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Abstract. A recently proposed model of social interaction in voting is investigated by simplifying it down
into a version that is more analytically tractable and which allows a mathematical analysis to be performed.
This analysis clarifies the interplay of the different elements present in the system – social influence,
heterogeneity and noise – and leads to a better understanding of its properties. The origin of a regime
of bistability is identified. The insight gained in this way gives further intuition into the behaviour of the
original model.

1 Introduction

There is a growing appreciation of the importance of social
influence in voting [1–3], and convincing experimental evi-
dence of the phenomenon has recently been produced [4,5].
However, a detailed understanding of the process and its
implications is still lacking. Systems of interacting ele-
ments can display complex, sometimes counter-intuitive,
behaviour [6], making mathematical analysis highly useful
to understand the properties of such systems.

There are already a number of studies modelling vot-
ing as a social influence process, for example [7–14]. These
tend to consider rather simple models that intend to cap-
ture, in a stylised manner, some aspects of the voting
process or to reproduce some observed regularity. A dif-
ferent approach was taken in references [15,16], where a
collaboration between social scientists and computational
modellers led to the creation of a complex computational
model of voter turnout. There is a tendency for the former
approach to be taken by physicists, who have a tradition
of gaining intuition through the use of simple models in
their own subject. On the other hand, the latter approach
is frequently favoured by social scientists, who wish to in-
clude all aspects which they feel may have an influence
on the system. This difference in approach has the un-
fortunate consequence of leading to the formation of two
groups of modellers whose models have little in common,
and who have little incentive to communicate.

In a previous paper [17], we started to address this
issue by forming a bridge between the two methodolo-
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gies. This consisted of constructing an intermediate model
which was between the two types described above. The
philosophy behind this is discussed in some detail in ref-
erence [17], but we had several goals in mind. One was sim-
ply to attempt to bring together the two communities de-
scribed above, by formulating a model which had features
of both perspectives. Another was to develop the method-
ology of forming such intermediate models. The actual
procedure we adopted in constructing the new model con-
sisted, very broadly, of beginning from the complex model
of references [15,16], and systematically eliminating cer-
tain features which did not have a marked effect on the
outcomes of simulations.

We would not necessarily expect that a single interme-
diate model would be able to bridge the large gap between
complex models and the models favoured by physicists,
and therefore we instead envisage there being a sequence
of intermediate models, each less complicated than the
previous one, while retaining sufficient features in com-
mon with its ‘neighbours’ in the model sequence, that any
similarities and differences between them can be system-
atically studied and the reasons behind these understood.
In the context of models of voter turnout which interest
us here, we will denote the most complex model of refer-
ences [15,16] as Model 1 and the simplified version of this
model discussed in reference [17] as Model 2. The purpose
of this paper is to create a further model in the sequence,
denoted as Model 3, which comes near to being a model
of the type preferred by physicists, in that it is sufficiently
simple to allow some mathematical analysis.

The method used to reduce the model complexity also
uncovered a number of phenomena which were difficult to
detect in Model 1 (simply because of its sheer complexity),

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2016-70062-2
http://www.springerlink.com


Page 2 of 9 Eur. Phys. J. B (2016) 89: 159

and revealed several mechanisms required for these phe-
nomena to be observed. One such phenomenon was the
existence of a single control parameter (the ‘influence
rate’) that largely controlled the levels of voter turnout
in the model. When the influence rate was low, simula-
tions of Model 2 always resulted in low voter turnout.
Conversely for large influence rates, voter turnout was al-
ways high. For intermediate values of the influence rate,
the reduced model displayed bistability, so that different
runs of the same model with the same parameters and
initial conditions could, by chance, give either a high or
a low turnout. The construction of the further simplified
Model 3 should allow us to gain a deeper understanding
of this phenomenon.

The outline of the paper is as follows. In Section 2,
we first give an overview of the differences between the
previous two models (more detail is given in the Appen-
dices), describe the new model (Model 3) and then give
the results of simulation which show that the predictions
of Model 2 and Model 3 are qualitatively similar. Having
established this essential requirement of Model 3, we go
on to mathematically analyse it in Section 3. We conclude
in Section 4 with a summary and a look to the future.

2 Formulation

Model 1 is a complex agent-based computational model of
voting, developed to incorporate the evidence suggested in
the social science literature. This model describes the in-
habitants of a neighbourhood or small city, and consists
of a population of agents that occupy the sites of a square
lattice, with sites corresponding to houses, workplaces,
schools and other places of activity. The agents have a
large number of characteristics (including age, ethnicity,
interest in politics and “civic duty”) and are subjected to
many processes (including ageing, moving house, finding
jobs and having children). These processes modify some of
the agents’ characteristics and allow them to make links
to other agents, creating a social network. Agents also
initiate (political) conversations over this social network,
with a probability that depends on their political inter-
est. In turn, the conversations they receive affect their
political interest and allow civic duty to spread between
agents. Agents’ civic duty (together with other elements)
determines their propensity to vote in a series of peri-
odic elections. Agents can leave the simulation by dying
or emigrating and new agents are created via births and
immigration. The details of the model can be found in ref-
erences [15,16]. A schematic representation of the model
is given in Figure 1.

In a recent work, Model 1 was distilled into the more
compact Model 2. By neglecting some of the more com-
plicated components of Model 1, Model 2 allowed us to
investigate the effects of different mechanisms, and to ex-
plore the parameter space in a more efficient way. A major
simplification of Model 2 was ignoring all processes that
form links between agents, setting instead a social network
with appropriate characteristics. Other elements, such as

Fig. 1. Diagrammatic representation of the complex model.
The main pathway is shown in blue, with additional factors in
red, and general development of the agent population in green.

those regarding party preference and development of chil-
dren, were also neglected. Model 2 achieved a large sim-
plification (of the order of a factor 1000 in computational
efficiency [17]) whilst maintaining good agreement with
Model 1. A detailed description of the relatively complex
Model 2 is given in Appendix A.

In this section we will push the model-analysis process
forward. We will start by formulating Model 3, a simpler
version of Model 2 that is more suitable for mathemati-
cal analysis. Some of the simplifications we will make will
involve formulating processes in a more standard form
so that checking the output of these against those from
Model 2 enables us to draw conclusions that are robust
with respect to the implementation details.

In Model 2, social influence (the key mechanism in the
model) is implemented using two main variables: inter-
est level and number of conversations remembered. The
interest level determines the propensity of an agent to ini-
tiate conversations. In turn, the interest level of an agent
is determined by the number of their received conversa-
tions (together with their minimum interest level). Con-
versations are forgotten with some probability every year.
A further complication is that agents with zero interest
level have different dynamics, until their number of ‘back-
ground’ conversations remembered exceeds a given thresh-
old (see Appendix A for details).

We will simplify Model 2 in three main ways to cre-
ate Model 3. Firstly we will use the same dynamics for
all interest levels (thus ignoring the difference in Model 2
for agents with interest level zero). In addition, we will
use a single variable for the influence process, which we
call the ‘interest state’, that increases with each received
conversation and decreases appropriately, rather than one
variable for interest level and a different one for conver-
sations remembered. Moreover, we will uncouple the dy-
namics of the interest state from that of voting. While in
Model 2 agent’s voting behaviour affects their probability
to initiate conversations (turnout-conversations feedback
in Fig. 1), this feedback will be neglected in Model 3.

This formulation is more suitable for mathematical
analysis and will allow us to see the interplay of the dif-
ferent elements of the model in a more transparent way.
We define Model 3 below.
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2.1 Model 3 definition

The model consists of a population of N agents. Agents
enter and leave the model via immigration-emigration and
birth-death. For simplicity we keep the population size
constant, by matching each death event by a birth and
every emigration by an immigration. Agents age through-
out the simulation and their age determines their death
probability. The ith agent is characterized by three dy-
namic variables: (political) interest state, s(i); civic duty,
d(i); and voting habit, h(i). In addition, agents have two
fixed characteristics: their ‘intrinsic interest’ state, m(i);
and their level of education, ed(i). The interest state, s(i),
is the primary dynamic variable in the model, controlling
how often the agent initiates conversations, and depending
on the number of received conversations. Civic duty, d(i),
(spread through conversations) and voting habit, h(i), are
binary variables that together determine the probability of
an agent voting. Finally, the intrinsic interest state deter-
mines the minimum value that the interest state variable
may take for that agent, and the education modulates the
probabilities of acquiring or losing civic duty.

We now describe the model dynamics.

(i) At each time step each agent initiates Bin (K, f(s(i),
m(i))) conversations1, where Bin(N, p) is a binomial
random variable for the number of successes from N
trials, each with probability p of success.

(ii) For each successful conversation another agent, j, is
picked at random (corresponding to a fully connected
underlying network) and the receiving agent increases
their interest state [s(j) → s(j) + 1]. Conversations
can lead to the spread of civic duty in the following
way. If a conversation takes place from an agent, i,
with civic duty to an agent, j, without it, and agent
j’s interest state is larger than some threshold, s(j) ≥
Td, then they gain civic duty with probability, ad,
dependent on whether they voted in the last election.

(iii) Each time step, after all conversations are completed,
every agent has a probability [s(i) − m(i)]γ to de-
crease their interest state by one. Thus in the absence
of received conversations an agent’s interest state will
decay to their intrinsic interest state over a time-scale
of order 1/γ. In addition, agents lose civic duty with
a probability ld so that civic duty decays over a time-
scale of order 1/ld (typically ld � γ).

(iv) Elections take place with periodicity τe. An agent will
vote with probability (1-pc) if they have civic duty or
voting habit, and will otherwise not vote. Here pc is
the probability of not voting, despite having the in-
tention to vote, due to “confounding factors”, for in-
stance illness or having recently lost employment. An
agent voting in three consecutive elections acquires
voting habit, and loses this habit if they fail to vote
in two consecutive elections.

1 If f(s(i), m(i)) > 1 then K + Bin(K, f(s(i), m(i)) −
�f(s(i), m(i))�) conversations are realised, where �x� denotes
the integer part of x. If K is not a natural number, then
Bin(�K�, f(s(i), m(i))) + Bin(1, (K − �K�)f(s(i), m(i))).

Fig. 2. Comparing the results for Model 2 (red circles) and
Model 3 (blue pluses), in turnout (top figure) and number of
conversations per year per agent (bottom, in log-scale to ap-
preciate the low-conversations regime better). For each value
of K (the influence rate), we plot 25 time series from 0
to 200 years. Here c = 3 and other parameter values are given
in Appendix B.

We focus mainly on a fully connected underlying net-
work to ease the analysis. By initially ignoring network
effects we can better understand the main properties of
the model. Network effects are considered at the end of
Section 3.

2.2 Comparing Models 2 and 3

Model 2 (with an underlying fully connected network) and
Model 3 outputs are compared in Figure 2. For each value
of the influence rate, K, we show 25 different time series
from 0 to 200 years, corresponding to different realisations
of the process. Due to the non-standard nature of this fig-
ure, we stress again that each of the ten collection of points
that is seen in the figures represent time series running
from 0 to 200 years. We can see that there are essentially
two regimes, one with a small number of conversations and
low turnout, obtained for low values of influence rate, and
another with a large number of conversations and high
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turnout, for higher values of the influence rate. These two
regimes are connected by a region of bistability, in which,
for the same parameter values and initial conditions, some
realisations converge to the ‘high-communication’ regime
and some to the ‘low-communication’ one (which regime
is achieved is a random outcome arising from the stochas-
ticity of the process). We note that the results are similar
when plotting the variables civic duty or voting habit.

We can also see from Figure 2 that results of Mod-
els 3 and 2 show good agreement. The number of con-
versations are very close for the two models. The main
difference between the two models is that Model 3 gives a
slightly smaller voter turnout. In the low-communication
regime, this is primarily due to the simplifying assump-
tion in Model 3 that individuals with zero interest state
follow the same dynamics as those with higher interest
states (which is not the case in Model 2). This leads to
a smaller number of agents being susceptible to acquiring
civic duty. In the high-communication regime, the differ-
ence in turnout is mainly due to the assumption in Model 3
that the probability, pc, of an agent not voting in spite of
having civic duty or voting habit, does not depend on
age. In contrast in Model 2, the probability of an agent
with civic duty or voting habit not voting is smaller for
younger agents, so that agents in Model 2 are slightly more
likely to build habit, leading to higher levels of voting (the
aforementioned zero-interest effect is less important in this
regime because almost no agent has interest state equal to
zero). This explanation is confirmed by simulations which
include these elements. Despite these small quantitative
differences, Models 2 and 3 are qualitatively very similar.

3 Analysis

We would like to understand the origin of the low- and
high-communication regimes and the bistability region, as
well as the mechanisms required to observe these features.
In order to do so, we will perform a general mathematical
analysis of Model 3. Because the interest state dynamics
is unaffected by the voting dynamics and yet interest and
voting are closely correlated, we conclude that the interest
state dynamics is the main driver of the system, and will
focus our analysis on the interest state dynamics.

The process is a discrete-time analogue of the follow-
ing system of continuous-time birth and death stochastic
processes:

s(i)
β−→ s(i) + 1, s(i) δi−→ s(i) − 1, (1)

with β ≡ K
∑

j f(s(j), m(j))/N and δi ≡ [s(i) − m(i)]γ
(note that if s(i) ≥ m(i) initially then δi is always pos-
itive). We will analyse this continuous-time version for
mathematical convenience.

In order to make analytical progress, we will assume
that β is time-independent. This is suggested by applying
the central limit theorem, since β is the sum of N inde-
pendent random variables divided by N (the central limit
theorem does not strictly apply here, since the s(j) vari-
ables are not independent, so the time-independence of β

is an assumption), and it is supported by numerical sim-
ulations with large N . With the constant β assumption,
(1) implies that the variables s(i) − m(i) follow indepen-
dent linear birth and death processes. At steady state, we
have [18]:

s(i) = m(i) + Poissoni(λ), (2)

where λ ≡ β/γ, and Poissonj(λ) are Poisson random vari-
ables with mean λ (independent for different values of j).

Under the constant λ assumption, inserting equa-
tion (2) in the definition of λ, we obtain the following
self-consistent equation:

λ =
K

γ

∑

j

f(m(j) + Poissonj(λ), m(j))
N

. (3)

We can re-write the sum in (3) grouping agents with the
same value of the minimum interest state, m:

N∑

j=1

f(m(j) + Poissonj(λ), m(j))

=
∑

m

∑

α∈Am

f(m + Poissonα(λ), m), (4)

with Am equal to the set of indices of agents that have
intrinsic state equal to m, Am = {j|m(j) = m}. As-
suming that Am is large for every m (i.e. there are many
agents of each type) or, equivalently, disregarding fluctua-
tions,

∑
α∈Am

f(m + Poissonα(λ)) is just an average over
a Poisson distribution with mean λ,

∑

α∈Am

f(m+Poissonα(λ), m) ≈ |Am|〈f(m+n, m); λ〉, (5)

where 〈; λ〉 indicates an average over a Poisson distribution
with mean λ, and |Am| denotes the number of elements
in the set Am, |Am| = NP (m), with P (m) the fraction
of agents with intrinsic interest state equal to m. Making
this approximation, equation (3) leads to:

γ

K
λ =

∑

m

P (m)〈f(m + n, m); λ〉 ≡ g(λ). (6)

Equation (6) displays the key elements in the system and
it is the main result of this section. The social interac-
tion appears through the function f , the heterogeneity in
the population via the average over the distribution of m,
P (m), and the intrinsic stochasticity through the average
over the Poisson distribution. The form of the equation de-
pends on the mean-field-type of interaction (equivalently,
fully connected social network) assumed. The equation
shows how the interaction function, f , smoothed out by
the heterogeneity and stochasticity, determines the num-
ber and type of solutions as K/γ is varied.

In order to gain some intuition into the properties of
equation (6), we will analyse it in the particular case in
which f(s, m) has the form used in Model 2 (see Ap-
pendix A). The formula for g(λ) corresponding to this case
is given in Appendix B, and it is illustrated in Figure 3.
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Fig. 3. Right-hand side of equation (6) (solid line) and left-
hand side for K = 2 (dashed), K = 4 (dot-dashed) and K = 16
(dotted), for c = 3 and other parameter values as in Ap-
pendix B. Between K = 2.8 and K = 10.4 the self-consistent
equation (6) has three solutions.

We see that g(λ) displays an S-shape, starting at a
small value for λ = 0, increasing for intermediate values of
λ and saturating for larger values of λ. The value of g(λ) at
λ = 0 is related to the amount of conversations that take
place even when social influence is absent (due to agents
with large intrinsic interest), while the value of g(λ) for
large λ corresponds to the amount of conversations when
all the agents have their maximum possible interest (due
to large social influence). The position and sharpness of
the increase depends on the form of f as well as on the
distribution of m. The sharper f is, and the more homo-
geneous the population, the sharper the increase in g(λ).
We see that bistability is possible if g(λ) increases rela-
tively sharply, which corresponds to a sharply increasing f
and a homogeneous population, and if limλ→∞ g(λ)−g(0)
is large (compared with g(0)), which corresponds to the
case in which social influence has a strong impact on the
overall conversation levels. This prediction is confirmed by
numerical simulations of Model 3, as well as of Models 2
and 1, illustrating how the analysis of the simpler Model 3
can generate important insights into the behaviour of the
more complex Model 1.

In Figure 4 the solutions of equation (6) are compared
with numerical simulations, showing good agreement.

Figure 3 illustrates how for large values of γ/K there
is only one solution of equation (6). As γ/K decreases,
the line (λ/K)γ becomes tangent to the right-hand side
of (6), giving rise to two new solutions through a saddle-
node bifurcation. As γ/K decreases further, a new tangent
condition is obtained, leading to the disappearance of two
of the solutions through another saddle-node bifurcation.
Imposing equation (6) together with the equality of the
derivatives leads to:

λ =
g(λ)
g′(λ)

, (7)

K =
γ

g′(λ)
. (8)

Fig. 4. Number of conversations per agent per year as a func-
tion of parameter K, for c = 3 and year t = 200. Error bars
correspond to two standard deviations. The red crosses corre-
spond to runs in which the initial population had a low interest
state while the blue diamonds correspond to runs with high
initial interest. The simulations show a region of bistability
between K = 4 and K = 9.

Fig. 5. Bistability region in the K-c plane. Bistability is ob-
served for values of K between the symbols. Theoretical pre-
dictions are displayed as solid lines.

Solving equation (7) and using equation (8) we can derive
the values of K and λ for which the bifurcations take place,
delimiting the region of parameter space where bistabil-
ity is possible. The results of this exercise are presented
in Figure 5, together with results coming from numerical
simulations of the model. The x-axis of this figure (c) is
a parameter that determines the shape of g(λ) (see Ap-
pendix B for its definition). The simulation-based results
corresponding to the lower transition were determined as
the minimum value of K for which some realisations reach
the high-communication regime, taking as initial condition
a population with the maximum interest state; the results
corresponding to the upper transition were determined
as the maximum value of K for which some realisations
stay in the low-communication regime, taking as initial
condition a population with the minimum interest state.
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We see that, for reasonably large values of c, the bista-
bility disappears much sooner in the simulations than in
the theoretical predictions. This might be due to the fact
that, while, in the deterministic limit, the solution corre-
sponding to the low-communication regime still exists, its
relative stability (and its basin of attraction) is low and
the noise pushes the system to the ‘high-communication’
solution. This particularly simple bifurcation diagram is
obtained when the function f used is taken to approxi-
mate Model 2 (see Appendix B). For more general forms
of the function f a more complex bifurcation diagram is
possible.

It is interesting to compare Model 3 with other mod-
els of social influence. Threshold models of collective be-
haviour [19,20] form probably the simplest class of models
showing similar phenomenology. In these models, an agent
participates in an activity if some proportion of the popu-
lation (the agent’s threshold) also does so. Bistability can
appear when the population is homogeneous (the thresh-
old distribution is sharply peaked around a given value).
Our model is similar to this class in that different agents
require different amounts of social input in order to show
the same level of activity (due to different intrinsic inter-
ests, m). The random-field Ising model [21], which can also
be used to model social phenomena [11,22,23], shows sim-
ilar phenomenology, with multi-stability arising for small
disorder and low noise. In this case, the local fields of the
random-field Ising model would correspond to intrinsic in-
terest of our model. The key ingredients of all these models
are a heterogeneous population and a nonlinear influence
function.

So far we have assumed a fully connected interaction
network. The results can, however, change qualitatively
when a different type of interaction network is used. The
effects of the network in Model 3 are the same as those
obtained for Model 2 [17]. The main result is that the
bistability region can disappear, with the relevant vari-
ables increasing in a smoother way, when the interaction
network becomes sparse or strongly clustered. This effect
is reminiscent of that found in random field Ising models in
which sparser networks tend to require higher interaction
strength for bistability to occur [23]. From the perspective
of our analysis, adding a network leads to conversation in-
puts that fluctuate more between agents. This results in
an extra source of heterogeneity in the equation for λ (that
in this case should be replaced by λ ≡ ∑

λi/N) that fur-
ther smooths the interaction function f , which results in
a smaller region of parameter space in which bistability
occurs. We note that since we expect real systems to be
heterogeneous this result suggest that bistability may not
be widespread in real-world systems.

4 Conclusions

In this paper we have demonstrated the power of a
method of model reduction involving generating a chain
of increasingly simpler models. Beginning from a com-
plex model (Model 1), and a previously published re-
duced model (Model 2), we have created a further reduced

model (Model 3) and shown that it agrees quantitatively
and qualitatively with Model 2. Since the relationship of
Model 2 to Model 1 has been previously investigated, we
thus have a clear link between results derived and un-
derstood in Model 3 to equivalent effects found in the
original complex model, which in turn explicitly models
mechanisms believed to be important in real world voting
processes.

We have described some advantages of this approach
in the Introduction, but one of the most compelling is
that it combines the best of two worlds: the simplicity
appreciated by those trained in the physical sciences, but
having an input from the many effects included in com-
plex models. A central point is that, although the mod-
els constructed through this procedure are ‘simple’, in the
sense that they have far fewer parameters than the models
they are derived from and are more amenable to analysis,
they will typically have features that would not have been
guessed at if one started from simple models and then
added further complexity. This is the strength of the ap-
proach: Model 1 contains within it a large amount of social
science data and expertise, and a diluted form of this is
retained in Model 3.

A direct translation of the methods used in physics
would be to start with a minimal model, progressively
introducing new structure and at every stage comparing
the new model with data. We believe that the process we
have described here is more directly suited to the social
sciences, with its relative paucity of data. However the
conventional physical sciences approach can still have a
role after the various stages of models have been created.
One could also attempt to go from Model n to Model
(n − 1), and in this way explore a wide range of possible
models by going up and down the various stages. In this
way one should be able to gain a fuller appreciation of the
role that various extra structures have in giving a more
complete description of the system.

To demonstrate the utility of creating a model that is
amenable to mathematical analysis we have used Model 3
to investigate the origins of the bistability seen in Model 2,
and the existence of high and low turnout regimes found in
both Models 2 and 1. This investigation allowed us to un-
derstand the mechanisms required for bistability to exist,
and provided an explanation for the observed dependence
on the homogeneity of the population and the structure
of the social network when one is used. This was a specific
illustration of the use of this method in models of voter
turnout, but we believe that the present approach of using
a chain of increasingly simple models can be fruitful for
the analysis of a wide variety of complex systems.
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Appendix A: Description of Model 2

The description of Model 2 can be found in reference [17];
we give it here for completeness.

Each agent (with index i = 1, . . . , N) has the following
list of characteristics, some of which can change over time:

binary variables: civic duty (cd(i)), turnout (in last
election, v(i)), voting habit (h(i)), post-18 education
(ed(i))
integer variables: (political) interest level (l(i)),
minimum interest level (m(i)), age (in years, a(i)),
number of (political) conversations remembered (c(i)).

The main parameters of the model are:

Influence rate K, which scales the number of (political)
conversations per year.
Probabilities of initiating a conversation pc(l, v).
Probabilities of gaining and losing civic duty pacd(e, v)
and plcd(e, v, a), respectively.
Thresholds on the number of conversations needed to
increase the interest level Tα.
Probability of forgetting a conversation pf (l).
Death probability pd(a).
Emigration probability pe.
Probability of not voting due to confounding factors
pc(a).

A.1 Initialisation procedures

Agents are initialised using data derived from the British
Household Panel Study (BPS) [24]. The same procedure
initialises immigrants into the model, using the subset of
the BHPS corresponding to survey responses from immi-
grants. This procedure sets the civic duty, turnout, vot-
ing habit, post-18 education, interest level and minimum
interest level, with some of these characteristics being in-
ferred using proxies for the required information. Agents
initially do not remember any conversations, and have an
age drawn from a uniform distribution between 18 and 70
(to initialise the model) and between 18 and 48 (for later
immigrants into the model). Agents born into the simula-
tion have age 18 (they are only taken into account in the
model when they are adults), and education with proba-
bility 0.3. Their interest level and minimum interest level
is equal to their education, and they are assumed have no
civic duty, voting habit or conversations remembered and
not to have voted in the last election.

A.2 Main loop

The following processes happen in a loop until the required
time-point is reached. All rates are given in Table A.1
below.

Each year:

Each month:
Carrying out conversations: For each agent,
this section is run 	K/12
 times plus one time extra
with probability K/12 − 	K/12
.

The agent has the chance to initiate three con-
versations, with probabilities pc(l(i), v(i)) each
with a random other agent.
Agents (with l(i) > 0) receiving a conversation
(from an agent with civic duty), acquire civic
duty with probability pacd(ed(i), v(i)).

Updating interest levels:
If l(i) = 0 and c(i) > T0 then set l(i) = 1 and
m(i) = 1.
Else, if c(i) > Th then set l(i) = m(i) + 2.
Else, if c(i) > Tl then set l(i) = m(i) + 1.

Updating civic duty: Agents lose civic duty with
probability, plcd(ed(i), v(i)), dependent on their age
and education.

Forgetting conversations: Agents forget conversa-
tions that happened more than one year ago, with
probability, pf (l(i)), per conversation, dependent on
the agent’s interest level.
Birth/death: Each agent dies with a probability,
pd(a(i)), dependent on their age, and is replaced
by a new agent by the ‘birth’ process (described in
Sect. A.1).
Immigration/emigration: Each agent emigrates
with a probability pe = 0.015 and is replaced by a
new agent by the ‘immigration’ process (described in
Sect. A.1).
Ageing: Agents age by one year.

Every 5 years there is an election:

Agents with civic duty or voting habit vote unless ‘con-
founded’ (due to illness or other factors) with proba-
bility pc(a(i)), dependent on their age.
Agents gain voting habit if they vote in 3 consecutive
elections.
Agents lose voting habit if they do not vote in 2 con-
secutive elections.

Here 	x
 denotes the integer part of x, that is, the largest
integer no greater than x.

Appendix B: Parameters for Model 3

In the main text, Model 3 has been defined in rather
general terms. In order to correspond to Model 2 as de-
scribed in Appendix A, it is necessary to make the follow-
ing identifications:

The social interaction function f has to take the fol-
lowing piece-wise constant form:

f(s, m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if s < 2c.

0.322 ≡ f1, if 2c ≤ s < 3c.

0.794 ≡ f2, if 3c ≤ s < 4c.

0.794 ≡ f2, if s ≥ 4c and m < 2c.

1.397 ≡ f3, if s ≥ 4c and m ≥ 2c.

(B.1)

These numbers are taken directly from Model 2, except
for the following approximation. In Model 2 the f(s, m) is
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Table A.1. Parameter values for Model 2.

Parameter Value Meaning

name

N 480 population size

pd(a) a function of age derived from mortality tables death rate

pe 0.015 emigration rate

K K ∈ [2, 12] influence rate

pc(l, v)

pc(2, 0) = [0.0100, 0.0500, 0.1500]

probability of initiating a conversation (pc(l, v) = [0, 0, 0] if l ≤ 1)

pc(2, 1) = [0.0600, 0.1000, 0.1800]

pc(3, 0) = [0.0600, 0.1925, 0.3795]

pc(3, 1) = [0.1540, 0.2800, 0.3900]

pc(4, 0) = [0.2000, 0.4750, 0.5134]

pc(4, 1) = [0.3232, 0.5680, 0.5370]

pacd(e, v) 1–(1–0.25(1+e)(1+v))(1–0.010(1+e)(1+v)) probability of acquiring civic duty (per conversation)

T0 5 threshold for increasing interest level to 1

Tl 2 lower threshold for increasing interest

Th 5 higher threshold for increasing interest

plcd(a, e)
0.01/(12(1 + e)) if a ≥ 25

probability (per month) of losing civic duty
0 if a < 25

pc(a)
0.077 if a ≤ 75

probability of not voting due to being confounded
0.077 + (1 − 0.077)0.9(a−75)(a−74)/2 else

pf 0.2 probability (per year) of forgetting a conversation

pfb 0.5 probability (per year) of forgetting a background conversation

affected by whether or not the agent voted in the previous
election. This link is broken in Model 3. In order to have
comparable values for f , we choose the ones corresponding
to Model 2, assuming that the agent voted with a proba-
bility of 0.86. This is approximately equal to the propor-
tion of agents voting in the high-communication regime
(we expect it to work as well on the low-communication
regime because the few agents that initiate conversations
in that regime are also likely to have voted).

The probability of acquiring and losing civic duty is
given by:

ad =

⎧
⎪⎪⎨

⎪⎪⎩

0.258, if v(i) = ed(i) = 0.

0.51, if v(i)=1, ed(i)=0 or v(i)=0, ed(i) = 1.

1, if ed(i) = v(i) = 1.

(B.2)

ld =

{
0.000417, if ed(i) = 0.

0.00083, else.
(B.3)

Other parameter values are γ = 0.0167 month−1, Td = c,
pc = 0.139, τe = 5 years. The total number of individuals
is N = 500. Also c = 3 unless otherwise stated.

Individuals born in the simulation are initiated with 18
years of age (we do not explicitly include children), with:
ed(i) = B(0.34), m(i) = c · ed(i), v(i) = h(i) = d(i) = 0.

The characteristics of immigrants are set based on
statistics derived from the British Household Panel
Study [24], as follows:

m(i) = 3c, 2c, c, 0, with probabilities 0.02, 0.06, 0.21,
0.71, respectively.
If m(i) = 3c, then s(i) = 4c, ed(i) = d(i) = 1, v(i) =
B(0.9), h(i) = B(0.29).

If m(i) = 2c, then s(i) = 3c+B(0.32), ed(i) = B(0.68),
d(i) = B(0.43), v(i) = B(0.70), h(i) = B(0.13).
If m(i) = c, then s(i) = c, ed(i) = 1, d(i) = B(0.21),
v(i) = 0.72, h(i) = B(0.13).
If m(i) = 0, then s(i) = c, ed(i) = 0, d(i) = B(0.21),
v(i) = 0.72, h(i) = B(0.13).

In addition, if h(i) = v(i) = 1, with probability 0.9 it is
assumed that the agent voted in the election previous to
the latest one (this is relevant for the dynamics of vot-
ing habit). Here B(x) denotes a Bernoulli random vari-
able with mean x, that is B(x) = 1 with probability x,
B(x) = 0 else. These parameter values are taken directly
from Model 2, with no data fitting involved.

With the form of f(s, m) given in (B.1), equation (6)
becomes:

γ

K
λ = P (0)f2 + P (1)f2 + P (2)f3 + P (3)f3

− Γ (c, λ)
Γ (c)

[P (1)f1+P (2)(f2−f1)+P (3)(f3−f2)]

− Γ (2c, λ)
Γ (2c)

[P (0)f1+P (1)(f2−f3)+P (2)(f3−f2)]

− Γ (3c, λ)
Γ (3c)

P (0)(f2 − f1), (B.4)

where Γ (a) = Γ (a, 0) is the Gamma function, and
Γ (a, x) ≡ ∫ ∞

x ta−1e−tdt is the incomplete Gamma func-
tion. Since Γ (a, x)/Γ (a) decreases monotonically with x,
with Γ (a, 0)/Γ (a) = 1, Γ (a,∞)/Γ (a) = 0, Γ (a, a)/Γ (a) ≈
1/2 (last approximate equality being valid for large a),
we see that the right-hand side of (B.4) changes from
P (2)f1 + P (3)f2 for λ � 1 (when only agents with in-
trinsic state equal to two or three initiate conversations)
to P (0)f2 + P (1)f2 + P (2)f3 + P (3)f3 for λ � 3c (when
all agents initiate conversations at the maximum possi-
ble rate given their intrinsic state). The right-hand side
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of (B.4) typically displays an S-shape which can lead to
several solutions for λ in a range of parameter values, as
illustrated in Figure 3 in the main text.

For λ � c, equation (B.4) simplifies to:

γ

K
λ  P (2)f1 + P (3)f2 ⇒ γλ  K[P (2)f1 + P (3)f2],

(B.5)
while for λ � c, equation (B.4) leads to:

γ

K
λ  [P (0) + P (1)]f2 + [P (2) + P (3)]f3

⇒ γλ  K{[P (0) + P (1)]f2 + [P (2) + P (3)]f3}. (B.6)

We see that both the solution with small λ and the one
with large λ, increase linearly with K. This simple ap-
proximation breaks down for intermediate values of λ (of
the order of c), but it can be rather accurate, as evidenced
by the approximately straight character of the theoretical
lines in Figure 4 of the main text.
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