of Ihis paper, hut lhere is a relation with (economctric)

inferencc.

Keynes' (1973) famous example of the beauty contest is related to this argument.

According to Keynes, the probabiliry that one moctel will be chosen as the newspaper

readers' heauty yueen cannot be calculated. It involves infinite regress on behalf of the
readcrs of the newspaper, who not only have tu state their own prelerences, but alsu lu

guess the prcferences and gucsses of other readers (the newspaper game was not to choose

thc beauty yueen, hut to gucss who would be chosen). Keynes' ex:cmplc is an intuitive

version of the halting problem. Ftis condusion is that, in a broad class of applications,

it is not possihle to formulate numerically precise probability judgments. However, it

may still hc feasible to assign prohability orderings.l4
If the problem of deriving explicit and non-arbitrary prior probability distributions

did not exist. then most philosophers (perhaps even statisticians) would agree that

f3ayesian inference is optimal (namely, it results in coherent probability judgments and

satisfies the likelihood principle). Bayesian prediction is an instance of Solomonoffs

predictor which is considered ideal fur the purpose of predictive inference (Li anJ

Vitányi, 1992). llowever, these optimal yualities may be too gcxxl to be true. 'I'he Bayesian

inference machine (conditioning, marginalizing and mapping) is similar [o Laplace's

demon. ts The demon is empirically omniscien[ and knows the deterministic laws of physics

(such as gravitation). A Rqvesian demon, to paraphrase the metaphor, is logically

omniscicnt hy having an cxhaustive set of hypotheses with thcir idcal universal prior

prohabilities. The Bayesian demon knows in advance how to respond lo every new piece of

informa[ion: thcre can hc: no surprises (this is similar to the complete markets

hypothesis of an Arrow-Debreu econumy, where it is possible to make perfecl contingcncy

plans).

Kolmogorov complexity theory suggests why this fiction of the Bayesian demon must be

defective. Kemeny expresses his doubts as follows:

'Few, if any modern philosophers still expect fool-proof tvles for making
inductive infercnces. Indeed, with the help of such rules we could acquire
infallible knowledge of the future, contrary to all our empiricist beliefs.'
(Ketneny, 1953, p. 711).

Laplace's demon did not survive the quantum revolution in physics. Similarly, the

Bayesian demon is set back by Gódel's incompleteness theorem or, which amoun[s to the

same thing, the non-computability of the universal prior (Li and Vitányi, f990, pp. 208-

14 Good (1965) and Lcamer (1978) have continued this line of thought.
15 Laplace's detcnninistic view on the character of the universe can tx: fourxl in his

Théorie unulvtiyue des prohuhilités, not in his Traité de Mécuniyue Céleste; sec Suptxxs

(1970, p. 32). laplace uses probability theory for problems where ignorance of complex

causes prevails.
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214, c~tahli,h Ihc link Ixlwccn cumplcxity :md Gixlcl'. thcurcm). I?vrn thc motit cxtrcmr
'uhjrclivitil" ~~r 'ncccssarisl' vcrsinn uf liaycsianism, hascd un Ihc n~Hicin uf a univrr.nl

priur, mu~t alluw tiir a pinch uf subjectivism.

The possibility of indeterminate decision prohlems, due to the non-computability
problem, has recently been discussed by game theoris[s (e.g. Binmore, 1991; Rubinstein,
1990). The problem is relevant for situations of strategic decision making. Examples are
tax wars, interest rate and exchange rate policy on the macro level, or currency and
stock market speculation at the micro level. Complexity considerations affect the ehoice
uf strategies (see Rubinstein, 1990, p. 17). Although outcomes of decisions need not be
completely chaotic (namely random without following a probability law), they may well be.

3. Simplicity and econometric modelling

3.l Gcmerul tn .rlicr~ijic ntodc!lln,t'

An implication of the argument on bounded rationality given in the preceding section

is that the search for 'the' Data Generating Process, by those who hold the DGP as more

than a cunvenient fiction, is in vain. Such a process does not exist: it is a

metaphysical tïction, so that the DGP has the same fate as Laplace's long-deceased demon.

Bounded rationality implies that some decisions are made on arbitrary grounds, yielding

arbitrary conseyuences. Of course, it is also possible that `rules of thumb' emerge,

perhaps conventions that have proved themselves in previous instances. Such rules may

generate relative stability until they eventually cullapse due to some shock. The

characteristics of the successive process are not determined, and a regime shift may

result. Hence, a stahle UGP is either a fïction or a meaningless tautology. As a formal

tool for modcllinL, the less suggcstive tenninolugy 'general mcxlel' is tu Ix prefcrred.

If thc clata are represcnted by a statistical nxidel, it is desired that the error

terms and residuals of the mcxlel are stable, and obey certain prohability laws. itowever,

unlike the claims of reductionists, nothing forces the (metaphysical) DGP to txing

stable. Although constant parameters may be desirable, this is not because human nature

or society is stable. Models with time varying parameters may be less useful in physics,

hut can he helpful in the social sciences.

The frcyuentist interpretation of probability, which presumes thc existence of a

stable universe Iconsider for example Von Mises' conditions of convergence and

randumness, discussed in Keuzenkamp. 1994), does not apply to thc scxial domain. This

does not make inference impossible, but one should explicitly acknowledge the cognitive

limitations in the theory of inference that is used. Bayesian inference with a'human

face' can deal with those limitations.
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Nuw cunxickkr thc rcducliuttisl approaclt lu ccunomclrics. "I'his slarls fmm thc

presumption of the llGP and views econometrics as the reduction of this llGP to a

parsimonious model. It is argued that one has to start from a general model and test

downward (i.c. test successive restrictions on the general model). The general model is,

in fact, a set of models conteining all possible simplifications as clements. Hence, the

larger is the set ul models, the higher is the joint prior probxhility of all endosed

models. In Poirier's (19R8) tenninology, [he 'window' is wide. Howcvcr, [here is no

particular reason why the most general model considered deserves spccial credence. The

argument that test statistics are not valid, in the Neyman-Pearson sense, if they are

applied within the context of invalid reductions, is problematic, since even the most

~~eneral conceivahlr model is likely to be 'wrong'. This is so even if the reductionist

econumrtrieian cibeys Haavelmo's (1944) imperative of not choosing the general model hy

observing the data. Testing downward is sensible if one favours parsimony, but the theory

of reduction does not offer satisfactory principles of simplici[y. This critique is

amplified hy lhe fact that Neyman-Pearson tests treat the null and the alternative

hypotheses in a yuite arbitrary asymmetric way. In contrast, inference based on the

modificd simplicity postulate dces not suffer from this bias (see Keuzenkamp and Magnus,

forthcoming, 1'or discussion of different approaches to tes[ing in econometrics).

In empirical investigations, simple models can inspire knowledge, while complex

models rarely do. According to the modified simplicity postulate, simple models should

come first to mind (or, what is not yuite the same, have lower descriptive complexity.

hence higher prior probability). It may be the case, of course, that the investigator

chooses a'microcosm' (in the words of Savage, 1954) that is [oo small. The investigator

may become aware of this if, for example, the chosen set of models dces not perform

satisfactorily. There is presently no formal theory that provides an objective criterion

to suggest when the 'microcosm' should be enlarged, but misspecitïcation tests seem to be

relevant for this purpose. As soon as a wider set of models is considered, however, the

MDI, principle can be applied to evalua[ing these new models.

The idea that the only valid way of inference proceeds by testing downward, s[arting

from maximal attainable complexity, rests on a misconcep[ion of scientific intèrence.

Jeffreys (1961, p. vii) remarks that

'scientífic method depends on considering at the outset the hypothesis that
variation of the data is completely random, and modifying it step by step as the
data are found to support alternatives.'

Furthermore, Jeffreys (1957, p. 78) argues that the starting point f~tt inference is to

regard all variation in data as random, and

'then successive significance tests warrant the treatment of more and more of it
as predictable, and we explicitly regard the method as one of successive
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appruximation."

Jcffrcys ( Ic)57, p. 76) alsu argucs that if thc mclhcxt of successivc :cppruximation is nul
used, one is committed to explaining in detail every separate residual. Jaynes (1989) has
a similar view ~n scientific progress, which is based on the Maximum Entropy Principle.
Rosenkrantz (1983, p. 78) defends such a strategy, and calls it 'sttvc[ured focusing'.
His approach starts with consttvcting a good first-order approximation (representation,
in the terminology of Hacking). Anomalies are observed and accommcxlated by more retïned

approximatiuns. The reverse approach, from general to simple, may be very cumbersome, and

may even lead the researcher astray (see the views of DNA researcher Watson, cited in

Rosenkrantz. 1983). In econometrics, Zellner is a rare exception in support of the

simplicity postulate; 7.ellner (1982) opposes a`top-down' (general to specific) approach.

"I'hcrc rxists widcsprcaJ dis:cgreement on thc role of simplicity in inductivc

(econumeu~ic) inlerence. The basic insighl presented here is that simplicity, ur ils

mirror im:ctc complexity, can hc measured hy the minimum number uf bits needed in a

cunyiutri finit~r:nn thnl dcscrihcx a thcory and ils ~ihscrvations. N~Nc Ihat l,uc:cs ( 198O)

tilatcs ati an cxplicil goal of cconumícs to wrile such a cumputer prugram. Al lhe uptintum

Icvcl, the joint cumplexity uf data, as described hy the model, and the mcxlel description

itself, are minimired.

This way of formalizing simplicity is instruc[ive for various reasons. It clarifies a

limitation to induction, due to the non-computability of an ideal universal prior. The

skillful (but subjective) hand of the econometrician is indispensahle. Econometric

inferencc is houndedly ratiunal. The general to specific approach suffers from the

weaknesti that it is not pussible in empirical applications to estimate a general mcxiel

incorporating all conceivable variables that may affect the variables of interest.

Obviously, une cannot estimate the DGP, even if it were to exist. A general empirical

mudel is, literally, false. What is of interest is how well [hc model is able tu

represenl thc data, predict ncw data, ur provide insights tu ewnumic pcdicy. Whether thc

modcl mimics Ihc DGP is a prohlem of rnetaphysics. If thcre is rcaxon lu think lhal mudcls

uf different complexity might he cyual candidates for some given purpose, all of them

should be considered and their quality evaluated using a moditïed simplicity postulate.

3.2 The purpose of the mode!

}{as simplicity a virtue independent of the goal of inference? Rissanen's earlier

cited remark, wherein he reveals a hope for the automation of science, suggests that

simplicity is an ohjective characteristic independent of subjective judgments of an

investigatur or independent of the context of modelling. Rissanen (1987, p. 96) argues

that the intmcíuction of' subjective judgments in inferential problems make the resulting
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inferences `strictly speaking unscientific'. Keuzenkamp (1994, Chapter 4) deals with
problems of objectivity, and argues that such objectivi[y is misleading (this is
particularly true for economic inference, where data information is limited and value
judgments are inevitable). The modified simplicity postulate may help, however, to yield
greater agreement on how to trade off parsimony and descriptive accuracy. Algorithmic
information theory shows why certain constraints to ohjective knowledge may exist, hut it
does not lead to the conclusion that subjective judgmen[s are unscientific.

Suhjective judgments mattcr, and so dces [he context of inference. Prediction is
different frum regulation and control, for example. [n general, more cumplex models are
necded il pulicy interventiun is the purpose of mcxfelling (this cunviction at least
stimulated large scale mecrcxconome[ric mocJelling in the '60s and '70s, and subseyuently
their complex successors with more elaborate microfoundations). Nevertheless, this does
not violate the (modified) SP. Given the goal of inference, the rule should be to select
the set of models that is able to meet the goal, so that the SP is used in order to
choose the appropriate model.

lt might be objected tha[ the MDL principle docs not pay sufficien[ attention to the
purpose of the modeller. If, from the MDL perspective, Einstein's relativi[y theory is
superior to classical mechanics in describing red shifts in the spectra emitted by stars,
should it be used to predict the position at time t of a football that has been set in
motion at t-17 The answer is negative: if the input data are macroscopic, then it is
likely that inductive inference related to the position of the foothall will yield
superior results using dassical mechanics. The MDL principle would sugges[ that the

extra hits to describe the relativity part of the more complex model do nol improve the
prediclions and should, therefore, be. Jisregarded. No physicist wuuld be likely tu
consider starting from the relativity model and test downwards, in this case.

If the goal of inference is to make money, fbr example, by predicting stock prices,
the criteriun is not to maxirnize simplicity but to maximize dollars. The example in
Rissanen (1987) is interesting in this respect: applying the MDL principle Ieads to the

random walk model of stock prices. A model with trend fi[s [he data bet[er, but the extra

storage code needed to describe the trend parameter dces not weigh against the

improvement in the fit of the model. Rissanen (1987, p. 97) condudes, wrongly, that this

proves that 'any successful s[ock advíce must either utilize inside infiirmation, which is

not in the data, or it is entirely the result of luck'. While the yuoled remark may be

true, this cannot be inferred from the fact that the trend in the data has only limited

descriptive power. A money-maker might still prefer the model with trend (but even then,

transaction costs are probably higher than the expected returns).
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4. Concluding comments

ln this paper, the concept of simplicíty and its effect on different approaches to the
problem of specification uncertainty were evaluated. Currently, statistical reductionism
is in vugue. [t argues that proper inference starts with a general model, or ideally,
cven the Data Generating Prcxess, and descends step ny step to the more specific and
sirnple mexíel, until a critical line on loss of information is crossed. However, general
to simple is an invcrsion of the history of scientific inference. Scientific progress in
physics illustrates a sequence of increasing complexity: consider planetary motion, from
circles to ellipses, to even more complicated motions based on relativity; from molecules
to atoms, and to even smaller particles. Keplers' laws were misspecifications, but werc
they invalid? The same yuestion can he raised for cases in empirical econometrics, such
as the investigation of consumer demand. The first econometric studies were based on very
simplc models, with few observations. Current investigations are not infrequently based
on more than 10,000 observations, and are much more general in being less aggregated with

more tlexihle functional forms. Were the pioneers wrong and misguided by their simple
misspecifications'? Although reductionism dces not pretend to be a theory of scientific
Jevelopment, such yuestions point to the defect it has as a modelling strategy. All
models are wrong: Keppler's, Tinbergen's, and Hendry's alike. Some, however, are useful.
Keppler's clearly were, as were Tinbergen's. Whether the same applies to the models (and

hence, the modelling strategies) of reductionist econome[ricians still has to be shown.

Given the limited amount of data, a general to specific approach (i.e. starting from

a very large dimensional parameter space) is no[ feasible: one typically commences

inference with relatively simple models. However, this may not be the most important

problem with reductionism. Following the arguments of this paper, a relatively complex

mudcl shcruld reccive Iciw prior prohability if inductive infcrencc is lhe goal.l~

'fhcrefirre, the cmly .justification for making mexlels mure complex is upon empirical

observation that the simple mcxiel is defective. "I'his does not imply that practical

researchers have to follow a simple to general approach instead. Box (1980, p. 425)

suggests that scientific progress involves an iterative induc[ive-deductive course.

Although thís point of view has merit, it would be useful ro add ano[her i[erative

process, namely between approximation (inspired by the simple to general approach) and

reduction. Applied econometricians usually start with relatively simple models, which

become gradually more complicated if additional data become available or if the simple

nxidels are unahle to cope with the specific demands of the investigator. Adding variables

1~ For deduc~tive inference, e.g. refining general equilibrium theory, complexity dces nut
have tci receive a penalty, as there is no trade-off such as the one that inspires the
moditied simplicity postulate.
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(or lags) may also result in the belief that some others may be redundant, resul[ing in a

simplifying iteration (such as the 'simplification search' of [xamer, 1978). The

iteration is also between Savage's (1954) grand world and the seerch for a small world

microcosm. Specification freedom is a nuisance to purists, but is an indispensable aid to

practical ecunometricians. The key to coping with specification uncertainty is to obtain

a heucr understanding of the importance of simplicity.
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