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The order of the practical system (e.g. nuclear power

plants, electrical power network and chemical plant) is

quite large. However, there are many limitations in com-

puting facilities for the large system. Because of these

limitations, it is often necessary to reduce the order of

the large system using an approximation.

Here the simple iterative technique which is free of

certain shortcomings of the previous method is proposed

for the approximation of large linear systems by a low-

order model. A measure of the goodness of the model is the

value of the integral-square error between the step responses

of the exact and the simplified system.

The proposed technique consists of a two-step iterative

scheme. In the first step, the optimum residues are



obtained by the minimization of the objective function,

while the poles (or eigenvalues) are kept constant. In

the second step, the poles (or eigenvalues) are optimized

while the residues remain fixed. This procedure is con-

tinued cyclically until the objective function is satisfac-

torily minimized.

The necessary and sufficient conditions for existence

of an optimum are satisfied in each step. The residues,

poles (or eigenvalues) and objective functions always con-

verge monotomically. The resulting reduced-order model

obtained by this method is stable if the original system is

stable. The method can be applied not only to single-

variable systems, but also to systems with repeated poles

(or eigenvalues) and to multivariable systems. The results

are superior to those obtained previously in the steady-

state and transient responses, and the value of the

integral-square error.

Illustrative examples are presented.
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SIMPLIFICATION OF LARGE LINEAR SYSTEMS USING
TWO-STEP ITERATIVE METHOD

CHAPTER I. INTRODUCTION

For many processes (e.g. nuclear power plants, electri-

cal power networks and chemical plants), the order of the

system is quite large. Thus for the large system, there are

many limitations in computing facilities. Implementation on

a digital computer is prohibitive in terms of time used,

cost of computation and available space. For reasons such

as these limitations, it is often desirable and sometimes

necessary to reduce the order of the large system by means

of an approximation.

A number of papers have been presented about the reduc-

tion of the system. These methods have their own advantages

and disadvantages. However, the point to which one approxi-

mate model is superior to another can be decided in the

light of the measure of performance of the same task.

The following criterion is used to define a measure of

quality of an approximation. The integral-square error

between the step responses of the exact and simplified

models is used.



1.1 Statement of Problem

In many cases the dynamic behavior of the physical

system is represented by the state-variable equations or

transfer function matrices (or transfer functions).

Given:

(a) The original mathematical system is given by an

nth-order transfer function matrix.

S
m

+ Alm S
m-1

(lin(S)1 = (A
2111+1

+ + A
22

S + A211

S
n

+ A2n S
n-1

x (A
1n+1

+ + A
12

S + A
11

1

-1

where A..
2.3

are constant matrices and m n.

For a single-variable system of course matrix coeffi-

cients and matrix inversion are replaced by a constant

coefficients and division respectively.

(b) An exact (v-input, w-output) nth-order linear

time-invariant system is described by the state-variable

equation.

=Ax+Du

Z Hix

where x is an n dimensional vector

v is a w dimensional vector

2

(1-2)



A is an n x n matrix

D is an n x v matrix

H' is a W x n matrix

A prime denotes the transpose.

Assume that

D u = 0 t < 0

= D t > 0

3

(1-3)

It is assumed in Eq. (1-2) that the eigenvalues of A have

negative-real parts.

Problem:

(c) It is desired to find an Zth-order (Z << n)

simplified transfer function matrix, given by

[H (s) ] =
2k+1

s
k

+ A
2k

s
k-1

+ + A
2 23

A21]

x [A
1Z+1

s
Z

+ s
Z-1

+ +
'12

s + A
11

]

-1

(1-4)

where A. are constant matrices and k s Z.

(d) To find a simplified model of a reduced-order

(Z << n) in the form of

X =
0 0

zi = Ho x (1-5)

where A3 is an Z x Z matrix
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B
0

is an 2. x v matrix

H isawx2matrix.
0

1.2 A Survey of Reduced-Order Modeling Techniques

There is generally an implicit constraint on the

simplification process. One is that the simplified-model

is computationally simpler than an original system. The

other is that the simplified-model must retain those

features of the original system which are considered impor-

tant. Various techniques for the reduction of the linear

system, developed during the past decade or so, can be

classified into two main categories, namely:

(i) Simplification in frequency-domain.

(ii) Simplification in time-domain.

In this section these methods are summarized and results

of previous works are discussed.

1.2.1 Simplification in Frequency-Domain

At present three methods are available for the

frequency-domain model reduction techniques. They are:

(i) Continued-fraction-expansion method

(ii) Moment-matching method

(iii) Hsia's method.

The first method is due to Chen and Shieh in which system

transfer function is reduced by truncating coefficients of

its continued-fraction-expansion [9]. The idea behind this



is as follows. Consider the typical feedback system shown

in Figure 1 with the overall transfer function given by

, Y(s) G(s)
Hn(s) _

uT77 1 + G(s)H(s)

U(S)

G(s)

Y ( s )

H (s)

Figure 1. Block diagram of a feedback system.

5

(1-6)

Dividing the numerator and denominator in eq. (1-6) by G(s)

we have:

Y(s) 1
Hn(s) =

U(s)
G(s) +

H(s)

(1-7)

Eq. (1-7) can be considered as the simplest continued-

fraction-expansion. It is easily seen that when G(s) is

high, the overall gain can be approximated by 1/H(s). In

other words, H(s) dominates the behavior of the system. In

general, the continued-fraction will be obtained as follows

(second Cauer form is shown as an example).



Y(s)
Hn(s) = ursT 1

1

1

h3 +
1

nd
S

6

(1-8)

where hi, j = 1,2, ... are the coefficients in the continued-

fraction-expansion.

It should be noted that the most dominant term is hi

and the second influence term is As As the coefficients in

the continued-fraction descend lower and lower in position,

they are less and less important as far as their influence

on the performance of the system is concerned. This observa-

tion, is the general base for the simplification techniques

which will be developed in the continued-fraction-expansion.

Several continued-fraction forms can be considered,

however, there are three major forms. Consider a rational

transfer function of a single-variable system;

s
m

+ a2ms
m-1

Y(s) a
1

a2,

H
n
(s) = _ - ra

U(S) a
1:11

s
a

+ a
1 n

s
n-1

. ., + al,
... .....

(1-9)

where a. . are constants, m a.
13

The first Cauer form (Weiberg, 1962 [21]) is;

H
n
(s) =

1

h1is +

h2 v +
1

h'3 s +

h1

1

1

(1-10)



The second Cauer form (Weiberg, 1962 [21]) is;

H
n
(s)

1

h +
1 h

2
+

+
h
4

1

1

s

1

7

The mixed Cauer form (Shieh and Goldman, 1974 [21]) is:

H
n
(s)

1

k +k's +
1 1 k

1

--*k' +
1

s 2 1
k +k's +
3 ka

--:*.k' +
s 4

1

(1-12)

In the same fashion, the multivariable system can be ex-

pressed by a transfer function matrix:

CH (s)1 = [A2m4.is
m

+ A2ms
m-1

+ + A
22
s + A

21
] (1-13)

x [Aln+ls
n

+ Alns
n-1

+
]
-1

+ A
12

s + A
11

where A., are constant matrices,m< n.

In this case, the coefficients in the three Cauer

forms are replaced by matrix coefficients and the division

in the continued-fraction process
is replaced by a matrix

inversion.

The first-matrix Cauer form is:

[H
4
(s)] = [His

-1 -1 - -1 -1
[H3 's + H4 ' + ]

-1 ]

(1-14)



8

The second-matrix Cauer form is:

1 1
[H
4(s)

] = [H1 + [H2 + [H3 + [H4 + [ ]-1]-1]-11-11-1
(1-15)

The mixed-matrix Cauer form is;

1
[H4 (s) ] = [k1 + kis + [k2 g + [k3 + k3

1
(1-16)

+ k4 - '

4 s
+ k

where h' hi and k
i

are matrix coefficients of constant.

To evaluate the matrix coefficients of the mixed-matrix

Cauer form, k
i

and k' the matrix Routh algorithm can be

used (Shieh and Goldman [21]).

1
A
12

A
ln+1

k
n-1

= A
n-11

A
nl

-1
kn = AnA

n+11

1
A
22

A
2n

1A32A3n-1

A
n-11

A
n

A
n-13

A
n2

A
n+11

= A A
-1

n+1 2n

k' = A
-1

2 2n
A
3n-1

(1 -17)

k = A A
-1

n-1 n-13 n2

k A
n2
A
n+11
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Thus k.
1

and k!
1

in Eq. (1-16) are evaluated by the first and

last column of the Routh table. A
kJ

in the Routh table (1-

17) are obtained using the following relationship.

and

A. = -
3Z Aj -2 2+1 3 1 2+1 kj-2Aj-12

j= 3,4 ... n+1, 2=1,2, .

(1-18)

k = A (A )

-1
k =

p+1
-1

' ' A_ (A
p pl p+1 1 P &(n+2-p) n+l-p

)

det A
p+11

# 0 : det A
p+1 n+l-p

# 0

p = 1,2, .

The matrix coefficients of the second-matrix Cauer form is

simply obtained by letting ki equal zero and relacing ki by

H.
1

in eq. (1-17) and (1-18) .

Whereas the first-matrix Cauer form is similar to the

second-matrix Cauer form, the matrix coefficients of ea. (1-

13) should be modified so that the matrix Routh algorithm

of eq. (1-17) and (1-18). By defining a new matrix coeffi-

cients Bij,eq. (1-13) can be rewritten as follows:

[Hn(s) ]
= [B

21
sm + B

22
sm-1 + + B

2m-1
s + B

2m
] (1-19)

where

x [Bils
n

B12s
n-

+ 81 s + B
ln+1

]

B
11

. A 1(n+2-1. .
)

1 = 1,2, ... n+1

B =
23 '2(m+1-j) 3

= 1,2, ... m

-1
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The matrix coefficients can be evaluated by the following

matrix Routh algorithm.

Bji Bj-2 2+1 Hj-2Bj-1 2+1
j=3,4,...2n+1

2=1,2,...n

and (1-20)

Hp = B
1p

(B
p+11

)-1 p=1,2,....

det B
p+1 1

0

The state-space equation for the second-matrix Cauer form

has been formulated by Chen and Shieh [9] as follows;

x =Ax+ B u

where

A = -

= C'x

[H1H2 (H
1
)H

4
(H

1
) H

6

H
1
H
2

(H
1
+H 3) H (H

1
+H

3
) H

6

(Hi) 2n

(H
1
+H

3
) H

2n

H
1
H
2

(H
1
+H

3
) H

4
(H

1
+H

3
+H

5
)H

6'
..(H

1
+H

3
+H

6
rri

2n

(1-21)

7

H
1
H
2

(H
1
+H

3
)H

4
(H

1
+H

3
+H

5
)H

6'
..(H

1
+H

3
...++H

2n-1
)H

2n

B' = [I, I, ..., I]

C' = [112, H4, ..., H2n]

Exll'x12' xlnl

A prime denotes the transpose.
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The n is the order of the matrix transfer function of eq.

(1-19) and [I] and [Hi] are the identity matrix and matrix

coefficients of dimension m x m respectively. This method

can be applied to the transfer function which has repeated

poles (Chen and Shieh [9]).

Hutton and Friedland proposed the Routh approximation

based on the first Cauer form [31]. Shamash shows that the

continued-fraction-expansion is also applied to the reduc-

tion of a discrete-time system. The discrete transfer

function is given by the Z-transform [19]. The second

technique is a moment-matching one which consists of the

power-series expansion of the given system transfer func-

tion [23].

A
21

+ A
22

s + A
23

s
2

+ + A
2 m+1

s
m

H (s) (1-22)
n

1 + A
12
s + A

13
s
2

+ + Al
n+ls

n

where A.
KZ

are constant coefficients and m n.

H
n
(s) may be expanded in a series of positive powers

of s as follows

co

H

i=0

(1-23)

where the constants Ci are related to the moments M thehe

relation

= ( -1)
i , M1

By direct division, one can get from (1-22)

(1-24)



H
n
(s) A21 - A31s + A41s

2
- A51s

3
+

The coefficients Ak2 are given by the relation

A
la

= A
k-1

A
1 2+1

- A
k-1 2+1

12

(1-25)

(1-26)

The above algorithm gives a set of moments Mi (or Ci) for

the original system. Assuming the unknown simplified-model

as:

k

A21
A
22

s + A
23

s
2

+ + A
2,k+1

s

(s) =

1 +
12

s + i
13

s2 + +
1, 2+1

s2

Using

is obtained.

CO

C1

C2

Ck

Ck +1

Ck+2

Ck+Z

'Th)

eq. (1-23), (1-25)

-Co 0 . .

-C
1

-Co

. . .
Ck-1 -Ck-2

-Ck
n-1 .

-Ck+1

Ck+2 -1 -Ck+ Z-2

and

.

-CO
o

-C1

(1-27)

(1-26) the following relation

th column

0

0

0

.,-(k+1) th row
0

-CO

-Cl

A13

7 rei
21

A22

12+1
A.2k+1

0 0 0

-Cl 0 10 ' 0

.... -co 0 0

. -C1 -CO 0 0 IO

(1-28)

Solving eq. (1-28) the unknown coefficients in the re-
K2

duced model are obtained.
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M. Lal and R. Mitra establish the equivalence of the

moment-matching and simplification by continued-fraction-

expansion and truncation [25]. They give the coefficients

relationship between these methods.

The other method is due to Hsia, which is based on the

requirement that the magnitude ratio of the frequency res-

ponses of the simplified-model and the original system

deviate the least at various frequencies [13]. Let the

magnitude of the frequency function

A (w) =
H(

L(jw)

2
M(jw)M(-jw)

A (jw) A ( -jw)

MD + M2w2 + M4w4 + .

A0 + A2w2 + (1
4
w

4
+

where H(jw) is an original system, and

L(jw) is a simplified model

M(k) (s) M(22-k) (s)

M22 =
22,

(-1)
k+2,

k! (22.-k)!
k=0 ,s=0

M
(k)

(s) =
d
k

M(s)

ds
k

(1-29)

A
22

is defined similarilv M replacing M by A.

It is required that A(w) = 1 and X(w) are expanded in

Taylor series. From the condition X(w) = 1, we obtain

M
22

=
22

= 1,2, . (1-30)
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Solving eq. (1-30), the stable set of solutions are chosen.

1.2.2 Simplification in Time-Domain

Model reduction can also be accomplished in the time

domain. Two main ideas have appeared in the time-domain

technique, namely, Davison's method and Aoki's method.

The principle of Davison's method is neglect eigen-

values of the original system which are the farthest from

origin and retain only the dominant eigenvalues [1]. By

the similarity transformation

x = P z

Eq. (1-2) can be rewritten by

[7.1 -4J r 7!Z
+ P 1B u

1
nl

0
nJ In1

(1-31)

(1-32)

where
Z
J is an Z x Z matrix and chosen eigenvalues are

the same as the predominant eigenvalues of A.

nJ is an (n-Z) x (n-Z) matrix

It is assumed that nJ whose eigenvalues have negligible

effect on the system response. From eq. (1-32), the re-

duced-order model is given by

lz =
Z
J

Ez
+ first Z rows of P 1B u

This is the same as the solution of eq. (1-2).

(1-33)



r-
x
1

2

x2,

xn

-1+eXlt
Al

-1+e
Azt

r1
xl

1
X2

1
x2,

1
xn

Z
XQ

2
X
n

r-

xl

(q)
1

1
b
1

+(1)
2

1
b
2
+... +...+qbn) +

(cOlb +q)
2
b +...+o210 ) +

1 2 ZZ Zn

x2

Xn t
-1+e " 1 2

n
(4)nb1+4)nb2+ .+,1)

z
+.

A
n

n

X z

xn

Then, neglecting terms of the type

-1+e
Akt

K
x
n

+ 0 )

(4)k. Q1+(;)kb2+
c,

vk k

.+15qbn)

15

(1-34)

(1-35)



16

where k = 2 + 1, ...,n

Chidambara suggested that term (1-35) cannot be completely

neglected because (1-35) has, in general, significant

contributions to the response [2]. The steady-state res-

ponse of the 2th-order reduced model will, in general, be

significantly different from that of the exact system. To

overcome this problem he introduced the R matrix as

2-
= J z

2
+ G2u

= [kz + R] 22 (1-36)

where R is a constant matrix to be determined such that it

minimizes the integral-square error between the step res-

ponse of the exact Z
ex

(t) and of the reduced model, z
2
(t)

and (z
ex

- z,) -+ 0 as t 03.
z

In the methods based on the aggregation crinciple, a

reduced-order model

Z
= F z2 + B u (1-37)

is obtained for the system described by eq. (1-2), where the

2-dimensional z
z
vector (2 << n) is related to the n-

dimensional x vector through the aggregation matrix C, as

(Aoki[8]).

(t) = C x (t) (1 -33)
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where C is an s2 x n constant matrix, 2 << n, and rank-

C = Z is assumed.

The dynamic exactness is achieved if and only if

FC = CA
(1-40)

G = CB

The matrix F will be referred to as the aggregated matrix

or aggregation of A. Eq. (1-38) and (1-40) imply that

z(t) is a linear combination of certain modes of x(t). In

this case, the eigenvalues of F are the.eigenvalues of A

corresponding to those modes of x(t) which are retained

in z (t).

Thus the notion of aggregation for a linear system is

a generalization of 'Davison's method' for simplifying the

dynamics of linear systems by retaining the dominant modes.

1.3 Consideration of Reduced-Order

Modeling Techniques

As shown in a previous section, a number of methods

have appeared in the literature for developing a lower-

order model. These methods have their own advantages and

disadvantages. To investigate the superiority among these

methods, the step responses of the simplified-models are

computed to the same original system. An objective func-

tion is shown as an integral-square error between these

responses.
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From the consideration of the computational results,

the following can be stated:

(i) On the measure of goodness of the approximation -

By computing the unit-step responses of the various

methods, it is concluded that the second Cauer form in the

continued-fraction-expansion and Hsia's method yields a

small value of the objective function compared with all the

other methods.

(ii) On the time responses of the time-domain

techniques -

In a transient-state, Davison's model, neglecting the

non-dominant eigenvalues, responds close to the original

system for the unit-step input.

While the modified Davison's model due to Chidambara

is close to the original system in a steady-state.

The previous time-domain techniques are interpretable

in the frequency-domain so that the denominator polynomial

of the transfer function is prespecified and only the

numerator polynomial is subject to the approximation.

Therefore, the time-domain techniques need to be changed so

that the numerator polynomial as well as the denominator

polynomial can be approximated.

(iii) On the stability of the continued-fraction-

expansion method

The continued-fraction-expansion method has a drawback

in that the reduced-order model may be unstable even though
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the original system is stable. This is because the approxi-

mation does not necessarily give a stable model.

To overcome this instability, Shieh and Wei introduced

the dominant eigenvalue concept to the Routh algorithm and

obtained the stable reduced-order model (32], which is

called 'Mixed method'. Routh approximation due to Hutton

and Friedland also gives a stable reduced-order model [31].

However, these methods do not give satisfactory small

values of the objective function, in the sense of error

criterion. The stability condition on the reduced-order

model obtained by the continued-fraction-expansion method

must be considered.

(iv) On a multivariable system -

The present time-domain techniques are very hard to

apply to a multivariable system. However, the frequency-

domain techniques are applicable. A more successful model

is desired so as to minimize the integral-square error be-

tween the step responses of the reduced-order model and of

the exact system.

(v) On a system with repeated eigenvalues (or poles)

Using the similarity transformation to the original

system, the original system transforms into Jordan canonical

form. The system can be considered as two separate blocks;

one is a block which has non - repeated eigenvalues, and the

other is the block with repeated eigenvalues. There are

dominant eigenvalues for the block with non-repeated
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eigenvalues. However, for the block with repeated eigen-

values, the procedure breaks down. Therefore, the present

time-domain techniques, neglecting the non-dominant eigen-

values, can not be applied for this system.

The continued-fraction-expansion method can be used.

The model obtained by this method, however, does not give

satisfactory results in the sense of the integral-square

error.
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CHAPTER II. MODEL REDUCTION BY MEANS
OF TWO-STEP ITERATIVE METHOD

As mentioned above, there are many drawbacks of the

previous methods. In this chapter, the basic philosophy

of a new approach for the model reduction of a large linear

system is shown. The new technique is simple and improves

on the various disadvantages of the existing reduced-order

modeling techniques. In Chapter III, illustrative examples

are presented.

2.1 Philosophy of Approach

The proposed technique is based on the philosophy that

a good reduced-order model must be close to the original

system of both the steady-state and transient responses.

To achieve this goal, the proposed method consists of

a two-step iterative scheme. In the first step, the steady-

state response is improved. This is obtained by optimizing

the residues so as to minimize the objective function while

the poles (or eigenvalues) are kept constant. The objec-

tive function is the value of the integral-square error be-

tween the step responses of the exact and simplified

system.

In the second step, the transient response is developed.

This result is obtained by optimizing the ooles (or eigen-

values) while the residues remain fixed.



22

These two steps are continued cyclically until the

objective function is satisfactorily minimized. The

necessary and sufficient conditions for existence of an

optimum are satisfied in each step. The residues, poles

(or eigenvalues) and objective functions always converge

monotonically.

This method gives a stable reduced-order model if the

original system is stable. The method can be applied not

only to single-variable systems but also to systems with

repeated poles (or eigenvalues) and to multivariable sys-

tems. The results are superior to those obtained pre-

viously in the steady-state and transient responses, and

the integral-square error.

2.2 Two-Step Iterative Method

The proposed technique is applied to the reduction of

a transfer function and state-space systems. The objective

function to be minimized has the form

Js = f i(yn - Y)2dt (2-1)
0

for a single-variable case

where yn is the step response of the original system

y: is the step response of the reduced-order model

The superscript 'i' denotes the number of iterative

steps (i=0,1,2,...) .

The subscript'Z'is the order of the reduced model.



For a multivariable system

where

= ,
J .f e

1

Qe dt
0

i, ^i ^i i
! [el e2 ew]

i i
ej Yn,j

j= 1,2, ... 2

w is the number of the system outputs

A prime denotes the transpose

Q is a positive-definitive weighting matrix.

2.2.1 Simplification of Transfer Function

23

(2-2)

In this section, consider the simplification of the

single-variable system (single-input, single-output) and the

multivariable system (v-input,w-output). There are no

essential differences for the simplification procedure among

these systems.

For the case of the multivariable system, the system

equation and the solution have forms of the matrix and vec-

tor respectively, otherwise all the procedure is the same

as the single-variable system.

The system with repeated poles is also reduced here.

1. Single-Variable System

Consider a single-variable system with the transfer

function

Y(s) a2m +lsm + a 2ms

m-1

a22s a21
H
n

(s)

U(s) aln+1 sn + a
ln

sn-1 + +
a12s

+
all

(2-3)
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where The poles are at s = A1,A2, A2,X2 an and

Xi X2,... Xz are the dominant poles of the

transfer function and the remaining (n-Z) poles

are assumed to have negligible effect on the

transient response.

All the coefficients in the transfer function are

constants and m s n.

Here it is assumed in eq. (2-3) that all the poles are real,

distinct and lie in the negative-real part in a complex

plane.

The proposed method can be applied for the system with

complex poles by optimizing both real-parts and imaginary-

parts of residues and poles (or eigenvalues) at each step.

An Zth-order (2 << n) transfer function to be found

is in the form of

di
2k+1

s
k

+ a
2k

s
k-1

+ + a
22

s + a
21

H (s) = (2-4)i i
a 1i 2+1

s + a
1Z

s
2-1

ali 2s all

where The poles are at s =
l' 2' AZ

(real, distinct)

and lie in the negative-real part in the com-

plex plane.

All the coefficients in eq. (2-4) are constants and

k < Z.

'i' is an iteration number (i = 0,1,2, ...) .

The time-domain solution of eq. (2-3) for the unit-step



input is represented by

', n'''

= a
0

+a
1

eAlt+a
2

eX2t+
Z ulle

Ant
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(2-5)

Assume that the unit-step response of the approximate-model

in the ith-step has the form

A
Ai alt alt
y
Z
(t) =a

0
+ ale

l a
2
e + + a

z
e

where i=0,1,2, .

i
'

i
'

a
i

In each step the residues (a a ..., ) and poles
0

(2-6)

(A/,A2, ..., Az) are found through a minimization of the

objective function, eq. (2-1) .

A. Computational Procedure

The General computational procedure by the two-step

iterative method is summarized as follows:

Step 1: Initial step (i=0)

The approximate-model is assumed to have the same

dominant poles as the exact system.

0

where A
0

= [X
1

A
2

A' = [A
1

A
2

...
Z

]

(2-7)

In order that the objective function, eq. (2-1) be a finite,

i

it is necessary that (yli - yz) + 0 as t + co in each



iterative step. This condition gives

^i
a = a0

0

for all i (i= 0,1,2, ...)
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(2-8)

where ai is the first residue of the approximate-model,

shown in eq. (2-6).

a
0
is the first residue of the original system,

represented by eq. (2-5).

The general recursive formulae for the optimum residues and

poles are computed next.

Step 2: Residue optimization (i=N)

The unit-step response of the approximate-model at

the Nth-step is, setting i=N in eq. (2-6) ,

-N -N
+ a

-N
e
Alt

+ a
2

-N A2t -N Azty =ae
0 1

+ + a
Z
e

where the initial condition is prescribed by eq. (2-8)

^N
CI, a0

0

(2-9)

(2-10)

The pole vector, VI, is kept the same as 5N1 in the pre-

vious step.

-
The residue vector, a , of the approximate system is

determined by minimizing the objective function, eq. (2-1).

This is derived by a differentiation of the objective func-

tion with respect to aN, so that
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3J
s

0 (2-11),N
(c:t )

where 0 is the 2, null vector

Then a set of Zth-order simultaneous equations is obtained.

In this step the following two equations are used.

'1\1

-N -N -Nwhere A
N

= (A
1

A
2

... X
Z

where

-N -1 = [
-N-1 N-1

]

1
A
2

-N
14

--4).a
1\1 , 14

-N
=

1 2 . 2

;N-1 ,,N-1 ;N-1 ';N-1 'N-1Ai
Al 4-A2 A1 +AZ

2 1 . . 2

-N-1 -N-1 ;N-1 ;N-1 ;N-1
X
2

+A
1 A2 A2 +AZ

2 2 1

-N-1 -N-1
1

-NI -NI ,N-1
X
z

+A A +A
AZ

(2-12)

(2-13)



F = 2 x

n a
q

-1^
q=1 AL + A

1

a
q

1.1- 1-N
q=1 X2 +

a

xN-1

q=1 q
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Solving eq. (2-13), the residue vector, aN is obtained.

Eq. (2-12) and (2-13) are used in the first iterative step

(N=1) and thereafter.

Step 3. Pole optimization (i = N+1)

The solution of the approximate-model is, letting

i=N+1, in eq. (2-6),

-N+1 -11+1 -M+1 -N+1 A+lt t

Y2 a0 +al e 2

(2-14)

The residue vector a
N+1 Nis fixed. The pole vector A-

will be optimized. Let

-N+1 ,N
= A 'I- G.IA (2-15)

-N
where n-

+1
is assumed to be small, and it is obtained

within the context of the necessary condition for the

existence of an optimum, defined by the vanishing of all
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the first derivatives of the objective function, eq. (2-1),

so that

a J
s

1\1+1 = 0
3(AX )

where 0 is the Z null vector.

The recursive formulae in this step are as follows:

-N+1 -N
a = a

-N+1' -1\1+1 -N+1 -N+1where a
[al

a
2

... a

N' -N -N ^
a
N

a = [a
1

a
2

... ]

,N+1 ..N+1 ,
7
N+1

.A A =

F Na^ -N40 4a
2,

a1
2

N
+

3
2CiN

1

,N
4a

1

(1,AN4N)3

1 2

-
a
N

2
.

0-N N

"14"Z)

,N
4a

Z

-N -N
(X

2
-i-

1
)

,N
a
1

3 -N 3
2(A

2
)

-N
4a

2

s-N -N 3

(A2+X2.)

a
Z

N

-N
(Vz+A )

3 -N N

Z
+;

2
) 2(Az)

3

N+11 ;-N+1
'N +1= ELLA1 :LA2 . A ]

(2-16)

(2-17)

(2-18)



N+1
F = -2 x

/
q=1

q=1

n

q=1

a
q

r=1

r=1

2,

/
r=1

,N
a
r

-N 2
(X

1
+A

q)

a

cr

-N -N
(Al +A

r)

-N
a
r

(A
2
+A

q)

2

a

q

(11+f"r1)2

N-

a

rN
(X
-Li 2

+X )

q

-
(A
N
+

r
)

2

To obtain eq. (2-18), the approximation

-N

e
Ar,

+1
t "N+1

r

where r = 1,2, ... Z

is used.
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(2-19)

The pole vector,
-N+1

is given by a solution of eq.

(2-18) . These equations, eq. (2-17) and (2 -18) , are

applicable with N=2 and so on.

Step 4: i=(N+2)th-step

For the (N+2)th step, set N=N+2 and go to step 2.

This procedure is repeated through a succession of stages

until the objective function becomes sufficiently small.

The sufficient condition for an extreme value to exist

is that the second derivatives of the objective function

does not change sign. The second derivative of the objec-

tive function is evaluated for a confirmation of this

condition.
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With respect to residue vector, the second derivative

of the objective function becomes

32J
s

^N 2
)

1

Al

0

0

0 0

1

N-1

2
(2-20)

Since the original system is stable, all the poles

have negative-real parts. The increments of the poles are

very small, hence the poles at the Nth-step have also

negative-real parts. Therefore, the right side of eq.

(2-20) is always positive-definite matrix.

;
2
CI

s

3(,N)2
0

(2-21)

where 0 is the 2. null vector.

Eq. (2-21) shows that a local minimum will exist at

the optimum point.

With respect to the pole vector, the second derivative

of the objective function becomes



3
2
J
s

N+1 2
3(AA )

L

-N 2
(a )

1

^N
(Al)

3

0

0

(a
2

)

2

INT

(X2)

3

Since all the poles lie in the negative-real part in a

complex s-plane,the right side of Eq. (2-22) is always

positive-definite matrix.

a2J

> 0
-N+1 2

3(AA )

where 0 is the 2 null vector.
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(2-23)

From eq. (2-23) the sufficient condition for a minimum to

exist at the optimum point is satisfied.

It is found from eq. (2-21) and (2-23) that in these

steps there exist minimum values of the objective function

at the optimum points.

2. Multivariable System

The original system is represented by an nth-order

transfer function matrix instead of a scalar transfer

function.
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[Hn(s)] = [A
2m+1

sm + A2ms
m-1

+ + A
22

s + A21]

x [Aln+ls
n

+ A
ln

+s
n-1 ,-1

+ A
12

s +
11

(2-24)

where the coefficients of s are constant matrices and

m s n.

It is necessary to find the 2th-order (2 << n) function

matrix.

1,

[Ai
sk k-1

Al AlL /I
2k+1

+ .

2k
s + ...+

22
s +

21
2

x
[Ai - ,

12+1
s A

i 2-1
+ + + A

12
s + A

11
1

-1

(2-25)

where all the coefficients are constant matrices and

k <

The solution of the exact system, eq. (2-24) and the

reduced-order model, eq. (2-25) are given in the vector

form respectively.

Zria [17n,1 1'n,2 Yn,w]

YZ,2 Y2 ,w

where w is a number of system outputs

i is -an iteration number (i=0,1,2, ...).

(2-26)

(2-27)

In this case the objective function to be minimized is used

in eq. (2- 2) replacing eq. (2- 1) for a single-variable



34

system. Minimizing eq. (2-2) with respect to the residues

and poles, the similar simultaneous equations are obtained

in the case of a single-variable system. Solving these

simultaneous equations, the optimum residues and poles are

yielded.

An illustrative example is shown in example 2.

3. System with Repeated Poles

In the system with repeated poles, the denominator of

the transfer function can be separated by the product of

the non-repeated poles and the repeated poles. There are

dominant poles for the part of non-repeated poles. How-

ever, the dominant poles cannot be selected for the part of

the repeated poles because all the poles have the same

values.

Since the proposed method is based on the selection of

the dominant poles in the initial step, the method is not

able to apply this system directly. But the method is also

applicable for the system by the modification of the

original system.

In this case the part of the repeated poles in the

original system are made slightly different from each

other. These poles are used as the dominant poles in the

original system.

Let the poles in the original system have k-repeated

poles and (n-k) non-repeated poles:
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s = X1 = X2 = . . = X
k

F. X

(2-28)
= A 1

k+1' -k+2' '

There are no dominant poles for the k-repeated poles.

Now the 2th-order reduced model (2 << n, and Q 2 k) is

required. In the initial iterative step, the poles to be

fixed are chosen as follows:

^0
Al = A + E1

0
X
2
= a+ E

2

-0
X
k

= X + co,

(2-29)

where E. (i=1,2, k) are arbitrarily small numbers

A superscript '0' denotes the initial step.

For (2-k), the dominant poles are chosen in the reduced-

order model. With eq. (2-29), the reduced-order model is

made to have no repeated poles. As long as the set of zi

(i=1,2, k) consist of sufficiently small elements, then

the reduced-order model is nearly identical in terms of the

objective function regardless of the value of F.j.

(1=1,2,...X. After setting up the initial condition as

eq. (2-29), a similar iterative scheme is carried out,

which is shown in example 3.
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2.2.2 Simplification of Linear Time-Invariant System

The same iterative method is applicable even if the

original linear time-invariant system is described by state-

variable equations. The optimization in the control-vector

is equivalent to the optimization in the output-vector be-

cause they both give the same effect to the output. There-

fore, there are two ways of simplification: one way is by

the optimization of the control-vector, and the other is by

the optimization of the output-vector.

1. Single-Variable System

Assume that an nth-order linear time-invariant system

can be written as:

Ax + d u

y
n

= c'x

where A is an n x n matrix

and

c' = [cic2 c2 cn]

d' = [d
1
d2 ... Z

d
n

]

du = 0, t < 0

= d, t 2 0

(2-30)

The eigenvalues of A have negative-real parts in the com-

plex plane and are distinct. The proposed method can be
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used for the system with real eigenvalues and complex eigen-

values.

Suppose it is desired to find a simplified-model of a

reduced order (2. << n) in the form of

xl = Ai Xi Si u
0 0

(2-31)

y = a
z 0 x

where A
0

is an Z x Z matrix

A subscript '0' denotes the simplified-model in the

x-domain

A subscript 'Z' signifies the output of the Zth-

order reduced model.

A. Computational Procedure

The application of a similarity transformation x = PnZ

to the original system, eq. (2-30) results in

Z=AZ+bu
(2-32)

y
n

= h' Z

1 Al 0
where A = P

n
A P

n
=

0 A9

0

2,

X
ri_j

-
b =Pn 1 a= [b1 b2 b2 b

n



hi = ' P
n
= [hh h hl

1 2 n

The solution of eq. (2-32) is,

n n

Yn
- = h

k
+

bk
h eXkt

k=1 k k=1 k
k

To facilitate their later use, let

= m (m = 1,2, ... n)m A
m

3"8

(2-33)

(2-34)

then the solution of eq. (2-32) is rearranged into the form

yn
b %hk + 7 Si h

k
Xkt

k=1 k=1
(2-35)

The 2,th-order reduced model in the ith-step is obtained by

the elimination of the non-dominant eigenvalues and the use

of eq. (2 -34) , then

where

^i i
Z =A Z +ou

i. ,i
y =

hi'
Z

z I- 7
i

A 0 0
-1 ^i

P
2,

A P
2,

= ,,,

0 A
2.

o . .

sit=
1 2

1 [si si
Si]

= [q7E1 A
2,

o
2,

], from eq.
(2-24)

Sii = CiI P = [hi h2h 2

(2-36)

ri



P is an 2 x 2 matrix and is a truncation of the

n x n modal matrix.

The solution of eq. (2-36) is

ii
^i A t

172, -ISi1+110hem
m=1

M M
m=1

M M

39

(2-37)

i) Control-Vector Optimization

Step 1: Initial step (i=0)

Assume that the reduced-order model, eq. (2-36) has

the same dominant eigenvalues as the original system, eq.

(2-32) .

^0 -
A
0

AzdiagIA
1 2

... diagIA/ X2
2

(2-38)

The first residue and output-vector are fixed for all steps.

.2.

7 -i ^i-Lbm h=ai = a for all im 0
m=1

hi = for all i

Step 2: Residue optimization (i=N)

(2-39)

(2-40)

The state-space equations are, setting i=N in eq.

(2-36),and using eq. (2-40),

^N ^JN ^
Z =A Z + bN u

(2-41)
,N ZN
Yz =



where

AN

r

1

N-
0 X2

N -N -N
b = (bi b2 bz]

[t111. IN2 EN2
A b

al s1.2]

The solution of eq. (2-41) is, using eq. (2-40)

N =
Y

-" DmY2 m
N

oN h
m m m

e

m=1 m=1

40

(2-42)

The eigenvalues of the diagonalized model are considered

fixed.

The control-vector, b
-N

is optimized through eq. (3-1).

3,1
s

= 0 (2-43)
-

;(b
N

)

where 0 is the 2, null vector.

Since eq. (2-9) is similar to eq. (2-42), wherein aN in

eq. (2-11) is replaced by SN in eq. (2-43) . The Nth-

step optimum solution is obtained as follows.

] = ;^J2 -1

(2-44)
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Then, eq. (2-13), replacing V by EN IS', that is

ig(1-3N

(2-45)

^
where 4) and rN are given by eq. (2-13).

Eq. (2-44) and (2-45) are effective in the first iterative

step (N=1) and thereafter.

Step 3: Eigenvalue optimization (i=N+1)

The state-space equations in the (N +l)th-step are

expressed as:

where

;,N+1 -N+1 .-N+1
= AN+1 Z +

"N+1 ^1 "N+1
Yz = h Z

^N+1
A

7
XN +l

0 . . .0
1

,N+1
0

A2

0

N+11 -N+1 -N+1 +1
b = [b1 b

2
... b 1

-N+1 -N+1 N+1
bz IEA1 bl 2 AZ

Sy ES1
h2 hz1

The solution of eq. (2-46) is, using eq. (2.40),

(2-46)
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2
Z N+1

-N+1 17N+11,..1 . r -N+1^ Xm t
+ L b h e

172,

. - L
I'm m m m (2-47)

m=1 m=1

The control-vector b
N

is kept constant.

N+1^
The eigenvalues in the A are assumed to be given by

<1\1+1 -N+1 1\1,+11
diag[A

21

N '

= diag[i 11
+1 :L\14.+1/

2. '

(2-48)

To obtain
N+1

, the following differentiation is evaluated.

s

N+1
0 (2-49)

3(AX )

where 0 is the 2 null vector.

The resulting equation is the same as eq. (2-18), replacing

aN by Solving eq. (2 -49) , the optimum :N4-1 are

obtained.

The recursive formulae in the (N+1) th-step are,

-N+1 -N

where SN+11 =
N+1 +1 -N+1

[131 bN2 bz ]

-N' N N
b = [b

1
b
2

..

,N+1 -N+1 = 7-N+1

(2-50)

(2-51)

where q)N
+1

and
N+1

7 are given by eq. (2-18), replacing

EtN, by SN

Eq. (2-50) and (2-51) are used for N+2 and so on.
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Step 4: i=(N+2) th-step

Set N=N+2 and go to step 2.

This procedure is repeated until the objective func-

tion is satisfactorily minimized.

The original x-domain reduced-order model shown by eq.

(2-31) is obtained through the following transformation to

these steps.

^ -
Ao = PzA

i
Pz

1

Ss= P Sit= P (j"
0

0

s, p1

where i=0,1,2, N, N+1, .

(2-52)

The necessary and sufficient conditions for existence of an

optimum are satisfied in each step which is proved the same

as for reducing the transfer function.

ii) Output-Vector Optimization

The output-vector and eigenvalues are optimized

through the objective function, and the control-vector is

kept constant for all steps.

(sin1 = [a
1

n
2

n ]

where i=0,1,2, .

(2-53)



Si = S for all

i i
b = (b

1
b
2

.

/;1 [1;1
b2

i
. b

z
]

1;z]
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(2-54)

Interchanging the roles of the control-vector and output-

vector in the control-vector optimization, similar

equations are obtained to those in case (i)
.

2. Multivariable System

The original nth-order linear time-invariant system

(v-input, w-output) can be written as:

x =Ax+Du
(2-55)

v = H'x

where A is an n xn matrix with real and distinct eigenvalues

D is an n x v matrix

H' is a w x n matrix

It is desired to find an 2th-order simplified model.

The solutions of the exact system and the simpli-

fied- model,fied-model, , are now in a vector form.

v' = ty
n,1

y
n,2

v-n,w

(2-56)

^ii
= '

7i
/Z,1 12,2 22,w'
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The objective function to be minimized is used in eq. (2- 2).

Exactly the same procedure is carried out with the multi-

variable transfer matrix.

3. System with Repeated Eigenvalues

Suppose an nth-order system has k repeated eigenvalues.

It is necessary to reduce the system to Zth-order (Z <<

i 2 k). The original system is transformed into a Jordan

canonical form by x = P Z, and truncating the eigenvalues

of the order greater than Z.

Step 1: Initial step (1=0)

The k-repeated eigenvalues are made slightly different

from each other. Hence the reduced-order model no longer

has repeated eigenvalues. Thus the Zth-order model for

the control-vector optimization is:

Z
s0 ,0

Z
-0 -0

12= A + 10
r r

-0 -0'
yz = h Z

where

(2-57)
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A
r

01

12r

=

=

X
1
4.£

1
0

0 X
2

0
.4-E

0

-0 ^0

r,1
b
r,2

2

k ""k

-0

k+1

^0 -0
br,k br,k+i

0

^0
br,2]

^0

(jr,

°
2 ()r,2 k )1; Cir,k= [(Xl+El)b 1 (X2+E )b

"0 -0 "0-0
X
k+1

b
r,k+1

A
2b r,2

]

X
^0

= X
^0

= = Xk
-0

X (k-repeated eigenvalues)
1 2

-0 -0 -
diag[Ak4/ Ak+2 ... A

0
z] = diag[Xk+1 Ak4.2 ... Az]

hr
0' ^i'
= h

r
= h for all i

n ,
= [R1

" 2]

rs

Assume E.j. (i=0,1,2, ...k)are arbitrarily small constants.

Thereafter the same iterative step for the case of single-

variable system is computed. In the second step the

eigenvalues are fixed, and the control-vector Si are

optimized. In the third step the control vector Si remains

fixed, the eigenvalues are optimized.



CHAPTER III. EXAMPLES OF SIMPLIFICATION
OF SYSTEMS

In this chapter the computational procedure by the

two-step iterative method is illustrated by examples and

compared with other investigations.

Example 1

Consider the problems of reducing a fourth-order

transfer function into a first-order and second-order

models.

s
3

+ 7 s
2
+ 24 s + 24

H
4

s
4
+ 10 s

3
+ 35 s

2
+ 50 s + 24

47

(3-1)

The poles are -1, -2, -3 and -4. The unit-step response

of the original system is;

therefore

-t -2t
+ 2e

-3t
e
-4t

Y4 =1-e e

ao = 1, al = -1, a
2

= -1, a3 = 2, a4 = -1

Ai = -1, A2 = -2, A3 = -3, A4

(i) First-Order Reduced Model

-4

(3-2)

(3-3)

Suppose that the original system is to be approximated

by a first-order model with



i ^i

Y1 a0 al e
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(3-4)

Then the transfer function of the reduced-order model is

given by the form

ai)s - ai i

1

0 1 0
H (s) =

s- A
1

i (3-5)

For given residues and poles in eq. (2-60), the optimum

a
0'

a
1

and A
I
are to be determined through a minimization

of the objective function.

CO

J
s

= f (y4 - yl)
2

dt

0

A. Computational Procedure

Step 1: Initial step (i=0)

(3-6)

-0
Assuming the A

1
has the same value as the original

system,

0
Al = Al

Let (y4 - yi) 0 as t 02, then

(3-7)

a
0

= a
0

for all i (3-8)

The general recursive formulae of the preceeding section

2.2 are applied.



(3-4)

Step 2: Residue optimization (i=N)

The approximating function is, putting i=N in eq.

-N
=

-N

Y1 a0 4. al

49

(3-9)

- ^The AN is kept constant, as the previous step Ai -1. The

-N
is s optimized using eq. (2-13) . Let n=4 and Z=1 in the

general recursive formulae.

-N -N-1
Al = A

1

-N -N
=

4-4N

q) *al

where 11')N

Al

Thus,

F-N
4 aq

q=1 A

(3-10)

(3-11)

a
2

a
3

a_
a =
1 1 ;N-1 -N-1

A- +A
1 Al +A'' Al +3 -1-4-\ I-4/

(3-12)

Eq. (3-10) and (3-12) are used N=1 and so on.

Step 3: Pole optimization (i=N+1)

The solution of the reduced-order model has the form,

setting i=N+1 in eq. (3-4),



N+1
-N+1 -N+1 -N+1 Xi t

Y1 a0 4.

al
+l

50

(3-13)

1\1+1 -1\1 -N+1The a
1

is fixed as the previous step al. The X is
1

determined by using eq. (2-18). The general recursive

formulae are as follows:

-N+1 -N
a = al

1

-N+1
C ik

;,

=N+1 -N+1

-N

where 4)

a
-N+1 1

so that

-N 3
2(A )

4 "N
1\1+1 1

c1:1 0,,L1+x ,2 q,N4.N12
7 =

I

4()3/ a a
2

a
3

a
4

aN

1-N+1 1 1 1n _ + + + +
1 -N N -N -N -N,. -N

A
1
+A

2
A
1
+A

3
A,,A

a 1 V 1 +X 1 4
4( X1)

I

(3-16)

-N +1 ^N+1
+ AA

1

Step 4: i=(N+2) th-step

Set N=N+2, and go to step 2.

(3-17)

To ascertain the existence of an optimum, the sign of the

second derivative of the objective function (i.e., the

sufficient condition for the existence of an extreme) is

checked.



2
9 Js

1

-N 2 ^N
9(a

1
) X

1

"
9
2
J
s

(al)
2

1+1 2 ^N
9(AX ) 2X

1

(3-19)

"N
iSince A

1
is negative, both of these derivatives are posi-

tive-definite when the residue and pole are optimum. Thus

a minimum will then exist.

The computational results are listed in Table 1 and

depicted in Figure 2. The effects of the optimization

procedures for i=1,2,3 are shown in Figure 3. Comparisons

with other methods are shown in Table 2.

(ii) Second-Order Reduced Model

Consider the same original system for a reduction to

a second-order model. The unit-step response of the

original system and the residues and poles are given by eq.

(3-2) and eq. (3-3) respectively. The unit-step resconse

of the reduced-order model is:

i ^i Alt A.)t.y2 . a
0

+ a e + a2 e
1

The transfer function is of the form:

(3-20)

2

"i 0
+a

a2)s -(a'0X10A2+alX2+a2X1)3"0A142
H
2
(s) =

(a

(s .4i1 )(s-))
2

The objective function to be minimized is:

(3-21)
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Table 1. Optimum residues, optimum poles and integral-
square errors versus iterations for first-order
reduced models.

(a0.
- ai iAi

(s)
O. 1 0 1

(s -

Y1 a0 al e '

=
0 0

i

"i Ai
1

41A
1

(Step Responsey
Error dt

0

0 -1.0000 -1.0000 0.0000 0.00357107

1 -1.0667 -1.0000 0.0000 0.00134720

2 -1.0667 -0.9646 0.0354 0.00099558

3 -1.0481 -0.9646 0.0354 0.00081727

4 -1.0481 -0.9489 0.0157 0.00074352

5 -1.0396 -0.9489 0.0157 0.00070593

6 -1.0396 -0.9417 0.0072 0.00069003

7 -1.0357 -0.9417 0.0072 0.00068194

8 -1.0357 -0.9383 0.0033 0.00067847

9 -1.0339 -0.9383 0.0033 0.00067672

10 -1.0339 -0.9368 0.0016 0.00067597

11 -1.0330 -0.9368 0.0016 0.00067559

12 -1.0330 -0.9360 0.0007 0.00067543

13 -0.0326 -0.9360 0.0007 0.00067535

14 -1.0326 -0.9357 0.0003 0.00067531

15 -1.0324 -0.9357 0.0003 0.00067530
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Table 2. Comparison of the Iterative method with other techniques: reduction from a

fourth-order system to first-order models.

.

2
Original system N4(s) =

s 1- is i 4s t 24

+ 10s 358
2

50s t 24

Unit Step Response

Reduced Model

1=5 step
OP5

1-4 step
OP4

1=3 step
(4,3

i =2 step

OP2

N4(lisia)

Second Cauer form
(Weiberg: Shieh)

Y4 1 e e

1 -21
+ 2e

-11
e
-41

/Slap
dtU nit-Step Response Transfer Function Error

1_1.01960-0.94091

1-1.0401e
-0.94091

1-1.0401e-
0.96461

I-1.0667e
-0.96461

1 -3
-0.9231t

1-1 step
1-1.0667e

OP1

i=0 step
1-e

-t

OO

Routh Approximation
(Fulton £ Fiedland)
Third Cauer form
(Shieh L Goldman)

1-e
-0481

-0 0396s10.9409
aid:9415--

-0 0401s10.9409
8'8701110

-0.0401s10.9646
s40.9Z46

-0.0667s+0.9646
810.9646

0.9211.

-0.0661s11
sll

all

0.40

0.00070591

0.00074352

0.00001727

0.00099550

0.00105241

0.00134720

0.00157106

0.15710230
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2
dt (3-22)

A. Computational Procedure

To obtain the residues and poles in the reduced-order

model, set n=4 and Z=2 in eq. (2-7)-(2-18). The results

are summarized as follows:

Step 1: Initial step (i=0)

X =

-0 -
where A = [X

1
X
0

2
]

X' = [X1 X2]

i
= a

-0 0
for all i (3-24)

Step 2: Residue optimization (i=N)

NI- -N
where X = [X

1
A
2

]

A
cN-1' = [1i

-1 N-1
1 2

,N -N
=

AN
1.1)

(3-25)

(3-26)



where
1 2

-N-1
Al

1 2

2 1

-N-1 -N-1 11-1
A
2

+
1 2

-1\1'
= -N

a [al al3

= 2 x

4 a
q

N-1-
q=1 A +X

q

4 a
q

q--;=1

CL

Solving eq. (3-26), aN is obtained.

Step 3: Pole optimization (i=N+1)

a
-N+1 = -N

-N+L' -N+1 -N+1
where a a

2
= [a

1
]

N'- - -
a = [a

1\1

1
a
2

N
]

^N+1 -N+1
= 7

-N+1

where

1\1+1
=

r -N
a
1

2(.)3

-N
4a

1

;,IN 3
(A

2
+A

1
)

-
4a

2

N

kN4N(Al
2

,N

1

2(%2)3

3

57

(3-27)

(3-28)



-N+1! -N+1 -N+1
6,A = (AA". AX

2
]

,N
4 2

r4 a
a__

r1 (A
N N
+A )

2- -
q=1 .+A

q 1
-N+1
7 = -2 x

,sm
4 a 2 a

ry - y

q =1 VA-x
^N - 2

r=1 (X
2
+A

r

N
)q- 2 q

Solving eq. (3-28), N4.1 is obtained.

Thus,

X
-N+1

=
-
X
N

+
-
X
N+1

t

Step 4: i=(N+2)th-step

Set N=N+2 and go to step 2.

58

(3-29)

The sufficient condition for the existence of a minimum

value of the objective function at the optimum point is

investigated.

From 2 =2 in eq. (2-20) and (2-22)

32j

-1\1

3 (a )

2

2
J
s

-N+1 2
9(LIA )

0

0

0

0

N 2
(12)

2)

(3-30)

(3-31)
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Since eq. (3-30) and (3-31) are positive-definite matrices,

the sufficient condition is satisfied.

The computational results by the iterative method are

shown in Table 3 and Figure 4.

As shown in Table 4, Figure 5 and Table 5, the itera-

tive method is superior to other methods of model reduction

of the unit-step response in the transient and steady-state

regions, and the value of the objective function.

Example 2

Consider a multivariable gas-turbine system shown in

eq. (3-32)

F95164.960]
S
2
+
-11133616.13d7 J:1808490.200'1

124082.200 1501230.668is' 2538178.498i
[1.1

4
(s)] =

4 23 _

s +113225s +13.D7.275 s + 3499.750 s +2525

(3-32)

The unit-step response for eq. (3-51) has the form

= 7716.242133 7-749.7558947-e-1.3471t74,17
Z4 ly4,2j 1005.2192071 21223.504697

[23.751881
e
-1.8735t 7b.1192047 -10.0047t

+
204.773557 L0.962824

9.64308f -99.9997t
12.54910Le

(3-33)

Assume that the second-order reduced model can be expressed

as:

Z2

i

a0,1i
X0,2

1

a 1,1 1 e
^t t

a
2,1

e
X2t

i
,a1,2]

a
2 1

(3-34)



Table 3. Optimum residues, optimum poles and integral-square errors for successive
iterative-steps for second-order reduced models of a fourth-order system.

" eft A2t
Y2 4- "i"0 e

+ e
2

, ao =
u0

i
Xi
1 2

Xi
f7Step Response)2dt

a
1 2

o
\\Error

0 -1.0000 -1.0000 -1.0000 -2.0000 0.22024248
1 -1.2000 -1.0000 0.2000 -2.0000 0.00023915
2 -1.2000 -1.0334 0.2000 -2.5641 0.00014024
3 -1.2239 -1.0334 0.2442 -2.5641 0.00007157
4 -1.2239 -1.0393 0.2442 -2.6655 0.00006676
5 -1.2277 -1.0393 0.2516 -2.6655 0.00006502
6 -1.2277 -1.0411 0.2516 -2.6851 0.00006454
7 -1.2294 -1.0411 0.2543 -2.6851 0.00006433
8 -1.2294 -1.0419 0.2543 -2.6845 0.00006410
9 -1.2308 -1.0419 0.2558 -2.6845 0.00006394

10 -1.2308 -1.0424 0.2558 -2.6789 0.00006372
11 -1.2320 -1.0424 0.2571 -2.6789 0.00006356
12 -1.2320 -1.0429 0.2571 -2.6721 0.00006334
13 -1.2332 -1.0429 0.2583 -2.6721 0.00006318
14 -1.2332 -1.0433 0.2583 -2.6652 0.00006297
15 -1.2344 -1.0433 0.2594 -2.6652 0.00006281
16 -1.2344 -1.0437 0.2594 -2.6584 0.00006261
17 -1.2355 -1.0437 0.2605 -2.6584 0.00006245
18 -1.2355 -1.0441 0.2605 -2.6517 0.00006225
19 -1.2367 -1.0441 0.2616 -2.'6517 0.00006211
20 -1.2367 -1.0446 0.2616 -2.6451 0.00006191
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Table 4. Comparison of the iterative method with various second-order reduced models of
a fourth-order system.

Original System: H
4
(s)

Unit-step Response: Y4

Reduced Model Unit-Step Response

i=5 step
OPS

i=4 step
OP4

i=3 step
OP3

Second Cauer form
(Weiberg; Shieh)

N
3

(Hsia)

i=2 step
OP2

1-1.2277e
-1 0393t

+0.2516e
-26655t

1- 1..2239e-
1.0393t

39e
.

+0.2442e
-2.6655t

1-1.2239e-
1.0334t

+0.2442e-
2.5641t

1-1.2309e
-1 0435t

+0.2309e
-2 39941

1-1.2292e
-1.0429t

+0.2292e
-2.4032t

1-1.2e
-1.0334t

+0.2e
-2.5641t

s
3
+ 7s

2
+ 24s + 24

=

s
4

+ lOs
3

+ 35s
2
+ 50s + 24

= 1 e
-t

e
-2t

+ 2e
-3t

e
-4t

Transfer Function

00

r (Step Response)2dt
J Error
0

0.0239s
2
+0.69395 +2.7703

s
2
+3.7048s+2.7703

0.0203s
2
+0.6963s+2.7703

s
2
+3.7048s+2.7703

0.0203s
2
+0.7117s+2.6497

s
2
+3.5975s+2.6497

0.7305s+2.5038
2

s +3.4429s+2.5037

0.73115 +2.5063

s
2
f3.44615+2.5063

0.7273s+2.6497

s
2
+3.5975s+2.6497

0.00006502

0.00006676

0.00007157

0.00012404

0.00012495

0.00014024



Table 4 (continued)

Reduced Model Unit-Step Response Transfer Function

00

((SteError

p

0

1=1 step
OP1

N2(11sia)

Mixed Method
(Shieh & Wei)

(Usia)

Routh Approxima-
tion (Futton &
Friedland)

1-1.2e
-t

0.8s+2

1

+0.2e
-2t

s
2
+3s+2

-t
+ e

1 -2t

1 1.0972e
-t

+0.0278e
-2t

1 e
0.7947(s+1)

xt0.5041 cos (0.3307t)
0.1 sin (0.3307t)1 s

2
+1.6557s+0.7947

-0.8279t

0.8333s+2

s
2
+3s+2

-0.0694s
2
+0.8333s+2

s
2
+3s+2

D
n

(Davison) 1
11 -t 1 -2t 1.0833s+2
12 e 12 e

s
2
+3s+2

5 -t 1 -2t 0.4833s+2
C
2

(Chidambara) 1 = 6 e 6 e

s
2
+3s+2

Third Cauer form 1-0.8843e
-0.4289t

s +2.3014

(Shieh & Goldman)
-0.1157e

-5.3657t
s
2
+5.7946s+2.3014

i=0 step OPO
Cl(Chidambra)
Dm (Davison)

1 e
-t

e
-2t -s

2
+2

s
2
+3s+2

0.00023915

0.00033127

0.00113126

0.00114932

0.00792561

0.01144288

0.15485461

0.22024248
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Table 5. Numerical representations of unit-step responses
according to various methods of reduction of a
fourth-order system into second-order models.

Time
(seconds) Exact

i=1 step
OP1

i=2 step
OP2

i=3 step
OP 3

0.0 0.000000 0.000000 0.000000 0.020359

1.0 0.578044 0.585612 0.588448 0.583363

2.0 0.850971 0.841261 0.849280 0.846522

3.0 0.947975 0.940751 0.946045 0.944990

4.0 0.981361 0.978088 0.980778 0.980397

5.0 0.993273 0.991924 0.993159 0.993023

6.0 0.997515 0.997027 0.997566 0.997517

Time Second Cauer
(seconds) Forml/

D
n

(Davison)

C2

(Chidambra)

C
1
(Chidambra)

Dm(Davison)

0.0 0.000000 0.000000 0.000000 -1.000000

1.0 0.587412 0.631491 0.670886 0.496785

2.0 0.849199 0.874412 0.884172 0.846349

3.0 0.946487 0.954154 0.958099 0.947734

4.0 0.981071 0.983182 0.984682 0.981349

5.0 0.993329 0.993820 0.994378 0.993217

6.0 0.997650 0.997727 0.997933 0.997515

1 /
Weiberg; Shieh
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The objective function is;

co

2

+

2

Y4,1 Y2i) ,1Y4M {( Q( ,2 Yi2,2) ldt (3-35)

where Q is the weighting constant.

The results for Q=1 are shown together with the re-

sults of the second-matrix Cauer form expansion by Chen

[18] in Table 6. The integral-square error is bigger than

other examples, but error percentage (i.e., the error is

normalized by the initial residues) is small.

Example 3

Next it is investigated how well a third-order system

with double poles is approximated by a second-order model.

The original system is

H
3
(s)

(s+1) (s+3)

The unit-step response of the original system is

5 5 -t 5 -ty3 = 7 -Te - -fte
12

- e
-3t

5 5 5 5

a0
-

0 3' -T' a2 -7, a3 -If

Al = A
2

= -1, A
3
= -3

(3-36)

(3-37)

(3-38)

In the initial step, the repeated poles in the original

system are transformed into two single poles which are



Table 6. Simplification of a fourth-order gas-turbine system to second-order models.

716.242123 -749.755894 23.751488
-1.8735t[0.119204]

9.643081-
-99.9997tExact e +

-1.3471t
+

-10.0047t
+

1005.219207 -1223.504697 204.773557 0.962824 12.549109

Model Unit-Step Response

00

O(Step Response)2
Error

0

OP1

OP2

OP3

Second-matrix

Caner form

expansion

716.242123

1005.219207[ _1

716.242123

1005.219207

716.242123

1005.219207

716.236153

1005.211092

+

-751.385095

-1226.427730

-751.284095

-1226.427730

-752.351699

-1226.410759

-705.416131

-1224.439730

e-1.3471t+

e-1.34771

e-1.3477t

e-1.3118t

26.039264

08.93964

-1.8735t
e27

26.039264

208.939647

e-1.8806t

27.04369

e
-1.8806t

[209.03580j

-10.82002

e
-1.6062t

239.228637

7.932244

7.909576

7.808392

70.549237
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slightly different from each other, and they are chosen as

the dominant poles. Therefore, the reduced-order model has

no repeated poles and has a form of

^i ^i 2 i,i ii i,i
i (a + a + a ) s (a X + aX + aX)s +

0 1 2
H
2
(s) =

1 2 O 1 0 2 2 10

(s X1) (s
2)

The unit-step response of the reduced-order model is

i
t^-1

2 a0

^i

a1

;kl

edit + a e
X2

2

The objective function is

00

Jr = (y3 - Y1)2 dt

0

A. Computational Procedure

(3-39)

(3-40)

(3-41)

The poles and residues in the reduced-order model are

obtained as follows.

Step 1: Initial step (1=0)

Here, let

;0 ,

Al Al "r -1

0
X
2

= X
1

+ e
2

1
=

-2

where E is an arbitrarily small number.

(3-42)

(3-43)



= for all i

Step 2: Residue optimization (i=N)

69

(3-44)

The poles are kept constant at the previous step.
9,7

r -N
Solving 0, a is obtained.

9(
-N

)

-
AN X

N-1
=

where
AN = ;NJ

'Al A2

where

-N-1' ,;,1\1-1 -N-1
= [Al A2 ]

N -N A N
. a = t

1 2

N-1
Al

A1 2

2 1

-N-1 -N-1 -N-1
X
2

+A
1

A
2

-N' N N
a = a I

N
F = 2 x

Z

1

-1

a
2q+1

a
2

-N
q=0 A

1
+X

2q+1
(A

1
+A

1
)

2

1 a
2a+1

a
2

-N-1 2
(

2
+A

2
)q=0 X

2

N-1
+X

2q+1

(3-45)

(3-46)



Step 3: Pole optimization (i=N+1)

The residues are kept constant.

r -
Calculating

aJ

= 0, AX
N+1

is obtained.
\1+1

(AX )

-N+1 -N
a =

-+11 -N+1 -N+1
where a = (a

1
4
2

I

- - -
a
N'

= [a
N

1
a
2

N

,1N+1.0'N+1 ^N+1
(1) L1A = 7

where

^N+1

-N -N
al 4

2

-N
2 ( 3 (A

1
+X

2
)

3

4a
1

a
2

-N -N 3 - 3
(X2 +X ) 2(X 2N )

= LLA AX
2

]

,N+1
7 = -2 x

70

(3-47)

(3-48)

a
2q+1

2

N

1

a
N

2a
2

q=0 (X
N

X
2q+1

)

2
r=1 (A +Al)

2
cA 1 +X

1

1 a2
C1+

2 a
r

2a
2

-m 2 NT 2 -N

1

3
q=0 (X-2 +X ) r=1 ( X

r
) (X

2
+X )

2q +1

N+1 -N -N+1
X = X + AX (3-49)
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Step 4: i=(N+2) th-step

Set N=N+2 and go to step 2.

These steps satisfy the sufficient condition for the exis-

tence of a minimum in the objective function at the optimum

point.

The numerical solutions for E = 0.01 and E = 0.001 are

listed in Tables 7 and 8, and represented by Figures 6 and

7.

This procedure can be applied for the system with re-

peated poles of any order. The other time-domain techniques

are difficult to apply to the system with repeated poles as

mentioned in section 1.3(v) in Chapter I.

The continued-fraction-expansion method can be used.

For a comparison, the second Cauer form expansion by Chen

[18] is shown.

H (s) =
5 5

3 2
(s+1) (s+3) 3 + 7s + 5s

2
s

3

1

1

f 4. 5 1

7s 49 1

25
+

125 1

126s .

(3-50)

(3-51)

The truncation of the coefficients of orders greater than

four leads to a second-order reduced model.



Table 7. Reduction of a third-order system with double poles into second-order models
by the two-step iterative method, for E = 0.01.

'Si ^i Ilt
+ e

-0
X
1

= X
1

+
-0
X2 = Al

Y2 "0 ul c 2

E = 0.01

a
1

X
1 2

X
2

r Step Response 2dt

./()(Error JJ

0 -1.250000 -0.990000 -2.50000 -1.010000 1.201421961000
1 -115.348411 -0.990000 113.785815 -1.010000 0.001810667500
2 -115.348411 -0.960420 113.785815 -0.979100 0.000918579497
3 -113.778780 -0.960420 112.182931 -0.979100 0.000630503496
4 -113.778780 -0.951155 112.182931 -0.969428 0.000544522859
5 -113.247361 -0.951155 111.641029 -0.969428 0.000515576228
6 -113.247361 -0.948278 111.641029 -0.966425 0.000507270598
7 -113.078418 -0.948278 111.468825 -0.966425 0.000504396559
8 -113.078418 -0.947388 111.468825 -0.965496 0.000503578500
9 -113.025804 -0.947388 111.415201 -0.965496 0.000503282391

10 -113.025804 -0.947113 111.415201 -0.965209 0.000503196359
11 -113.009550 -0.947113 111.398636 -0.965209 0.000503161881
12 -113.009550 -0.947028 111.398636 -0.965121 0.000503151964
13 -113.004568 -0.947028 111.393557 -0.965121 0.000503146744
14 -113.004568 -0.947002 111.393557 -0.965093 0.000503144484
15 -113.003071 -0.947002 111.392031 -0.965093 0.000503143400
16 -113.003071 -0.946994 111.392031 -0.965085 0.000503142587
17 -113.002651 -0.946994 111.391602 -0.965085 0.000503142301
18 -113.002651 -0.946991 111.391602 -0.965082 0.000503142238
19 -113.002564 -0.946991 111.391511 -0.965082 0.000503142136
20 -113.002564 -0.946990 111.391511 -0.965081 0.000503142150



Table 8. Second-order reduced models for El = 0.001.

L = 0.001

xi
i

xi
Step Respons92

dt
1 2

0

a
1

a
2 (Error

0 -1.250000 -0.999000 -2.500000 -1.001000 1.200919034200
1 -1146.612888 -0.999000 1145.050387 -1.001000 0.001816373421
2 -1146.612888 -0.968764 1145.050387 -0.970631 0.000921336958
3 -1130.731887 -0.968764 1129.136055 -0.970631 0.000630703304
4 -1130.731887 -0.959294 1129.136055 -0.961121 0.000544075909
5 -1125.356617 -0.959294 1123.750277 -0.961121 0.000514997475
6 -1125.356617 -0.956354 1123.750277 -0.958169 0.000506807917
7 -1123.647512 -0.956354 1121.037803 -0.958169 0.000503930098
8 -1123.647412 -0.955445 1121.037803 -0.957255 0.000503003594
9 -1123.114658 -0.955445 1121.504036 -0.957255 0.000502705051

10 -1123.114658 -0.955164 1121.504036 -0.956973 0.000502572221
11 -1122.949630 -0.955164 1121.338696 -0.956973 0.000502537734
12 -1122.949630 -0.955077 1121.338696 -0.956886 0.000502519119
13 -1122.898618 -0.955077 1121.287588 -0.956886 0.000502513818
14 -1122.898618 -0.955050 1121.287588 -0.956859 0.000502529800
15 -1122.882870 -0.955050 1121.271809 -0.956859 0.000502528847
16 -1122.882870 -0.955042 1121.271809 -0.956850 0.000502673900
17 -1122.878019 -0.955042 1121.266950 -0.956850 0.000502674148
18 -1122.878019 -0.955039 1121.266950 -0.956848 0.000502537861
19 -1122.876526 -0.955039 1121.265453 -0.956848 0.000502537970
20 -1122.876526 -0.9550038 1121.265453 -0.956847 0.000502538919
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Figure 7. inteqral-square errors, optimum residues and
optimum poles versus iterations for second-
order reduced mod=ls cf
with double poles (for = 0.001).



H2(s)
-0.2778s + 1.3888

s
2
+ 1.7778s + 0.8333

The unit-step response is of the form

76

(3-52)

y2 = 1.6667 - 1.2000 e
-0.8889t

[0.2887 cos (0.2079t)

+ 1.4660 sin (0.2079t)] (3.53)

The integral-square error is

J
r
= 2.71445781 (3-54)

As can be seen in Tables 7 and 8, the iterative method is

superior.

Example 4

Reduce a fourth-order linear time-invariant system to

a second-order model. The original system in this example

has the same output as in example 1(ii).

x =Ax+du
(3-55)

Y4

where -1 -1 6 -2

A =
0 -2 2 0

d =

0 0 -3 1 0

0 0 0 -4 1

ci [ 1 1 0 0]



By using the modal matrix P4

P
4

-1 1 -4 3

0 1 -2 1

0 0 1 -1

0 0 0 1

(x = P4

P-1 =
4

Z),

1

0

0

-1

1

0

2

2

1

0

1

L0 o

77

(3-56)

the original system transforms into a purely diagonal form.

=AZ+bu

h'z

where Fli 0

0 -2
-1

A = P A P4 =
0 0

L0 0

h/ = c'p
4

= 1 2

0

0

-3

0

-6

0

0

0

-4_j

4]

b
-

'0

1d

-
=

(3-57)

17

1

1

1

The unit-step response of eq. (3-57) is;

y 4
1 - e- - e

-2t
+ 2e

-3t
- e

-4t

a
0

= 1, a
1
= -1, a

2
= -1 a

3
= 2, a4 = -1

Al = -1, X
2

= -2, A
3

-3, A4 -4

(3-58)

(3-59)

The second-order reduced model in the ith-step is obtained

by the elimination of the non-dominant eigenvalues, then

using eq. (2-34)



Z1Z = A Z + b u

cir

Y2 n

Zi

0
1

,i -1 i
where A = P2 P

0

i-
b
1

X
1
b
1

= P-1
2 i

b
2

A
2
b
2

,v
h = c P =

2 1 "21

P
2

is a 2x2 matrix and is truncated the modal

matrix P
4'

4x4.

The solution of eq. (3-60) is

^i
=

^i -i^i ;,1t Elly2 - + bihi e + b e
2' 2

78

(3-60)

(3-61)

With the control-vector optimization method discussed in

section 2.22(i), the control-vector Si and eigenvalues

are optimized so as to minimize the objective function.

Js= f (y4 Yi2)2 dt

0

A. Computational Procedure

(3-62)

Following section 2.22(i), the optimum control-vector

and eigenvalues are obtained as follows.
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Step 1: Initial step (i=0)

Assuming that the reduced-order model, eq. (3-60) con-

sists of the dominant eigenvalues of the original system,

eq. (3-55)

-
o

A

0

0

A
2

O
0

0

X
2

-1

0

0

-2

(3-63)

The first residue and output-vector are kept constant for

all steps.

0
= 1 for all i

= S' = [1 2] for all i

(3-64)

(3-65)

By substitution of eq. (3-63) and (3-64) into eq. (3-61)

the output of reduced-order model is, using bl = -1, and

S
2
= -2, the truncation of b vector, 4x1 into b, 2x1.

- e
-t

- e
-2t

Y2 1

The state-space equation in the Z-domain is

i2' +
(-1) (-1)

lu

0 -2J (-2) (0.5)1

y2= 1
2]t0

(3-66)

(3-67)



Step 2: Control-vector optimization (i=N)

The solution is, setting i=N in eq. (3-61) and sub-

stituting eq. (3-64) and (3-65) into eq. (3-61) ,

C72

',1\1

Alt - A2t=l+be +
b2

e
1

-
The eigenvalues are kept constant. To find b

N
, solve

s
, = 0. The resulting equation is the replacement of

;(S")

&N by S- at in eq. (2-13) .

80

(3-68)

UN
N.a = AN

(3-69)

The solutions of eq. (3-69), a2 are shown in Table
1

3.

[&N &N] [EN fis

1
b
2

N
h
2

]

1 2 1

rcN
2b

2
]LQ1

Thus, the recursive formulae in this step are

1---x -N-1-N
0 X"

7
0

1
=

1

,.NiI

0
-N-1
X2

2_1 _

From eq. (3-71)

-N "N -N 1 -N
b
1

= al
, b2

a
2 2 2

The state -space equations are using eq. (3-71)

(3-70)

(3-71)

(3-72)



and

31

-N-1

N-1
0

2

N
Z +

(3-73)

-N

Y2 [1

-
2] Z

N

Step 3: Eigenvalue optimization (i=N+1)

The solution of eq. (2-41) is, set i=N+1 in eq. (3-61)

+1
Y

- +1
t^ -N -N

2
= 1 + b e

Ai t
+ 2b

2
e
A2

N+1 ^ ,

A =
N

LAN4.

(3-74)

(3-75)

1\1+1
The control-vector is kept constant.

-
is obtained by

3J

solving
N+1

= 0. Replacing iN in eq. (2-18) with(zI)
SNI, the simultaneous equations are obtained.

The recursive formulae are as follows:

EN+1 = 0

where EN4-11 = (b
+1

b
2

-N1
]

1

sNi
b
N'

= [13

N

1 2'

1\1+1
.

-N+1 = 7-N+1A

(3-76)

(3-77)

N+1 -N+1 N
where and 7 are given by eq. (2-18) and replace a

,N+1 c,N+1
by b n . Ai and A

2
are listed in Table 3.



The state-space equations are:

AN+1

^1\1+1 1'1+1
0

2

-N+1

Y2 [1

-
23 Z

N+1

where A
-N+1

=
;N -N+1

.

82

(3-78)

The original x-domain reduced-order model is obtained by

the transformation, eq. (2-52) with Z=2. As an example,

the first two steps are summarized.

i=lst-step: Control-vector optimization

From the initial step (i=0)

=

;0 n

Al
0

=
1

Al

-0
0 X2 0

2j

-1 0

0 -2,

"1 1
Solving eq. (3-69), al and a2 are obtained.

1
al = -1.2, = 0 2

2

(3-79)

(3-80)

Using eq. (3 -79) , (3 -80) , and (3 -72) , the eigenvalues are

fixed and the control-vector is optimized.

al r'0 7

?.1 I 1

,s0 =
0 0 A2

2

- -1
bi
1

= al = -1.2,
- -
b
2

1 1
a
1

=
2
= 0.1

(3-81)

(3-82)



So that,

"1 -1 -1 -1
uZ =A Z +b

1
fit
11

- -

0
X
1

0

where Al
1

= P2
1
A P2 =

P2
2

c,p2

0
2

=

70-17
X
1
b
1

-0-1
X
2

[1 2] E fif

7
-1 0

0 -2

(-1) (-1.2)1 r 1.2
=

(-2).( 0.1) L.70.2

for all i

P
2

is a truncation of the modal matrix 1')
-4

P

1.-

2
0 1 ,

-1 11
-1-1

P 2
10 1_,

The unit-step response of eq. (3-83) is

83

(3-83)

(3-84)

= 1 - 1.2 e
-t

+ 0.2 e
-2t

(3-85)

The original x-domain reduced-order model is obtained by

inverse transformation.

xl ^1 -1x =A +ou
0 - 0

-1 -1

Y2 LO

-1 Al -1
=where A = P2 A P2

0

L 2_1

(3-86)



b
1^1 ^1

b =P b =P0 2 2 -0-2
X
2 2

-0.2

84

1^111

=
-
h
1'

P
2

-1
= [1 1]

0

^1
iThe output y2 is not affected by the transformation.

i=2nd-step: Eigenvalue optimization

The control-vector S2 is fixed. The eigenvalues are

;Js
optimized using eq. (2-18). Solving eq. (2-18), ,1 0,

D(AX')
,

2
replacing by 52 a., AA2 and A2 are obtained.

1

2
= -0.0334,

2

2
= -0.5641

From the previous step

- 1 - 0

Al Al -1, A
2

= X
2

= -2

and the relationship,

T7;2

Al

0

^N+1 .1q+1
X = A + A

tai + A2
1

0

0

^1 2
X
2

+

.
(-1. 0

0 -2.5641i_

(3-86)

(3-88)

(3-89)

(3-90)



-1-
where

-
b
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where
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Y2 n

^2

^2
Al 0

b

0
2

2

2 1 1

^2-b 2

L 2 2_

f
b
1

1

2

1.2

-0.1

7
-1.0334 0

0 -2.5641J

^2 1'
(Al + L1A

1
).1D

1

(X
2

AX
2
)*b

2

^1 ^2 -1

( -1 - 0.0334)(1.2) 7-1.2400

(-2 - 0.5641)(0.1)

h2 = h = [1 2]

-0.2564

The unit-step response of eq. (3-91) is

2
y2 = 1 - 1.2 e

-1.0334t
+ 0.2 e

-2 5651t

The reduced-order model in the x-domain is:

A2

O

2

"

-2 =
(1,2"x 2

2 0

where
2 2 -1

F11.0334
- ^
A
0
= P2 A P2 =

0

-1.53017

-2.5641
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(3-91)

(3-92)

(3-93)
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2 ^2
b = P b =
0 2

0.9836

-0.2564

2' ^2' 1
h = h P

2
= [1 1]

0

The state-space equations of the succeeding steps are

obtained similarly.
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CHAPTER IV. CONCLUSIONS

As discussed in the preceeding chapter, the proposed

method is superior to other methods in the sense of the

integral-square error as shown in Table 2.

Since the poles (or eigenvalues) are shifted slightly,

the reduced-order model is stable if the original system

is stable.

For the case of system with complex poles (or eigen-

values), both real parts and imaginary parts of residues

and poles (or eigenvalues) are optimized respectively at

each step.

The method can be easily extended to the reduction of

other types of the large linear system, for example, a

discrete-time system, an unknown original system and so

on.

The other characters of the proposed method are as

follows:

1) In each iterative step, there exists a minimum of the

objective function. The necessary and sufficient

conditions for existence of an optimum are satisfied

in each step.

2) The iterative scheme improves the steadystate and

transient responses cyclically as depicted in Figure

2, so that the method gives a good approximation

for both responses.
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3) A satisfactorily reduced-order model is attained after

few iterative steps.

4) The proposed method is also effective to the multi-

variable system. As shown in Table 6, the method is

superior to the matrix continued-fraction-expansion

method.

5) As shown in Tables 7 and 8, and Figures 6 and 7, the

method can be applied for the system with repeated

poles (or eigenvalues) by making the repeated poles

(or eigenvalues) slightly different in the reduced-

order system. This is found in comparison to the re-

sult obtained by the second Cauer form expansion method

shown in (3-54) with the results of Tables 7 and 8.

6) The residues and poles (or eigenvalues) converge

monotonically with the iterative steps.

7) As shown in Tables 1, 3, 7, and 8, the integral-square

error decreases monotonically as the number of the

iterative steps increase.

8) The integral-square error consists of the difference

between the exact and approximate solutions. These

solutions have in the form of exponential function.

The difference of the exponential functions does not

converge into a constant. Therefore the integral-

square error converges into a very small value after

a large number of iterations, thereafter it fluctuates

around this value. The approximate-model at this step
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might be the best approximation of the original system

in the two-step iterative method. This is the limita-

tion of the proposed method.

The fluctuation is found in Tables 7 and 8 for the

reduction of a third-order system with double poles

into a second-order model. As shown in Table 7, for

= 0.01, the integral-square error decreases mono-

tonically until the 19th iteration. However, after

the 19th iterative step, the error fluctuates around

J
r
= 0.0005031421

This is found from Table 7:

Number of Integral-square
Iteration Error

(i) (J
r

)

(4-1)

18 0.000503142238

19 0.000503142136 (4-2)

20 0.000503142150

The approximate-model around the 19th-step will give

the best approximation of the original system.

For E. = 0.001 in Table 8, the error fluctuates

around

J
r
= 0.0005025

After the 15th iteration.

(4-3)
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While the residues and poles still converge montoni-

cally.

The similar fluctuation occurs to the reduction of

the other high-order systems.
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