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Simplification and its consequences in
biological modelling: conclusions from a

study of calcium oscillations in hepatocytes
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Systems Biology requires that biological modelling is scaled up from small components to
system level. This can produce exceedingly complex models, which obscure understanding
rather than facilitate it. The successful use of highly simplified models would resolve many of
the current problems faced in Systems Biology. This paper questions whether the conclusions
of simple mathematical models of biological systems are trustworthy. The simplification of a
specific model of calcium oscillations in hepatocytes is examined in detail, and the
conclusions drawn from this scrutiny generalized. We formalize our choice of simplification
approach through the use of functional ‘building blocks’. A collection of models is
constructed, each a progressively more simplified version of a well-understood model. The
limiting model is a piecewise linear model that can be solved analytically.

We find that, as expected, in many cases the simpler models produce incorrect results.
However, when we make a sensitivity analysis, examining which aspects of the behaviour of
the system are controlled by which parameters, the conclusions of the simple model often
agree with those of the richer model. The hypothesis that the simplified model retains no
information about the real sensitivities of the unsimplified model can be very strongly ruled
out by treating the simplification process as a pseudo-random perturbation on the true
sensitivity data. We conclude that sensitivity analysis is, therefore, of great importance to
the analysis of simple mathematical models in biology. Our comparisons reveal which results
of the sensitivity analysis regarding calcium oscillations in hepatocytes are robust to the
simplifications necessarily involved in mathematical modelling. For example, we find that if a
treatment is observed to strongly decrease the period of the oscillations while increasing the
proportion of the cycle during which cellular calcium concentrations are rising, without
affecting the inter-spike or maximum calcium concentrations, then it is likely that the
treatment is acting on the plasma membrane calcium pump.
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1. INTRODUCTION

Biological phenomena can rarely be understood by
examining only a few molecules or genes because they
are the products of large networks of interacting
components. These systems often are of sufficient size
and complexity that their behaviour cannot be under-
stood by qualitative reasoning alone. The emerging
field of Systems Biology seeks to use mathematical and
computational modelling to gain an understanding of
complex biological processes at a whole-system scale.

The most obvious methodology is the construction of
extremely large, detailed models of biological systems,
taking into account all the knownbiological information.
Such constructs may perform as simulations, reprodu-
cing the behaviour of the system with high fidelity. This
orrespondence (ucgajhe@ucl.ac.uk).
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approach imposes an enormous data-gathering burden,
but has proved relatively successful in some contexts
when it is coupled with very large, dedicated, high-
throughput experimental work (e.g. imaging (Nelson
et al. 2002) or metabolomics (Maher et al. 2003)). It can
also work in contexts such as electrophysiology where
there exists a long, detailed literature of model building
(Hodgkin & Huxley 1952) with gradual and well-
supported increases in model complexity (Noble 2002).
However, such models are profligate with modelling
effort and/or require a huge experimental commitment,
often at large expense extended over long time-scales.

An alternative strategy is to simplify the system,
leaving out detail believed to be functionally less
important. If we model the network structure
correctly, then it should be possible to say something
useful about system behaviour without modelling all
the molecular details.
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Systems Biology seeks to work with larger and more
complex models, but the lessons of earlier studies are
still of great importance. Simplified models will not
provide precise simulations of the biology and they will
never replace detailed experimentation. However,
simple models can assist in pointing out lines for
further experimentation and can aid understanding.
Models that sometimes give incorrect answers, but
nevertheless perform significantly better than chance in
predicting the outcome of some experiment, could be
extremely valuable in, for example, the early stages of
drug discovery.

On the other hand, piecemeal simplification does not
scale well to the construction of complex composite
models required for Systems Biology. Instead, we can
try to use a common simplification methodology on all
parts of the system, a more naive approach, but one
with better scaling properties. Such an approach can be
called ‘systematic simplification’.

This approach has been applied successfully to the
modelling of metabolic networks, where useful models
have been constructed using only the stoichiometries of
the reactions, neglecting all the rate- and equilibrium
constants, for example through flux balance analysis
(Edwards et al. 2001; Holzhutter 2004) or elementary
mode analysis (Schuster et al. 1999).

Another systematic simplification methodology has
been variously termed ‘extreme nonlinearity’, ‘logical’,
or ‘binary’ network models, or ‘threshold’ models. In
this approach, the system is treated as a digital
network, with each element’s contribution being either
on or off. Such models have a long history (Kauffman
1969), and analytic techniques exploiting this discrete
logical structure have been developed (Glass & Kauff-
man 1972, 1973; Kaufman et al. 1985; Kaufman &
Thomas 1987; Snoussi & Thomas 1993; Thomas 1998;
Thomas & Kaufman 2001).

Our systematic simplification approach constructs
models using a set of simple nonlinear elements
corresponding to common system control elements
such as switches, linear decays, convergent pathways
and saturations. Each building block is a ‘smoothed’
form of some logical element. Logical models can be
recovered as a mathematical limit of modelling with
such elements. In this limit, the models become
piecewise linear, and can be analysed analytically.
Here, we use only one building block—a simple Hill
function is used wherever switch-like behaviour occurs
within the system. The aim of our procedure is to reach
a point where algebraic analysis is possible, while
ensuring that nothing of significance is lost. If
significant dynamical properties are lost, the nature of
any bifurcations that occur as the degree of nonlinearity
(Hill exponent) is increased should reveal the reason.
Note that while other authors have compared the
results of logical models with continuous equivalents
(Glass & Kauffman 1972; Kaufman & Thomas 1987),
we present a systematic comparison involving a
detailed analysis of how the model behaviour changes
as the logical limit is gradually obtained.

Models of the reaction dynamics of complex net-
works are likely to involve a number of reactions with
very different response functions. Can we successfully
J. R. Soc. Interface (2006)
represent them all using elements such as the Hill
function? Even if they can be represented using the
same functional forms, they will have a variety of
parameter values, such as the associated Hill expo-
nents. Can this variety be abstracted away and still
leave a useful model? More generally, can models be
systematically simplified in a way that renders them
analytically tractable, but retains the key qualitative
dynamical features exhibited by models based on more
precise specifications of known molecular mechanisms?

The present work grew out of efforts to construct a
model of the blood glucose control system of the liver.
Hepatocytes release glucose by breaking down glycogen
stored within them (glycogenolysis) in response to
binding of glucagon or adrenaline to surface membrane
receptors. The molecular systems involved in this
pathway are complex. The full model system comprises
three hormone receptors (for noradrenaline, glucagon
and insulin) and their associated membrane proteins,
three second messengers (calcium, IP3 and cAMP) and
their effects, two kinase-cascades controlling glycogen
phosphorylase and glycogen synthase and the import
and export of glucose (Bollen et al. 1998; King 2005).

Using our approach, simple models of such complex
systems can be constructed relatively easily. However,
in this article, we focus on general questions of model
simplification for Systems Biology, rather than pre-
senting scientific conclusions based on our model of
liver glucohomeostasis. We wish to understand how
systematic simplification corrupts a model’s predic-
tions and which model predictions survive the simpli-
fication process uncorrupted. To this end, we focus on a
submodel involving only the most well-understood part
of the system, that is responsible for transduction of the
signal for glycogen breakdown from the messenger
species inositol trisphosphate (IP3) to cytosolic calcium
ions (Ca2C). Calcium levels in hepatocytes oscillate in
response to glucagon and adrenaline. These oscillations
are triggered by increasing levels of IP3, and the
resulting alterations in calcium concentration induce
glycogen breakdown. We choose to focus on this system
component because of its rich experimental and
modelling history (for a review, see Schuster et al.
2002).

Here, we examine the impact of simplification on
mathematical models by using as exemplar a model of
these oscillations by Thomas Höfer (Höfer 1999). The
resulting limiting simplification is a piecewise linear
model of calcium oscillations. This is by no means the
first such model, see Sneyd et al. (1993). However, we
use the technique of sensitivity analysis, also called
control analysis (Saltelli et al. 2000), whereby the
degree of control each model parameter has on model
output is examined to assess the effect of the
systematic simplification procedure. This technique is
well established in mathematical modelling in many
fields, including biology. It has been particularly
important in considering metabolism (Hofmeyr 1995;
Heinrich & Schuster 1996; Fell 1997). For an example
of its application to a model of glycogenolysis, see
Lambeth & Kushmeric (2002). Here, we examine
parameter sensitivity by developing a statistical
model to show that, although the simplified model
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often gets the detailed quantitative behaviour of the
system wrong, it can perform well in predicting which
parameters have significant control over various
system properties.
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Figure 1. The Hill function QnðE; 1ÞZ1=ð1CEKnÞ for the
indicated values of the Hill exponent n.
2. SIMPLIFICATION PROCEDURE

2.1. The Hill function

Many elements of biological systems have switch-like
relationships with one another. For example, a gradual
change in the concentration of one species E can
produce a relatively sudden change in another species.
We can describe these using a sigmoidal response
function Qn, usually called a Hill function:

QnðE; eÞh 1

1Cðe=EÞn : ð2:1Þ

The level e of E required for 50% of the maximum
response, is called the threshold value. We call n the
Hill exponent of the response. In the limit, as n
becomes very large, Qn becomes a switch function
with threshold e

QðE; eÞZHðEKeÞ; ð2:2Þ
with H(x)Z0 for x!0, H(x)Z1 for xO0. The shapes of
these Hill-function responses for high and low values of
n are illustrated in figure 1.
2.2. Simplifying mechanistic models

The simplification approach we use proceeds in several
stages.

(i) Begin with the target model that we wish to
simplify systematically.

(ii) For each ‘switch-like behaviour’ in the target
model—this assignment being based on an
understanding of the underlying biology—for-
mulate a submodel with the behaviour rep-
resented by a Hill function, selected so that the
new response is as close as possible to the given
mechanistic response. The result is a Hill
function model.

(iii) Replace all of the resulting Hill exponents by a
common value n, usually 2 or 3, selected for
minimal change to model behaviour. The result
is a common Hill exponent model.

(iv) Gradually increase the common Hill exponent in
the common Hill exponent model, examining the
changes in model behaviour as the parameter
increases.

(v) Take the limit n/N, to form a threshold model,
in which all responses are perfect switches.

(vi) Analyse the threshold model, which is a piece-
wise linear, to obtain analytical results for the
key features of its behaviour, which constitute
an analytical model.

This scheme can be applied to other functional forms
which also have some parameter n, parameterizing
their degree of nonlinearity such that they become
J. R. Soc. Interface (2006)
piecewise linear as n/N. For example, the fuzzy
minimum

minnðx; yÞZ
xy

ðxn CynÞ1=n
Z yQnðx; yÞ1=n

Z xQnðy; xÞ1=n; ð2:3Þ

which has the property that minNðx; yÞZminðx; yÞ, the
minimum of the non-negative quantities x and y. This
construction can be used, for example, to model
saturating hormone reactions, which proceed at a rate
controlled by the substrate concentration only when
this is below the enzyme’s Michaelis constant.

There are multiple choices of function with the
appropriate limiting behaviour, for example, for a
softened switch, instead of a Hill function, one could
use an error function, as in Glass & Kauffman (1972).
3. MODEL DEFINITIONS

3.1. Models of calcium oscillations

We use models of calcium oscillations to illustrate the
simplification procedure. The models we consider
include two stores of calcium and two corresponding
dynamical variables, the concentration of calcium in
the cytoplasm, denoted C, and in the endoplasmic
reticulum (ER), denoted E. An alternative parameter-
ization uses C and the total cellular calcium measured
in units of equivalent cytoplasmic concentration, ZZ
CCvE, where v is the effective ratio of the ER space to
that of the cytoplasm, taking into account calcium
buffering capacity. These are treated as homogeneous
variables, with diffusion of calcium through the
intracellular media considered fast. Calcium moves
into and out of the cell, and across the ER–cytosol
boundary. Oscillation occurs as calcium moves between
these two pools. Models in this class treat the level of
IP3, here denoted P(t), as an external driving function.
The level of calcium does not feed back into the level of
IP3. A model consists of a pair of differential equations

dC

dt
Z JER CJPM; ð3:1Þ

dE

dt
ZKvJER; ð3:2Þ



Table 1. The parameters for the target model and for the Hill function model giving the best fit to the target model. (Units are mM
for concentration and seconds for time.)

symbol meaning value
value in simplified
model

kMC maximum flow rate for IP3 sensitive membrane calcium
channels

0.08 0.08

kMP maximum flow rate for PMCA 0.072 0.072
kEC maximum flow rate for CICR 80.0 2.0
kEP maximum flow rate for SERCA 18.0 18.0
CEC,C opening threshold calcium for CICR 0.4 0.26
CEC,K closing threshold calcium for CICR 0.4 0.65
pEC threshold IP3 for CICR 0.2 0.45
cEP threshold calcium for PMCA 0.12 0.12
pMC threshold IP3 for membrane channels 4.0 4.0
cMP threshold cytosolic calcium for SERCA 0.12 0.26
lMC leak in membrane channel, as a fraction of maximum flow 0.05 0.05
lEC leak in CICR 0.02 0.02
v effective volume ratio cytoplasm/ER 10.0 10.0
d1 fitting parameter in target model 0.3 n/a
d3 fitting parameter in target model 0.2 n/a
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where JER is the net rate of flow of calcium between the
ER and the cytosol and JPM is the net rate of flow of
calcium between the cytosol and the external medium
(PM denotes plasma membrane). These are often
separated into positive and negative parts, as they
represent different biological processes

JX Z JX;inKJX;out; ð3:3Þ

with XZ(ER, PM).
It is assumed that JPM is a function only of C, P(t)

and the external concentration of calcium S(t).
Similarly, JER is a function only of C, E and P(t).
These functions are also dependent on parameters,
collectively denoted as kZ{ki}, such as reaction rates,
which describe the molecular mechanisms involved in
the movement of calcium.

Calcium pumps on the ER and plasma membranes,
called the SERCA (Sarco/endoplasmic reticulum
calcium atp-ase) and PMCA (plasma membrane
calcium atp-ase), respectively, account for JER,out
and JPM,out. These have usually been modelled as
saturating, monotonically increasing functions of
cytosolic calcium concentration, although dependence
on external or ER calcium concentration can also be
included. Calcium channels on the plasma membrane
account for JPM,in, which is typically modelled as a
monotonically increasing, saturating function of P,
and also may depend on S. Finally, calcium release
from the ER is known to be promoted by IP3, and by
moderate levels of cytosolic calcium (calcium-induced
calcium release, CICR), but inhibited by high
concentrations of cytosolic calcium. Thus, JER,in has
been modelled as a monotonically increasing, saturat-
ing function of P and a peaked function of C
(Bezprozvanny et al. 1991; Keener & Sneyd 1998;
Taylor 1998). For zero P and zero C, the ‘in’ flows
typically show some small leak. Thus, in the absence
of stimulation by hormone, there are resting equili-
brium values of C and E.
J. R. Soc. Interface (2006)
3.2. Systematic simplification

The target model for systematic simplification (§2.2) is
taken from Höfer (1999). When the target model
already expresses switch-like behaviours as Hill func-
tions, it is necessary only to rewrite these using our Q
notation, to make this explicit. Doing so we obtain a
representation of the target model for this paper:

JER;in Z kECðEKCÞðlEC CUðPðtÞ;CÞÞ; ð3:4Þ

JER;out Z kEPQ2ðC ; cEPÞ; ð3:5Þ

JPM;in ZSðtÞkMCðlMC CQ1ðPðtÞ; pMCÞÞ; ð3:6Þ

JPM;out Z kMPQ2ðC ; cMPÞ; ð3:7Þ

UðP;CÞZ ½Q1ðP; pECÞQ1ðC ; cEC;CÞ

ð1KQ1ðC ;gECðPÞÞÞ�3;
ð3:8Þ

gECðPÞZ cEC;K
PCd1
PCd3

: ð3:9Þ

The parameter values given in Hofer (1999) were
selected to fit observed patterns of oscillations, and
are listed in table 1.

This model is already close to being expressed using
only Hill functions. Only JER,in needs modification.
A good fit to JER,in, over a wide range of values of C
and P, can be found using the expression

UðP;CÞZQ2ðP; pECÞQ2ðC ; cEC;CÞ
!ð1KQ2ðC ; cEC;KÞÞ;

ð3:10Þ

in place of equation (3.8), with appropriate values of
lEC, pEC, cEC,C and cEC,K. The two functions differ by
less than 10% over a wide range of P (from 0 to 2 mM),
despite removal of the threshold crosstalk. We shall see
that the selection of nZ2 as a common Hill exponent
also has little effect on the conclusions. The parameters,
their meanings and values, used to obtain the best fit of
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Figure 2. The points indicated are those used to define
observables, chosen to show important features of a typical
behaviour in the virtual experiment. Note that the observa-
bles are defined on a typical cycle of the oscillatory behaviour.
We denote the (time, value) pair of a particular special point
Y as (tY, CY).
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JER,in, are shown in table 1. These substitutions result
in the Hill function model (§2.2).

The Hill exponent n is increased and produces a
threshold model in the limit n/N. However, if this is
tried without further modification of the model, the
system ceases to oscillate for nO5. A simple phase-
plane analysis reveals that oscillations occur when the
C nullcline has negative slope where it crosses the Z
nullcline (CZcMP). For infinite n, this occurs only at
CZcEC,C. Thus, a threshold model cannot possibly
answer the question ‘what range of values of the PMCA
threshold result in stable oscillations?’, because the
answer depends directly on the degree of sharpness of
the opening of the ER calcium channel. This is a
question that cannot be answered in the threshold limit,
but, nevertheless, we can modify the model so that
oscillations continue to exist in the large n limit. The
required modification reduces the number of par-
ameters of the threshold model by one, equating the
values of cMP and cEC,C. This does not have a
significant effect on other properties of the model. The
resulting threshold model is solved to obtain the
analytical model (see appendix A).
Table 2. The chosen observables, defined using the special
points from figure 2. (The (time, value) pair of a point Y is
denoted as (tY, CY).)

name symbol definition

period P tEKtY
fraction rising J (tXKtN)/(tEKtY)
maximum M CX

minimum N CN
4. METHODOLOGY FOR COMPARISON
OF MODELS

4.1. Dynamical features

Models have large ranges of possible behaviours,
corresponding to different choices for the parameters
and for the input functions. The size of the problem can
be reduced by studying the behaviour of the models for
a particular choice of the input functions corresponding
to some particular virtual experiment. Our choice is to
set S(t) to a constant s, and P(t) to a constant p during
the simulation, but assume in our initial conditions that
the system has spent a long time prior to the simulation
with P(t)Z0, thus the simulation begins with a
transient response to the addition of IP3.

To focus on a finite set of aspects of the behaviour of
the variables of interest, we consider a number of
observables associatedwith typical oscillations: the period
of oscillations; the fraction of the period on the upstroke of
the oscillations; and the minimum and maximum values
of the cytoplasmic calcium concentration. These are
potentially experimentally measurable quantities, and
are shown in figure 2 and listed in table 2. For numerical
work, algorithms for locating the special points associated
with these observables must be specified. Our implemen-
tation uses interpolated uneven time-series. Note that we
make these choices to reduce the size of the problem to a
manageable level—it is clear that other observables and
virtual experiments could be chosen.
4.2. Comparative sensitivity analysis

We examine our models using sensitivity analysis
(Heinrich & Schuster 1996; Fell 1997; Saltelli et al.
2000). For observables ui and parameters ki, define the
fractional sensitivity of ui to kj by

sij Z
kj
ui

vui

vkj
ð4:1Þ
J. R. Soc. Interface (2006)
evaluated at a specified operating point, a point in
parameter space. We shall compare the values of these
sensitivities obtained from different models. Thus, we
must select a pair of operating points, one for each
model. A naive choice of operating points in a pair of
models’ parameter spaces is to use identical numerical
values for parameters which are believed to correspond
to the same biological aspects. Since the behaviours of
the models are different, and the numbers and
definitions of parameters of those models may be
different, one may ask what justifies such a choice.
That we have only tenuous a priori reasons to believe
that the two models will agree, given this choice, is not
something which undermines our approach, but rather,
is an important motivation for making such a study as
this one. We are seeking a posteriori justification for
this choice, which, if it works, significantly decreases
the difficulties involved in simplification for Systems
Biology. Any other choices made in the selection of
operating point, for example the setting of two
thresholds the same in §3.2, will also be justified if the
results from the models are similar.
4.3. Statistical comparative sensitivity analysis

The central question to be addressed in the compara-
tive sensitivity analysis is: to what extent is infor-
mation contained in the parameter sensitivities of



324 Simplification of calcium oscillations J. P. J. Hetherington and others
model A retained in the sensitivities of model B?
Although both models are deterministic, and hence any
agreement/disagreement between them could be
explained by a careful analysis of the underlying
dynamics, nevertheless we treat this as a statistical
question, namely: Is the model B sensitivity matrix,
BZ(bij), significantly different from a ‘random’ pertur-
bation (in a sense to be made precise) of the target
model sensitivity matrix, AZ(aij)? Thus, the model B
sensitivities are viewed as sample data from a random
variable B, and we would like to draw conclusions
regarding its distribution from this sample.

To do this prior assumptions are necessary. First, we
assume that the elements of B are independent,
identically distributed (i.i.d), conditional on the corre-
sponding value A (i.e. if aijZakl, then Bij and Bkl are
i.i.d.). This allows aggregation of the elements of A and
B into vectors a and b, yielding a sample of sufficient
size to test hypotheses.

One choice of statistical approach is to use a linear
correlation coefficient, C. Using this approach, we
expect CZ1 when aZb, and CZ0 when the two are
independent. Thus, increasing values of C measure
increasing sensitivity alignment between the two
models.
4.3.1. Logical sensitivities. It is often the case that we
speak of a treatment as having either a significant or an
insignificant effect on the result of some assay of a
biological system. To enable our analysis to make
contact with this intuition, we formally define ‘large’
and ‘small’ sensitivity using some (arbitrary) cutoff L.
Thus, for a sensitivity s, define the associated logical
sensitivity, sL, by: sLZ1 (large) if jsjOL; and sLZ0
(small) if jsj%L. Clearly, if L is chosen too small, then
every sensitivity will be large, and if L is chosen too
large, then every sensitivity will be small. However, in
general we expect to find a range of values of L in which
useful information is retained in the sL. A danger in this
method is that an element of a may be large and
positive, but the corresponding element of b large and
negative. We shall see from our results that this does
not occur in practice.

Let the total number of elements in the vectors aL

and bL be n. A true positive occurs when aLij ZbLijZ1
(i.e. both are large), with similar definitions for false
positives (large in B, small in A), true negatives (small
in A and B) and false negatives (large in A, small in B).
Denote the total numbers of these as, respectively, (t, f,
h, c). We also denote the total number of agreements
between aL and bL as rZtCc, and the total number of
ones in aL as a and in bL as bZtCf.

We can create non-parametric hypothesis tests using
logical sensitivities. Given the independence assump-
tions concerning the distribution of the random
variable B, it follows that all the information in bL

about this distribution is contained in t and h (or any
other choice of two of the quantities (t, f, h, c)). Denote
by T, H the random variables of which t, h are samples.
The most general statistical model for their distribution
is that they are binomially distributed, with probabil-
ities p and q, and sample sizes a and nKa.
J. R. Soc. Interface (2006)
The (null) hypothesis that BL is independent of aL,
i.e. that the results of the simplified model have nothing
to do with those of the more reliable model, can then be
shown to be H0 : pCqZ1 (see appendix C). Since H0 is
one-dimensional, we need a conditional test, and one
can show that it is appropriate to condition on b (see
appendix D). The distribution ofT givenH0 and a value
of b is hypergeometric (Feller 1968), and conditional
tests for the one-sided alternative, HA : pCqO1, can,
therefore, be constructed. This is the alternative that
BL is (positively) dependent on aL. Thus, if we reject
H0 in favour of HA, we conclude that the logical
sensitivities obtained from model B retain a significant
amount of information about the logical sensitivities of
model A.

Our results show that this method is robust with
respect to the arbitrary choice of L over the range in
which there is some discrimination between degrees of
control. We can choose also whether to normalize the
sensitivities of a given observable with respect to its
average absolute value over all parameters, so that L is
comparable across observables. Our conclusions are
also robust to this choice.
4.4. Aggregate results

The effects on the observables of the early stages of the
simplification are plotted in figure 3, and of the gradual
increase in the Hill exponent in figure 4. The results of
the sensitivity analysis as a function of the sensitivity
threshold L are plotted in figure 5. Finally, a summary
of all the statistical measures used is shown in figure 6.
4.5. Detailed results

In this section, we make a detailed survey of the
sensitivity results for two of the models, a less simplified
model (A) the common Hill exponent model with nZ2
and our most simplified model (B) the analytical model.
4.5.1. Period. Both models agree that the period is
proportional to the rate of the ER pump, inversely
proportional to the rate of the ER channel and
inversely proportional to the volume ratio of the ER
and the cytoplasm (figure 7).

The models agree that the period is sensitive to the
rate of leaking from the CICR channel and the rate at
which calcium is pumped out of the membrane.
However, in model B, these are both inverse propor-
tionalities, while in model A the dependence is some-
what weaker than inverse proportionality in the former
case, and somewhat stronger in the latter.

Model B predicts only weak sensitivity of the period
to the current concentration of IP3(C) or the IP3

threshold to open the membrane channel (K). Model A
predicts moderate sensitivities. The signs in brackets
indicate whether an increase in the parameter increases
the observable (C) or decreases it (K).

Model B predicts that the period is slightly increased
when the rate of flow of the membrane calcium channel
is increased, while A predicts that they are approxi-
mately proportional.
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Figure 6. The full set of comparisons between common Hill
exponent models with nZ2, 3, 16, 1024, and of each with the
analytical model, with a baseline (random) dataset, using all
five comparison methods. L is the threshold for control to be
considered large. P is the P-value for the test of the hypothesis
that the logical sensitivities in the two models are indepen-
dent. In the bottom frame,C is the correlation coefficient. The
measures all agree that the simplified models do much better
than chance in predicting the sensitivity of less simplified
models, and that the loss of correlation between models agrees
with intuitive notions of distance in the one-dimensional
simplification-space parameterized by n, in that nZ2 and
nZ3 compare well, as do nZ1024 and the analytical model.
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Model B completely fails to correctly predict the
control on the period of the threshold values for calcium
to activate the membrane pump (C), open the CICR
channel (C) or activate the ER pump (K) found by
model A.

Finally, both models agree that the IP3 threshold to
open the ER channel, the leak parameter on the
membrane channel and the threshold for calcium to
close the ER channel have very little effect on the
period.
4.5.2. Fraction rising. The models predict this obser-
vable as strongly controlled by the rate of themembrane
pump (C), the rate of the membrane channel (K),
somewhat controlled by the threshold value for IP3 to
open the membrane channel (C) and the current level
of IP3(K), and weakly controlled by the rate of leaking
in the membrane channel (K) (figure 8). In all four
J. R. Soc. Interface (2006)
cases, the amount of control predicted by model B is
smaller than that predicted by model A.

However, the fraction rising is also moderately
controlled by the thresholds for calcium to open the
ER (K) and membrane pumps (K) or the ER channel
(C) or to close the ER channel (C). Model B misses
these.



fraction rising

C
a 

th
re

sh
ol

d 
fo

r 
E

R
 p

um
p

C
a 

th
re

sh
ol

d 
fo

r 
m

em
br

an
e 

pu
m

p

C
a 

th
re

sh
ol

d 
to

 o
pe

n 
E

R
 c

ha
nn

el

IP
3 

th
re

sh
ol

d 
to

 o
pe

n 
E

R
 c

ha
nn

el

IP
3 

th
re

sh
ol

d 
to

 o
pe

n 
m

em
br

an
e 

ch
an

ne
l

le
ak

 p
ar

am
et

er
 f

or
 E

R
 c

ha
nn

el

le
ak

 p
ar

am
et

er
 f

or
 m

em
br

an
e 

ch
an

ne
l

ra
te

 o
f 

E
R

 p
um

p

ra
te

 o
f 

m
em

br
an

e 
pu

m
p

ra
te

 o
f 

E
R

 c
ha

nn
el

ra
te

 o
f 

m
em

br
an

e 
ch

an
ne

l

vo
lu

m
e 

ra
tio

 o
f 

E
R

 a
nd

 c
yt

op
la

sm

co
nc

en
tr

at
io

n 
of

 I
P 3

C
a 

th
re

sh
ol

d 
to

 c
lo

si
ng

 E
R

 c
ha

nn
el

–3

–2

–1

0

1

2

3

4

5

6

proportional

inverse proportional

1 2 3 4 5 6 7 8 9 10 11 12 13 14

reliable model
analytical model

Figure 8. Sensitivities of the proportion of the cycle spent rising to the parameters, for the nZ2 model and the analytical model.
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Figure 7. Sensitivities of the period to the parameters, for the nZ2 model and the analytical model.
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The remaining parameters have little effect or no
effect in model A, and no effect in model B.
4.5.3. Minimum and maximum. The basal level of
calcium during the cycle is confirmed in both models to
J. R. Soc. Interface (2006)
be almost totally controlled by the threshold for
calcium to open the ER pump—exact proportionality
in model B, somewhat stronger than proportionality in
model A (figures 9 and 10).

Model A also predicts small amounts of control of the
minimum by the threshold for calcium to open the ER
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Figure 10. Sensitivities of the maximum calcium to the parameters, for the nZ2 model and the analytical model.
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Figure 9. Sensitivities of the minimum calcium to the parameters, for the nZ2 model and the analytical model.
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channel, the rate of leaking in the ER channel, and the
threshold for calcium to close the ER channel, which
are missed by model B.

The height of the calcium spike is predicted by both
models to be proportional to the threshold for calcium
to close the ER channel. (Exact proportionality in
model B, approximate in model A.)

Model A also predicts that the maximum is strongly
controlled by the threshold value for calcium to open
J. R. Soc. Interface (2006)
the ER pump (K) and channel (C), which are missed
in model B.
5. CONCLUSIONS

In carrying out the simplification procedure described
in §2.2, we first noticed that our chosen target model,
which was not specifically constructed with simplifica-
tion in mind, was already close to being expressed in
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terms of building blocks suitable for our procedure.
Only one element of the model needed to be changed,
and this resulted in a Hill function model which closely
matched the target model. This suggests that the loss of
freedom suffered by restriction to a finite set of building
blocks should not hugely reduce the scope of phenom-
ena we can model.

The early stages of the simplification procedure were
quantitatively successful. However, taking the common
Hill exponent to high values resulted in significant
disagreement between the models. We thus conclude
that it is not appropriate to use such highly simplified
models as simulations.

However, the models agree better when used for
sensitivity analysis. This is observed whether we make
an aggregate statistical comparison or a detailed
element-by-element study. Our sensitivity analysis
thus suggests that highly simplified models can usefully
predict which molecular properties within a system
might have significant effects on system behaviours. We
suggest that the results of such an analysis may be
quickly used to analyse experimental results in the light
of a model. For example, from our results, one can
conclude that if a treatment is observed to strongly
decrease the period of the oscillations while increasing
the proportion of the cycle during which cellular
calcium concentrations are rising, without effecting
the inter-spike or maximum calcium concentrations,
then the PMCA membrane pump should be considered
a likely point of action of the treatment.

Detailed modelling with simulation as its goal carries
a heavy data collection price. This paper demonstrates
that models constructed using severe simplifications
can describe some aspects of system behaviour well, but
produce poor results when treated naively as simu-
lations. In particular, simplified models are amenable to
analytic treatment and do better than chance at
predicting which aspects of the system behaviour are
controlled by which parameters.

Using model ‘building blocks’ that reflect the logical
properties of a biological network allows models of
large, complex systems to be constructed rapidly and
efficiently. Where components of a simplified model
prove to be inadequate, these can be identified and
replaced by a more detailed construction to make the
whole system model more realistic.

As Systems Biology develops as a discipline, compu-
tational models will not only provide simulations, but
also understanding, and will guide experimentation.
The demonstration here that even a highly simplified
model can reveal useful information about, and insight
into, system behaviour should encourage biologists to
consider constructing simple models. The systematic
simplification methodology we have described, associ-
ated with a building-blocks approach to model building,
reduces the difficulties associated with generating, and
with obtaining significant insight from, large, complex
models of whole biological systems.

This work was funded by a Beacon Project grant from the
Department of Trade and Industry. We thank Prof. Jonathan
Ashmore, Prof. Anthony Finkelstein, Dr Peter Saffrey and
Ofer Margoninski for useful comments and discussion.
J. R. Soc. Interface (2006)
APPENDIX A. THE ANALYTICAL MODEL

Explicit results for the flow in each segment (patch of
the phase plane bounded by the discontinuities in the
flow) can be obtained from the threshold model, because
it is piecewise linear. For fixed IP3 levels, there are four
ranges of calcium, within each of which the system of
equations is linear, due to the four thresholds for
calcium (cEC,C, cMP, cEP, cEC,K), two of which are the
same. In each of the regions, the flow takes the form

dC

dt
ZmC CaCCC CaCZZ ;

dZ

dt
ZmZ ;

where ZZvECC. The terms mC, aCC, aCZ and mZ can be
expressed simply as functions of the parameters in each
of the sections. The definitions of the four regions of the
phase plane, within each of which this system is linear
are

1 : C!cEP;

2 : cEP!C!cMP hcEC;C;

3 : cEC;C!C!cEC;K;

4 : cECK!C :

Thus, writing the value of mZ in region i as mZ,i we have

mZ ;1 Z lMC CkMCQ2ðP; pMCÞ;

mC ;1 ZmZ ;1;

aCC ;1 Z kECðlECð1CvÞÞ;

aCZ ;1 Z kEClECv;

mZ ;2 ZmZ ;1;

mC ;2 ZmZ ;1KkEP;

2aCC ;2 ZaCC ;1;

aCZ ;2 ZaCZ ;1;

mZ ;3 ZmZ ;1KkMP;

mC ;3 ZmZ ;1KkMPKkEP;

aCC ;3 Z kECðQ2ðP; pECÞC lECÞð1CvÞ;

aCZ ;3 Z kECðQ2ðP; pECÞC lECÞv;

mZ ;4 ZmZ ;3;

mC ;4 ZmC ;3;

aCC ;4 ZaCC ;1;

aCZ ;4 ZaCZ ;1:

We can obtain a full solution by using the analytic
solution to the above linear ordinary differential
equations (ODEs) in each patch, and then solving the
return equations for the time at which the solution
reaches a patch boundary. In the case of oscillatory
behaviour, this generates a return map to each of the
patch boundaries, the fixed point of which locates the
limit cycle. The return equations are transcendental, of
the form etCmtZc, the solution to which is given in
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terms of a special function. However, for our parameter
values, C -flow is always rapid except from a narrow
region very close to the C -nullclines. (Note the limit
cycle is almost horizontal in patches 2 and 3 of figure
11.) The extremal points of the trajectories, therefore,
can be found in a simpler way by solving for the
intersection points of the nullclines with the patch
boundaries, and the period is controlled by mZ: the slow
motion in Z moving between the extremal values of Z
takes up almost all of the cycle, the motion in C being
fast. Thus, we can obtain a simpler analytical model
using this approximation for the period by neglecting
the time taken for fast motion in C. We obtain simple
results for the amplitudes in Z and C and the period of
the oscillation. Notation for the four observables is
given in table 2.

MZ ZK
cEC;CaCC ;1 CmC ;1

aCZ ;1

;

NZ ZK
cEC;CaCC ;3 CmC ;3

aCZ ;3

;

PZ ðMZKNZ Þ
1

mZ ;1

K
1

mZ ;3

� �
;

JZ
1

1K
mZ ;1

mZ ;3

;

M Z cEC;K;

N Z cEP;
J. R. Soc. Interface (2006)
where MZ and NZ are the maximum and minimum
values of Z, which are not observables because Z is not
observable. Note that although this is a threshold-limit
analysis, the non-limiting soft Hill forms for the
parametric dependence on P have been retained. Also
note that, with our sign conventions, mZ,3 and mZ,4 are
negative, corresponding to the regions where Z is falling.
APPENDIX B. WELL-DEFINEDNESS OF THE
ODE SYSTEM

Onemayworry that our thresholdmodel has right-hand
sides sufficiently discontinuous to lead to non-unique
solutions of the ODE system. However, mZ is single
valued on those patch boundaries where dC/dt changes
sign, meaning that the threshold limit ODE system is
well defined. There are boundaries where mZ is non-
single valued, for example, when CZcMP, but these do
not occur where dC/dt also changes sign, boundaries
where the trajectory ‘sticks’. In other words, the phase-
particle velocity is single valued except for infinitesimal
moments of time, so there is no problem with solution
uniqueness.
APPENDIX C. INDEPENDENCE OF BL FROM AL

BL
ij is independent of a

L
ij if and only if

PðBL
ij Z bjaLij Z 1ÞZPðBL

ij Z bjaLij Z 0Þ;
for b2f0; 1g:
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This occurs if and only if

pZPðBL
ij Z 1jaLij Z 1ÞZPðBL

ij Z 1jaLij Z 0ÞZ 1Kq;

and (equivalently)

q ZPðBL
ij Z 0jaLij Z 0ÞZPðBL

ij Z 0jaLij Z 1ÞZ 1Kp:

Thus, the condition for BL
ij to be independent of aLij is

pCqZ1. This is our null hypothesis H0.
APPENDIX D. THE SIGNIFICANCE OF THE
AGREEMENT BETWEEN AL

AND BL

We seek to construct a test for H0 : pCqZ1. Consider

PðT Z t;H Z hÞ

Z
a

t

 !
nKa

h

 !
ptqhð1KpÞðaKtÞð1KqÞðnKaKhÞ;

PðT Z t;H Z hjðpCqÞZ 1Þ

Z
a

t

 !
nKa

h

 !
pðnKaKhCtÞð1KpÞðaChKtÞ

Z
a

t

 !
nKa

nKaKh

 !
pðnKaKhCtÞð1KpÞðaChKtÞ:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ðD 1Þ
But

nKaKbZ ðtChCcC f ÞKðtCcÞKðtC f Þ;
nKaKbZ hKt;

nKbZ aChKt:

9>=
>;:

ðD 2Þ
So

PðT Z t;B Z bjH0Þ

Z
a

t

 !
nKa

bKt

 !
pbð1KpÞðnKbÞ; ðD 3Þ

PðT Z tjB Z b;H0ÞZ
PðT Z t;B Z bjH0Þ

PðB Z bjH0Þ
; ðD 4Þ

PðT Z tjB Z b;H0ÞZ

a

t

 !
nKa

bKt

 !

n

b

 ! ; ðD 5Þ

where the denominator is evaluated by noting b is bino-
mially distributed underH0, or by using the normalizing
identity for the hypergeometric distribution. Note that
in equation (D 3), the probability depends on p only
through b, so b is the efficient estimator for p, given H0,
and is, thus, the appropriate quantity to condition on for
the test. The probabilities obtained from equation (D 5),
of obtaining the observed value of t given b, a and n, thus
form the P-values for our conditional test.
J. R. Soc. Interface (2006)
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