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Process integration methodologies proved to be effective tools in identifying energy

saving opportunities in the industrial sector and suggesting actions to enable their

exploitation. However, they extensively rely on large amounts of process data, resulting

in often overlooked uncertainties and a significant time-consumption. This might

discourage their application, especially in non-energy intensive industries, for which the

savings potential does not justify tedious and expensive analysis. Hereby amethod aimed

at the simplification of the data acquisition step in process integration retrofit analysis is

presented. Four steps are employed. They are based on Monte Carlo techniques for

uncertainties estimation and three methods for sensitivity analysis: Multivariate linear

regression, Morris screening, and Variance decomposition-based techniques. Starting

from rough process data, it identifies: (i) non-influencing parameters, and (ii) the maximum

acceptable uncertainty in the influencing ones, in order to reach reliable energy targets.

The detailed data acquisition can be performed, then, on a subset of the total required

parameters and with a known uncertainty requirement. The proposed method was

shown to be capable of narrowing the focus of the analysis to only the most influencing

data, ultimately reducing the excessive time consumption in the collection of unimportant

data. A case study showed that out of 205 parameters required by acknowledged

process integration methods, only 28 needed precise measurements in order to obtain

a standard deviation on the energy targets below 15 and 25% of their nominal values,

for the hot utility and cold utility respectively.

Keywords: data acquisition, Monte Carlo, process integration, retrofit, sensitivity analysis, simplification,

uncertainty analysis

1. INTRODUCTION

The climate change threat is felt more and more as a concern, and countries world wide
are nowadays starting to act in order to limit its destructive effects (United Nations,
2015). In this regard, a key role is played by energy efficiency, as its improvement
in all human activities is paramount in order to achieve a carbon-neutral economy
(The European Commission, 2011, 2014). Concerning industrial processes, Process
Integration (PI) methodologies proved to be highly effective in identifying and
promoting energy saving possibilities. Potential savings from 10 to 75% have been
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reported in industrial sectors ranging from petrochemical
(Nordman and Berntsson, 2009; Smith et al., 2010; Bütün
et al., 2018), to pulp and paper (Ruohonen and Ahtila, 2010),
and to food processing (Muster-Slawitsch et al., 2011). PI
techniques consist in a collection of methods aiming at the
identification of energy recovery opportunities in the industry
(see Morar and Agachi, 2010 and Sreepathi and Rangaiah, 2014
for comprehensive reviews). They are characterized by a holistic
point of view, focusing on identifying beneficial interconnections
among different plant sections and unit operations (Kemp, 2007).
External hot and cold utility savings are ultimately achieved by
designing (or re-designing) the heat exchangers network and
integrating the energy utilities in a better way (e.g., by introducing
heat pumps or gas turbines). Since the introduction of the
first systematic tool by Linnhoff and Flower (1978) in 1978,
known with the name of “Pinch analysis”, many developments
have been achieved, (i) extending it to non-energy related
targets (e.g., waste-water Wang and Smith, 1994 or emissions
minimization and pressure drop optimization Polley et al., 1990),
(ii) automating sections of the methodologies by means of
computer-aided optimization procedures (Asante and Zhu, 1996;
Nie and Zhu, 1999; Smith et al., 2010; Pan et al., 2013; Bütün
et al., 2018), and (iii) simplifying the different procedures in
order to promote their application in the established industrial
practice (Polley and Amidpour, 2000; Dalsgård et al., 2002;
Anastasovski, 2014; Pouransari et al., 2014; Chew et al., 2015;
Bergamini et al., 2016). These three research lines have often
been carried out separately, and in some cases even in a
divergent way. The former found a large interest in the ‘80s and
early ‘90s (Linnhoff, 1994), and still finds space in the actual
research (Klemeš, 2013). It applies the few basic concepts of
pinch analysis (such as targeting for minimum consumption) to
areas other than energy integration, but still related to energy
integration itself. The other two research lines are often divergent
in their objectives. They ground on two different philosophies
of solving process integration problems: the former striving
for the complete automation of the design procedure (possibly
relieving the engineer from any design-related decision), the
latter believing in the central role of the designer in the decision-
making process. For this reason, the recent focus of the first
one is in the definition of overarching super-structures for the
robust design of heat exchanger networks, while the latter tries
to develop heuristics able to easily indicate to the analyst the
sub-problems to focus the attention on.

Despite the effort in the development of different approaches,
PI methodologies are far from being utilized in the common
practice, especially in industrial sectors in which energy costs
are not a main concern (e.g., food industry). A primary cause
is the requirement of extensive and reliable process data, such
as temperatures, mass flow rates and pressures measured before
and after all the main process components. This results in a
significant time consumption, easily in the order of several weeks,
and in a high cost for performing the analysis. Few authors tried
to address this issue, recognizing in it a significant (if not the
main) barrier for the extensive application of PI techniques. The
method proposed by Muller et al. (2007) combines a top-down
model relying on linear-regression procedures, to a bottom-up

one. The former is used for identifying the main centers of
consumption in the plant based on energy bills, while the latter
is utilized for modeling the thermodynamic requirements of the
previously identified most critical processes. However, despite
constituting an interesting approach, it still requires a large
amount of data and some extra modeling of sub-processes in
order to fit the top-level data. Pouransari et al. (2014) tried
to simplify the complexity of PI analysis, by considering the
classification of energy data in five different levels of detail. The
PI study is then conducted by combining different complexity
levels, instead of utilizing a single, detailed one. However, this
work does not directly aim at reducing the data acquisition
complexity, but rather the successive heat exchanger network
design. It proves that not all the data need to be collected at the
detailed level, but it does not suggest any criteria for choosing
the right level on beforehand. Similar approaches have been
discussed mainly for applications of Total Site Analysis, where
data acquisition with different levels of detail has been proposed.
The generally accepted data classification is between black-box,
gray-box, and white-box (Nguyen, 2014). The first considers
only utility data, the second adds utility/process interfaces and
the third accounts also for process/process interfaces. However,
no systematic evaluation for selecting the required detail has
been discussed. The work of Kantor et al. (2018) introduced a
method for constructing thermal profiles for general industries
and industrial sub-processes. It founds on a database of process
data from which thermal profiles can be deduced based on top-
level data of the studied process (e.g., energy bills, production
volumes). It constitutes an interesting attempt of promoting PI
techniques, and more development is expected in order to make
it a viable tool. Finally, Klemeš and Varbanov (2010) summarized
the pitfalls of PI studies, providing some general guidelines for
their successful implementation.

This paper presents a novel data acquisition simplification
method for PI retrofit studies. It aims at reducing the time
consumption (and the cost) of the data acquisition step, by
identifying and disregarding the parameters that do not require
a precise measurement, before the detailed data acquisition is
performed. In this way, it attempts at reducing the existing gap
between academic research (often focusing on developing more
precise and complex models) and industrial practice (requesting
ease of utilization) in the field of Process Integration. Unlike
previous studies, the parameters selection is performed in a
systematic way, by applying a combination of uncertainty and
sensitivity analysis techniques. Uncertainty analysis defines the
uncertainty in a model output caused by given uncertainties in
the model inputs. Conversely, sensitivity analysis quantifies the
individual contribution of input uncertainties to a given output
uncertainty (Saltelli et al., 2008). By acknowledging the fact that
any analysis is unavoidably prone to uncertainties, no matter
the amount of resources dedicated to acquiring refined data,
the developed method finds a limited sub-set of data, whose
precise measurement suffices for ensuring a selected minimum
output uncertainty level. In this context, uncertainty analysis
is applied for assessing the output variance and for setting a
target for the minimum analysis uncertainty. Sensitivity analysis
is employed for solving the “factor fixing” problem, i.e., to identify
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the input parameters that can be fixed to any roughly estimated
value without jeopardizing the output precision (Saltelli et al.,
2008). This, in turn, points out the only parameters that require
a precise measurement to be collected in the detailed data
acquisition phase.

The paper is structured as follows: section 2 presents the basics
of the utilized PI technique, the case study, and the novel method
developed. The latter is presented in detail, altogether with a
description of how it was applied on the case study. Section
3 presents the obtained results, for each step of the proposed
procedure. Section 4 discusses merits and pitfalls of the proposed
method, providing ideas for future developments. Finally, section
5 presents the conclusions of the study.

2. METHODS

This section describes the overall method followed in this
study. At first, the common characteristics of process integration
techniques are outlined and the case study is introduced.
Afterwards, the developed procedure for simplifying and
rationalizing the data acquisition step of PI study is presented,
altogether with the description of its application on the
case study.

2.1. Process Integration Background
Although nowadays PI techniques comprehend numerous
different tools, they all ground on the same basic concepts
presented by Linnhoff and Hindmarsh (1983). In particular,
the very first steps which associate every PI study, regardless
of the particular used tool or the type of project (new
design or retrofit) comprehend (i) a thorough data acquisition,
(ii) an energy targeting, and (iii) a heat exchangers network
synthesis (Kemp, 2007).

1. Data acquisition. This is a crucial task, which allows to sort
and organize process measurements in order to completely
characterize the so called streams. A stream is defined as a
flow of matter which is heated or cooled without incurring
any variation in its chemical composition. Streams constitute
the fundamental units for completely describing the process
from an energy point of view. Their characterization generally
requires the following steps:

(a) Collect Process measurements. These generally
comprehend: (i) temperature, (ii) mass flow rate, (iii)
pressure, and (iv) total solids content (in presence of
concentration processes) at the inlet and outlet of every
process component.

(b) Produce a heat and mass balance for the plant, based on the
collected data. This commonly requires the application of
data reconciliation techniques.

(c) Extract the streams. After identifying them, every stream
should be characterized with (i) supply temperature, (ii)
target temperature and (iii) heat capacity rate.

2. Energy targeting. The energy targeting procedure aims at
identifying the unavoidable external utilities required by
the process calculating, in turn, the maximum potential

for internal energy recovery. This is achieved by applying
the so called Problem Table Algorithm (PTA) (Linnhoff and
Hindmarsh, 1983), which is composed of three main steps:

(a) Subdivide the process in temperature levels based on the
supply and target temperatures of the various streams.

(b) Calculate the energy balance in each interval, thus
identifying its energy surplus/deficit.

(c) Cascade the energy surplus/deficit to lower
temperature levels.

The heat cascade resulting from this procedure provides
three main insights in the process: (i) Minimum Hot Utility
requirement (HUmin), (ii)Minimum Cold Utility requirement
(CUmin), and (iii) Pinch Point temperature (Tpp). These allow
confirmation of near-optimal plant designs as such and to
rapidly identify improvable layouts providing guidelines for
achieving energy savings.

3. Heat Exchangers Network synthesis. In this step the heat
exchangers network is designed (in case of grassroot projects)
or modified (in case of retrofit projects), in order to reduce the
process energy consumption, toward the previously calculated
minimum energy targets. No tool exists, which is able to
solve this task precisely, easily and in a reasonably fast way in
any occasion. As a consequence, this is the stage where most
of the developed PI methods differ from one another. The
only “red-thread” between most (but not all) of them, can be
summarized in the so called “three golden rules” based on the
pinch point location: (i) do not heat below the pinch, (ii) do
not cool above the pinch, and (iii) do not transfer heat across
the pinch.

2.2. Case Study
The investigated case study was a cheese production plant, which
constituted a relevant production process for the application of
PI techniques. The studied facility was able to process 750 kt/a
of raw milk, for producing 75 kt/a of cheese as main product,
plus several other by-products among which cream, whey cream
and whey proteins. Its energy consumption was subdivided in
two energy carriers: (i) electricity, accounting for 35 GWh/a, and
(ii) natural gas, accounting for 6.5·106 Nm3/a. A previous study
(Bergamini et al., 2016) proved that, by applying PI techniques,
a 24% energy consumption reduction could be achieved in an
economically feasible manner.

The plant was divided in six sections, namely: (i) weigh
in, (ii) milk handling, (iii) culture, (iv) cheese making, (v)
normal whey, and (vi) salted whey. They showed a considerable
complexity level, employing various interconnected mechanical
and thermal unit operations. The most noticeable were heat
treatment (e.g., pasteurization and sterilization), filtration and
centrifugation units [a more detailed process description is
provided in Bergamini et al. (2016)]. The conceptual process
layout is shown in Figure 1.

2.3. Data Acquisition Simplification
Strategy
Hereby a novel procedure aiming at simplifying the data
acquisition step of PI studies is presented. It applies various tools
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FIGURE 1 | Cheese factory case study conceptual process scheme.

proper to uncertainty and sensitivity analysis, in order to (i)
identify non-influencing process parameters, and (ii) determine
the maximum acceptable level of uncertainty of the influencing

ones. All this is performed before spending time in the detailed
data acquisition, in order to conduct such tedious step by
targeting a limited set of parameters and knowing the required
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FIGURE 2 | Data acquisition simplification strategy.
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FIGURE 3 | Conceptual model representation.

level of precision in their measurements. The ultimate goal is to
minimize the time consumption of the data acquisition process
of PI retrofit analysis.

The proposed procedure consists of four consecutive steps
(Figure 2). They are explained in detail in the following.

2.3.1. Step 1: Rough Data Acquisition
This step constitutes the initialization of the procedure.
Starting from process knowledge it results in a first, rough,
characterization of the involved parameters. It is composed of
two parts:

1. Model definition. At first, a model of the form y = f (x) has
to be defined, where x is the vector of the model parameters,
f is the model itself, and y is the vector of the model
outputs. Considering the specific case of Process Integration
studies, the most relevant outputs at a preliminary study
level are the energy targets and the pinch point location.
The formers quantify the potential savings, while the latter
provides information on the possible pathways for reaching
them. The model is therefore identified in all the procedures
that allow to calculate such outputs based on the process
measurements (i.e., the parameters of such model). It is the
combination of (i) mass and energy balance, and (ii) Problem
Table Algorithm, as summarized in Figure 3.

2. Data acquisition. Once the necessary parameters (i.e., vector
x) are identified, they are characterized by assigning estimated
values to them, based on information retrieved from e.g., PI
diagrams, expert review, process knowledge. At this stage, fast
execution is farmore valuable than precision. Finally, based on
the source of information of individual values, their perceived
uncertainty distributions are characterized. As there is no
reliable source for such uncertainty definition, overestimation
is encouraged, in order to conduct an analysis which is on the
“safe side.”

This procedure was applied on the case study by developing a
steady-state mass and energy balance. They were ensured for
each individual unit operation, allowing to theoretically deduce
somemass flows and temperatures, avoiding theirmeasurements.
The total solids content, on the other hand, was assumed based
on the nature of the involved material flows (Appendix B).
The plant model proved an overall necessity of 205 process
parameters values, distributed in 33 mass flow rates, 104
temperatures, 62 total solids contents and 6 energy flows. This

data, referred to as nominal values, were acquired from available
on-sitemeasurements, expert reviews and annual production and
consumption records.

2.3.2. Step 2: Uncertainty Analysis
A first uncertainty analysis is performed on the aforementioned
model, aiming at identifying the output uncertainties resulting
from the rough data acquisition. In the unlikely event that these
uncertainties are considered to be acceptable, there is no need
for more precise process data and the PI study can proceed.
Otherwise, a maximum output uncertainty threshold (i.e., output
standard deviation threshold σthresholdj ) is defined for each output
j, and the following steps are performed in order to ensure that
this requirement is met.

Among the possible available techniques (e.g., non-linear
regression, bootstrap method, Metropolis algorithm) Monte
Carlo analysis (Metropolis and Ulam, 1949) was employed in
the present study. This method was preferred for the precision,
the ease of implementation and the useful characteristic that the
results can be used both for uncertainty propagation assessment
and for sensitivity characterization by means of multivariate
linear regression techniques. It was performed in three steps
(Sin et al., 2009): (i) input uncertainties specification, (ii)
input uncertainties sampling, and (iii) propagation of input
uncertainties to the model outputs to predict its uncertainties.

1. Step 1. The uncertain parameters were identified and their
respective uncertainty was characterized. As data available
at this stage derived from rough estimates, no precise
identification of the uncertainties was possible directly from
the data. The parameters were assumed to be normally
distributed, centered on the respective nominal values,
according to the recommendations of Madron (1992). The
standard deviations were defined in either absolute terms
(for temperatures and total solids content) or relative to the
nominal values (for mass flow rates and heat flows). Due to
the low reliability of the data sources, large standard deviations
were assumed (Table 1).

2. Step 2. A sampling number (N = 5, 000) was defined, and an
[N-by-k] matrixX was generated bymeans of Latin hypercube
sampling. This was preferred among the other commonly used
techniques (e.g., random sampling and Quasi-Monte Carlo
sampling) for the good representation of the probability space
achieved in a reasonably fast computational time.
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TABLE 1 | Nominal uncertainty definition.

Physical quantity Type of σ σ

Mass flow rate Relative 10%

Heat flow Relative 10%

Temperature Absolute 3 K

Total solids content Absolute 0.02

3. Step 3. The uncertainties were propagated to the outputs
through the model, by performingN simulations using matrix
X created in Step 2.

The calculated results could then be used for approximating the
output variance by means of simple statistics. As in practice a
finite N = 5, 000 was used, the mean and variance estimation
by means of Monte Carlo techniques produced an error, which
was estimated as (Sin and Gernaey, 2016):

MCerr =
σy√
N

(1)

where σy is the standard deviation of output y.
Finally, based on the results of this analysis, an output

uncertainty target was set on the sole HUmin and CUmin. Their
target standard deviation was chosen to be 15 and 25% of
their nominal value (i.e., the result of the PTA with negligible
input uncertainty) respectively, resulting in a value of 346 kW
for HUmin and 232 kW for CUmin. Considering the lower
importance of Tpp in retrofit studies if compared to the energy
targets, as proven by the work of Bonhivers et al. (2017, 2019), it
was decided not to set any uncertainty target on Tpp. This might,
however, be included in the application of the method. A further
discussion is presented in section 4.2 and results obtained setting
an uncertainty target on Tpp are presented in Appendix A.

2.3.3. Step 3: Sensitivity Analysis
A sensitivity analysis is performed on the model, in order to
solve the “factor fixing” problem. One or several sensitivity
methods can be applied. Global sensitivity techniques (e.g.,
multivariate linear regression, variance decomposition-based
sensitivity methods) should be preferred over local ones (e.g.,
derivative-based methods; Saltelli et al., 2019), as they describe
the overall factors influence throughout the totality of their
uncertainty domain and considering mutual relations between
them. Once the sensitivity measures with respect to all the
outputs are calculated, a threshold is defined in order to identify
non-influencing parameters and fix them to their nominal values.

In the present study, three different global (or quasi-
global) sensitivity analysis techniques were applied, namely: (i)
Standardized Regression Coefficients (SRC), (ii) Morris method
(MM), and (iii) Variance decomposition-based sensitivity
analysis (VDSA).

2.3.3.1. Standardized regression coefficients (SRC)
The standardized regression coefficients quantify the quasi-
global sensitivity of the model outputs on input parameters

in case of a fairly linearizable model. They were calculated by
constructing a linear model based on the output of the Monte
Carlo simulation (section 2.3.2). Considering y as the single-
valued N-dimensional output vector of the analysis, where N
is the sample size, and X the [N-by-k] parameters matrix, a
linear regression model was built applying the mean-centered
sigma-scaling as Santner et al. (2014):

yi − µy

σy
=

k∑

j=1

βj

Xi,j − µXj

σXj

for i = 1, 2, ...,N (2)

where βj is called the Standardized Regression Coefficient (SRC)
of parameter j. If the regression is effective (i.e., the model
coefficient of determination R2 is higher than, 0.7 Sin et al.,
2009), the absolute value of βj can be used to quantify the
sensitivity of the output on the various parameters. In fact,
R2 indicates the fraction of the variance of the original model
outputs that is captured by the linear model, and

∑
(βj)

2 =
R2 (Saltelli et al., 2008).

2.3.3.2. Morris method (MM)
The Morris method aims at achieving a quick pre-screening of
the influencing parameters, rather than a complete explanation
of the output variance, by identifying parameters whose effect
is (i) negligible, (ii) linear and additive, or (iii) non-linear or
involved in interactions with other parameters. The core of
the analysis resides in the definition of the elementary effect
attributable to each input. The method was applied by means of
the following steps:

1. Step 1. A k-dimensional p-level grid � was defined, so that
the k-dimensional parameter vector X could take values {0 ≤
Xi ≤ p− 1}. A number of levels p = 8 was considered.

2. Step 2. Each realization of Xi was then transformed in the
model input space:

xi = Ai + Xi
Ci − Ai

p− 1
(3)

Where Ai is the lower bound and Ci is the upper bound
of parameter i. The lower and upper bounds for all the
parameters were set equal to ±3σ , where σ was the one
defined in Table 1.

3. Step 3. Selecting a finite perturbation 1 among the multiples
of 1/(p−1), the elementary effect of parameter iwas calculated
as (Morris, 1991):

EEi(x) =
f (x1, x2, ..., xi−1, xi + 1, xi+1, ..., xk)

1
(4)

A general calculation strategy for computing the EEi in
a computationally effective way is presented in Morris
(1991) and Campolongo and Saltelli (1997). For easing their
confrontation, the elementary effects were standardized by
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means of standard deviation as proposed by Sin et al. (2009),
resulting in the Standardized Elementary Effects (SEE):

SEEi(x) = EEi(x)
σxi

σy
(5)

Where σxi and σy are the standard deviations of the parameter
i and the output respectively.

The sensitivity assessment was based on the evaluation of the
finite distribution Fi of r elementary effects for each model
parameter. At first, a number of repetitions r = 30 was
selected. This was repeatedly increased until a stable screening
was achieved between different analyses (Ruano et al., 2011).
The final accepted number of repetitions was r = 1, 000. A
large absolute mean of Fi (µSEE,i) indicates a large “overall”
impact of parameter i on the output, while a significant standard
deviation of Fi (σSEE,i) reveals that the effect of parameter i is
highly dependent on the values of the other parameters, i.e., it
is non-linear or involved in interactions with other parameters.
Finally, the mean of the absolute standardized elementary effects
(µ∗

SEE,i = µ(|SEEi|)) was computed as suggested by Campolongo
et al. (2007). It is a good proxy of the previously presented
β2 and of the total sensitivity index (ST) introduced in the
next sub-section.

2.3.3.3. Variance decomposition-based sensitivity measure

(VDSA)
Variance decomposition-based sensitivity measures quantify
the influence of input uncertainties on the output variance
decomposing it, de facto, in an additive series of terms dependent
on the individual uncertainty contributions. Grounding on the
works of Hoeffding (1948) and Sobol (1993), the output variance
of any model can be completely characterized by 2k orthogonal
summands of different dimensions σ 2

i1 ...is
. The 2k sensitivity

estimates are then defined as:

Si1 ...is =
σ 2
i1...is

σ 2
(6)

with the convenient property that
∑

Si1 ...is = 1. The Si1 ...is
terms constitute a quantitative global sensitivity measure, as
they represent the fraction of the output variance caused by
individual parameters or the interaction between them. Due to
the prohibitively high number of computations for quantifying
such terms, they were not calculated in the present work. As
more commonly performed, only two groups of indexes were
considered, which provide a fairly complete description of the
model in terms of its global sensitivity analysis properties:

1. First order effect index Si. These are the k first order effects,
i.e., they quantify the fraction of output variance caused by the
individual parameters alone. By doing so, this group of indexes
is commonly used for factor prioritization, as it identifies the
factors which, if fixed to their true value, result in the highest
reduction in output variance.

2. Total effect index STi . They measure the overall effect, i.e.,
the first and higher effects (interaction effects), of parameters

xi. This group of indexes is commonly used for factor fixing,
as it identifies the output variance that would be left if all
parameters but xi, would be fixed to their true values. It
follows, that a negligible STi means that the parameter xi has
an overall negligible influence on the output variance. In this
way, they eliminate the necessity of computing all the higher
order effects.

According to the best practice for computing Si and STi , two
independent [N-by-k] sampling matrices A and B were defined,
where N is the number of simulations and k is the number of
parameters. By considering these two matrices, other k matrices

A
(i)
B were computed, where all columns were from A except for

the i-th column which was taken from B. By means of these,
the sensitivity indexes could be computed according to Saltelli
et al. (2009). The computation cost of the analysis was N(k + 2)
evaluations of f (x). The method was applied by setting a number
of simulations N = 80, 000. This high value was chosen in
order to ensure precise estimations for the sensitivity indexes (in
particular to ensure Si ≥ 0).

After applying the three different sensitivity methods, the
parameters selected for the subsequent uncertainty maximization
step were chosen among the ones identified based on their impact
on the sole HUmin and CUmin. Different screening criteria were
utilized for the evaluated methods:

• Standardized regression coefficients. Disregard all the
parameters with β2 ≤ 0.01, i.e., which contribute to
<1% to the output variance.

• Morris method. Disregard all the parameters for which both
the conditions in Equation (7), Morris (1991), and Equation
(8) are verified.

µSEE ≤
σSEE√

r
(7)

µ∗
SEE ≤ 0.1 ·max(µ∗

SEE) (8)

where max(µ∗
SEE) is the maximum among the mean absolute

standardized elementary effect for all the parameters.
• Variance decomposition-based sensitivity. Disregard all the

parameters with ST ≤ 0.01, i.e., which contribute to <1% to
the output variance, similarly to β2.

The 0.01 threshold was set by defining that such value is
close enough to 0, for determining non-influential factors
(Saltelli et al., 2008). The threshold expressed in Equation (7) is
commonly found in the literature (Morris, 1991), while the one
of Equation (8) was arbitrarily set in this work.

2.3.4. Step 4: Allowed Uncertainty Maximization
This step aims at identifying the maximum acceptable
uncertainty in the selected parameters, in order to have an
uncertainty in the results which does not exceed the threshold set
in Step 2. Ultimately, this serves as an indication of the level of
precision required for the data acquired during the subsequent
“Detailed data acquisition.”
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TABLE 2 | Uncertainty analysis results.

Mean µ Standard deviation σ Specific uncertainty σ/µ Uncertainty error MCerr 2.5th percentile 97.5th percentile

HUmin 2,433 kW 567 kW 23% 8.0 kW 1,486 kW 3,642 kW

CUmin 998 kW 630 kW 63% 8.9 kW 15 kW 2,324 kW

Tpp 21 °C 16 °C – 0.2 °C 1 °C 59°C

FIGURE 4 | Grand Composite Curve considering uncertainties. (A)

approximate probability area for the GCC, (B) aggregated GCC resulting from

the N = 5,000 simulations.

For solving this maximization problem, two tasks are crucial:
(i) the definition of the parameters lower and upper bounds and
(ii) the selection of the kmanipulated parameters.

1. Definition of Ai and Ci. The upper bound (Ci) is trivially set
to the initial parameter standard deviation, having no interest
in retrieving less precise data with respect to what is already
possessed. The definition of the lower bound (Ai), on the
other hand, is not as easy. It strongly depends on the process
variability, the available measurement system and, ultimately,
on measurement costs. Process knowledge and experience
are required for completing this task. It is recommended to
overestimate this parameter, in order to keep a safety margin.

2. Selection of k manipulated parameters. The manipulated
parameters are selected according to the screening conducted
in Step 3. However, this does not ensure that the required
σthresholdj can be achieved with the chosen set of parameters,
for their chosen boundaries. In order to verify that this
possibility exists, the uncertainty analysis (Step 2) is repeated
by setting the standard deviation of the chosen parameters
to their lower bounds. If the resulting output uncertainty
exceeds the chosen threshold, select a larger set among the
screened parameters and repeat this check, until a feasible
solution is found. It is recommended to increase the set
size gradually, by favoring the intersections between different
sensitivity methods results at first, if need be moving toward
their union. If necessary, one should consider decreasing the
screening thresholds set in Step 3.

This maximization problem is readily expressible as a
minimization problem (more easily handled by optimization
software) by considering the minimization of the percentage
standard deviation reduction (σx,%) with respect to the
nominal value.

σxi ,% =
σxi − σxi ,opt

σxi
(9)

σxi ,opt represents the standard deviation of the parameter i in the
optimized solution.

As multiple parameters are considered, the interest lays in
achieving a minimum mean percentage reduction in uncertainty
for all the studied parameters (µ(σxi ,%)). The task is then to solve
the problem specified as:

min
x

µ(σxi ,%)

subject to Ai ≤ σxi ≤ Ci, ∀i ∈ 1, 2, ..., k

σyj ≤ σthresholdj , ∀j ∈ 1, 2, ...,m

(10)

where Ai and Ci are the lower and upper bound of the i-
th parameter, while σyj and σthresholdj are the actual and the
threshold standard deviation of the j-th output. Again, σyj
is calculated by means of uncertainty analysis. This requires
running an uncertainty analysis for each set of parameters
considered in the optimization procedure, in order to assess the
compliance with the boundaries of Equation (10).

In the case study application, the optimization problem was
solved by means of the in-built genetic algorithm of Matlab
(MAT, 2017), which proved to be superior in terms of minima
identification if compared to both the Matlab Particle Swarm
Optimizer and Pattern Search, in this particular case. The selected
population size was 200 and the number of stalling generations
for stopping the algorithm was set to 5. The other options were
set to their respective default values. The output uncertainty
(σyj ) was estimated by using the previously utilized Monte Carlo
procedure, but this time setting a sample number N = 500 in
order to speed-up the computation. In doing so, a larger error
on the Monte Carlo estimate, in the order of

√
10, was accepted

(Equation 1). This did not affect the final result significantly, as
the final error on the uncertainty estimation was below ±5%.
The upper bounds for the parameters standard deviation were
set equal to the nominal ones, while the lower bounds were set
to 25% of the nominal ones. This last choice was roughly taken
for sake of proving the method capabilities, but should be better
evaluated in a more precise analysis.
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FIGURE 5 | Standardized Regression Coefficients method results of the k = 205 parameters on HUmin (A,B), CUmin (C,D), Tpp (E,F). Figures to the left report the

linear model fit to the actual uncertainty. Figures to the right show the β2 values of the input parameter sorted in descending order. The dotted lines indicate the

proposed cut-off thresholds.

3. RESULTS

The results obtained through the application of the proposed
method on the case study are presented in the following. They
should serve as a demonstration of the method and its use.

3.1. Step 2: Uncertainty Analysis
The uncertainty propagation by means of Monte Carlo
simulations resulted, as expected, in large uncertainties on both
the energy targets and the pinch point location (Table 2). In
particular, σCUmin was 63% of µCUmin and σTpp was 78% of µTpp .

This high uncertainty is clearly represented by the Grand
Composite Curves (GCC) of the N simulations (Figure 4).
Figure 4B shows that the GCC is not a single line (as it
would be expected for a PI analysis not accounting for
uncertainties), but a family of lines, resulting in a region of
possible existence of the points of the GCC, in the T-Q̇ diagram.
Figure 4A shows the approximate probability distribution of all
the points composing the GCC. It should be noted that the
area comprised in ±3σ (gray area) is very wide, suggesting
that an analysis conducted with the present level of data
uncertainty would be excessively unreliable. These results formed
the basis for setting the aforementioned uncertainty targets
(section 2.3.2).

3.2. Step 3: Sensitivity Analysis
3.2.1. Standardized Regression Coefficients
Figure 5 shows the Standardized Regression Coefficients analysis
results. The graphs on the left side (a, c, e) depict the fit
of the linear model for estimating the output variance, to
the original output variance as calculated by means of Monte
Carlo simulations. Each one of these graphs refers to one of
the evaluated model outputs. As should be noted, the linear
model fit is good for HUmin and CUmin (graphs a and c),
revealing a coefficient of determination (R2) equal to 0.87 and
0.90 respectively. On the other hand, a linear model could not
describe the variance of Tpp satisfactorily (graph e), resulting in
R2 = 0.48, well below the acceptability threshold. This outcome
does not surprise, considering the highly non-linear behavior
of the pinch point location. It assumes values clustered around
few temperature levels, as can be seen in Figure 5E and by
inspecting Figure 4A. Focusing next on the β2 values depicted
in the right hand graphs (b, d, f), for all the evaluated outputs
a limited number of parameters demonstrated to be responsible
for an appreciable contribution to the output variance for all
the outputs, having a β2 value above the selected threshold.
Moreover, the chosen cut-off threshold for identifying non-
influencing parameters proves to be able to detect the rapidly
descending trend of β2 and the flattening to low values, denoting
minor impact of the corresponding model inputs.
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FIGURE 6 | Morris method results of the k = 205 parameters on HUmin (A,B), CUmin (C,D), Tpp (E,F). Figures to the left report the µSEE-σSEE relations. Figures to the

right show the µ∗
SEE values sorted in descending order. The dotted lines indicate the proposed cut-off thresholds.

FIGURE 7 | Total sensitivity index of the k = 205 parameters on the outputs, sorted in descending order. (A) Sensitivity on HUmin, (B) Sensitivity on CUmin, (C)

Sensitivity on Tpp. Dotted lines indicate the proposed cut-off threshold.

3.2.2. Morris Method
Figure 6 shows the Morris method results. The left hand
graphs (a, c, e) depict the mean over the standard deviation
relation of the standardized elementary effects distribution of

each parameter. The parameters show a horizontal dispersion
predominant over the vertical one for HUmin (graph a) and
CUmin (graph c), while the opposite is true for Tpp (graph e). This
reveals a low non-linear behavior of the input parameters with
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FIGURE 8 | Comparison of sensitivity indices for the k = 205 parameters. (A) β2 vs. µ∗
SEE, (B) β2 vs. STi , (C) STi vs. µ∗

SEE.

respect to the energy targets, and a considerable non-linearity
concerning the pinch point temperature, confirming the results
obtained by the SSC method. Moreover, it can be noted that
the majority of the parameters have sensitivity indices located in
the region of low importance (low µSEE and σSEE). Focusing the
attention, next, to the right hand graphs (b, d, f) representing
the sorted µ∗

SEE, it can be noted that, again, a limited number
of parameters result in a relevant impact on the output variance.
However, unlike the SRC method results, in this case the sorted
parameters importance decreases more gradually, resulting in a
higher number of parameters deemed influencing.

3.2.3. Variance Decomposition-Based Sensitivity

Measure
Figure 7 presents the total sensitivity index of the evaluated
parameters with respect to each output, sorted in descending
order. As for the previously commented methods, it can be noted
that few parameters have a relevant impact on the energy targets
(graphs a, b), showing high ST for a limited number of factors
and a steep decrease of this value, which starts to flatten around
the 30th parameter. Moreover, the cut-off threshold chosen for
identifying non-influencing parameters (showed in dotted lines)
proves to be able to detect this flattening region. The same cannot
be said of the pinch point location (graph c). In this case the

number of parameters influencing the output variance is higher,
accounting for 80 factors.

3.2.4. Sensitivity Methods Comparison
The three sensitivity methods were firstly compared based on
their ability to detect important and non-important parameters
(Figure 8). Specifically, the “total” sensitivity measures were
accounted for, namely β2, µ∗

SEE and ST . No correlation was
detected for the sensitivity indices on Tpp (yellow dots) related
to the SRC method. This is caused by the poor fit of the
linear model to the pinch point uncertainty. On the contrary,
a very good correlation was found between the Morris method
and the variance decomposition-based sensitivity (Figure 8C).
Considering the sensitivity indices on energy targets, all the
methods show good agreement in detecting highly influencing
parameters, suggesting a low risk of committing type II statistical
errors i.e., classification of important parameters as unimportant
(Saltelli et al., 2008). Less agreement resulted for low sensitivity
measures. In particular, in this region the Morris method tended
to overestimate the factors impact compared to both multivariate
linear regression and variance decomposition-based techniques
(Figures 8A,C). This indicates the risk of committing type I
statistical errors, i.e., classification of unimportant parameters
as important (Saltelli et al., 2008), when utilizing the Morris
method. Much higher agreement was found between SRC
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FIGURE 9 | Comparison of the important parameters selected by different

sensitivity methods.

and Variance-based decomposition (Figure 8B). They achieve
an almost perfect correlation for high sensitivity measures,
finding disagreement just at low measures. In particular, the
former tends to underestimate the factors importance in this
region, if compared to the theoretically more precise VDSA. In
general, the better correlation between β2 and STi was expected,
considering that they both represent the same measure, i.e., the
decomposition of the output variance. On the other hand, µ∗

SEE
expresses the normalized average influence of single parameters
on the outputs, but it does not explicitly aim at explaining the
individual contribution to the output uncertainty.

As aforementioned, it was decided to focus the analysis on
the sole energy targets. Therefore, the parameter screening was
performed disregarding the influence on the pinch location. As a
result, 28 parameters were selected by the SRC, 52 by the Morris
method and 32 by the variance decomposition-based technique.
The different results obtained by considering also a target on the
pinch location (i.e., adding a maximum threshold of 25% of the
nominal Tpp value for Tpp) are presented in Appendix A.

The three sensitivity methods were then compared on the
basis of the selection of important parameters (Figure 9).

SRC and variance decomposition-based techniques showed a
good agreement in classifying the important factors. In particular,
all the parameters selected by the former were also identified
by the latter. Moreover, just 4 factors identified by the VDSA
exceeded the ones spotted by SRC. Concerning the Morris
method, it selected 24 parameters that do not find agreement
with the other sensitivity analysis techniques. This could signify,
once again, the risk of committing type I statistical errors when
utilizing it for screening. All in all, 24 factors were screened by all
the three techniques.

3.3. Step 4: Allowed Uncertainty
Maximization
Step 4 of the procedure was conducted for the parameters selected
in Step 3 (Figure 9). The ones disregarded in the sensitivity
analysis performed were not considered influencing, according to
the Factor fixing setting of the study. As three different sensitivity
analysis methods were used in this work, three different sets of
parameters were selected in Step 3 and a final set to be considered
at this stage had to be chosen. At first, the set {SRC∩MM∩VDSA}
(composed of 24 parameters) was selected, and the uncertainty
analysis by means of Monte Carlo techniques was performed.

FIGURE 10 | Minimum percentage standard deviation reduction on the

selected parameters sub-set required in order to ensure an output uncertainty

lower than the targets.

Unlike step 2 of the procedure, however, this time the uncertainty
assigned to the 24 selected factors was set to the lower boundaries
previously defined for their measurement. This indicates the
very minimum uncertainty achievable by retrieving the most
precise data technically possible for the selected parameters. The
resulting standard deviation of the energy targets was 347 kW for
HUmin and 219 kW for CUmin. The former was slightly higher
than the required uncertainty target (i.e., 346 kW, section 2.3.2)
and, according to the procedure, a larger parameters sub-set was
selected. The set {SRC ∩ VDSA} composed of 28 parameters
resulted in a minimum standard deviation of 254 and 216 kW
for HUmin and CUmin respectively, both below the targets. This
proved that a detailed data acquisition performed on this set of
factors could reduce the output uncertainty below the defined
threshold. Therefore, the analysis was continued with this sub-
set, and the consideration of a larger one was not necessary.

The required uncertainty reduction for the 28 parameters,
presented as percentage reduction with respect to the uncertainty
on the rough data, is reported in Figure 10. Just a few parameters
need an uncertainty as low as their lower bound (i.e., 75% in
the graph), while others need a lower uncertainty reduction. In
particular, three factors require a standard deviation reduction of
just 10%, indicating that their detailedmeasurementmight not be
paramount. Such result indicates that the important parameters
might have been over-estimated, while selecting few that were
not so important. However, the amount of selected factors is
limited, not invalidating the method performance in screening
the required measurements.

The uncertainty resulting by acquiring detailed measurements
complying with the targets for the 28 selected inputs (while
keeping the rough estimates for the others, together with
their initial large uncertainty) are presented in Figure 11 and
Table 3. As it can be noted, the output uncertainty targets
were respected, within the Monte Carlo procedure error range,
proving that a data collection performed with the indicated
uncertainty on the selected sub-set of parameters could satisfy the
analyst requirements.
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FIGURE 11 | Grand Composite Curve considering reduced uncertainties for

the k=28 parameters ({SRC ∩ VDSA}). (A) probability area for the GCC, (B)

aggregated GCC resulting from the N = 5,000 simulations.

TABLE 3 | Uncertainty analysis results for the reduced input uncertainty on k = 28

parameters ({SRC ∩ VDSA}).

µ σ σ/µ MCerr 2.5th

percentile

97.5th

percentile

HUmin 2,316 kW 346 kW 15% 4.9 kW 1,663 kW 3,025 kW

CUmin 882 kW 235 kW 27% 3.3 kW 423 kW 1,361 kW

Tpp 19°C 11°C – 0.2°C 13°C 57°C

After assessing that a detailed data acquisition conducted on
the selected sub-set of parameters sufficed for reaching the output
uncertainty targets, the composition of the chosen sub-set of
factors was investigated. It was found that all the 28 parameters
were either inlet or outlet temperatures belonging to 18 different
streams. No mass flow rate, total solid content, or heat flow was
deemed important. The process streams requiring detailed data
acquisition were then inspected, in order to assess the reason
of their importance. Figure 12 presents the mass flow rate of
all the streams identified in the PI study (in total 61), sorted in
descending order. Red bars indicate streams requiring detailed
acquisition of inlet and/or outlet temperature.

As it can be noted, all the streams with higher mass flow rate
were selected for further data assessment, with the sole exception
of two, indicating a strong relationship between the mass flow
rate and the streams importance.

Finally, in order to prove the goodness of the chosen
uncertainty thresholds for the study, an uncertainty analysis was
conducted by reducing the uncertainty for all the 205 parameters
to their lower bound. This represents the lowest possible output
uncertainty attainable by performing a detailed data acquisition
on all the parameters. The results are presented in Figure 13

and Table 4. As it can be noted by comparing Tables 3, 4,
the overall uncertainty on the energy targets achieved by
performing the detailed data acquisition on only 28 parameters
is not excessively higher than the minimum obtainable one

(15% against 7% for HUmin and 27% against 19% for CUmin),
especially considering the attained reduction in the number of
parameters (28 against 205). The same cannot be claimed for
the pinch location, as expected, as it was not a goal to reduce
its uncertainty. Similar conclusions can be graphically deduced
by comparing Figures 11, 13. All in all, the results indicate
the effectiveness of the proposed data acquisition simplification
strategy in identifying a limited sub-set of parameters whose
precise measurement suffices for attaining a reasonably low
uncertainty in the pinch targeting procedure. Once again, it
should be kept in mind that if a lower output uncertainty was
sought, the respective target could be set at a lower level and a
different parameters sub-set could have been identified, in order
to meet the targets.

4. DISCUSSION

The results demonstrate that the proposed method was able to
effectively reduce the number of data to be retrieved in the
detailed data acquisition phase of a PI study, when applied to the
case study. The complexity of this step was remarkably reduced
compared to the common practice in Process Integration (Kemp,
2007), pointing out that only 28 process parameters over the
total 205 needed precise assessment. Moreover, unlike previously
developed tools (Muller et al., 2007; Klemeš and Varbanov,
2010; Nguyen, 2014; Pouransari et al., 2014; Kantor et al., 2018),
the parameters selection was conducted in a systematic way
ground on statistics, and the required precision in the collected
values was identified. This information was available before
actually performing the measurements, reducing significantly
the time dedicated to data acquisition. It can be claimed,
therefore, that the application of the proposed data acquisition
simplification strategy has the potential of reducing the gap
between academia and industry in matter of Process Integration.
However, some limitations calling for further developments need
to be mentioned and some implications of the obtained results
are worth discussing.

4.1. Practical Implications
As the method was applied, three different global sensitivity
analysis techniques were employed and compared. This might be
unreasonable for an industrial application, for which it might be
more appealing to utilize only one of them. This would reduce the
time dedicated to the analysis and the complexity in comparing
different results. However, the comparison of the methods did
not lead to any conclusive remark regarding whichmethod better
identifies the influencing parameters. The results are subject to
a large extent to the decision of (i) minimum acceptable output
uncertainty threshold (Step 2) and (ii) methods cut-off criteria
(Step 3). No general recommendation is provided so far on how
to best set such thresholds, as such decision is likely to be case-
specific and further applications of the method are needed for
generalizing any conclusion. However, on the basis of this specific
case study, some observations can be made:

1. The SRC and VDSA methods resulted in a similar parameters
selection. The four parameters selected just by VDSA did
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FIGURE 12 | Stream mass flow rates sorted in descending order. Red bars indicate the streams selected for detailed measurement.

not result to be decisive for meeting the selected output
uncertainty targets. However, as this discrepancy is limited,
it can be concluded that both methods performed well in
screening the most influencing parameters. This agrees with
the expectations to achieve good results by applying the
SRC (R2 was reasonably close to 100%) and to achieve
a satisfactory variance decomposition by applying VDSA
(Saltelli et al., 2008).

2. The Morris method selected 24 parameters not chosen
by the other techniques. As their inclusion proved to be
unnecessary for meeting the output uncertainty target, this
points out once more the risk of committing type I statistical
errors by using MM. This risk has not been discussed
in the literature, which on the contrary points out the
efficacy of MM (Campolongo and Saltelli, 1997; Campolongo
et al., 2007; Ruano et al., 2011). However, the experienced
liability is likely to be case specific and especially related
to the chosen uncertainty targets and screening thresholds.
A proof of this is given in Appendix A, which shows how
setting different targets, the screening performed by the
Morris method identifies less surplus parameters if compared
to VDSA.

3. Considering the computational time involved in the usage of
these methods, the SRC proved to be much faster than the
other methods in providing the results, as it could be expected.
The computational cost was N = 5, 000 function evaluations
for SRC, while (k + 1)r = 206, 000 function evaluations were
required for the Morris method, and N(k + 2) = 16, 560, 000
function runs were necessary for VDSA. Considering the
computational time, this resulted in <5 min compared to
about 2 h and to about 90 h, respectively, if run on a single
2.5 GHz processor. If the time for the sensitivity analysis is a
concern, it is therefore recommended to just employ the SRC
method, as long as the coefficient of determination is higher
than 70%, accordingly to what is advised in the literature
(Sin et al., 2011). In case the selected parameters sub-set

FIGURE 13 | Grand Composite Curve considering minimum uncertainties for

the k = 205 parameters. (A) probability area for the GCC, (B) aggregated GCC

resulting from the N = 5,000 simulations.

could not meet the maximum allowed output uncertainty, it
is possible to increase the parameters cut-off threshold (Step
3). Such iterative procedure would still be faster than the
VDSA computation at the price of a little imprecision in the
identification of the final parameters sub-set. If on the other
hand the coefficient of determination is lower than 70%, the
usage of VDSA is advised, as long as the computational time
required is deemed reasonable. These recommendations find
agreement with the commonly accepted practice (Saltelli et al.,
2008, 2009; Sin et al., 2011).

The nature of the finally selected parameters revealed a certain
correlation between streams mass flow rate and importance in
collecting detailed data measurements (Figure 12). This gives
reason to the generally accepted rule of thumb that particular
care should be taken in collecting data on the largest streams
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TABLE 4 | Uncertainty analysis results for the minimum possible input uncertainty

on k = 205 parameters.

µ σ σ/µ MCerr 2.5th

percentile

97.5th

percentile

HUmin 2,341 kW 165 kW 7% 2.3 kW 2,019 kW 2,665 kW

CUmin 907 kW 171 kW 19% 2.4 kW 571 kW 1,248 kW

Tpp 16°C 2°C – 0.02°C 14°C 17°C

(Kemp, 2007; Klemeš andVarbanov, 2010; Pouransari et al., 2014;
Bergamini et al., 2016). However, the fact that not all the largest
streams were deemed important for achieving the uncertainty
targets points out the usefulness in having a systematic procedure
for determining important measurements, rather than rules of
thumb based on the aforementioned observation (most of which
generally ground on the 80/20 Pareto principle Ho, 1994). This
benefit derived by using the proposed method is even more
evident in the application presented in Appendix A.

4.2. Limitations
The proposed method provides large flexibility to the analyst in
the definition of (i) data uncertainties and (ii) objectives of the
analysis. If on one side this allows for adjusting the procedure
to the needs of the specific project under evaluation, on the other
hand it requires some experience in order to be applied. Themain
decisions left to the analyst are discussed in the following.

Arguably, the most important task is the definition of the
parameters uncertainties, both on the rough data estimates (Step
1) and for setting the lower bounds for the optimization (Step
4). Different issues arise: (i) as the rough data acquisition mostly
makes use of opinions and design set points, no hard proof is
available to base the uncertainties estimate on. It is therefore
important to stay on the safe side at this stage and assign
large uncertainties. (ii) Freedom exists in setting the parameters
uncertainties lower bound, as they are related, among other
factors, to the utilized measurement instrumentation. Respecting
the boundaries set by available measurement systems, a major
role in this choice is played by the cost of reaching a given
uncertainty level (e.g., for buying more precise instruments or
making use of multiple measurement points). This aspect was
not considered in this study. The development of rules of thumb
would be beneficial for helping the practitioner in successfully
handling the proposed procedure.

The choice of the objective function in Step 4 of the procedure
(Equation 10) could be open to discussion. In this paper it
is suggested to minimize the average uncertainty reduction on
the parameters to be measured, provided that the choice of
the parameters is already made. Clearly, there could be other
possibilities, e.g., minimize the number of parameters to be
measured, provided that their uncertainty is reduced to their
lower bound. We decided to prefer the first one, recognizing
that the complexity in performing measurements is not only
determined by the number of parameters to bemeasured, but also
by the required precision of their measurements (which defines,
e.g., the number of samples and sampling points). With these
two aspects in mind, the parameters selection is performed solely

in Step 3 (sensitivity analysis) and the uncertainty reduction
minimization in Step 4. Again, the key for determining the best
possible objective function is to be found in cost evaluations, i.e.,
in assessing whether it is less expensive to collect less accurate
but more numerous data, or to acquire more precise but less
numerous measurements.

The analyst is empowered to decide the outputs to be
considered as relevant for the analysis he wants to perform.
As an example, in the application presented in this study
it was decided to disregard the pinch point location as a
relevant output of the problem table algorithm in case of
retrofit projects. This was based on the recognition that the
knowledge of the global Tpp is not fundamental for achieving
energy savings in existing plants, as proved by the work of
Bonhivers et al. (2017, 2019). The Bridge analysis method they
proposed demonstrated that removing heat transfer across the
global pinch is not necessary to save energy. However, one might
want to determine Tpp precisely, as its knowledge is important
for employing more traditional PI retrofit methods (Tjoe and
Linnhoff, 1986; Nordman and Berntsson, 2001). A target for
the maximum allowable uncertainty on the pinch point location
could be set with no harm, as demonstrated in Appendix A.
Clearly, this choice affects the method results and has to be
considered carefully.

4.3. Future Work
Further development of the procedure for providing criteria able
to help the analyst in taking these decisions would be beneficial.
This requires: (i) additional testing of the method on different
case studies, (ii) the impact assessment of the rough assumptions
made on the uncertainties distributions, and (iii) to include
considerations of costs related to conducting measurement
campaigns. This last aspect has not been considered so far in the
Process Integration literature, and its consideration would help
to further bridge academic development and industrial practice.

Another interesting development would be in extending
the application of this method to energy analysis other
than PI techniques (e.g., energy auditing, energy analysis).
As it is proposed in this work, the developed procedure is
generally applicable to any PI retrofit study for addressing
the data acquisition phase, no matter the method utilized
for the heat exchangers network design. In fact, all the
available synthesis techniques can benefit of a wisely conducted
data collection able to reduce the time consumption, and
the related costs, of the project. However, the proposed
logic of combining uncertainty and sensitivity analysis
techniques for determining the necessary measurements
has the potential of being generally applied to any energy
analysis, provided that the considered model (Figure 3) and
the analysis outcomes (i.e., energy targets and pinch location)
are different than the ones presented for PI techniques in
this paper. This could also serve as a rational criterion for
selecting required measurement points in the installation of
a permanent measurement system able to assess the process
energy performance. Again, further testing in different case
studies and for different types of analysis is needed to verify
this argumentation.
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5. CONCLUSION

A novel method aiming at reducing the time consumption (and
cost) in the data acquisition step of process integration retrofit
studies was presented. It systematically employs a combination
of uncertainty and sensitivity analysis techniques in order to
solve the “factor fixing problem” and identify a sub-set of process
parameters that need precise measurements for conducting the
project. This feature lowers one of the main barriers for the
application of PI techniques in the common industrial practice,
i.e., the significant time dedicated to tedious process data
acquisition. From its application on a dairy process the following
can be inferred:

• The method was shown to be able to: (i) calculate the
uncertainty on the problem table algorithm outputs and
set a target for the maximum allowable uncertainty, (ii)
identify the sub-set of most influencing process values
required for performing the process integration analysis,
and (iii) determine the maximum acceptable uncertainty
on this sub-set of process data in order to reach the
required output uncertainty. All these results are made
available before conducting the detailed data acquisition.
The method recommended to collect detailed measurements
on only 28 parameters out of the total 205 required by
existing PI procedures, resulting in significant time savings in
this operation.

• The procedure is flexible in defining screening criteria and
output uncertainty targets, leaving the analyst freedom to
adjust the screening to case-specific analysis requirements.

• Different global sensitivity analysis methods can be used in the
simplification procedure. The required computational time
suggests to employ multivariate linear regression on Monte
Carlo results as first attempt, moving to Morris method or
variance decomposition-based analysis in case of bad fitting
of this one.

• The experience of the analyst is particularly needed in
defining the uncertainties on the input data before performing
measurements. Further study is required in order to develop
guidelines for performing this task.

Overall it can be concluded that the developed method has
the potential to reduce the gap between academic research and
industrial needs in matter of process integration, promoting the
usage of such techniques in the industrial practice.
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NOMENCLATURE

A Parameters lower bound MC Monte Carlo

C Parameters upper bound MM Morris method

N Number of simulations, - PI Process Integration

S Sensitivity index, - PTA Problem Table Algorithm

T Temperature, ◦C SEE Standardized Elementary Effect

TS Total Solids content, % SRC Standardized Regression Coefficient method

Q̇ Heat flow, kW VDSA Variance Decomposition-based Sensitivity Analysis

ṁ Mass flow rate, kg/s Greek letters

b Linear regression coefficient, - β Standardized regression coefficient, -

f Model 1 Perturbation

k Number of factors, - µ Mean

p Number of levels, - σ Standard deviation

r Number of repetitions, - Subscripts

x Input vector err Error

y Output vector min Minimum

Abbreviations pp Pinch Point

CU Cold Utility T Total

EE Elementary Effect

HU Hot Utility
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