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Abstract

In this paper we show that significant simplicity can be exploited for pricing-based control of large net-

works. We first consider a general loss network with Poisson arrivals and arbitrary holding time distributions.

In dynamic pricing schemes, the network provider can charge different prices to the user according to the

current utilization level of the network and also other factors. We show that, when the system becomes large,

the performance (in terms of expected revenue) of an appropriately chosen static pricing scheme, whose price

is independent of the current network utilization, will approach that of the optimal dynamic pricing scheme.

Further, we show that under certain conditions, this static price is independent of the route that the flows take.

This indicates that we can use the static scheme, which has a much simpler structure than the optimal dynamic

scheme, to control large communication networks. We then extend the result to the case of dynamic routing,

and show that the performance of an appropriately chosen static pricing scheme with bifurcation probability

determined by average parameters can also approach that of the optimal dynamic routing scheme when the

system is large. Finally, we study the control of elastic flows and show that there exist schemes with static

parameters whose performance can approach that of the optimal dynamic resource allocation scheme (in the

large system limit). We also identify the applications of our results for QoS routing and rate control for

real-time streaming.

1 Introduction

In this work, we use pricing as the mechanism of controlling a network to achieve certain performance objec-

tives. The performance objectives can be modeled by some revenue- or utility-functions. Such a framework has

received significant interest in the literature (e.g., see [1, 2, 3, 4, 5] and the references therein) wherein price
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provides a good control signal because it carries monetary incentives. The network can use the current price of a

resource as a feedback signal to coerce the users into modifying their actions (e.g., changing the rate or route).

In [6], Paschalidis and Tsitsiklis have shown that the performance (in terms of expected revenue or welfare)

of an appropriately chosen static pricing scheme approaches the performance of the optimal dynamic pricing

schemes when the number of users and network capacity becomes very large. Note that a dynamic pricing

scheme, is one where the network provider can charge different prices to the user according to the varying levels

of congestion in the network, while a static pricing scheme is one where the price only depends on the average

levels of congestion in the network (and is hence invariant to the instantaneous levels of congestion). The result

is obtained under the assumption of Poisson flow arrivals, exponential flow holding times, and a single resource

(single node). This elegant result is an example of the type of simplicity that one can obtain when the system

becomes large. In this paper, we find that simple static network control can also approach the optimal dynamic

network control under more general assumptions and a variety of other network problems.

For simplicity of exposition, we structure the paper as follows:

We first extend the result of [6] to a general loss network with arbitrary holding time distributions. Note that

while the assumption of Poisson arrivals for flows in the network is usually considered reasonable, the assump-

tion of exponential holding time distribution is not. For example, much of the traffic generated on the Internet

is expected to occur from large file transfers which do not conform to exponential modeling. By weakening

the exponential service time assumption we can extend our results to more realistic systems. We show that a

static pricing scheme is still asymptotically optimal, and that the correct static price depends on the service time

distribution only through its mean. A nice observation that stems from this result is that under certain conditions,

the static price depends only on the price elasticity of the user, and not on the specific route or distance. This

indicates, for example, that the flat pricing scheme used in the domestic long distance telephone service in the

US may be a sufficiently good pricing mechanism.

We then investigate whether more sophisticated schemes can improve network performance (e.g., schemes that

have prior knowledge of the duration of individual flows, schemes that predict the future congestion levels, etc.).

We find that the performance gains using such schemes become increasingly marginal as the system size grows.

We then weaken the assumptions of fixed routing and fixed bandwidth flows. In our dynamic routing model,

flows can choose among several alternative routes based on the current network congestion level. In our elastic

flow model, users are allowed to modify their rates when facing different prices, similar to the way in which TCP

and some elastic multimedia traffic react to changing network conditions. In these more general models, when

the system is large, we show that the invariance result still holds, i.e., there still exists a static pricing scheme

whose performance can approach that of the optimal dynamic scheme.
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In networks of today and in the future, the capacity will be very large, and the network will be able to support

a large number of users. The work reported in this paper demonstrates under general assumptions and different

network problem settings that, when a network is large, significant simplicity can be exploited for pricing based

network control. Our result also shows the importance of average information when the system is large, since

the parameters of the static schemes are determined by average conditions rather than instantaneous conditions.

These results will help us develop more efficient and realistic algorithms for controlling large networks. We have

identified the applications of our results in QoS routing and rate control for real-time streaming.

Our work also has similarities to the work in [7, 8], and the reference therein. However, in their work, the

price is fixed, and the focus is on how to admit and route each flow. Our work (as well as [6]) explicitly models

the users’ price-elasticity, and consider the optimality of the pricing schemes. Our model of elastic flows is also

similar to the optimization flow control model in [3, 9, 4, 5]. However, their models assume that the number of

users in the system is fixed. Hence their optimization is done for a snapshot in time, while we explicitly consider

the dynamics of the network by taking into account the flow arrivals and departures.

2 Pricing in a General Multi-class Loss Network

2.1 Model

The basic model that we consider in this section is that of a multi-class loss network with Poisson arrivals and

arbitrary service time distributions. There are L links in the network. Each link l ∈ {1, ..., L} has capacity Rl.

There are I classes of users. We assume that flows generated by users from each class have a fixed route through

the network. The routes are characterized by a matrix {C l
i , i = 1, ..., I, l = 1, ..., L}, where C l

i = 1 if the route

of class i traverses link l, C l
i = 0 otherwise. Let ~n = {n1, n2, ..., nI} denote the state of the system, where ni

is the number of flows of class i currently in the network. We assume that each flow of class i requires a fixed

amount of bandwidth ri. The fixed routing and fixed bandwidth assumption will be weakened in Sections 3 and 4,

respectively.

Flows of class i arrive to the network according to a Poisson process with rate λi(ui). The rate λi(ui) is a

function of the price ui charged to users of class i. Here ui is defined as the price per unit time of connection. We

assume that λi(ui) is a non-increasing function of ui. Therefore λi(ui) represents the price-elasticity of class i.

We also assume that for each class i, there is a “maximal price” umax,i such that λi(ui) = 0 when ui ≥ umax,i.

Therefore by setting a high enough price ui the network can prevent users of class i from entering the network.

Once admitted, a flow of class i will hold ri amount of resource in the network and pay a cost of ui per unit time,

until it completes service, where ui is the price set by the network at the time of the flow arrival. The service
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times are i.i.d. with mean 1/µi. The service time distribution is general.

The bandwidth requirement determines the set of feasible states Ω = {~n :
∑

i niriC
l
i ≤ Rl ∀l}. A flow

will be blocked if the system becomes infeasible after accommodating it. Other than this feasibility constraint,

the network provider can charge a different price to each flow, and by doing so, the network provider strives to

maximize the revenue collected from the users. The way price is determined can range from the simplest static

pricing schemes to more complicated dynamic pricing schemes. In a dynamic pricing scheme, the price at time

t can depend on many factors at the moment t, such as the current congestion level of the network, etc. On the

other hand, in a static pricing scheme, the price is fixed over all time t, and does not depend on these factors.

Intuitively, the more factors a pricing scheme can be based on, the more information it can exploit, and hence the

higher the performance (i.e., revenue) it can achieve.

The dynamic pricing scheme we study in this section is more sophisticated than the one in [6]. Firstly, we

allow the network provider to exploit the knowledge of the immediate past history of states up to length d. Note

that when the exponential holding time assumption is removed, the system is no longer Markovian. There will

typically be correlations between the past and the future given the current state. In order to achieve a higher

revenue, we can potentially take advantage of this correlation, i.e., we can use the past to predict the future, and

use such prediction to determine the price.

Secondly we allow the network provider to exploit prior knowledge of the parameters of the incoming flows.

In particular, the network knows the holding time of the incoming flows, and can charge a different price accord-

ingly. In order to achieve higher revenue, the network can thus use pricing to control the composition of flows

entering the network, for example, short flows may be favored under certain network conditions, while long flows

are favored under others. We assume that the price-elasticity of flows is independent of these parameters.

For convenience of exposition, we restrict ourselves to the case when the range of the service time can be

partitioned into a series of disjoint segments, and the price is the same for flows that are from the same class and

whose service times fall into the same segment. In particular, let {ak}, k = 1, 2, ... be an increasing series of

positive numbers, i.e., 0 < a1 < a2 < ... and let a0 = 0. We assume that at any time t, for all flows of class i

whose service times Ti fall into segment [ak−1, ak), we charge the same price uik(t), i.e. we do not care about

the exact value of Ti as long as Ti ∈ [ak−1, ak).

The dynamic pricing scheme can thus be written as ui(t, Ti) = uik(t) = gik(~n(s), s ∈ [t − d, t]), for Ti ∈
[ak−1, ak), where ~n(s), s ∈ [t− d, t] reflects the immediate past history of length d, Ti is the holding time of the

incoming flow of class i, and gik are functions from Ω
[−d,0] to the set of real numbers R. By incorporating the

past history in the functions gik, we can study the effect of prediction on the performance of the dynamic pricing

scheme without specifying the details of how to predict. Let ~g = {gik, i = 1, ..., I, k = 1, 2, ...}.
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The system under such a dynamic pricing scheme can be shown to be stationary and ergodic under very general

conditions. For example, when the arrival rates λi(u) are bounded above by some constant λ0, one can construct

a so-called “regenerative event” (due to the Poisson nature of the arrivals), which is the event that the system is

empty in the time interval [t−d, t]. One can show that such an event is a stationary event and occurs with positive

probability. This ensures that any stochastic process that is only a function of the system state is asymptotically

stationary and the stationary version is ergodic. See Appendix for the details.

We are now ready to define the performance objective function. For each class i, let T̃ik = E {Ti|Ti ∈ [ak−1, ak)}
be the mean service time for flows of class i whose service time Ti falls into segment [ak−1, ak). The expectation

is taken with respect to the service time distribution of class i. Let pik = P{Ti ∈ [ak−1, ak)} be the probability

that the service time Ti of an incoming flow of class i falls into segment [ak−1, ak). We can decompose the origi-

nal arrivals of each class into a spectrum of substreams. Substream k of class i has service time in [ak−1, ak). Its

arrival is thus Poisson with rate λi(u)pik, since we assume that the price-elasticity of flows is independent of Ti.

For any dynamic pricing scheme ~g, the expected revenue achieved per unit time is given by

lim
ζ→∞

I
∑

i=1

1

ζ
E

[

∫ ζ

0

∞
∑

k=1

λi(uik(t))uik(t)T̃ikpik dt

]

=
I

∑

i=1

∞
∑

k=1

E

[

λi(uik(t))uik(t)T̃ikpik

]

,

where the expectation is taken with respect to the steady state distribution. The limit on the left hand side as the

time ζ → ∞ exists and equals to the right hand side due to stationarity and ergodicity. Note that the right hand

side is independent of t (from stationarity).

Therefore, the performance of the optimal dynamic policy is

J∗ , max
~g

I
∑

i=1

∞
∑

k=1

E

[

λi(uik(t))uik(t)T̃ikpik

]

.

When the exponential holding time assumption is removed, we can no longer use the MDP approach as in [6]

to find the optimal dynamic pricing scheme. We will instead study the behaviour of the dynamic pricing scheme

and its relationship with the static pricing scheme when the system is large. In particular, we will establish an

upper bound for the performance of dynamic pricing schemes and show that the performance of an appropriately

chosen static pricing scheme can approach this upper bound as the system is large. We will then conclude that,

when the system is large, the performance of an appropriately chosen static pricing scheme can approach that

of the optimal dynamic pricing scheme. Further, we show that the performance gains of schemes that use such

sophisticated mechanisms as prediction and charging based on prior knowledge of the holding times are minimal

when the system is large.
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2.2 An Upper Bound

We find that the upper bound of the form in [6] is also an upper bound for our case. Let λmax,i = λi(0) be the

maximal value of λi. For convenience, we write ui as a function of λi. Let Fi(λi) = λiui(λi), λi ∈ [0, λmax,i].

Further, let Jub be the optimal value of the following nonlinear programming problem:

max
λi,i=1,...,I

∑

i

Fi(λi)
1

µi
(1)

subject to
∑

i

λi

µi
riC

l
i ≤ Rl for all l, (2)

where 1/µi, ri are the mean holding time and the bandwidth requirement, respectively, for flows from class i, C l
i

is the routing matrix and Rl is the capacity of link l.

Proposition 1 If the function Fi is concave in (0, λmax,i) for all i, then J∗ ≤ Jub.

Proof: Consider an optimal dynamic pricing policy. Let nik(t) be the number of flows from substream k of class i

that are in the system at time t, and let uik(t) be the price charged to flows from substream k of class i. Recall that

flows from substream k of class i have service time Ti falling into segment [ak−1, ak). Hence the total number

of flows from class i is ni(t) =
∑

k nik(t). Let λik(t) = λi(uik(t)). From Little’s Law, we have

E[nik(t)] = E[λik(t)pik]T̃ik,

where T̃ik is the mean service time for flows of class i whose service time Ti falls into segment [ak−1, ak), and

pik is the probability that the service time Ti of an incoming flow of class i falls into segment [ak−1, ak). The

expectation is taken with respect to the steady state distribution.

Now let

λ∗
i =

∑

k E[λik(t)]pikT̃ik
∑

k pikT̃ik

.

Note that
∑

k pikT̃ik = 1/µi, therefore

λ∗
i

µi
=

∑

k

E[λik(t)]pikT̃ik =
∑

k

E[nik(t)] = E[ni(t)].

At any time t,
∑

i ni(t)riC
l
i ≤ Rl for all l. Therefore

∑

i

λ∗
i

µi
riC

l
i ≤ Rl for all l .
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Since the functions Fi are concave, we have

Jub ≥
∑

i

Fi (λ
∗
i )

1

µi

≥
∑

i

∞
∑

k=1

Fi

(

E[λik(t)]
)

pikT̃ik

≥
∑

i

∞
∑

k=1

E

[

Fi(λik(t))
]

pikT̃ik = J∗,

by Jensen’s inequality. Q.E.D.

The maximizer of the upper bound (1) induces a set of optimal prices ui = ui(λi). It is interesting to note

that although the dynamic pricing scheme can use prediction and exploit prior knowledge of the parameters

of the incoming flows, the upper bound (1) and its induced optimal prices are indifferent to these additional

mechanisms.

2.3 Static Policy

We now consider the static pricing scheme. In this scheme, the price for each class is fixed, i.e., it does not

depend on the current state of the network, nor does it depend on the individual holding time of the flow. Let ui

be the static price for class i. Let ~u = [u1, ..., uI ]. Under this static pricing scheme ~u, the expected revenue per

unit time is:

J0 =
I

∑

i=1

λi(ui)ui
1

µi
(1 − Ploss,i[~u]),

where Ploss,i[~u] is the blocking probability for class i. Therefore the performance of the optimal static policy is

Js , max
~u

I
∑

i=1

λi(ui)ui
1

µi
(1 − Ploss,i[~u]).

By definition Js ≤ J∗.

Throughout this paper we will focus on large systems with many small users. To be specific, we consider the

following scaling (S):

(S) Let c ≥ 1 be a scaling factor. We consider a series of systems scaled by c. The scaled system has capacity

Rl,c = cRl at each link l, and the arrivals of each class i has rate λc
i (u) = cλi(u). Let J∗,c, Jc

s and Jc
ub be the

dynamic revenue, static revenue, and upper bound, respectively, for the c-scaled system.

We are interested in the performance of the dynamic pricing scheme and the static pricing scheme when c ↑ ∞,

i.e., when both the capacity and the number of users in the system become very large. We first note that the
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normalized upper bound J c
ub/c is fixed over all c, since J c

ub is obtained by maximizing
∑

i cλiui(λi)/µi, subject

to the constraints
∑

i cλiriC
l
i/µi ≤ cRl, for all l. Therefore the optimal price induced by the upper bound is also

independent of c.

The following lemma illustrates the behaviour of the blocking probability Ploss,i as c → ∞ under scaling (S).

Lemma 2 Let λi be the arrival rate of flows from class i and let 1/µi be the mean holding time. Under the

assumptions of Poisson arrivals and general holding time distributions, if the load at each resource is less than

or equal to 1, i.e.,
∑

i

λi

µi
riC

l
i ≤ Rl for all l,

then under scaling (S), as c → ∞, the blocking probability of each class goes to 0, and the speed of convergence

is at least 1/
√

c.

Proof: The key idea is to use an insensitivity result from [10]. In [10], Burman et. al. investigate a blocking net-

work model, where a call instantaneously seizes channels along a route between the originating and terminating

node, holds the channels for a randomly distributed length of time, and frees them instantaneously at the end of

the call. If no channels are available, the call is blocked. When the arrivals are Poisson and the holding time

distributions are general, the authors in [10] show that the blocking probabilities are still in product form, and are

insensitive to the call holding-time distributions. This means that they depend on the call duration only through

its mean.

Our system is a special case of [10]. Let ~n = {nj , j = 1, ..., I} be the vector denoting the state of the system,

and let ρj = λj/µj . From [10], we have the blocking probability of calls of class i as:

P
c
loss,i =

∑

~n∈Γ′

∏

j

ρj
nj/nj !

∑

~n∈Γ0

∏

j

ρ
nj

j /nj !
, (3)

where

Γ′ =







~n :
∑

j

njrjC
l
j ≤ cRl for all l and there exists an l

such that C l
i = 1 and

∑

j

njrjC
l
j > cRl − ri







Γ0 =







~n :
∑

j

njrjC
l
j ≤ cRl for all l







.

From (3) we can see that the blocking probability is exactly the same as in the case of exponential service

times. Hence, from now on we only need to look at the case of exponential service times.
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Consider an infinite channel system with the same arrival rate and holding-time distribution. Let nj,∞ be the

number of flows of class j in the infinite channel system. Further let ~n∞ = {nj,∞, j = 1, ..., I} be the vector

denoting the state of the infinite channel system. We can then rewrite P
c
loss,i as

P
c
loss,i = P

c,∞
Γ′ /Pc,∞

Γ0
,

where

P
c,∞
Γ0

=

∑

~n∞∈Γ0

∏

j

ρ
nj,∞

j /nj,∞!

e
P

j ρj
, P

c,∞
Γ′ =

∑

~n∞∈Γ′

∏

j

ρ
nj,∞

j /nj,∞!

e
P

j ρj

is the probability that {~n∞ ∈ Γ0} and {~n∞ ∈ Γ′} respectively in the infinite channel system.

We will use the estimate of P
c,∞
Γ0

and P
c,∞
Γ′ to bound P

c
loss,i. In the infinite channel system, there is no

constraint. Therefore the number of flows nj,∞ in class j is Poisson (from well known M/M/∞ result) and

independent of the number of flows in other classes. We can view each nj,∞ as a sum of c independent random

variables.

First we calculate the first and second order statistics of nj,∞.

E[nj,∞] = c
λj

µj
, σ2[nj,∞] = c

λj

µj
.

Now by invoking the Central Limit Theorem, as c → ∞, we have

nj,∞ − c
λj

µj√
c

→ N(0,
λj

µj
) in distribution. (4)

Let xc,l
∞ =

∑

j nj.∞rjC
l
j be defined as the amount of resource consumed at link l in the infinite channel system.

We have

E[xc,l
∞] = c

∑

j

λj

µj
rjC

l
j , σ2[xc,l

∞] = c
∑

j

λj

µj
r2
j C

l
j .

Therefore






x
c,l
∞

c
− ∑

j
λj

µj
rjC

l
j

√

1
c







→ N(0, Q) in distribution, (5)

where Q = {Qmn}, Qmn =
∑

j

λj

µj
r2
j C

m
j Cn

j .

Now since
∑

j c
λj

µj
rjC

l
j ≤ cRl for all l,

lim inf
c→∞

P
c,∞
Γ0

= lim inf
c→∞

P

{

xc,l
∞
c

≤ Rl, for all l

}

9



≥ lim inf
c→∞

P







xc,l
∞
c

≤
∑

j

λj

µj
rjC

l
j , for all l







≥ lim inf
c→∞

P

{

nj,∞ ≤ c
λj

µj
, fo r all j

}

(by definition of xc,l
∞)

= lim inf
c→∞

∏

j

P

{

nj,∞ ≤ c
λj

µj

}

≥ 0.5I (by (4)) ,

lim sup
c→∞

P
c,∞
Γ′ = lim sup

c→∞
P

{

xc,l
∞
c

≤ Rl, for all l, and there exists l

such that C l
i = 1 and

xc,l
∞
c

> Rl − ri

c

}

≤ lim sup
c→∞

∑

l

P

{

xc,m
∞
c

≤ Rm, for all m, and
xc,l
∞
c

> Rl − ri

c

}

≤ lim sup
c→∞

∑

l

P

{

Rl − ri

c
<

xc,l
∞
c

≤ Rl

}

≤ lim sup
c→∞

∑

l

1√
2π

ri

c
√

1
c

∑

j
λj

µj
r2
j C

l
j

(by (5)) (6)

=
∑

l

0 = 0.

Therefore

lim
c→∞

P
c
loss,i = lim

c→∞
P

c,∞
Γ′ /Pc,∞

Γ0
= 0,

To show that the speed of convergence is at least 1√
c
, we go back to (6). Just note that

∑

l

1√
2π

ri

c
√

1
c

∑

j
λj

µj
r2
j C

l
j

≤
∑

l

1√
2π

1√
c

ri
√

∑

j
λj

µj
rjC l

j mini ri

.

Therefore,

lim sup
c→∞

√
cPc

loss,i ≤

√
c lim sup

c→∞
P

c,∞
Γ′

lim inf
c→∞

P
c,∞
Γ0

≤

∑

l

1√
2π

ri
r

P

j

λj

µj
rjCl

j mini ri

0.5I
,

which is a constant. Q.E.D.

We will use this lemma to show the following main result:
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Proposition 3 If the function Fi is concave in (0, λmax,i) for all i, then

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
J∗,c = lim

c→∞
1

c
Jc

ub = Jub.

Proof: Since J c
s ≤ J∗,c ≤ Jc

ub = cJub, we only need to show that limc→∞
Jc

s

c
≥ Jub.

Now consider J c
s . For every static price ~u = [u1, ...uI ] falling into the constraint of Jub, i.e.,

∑

i

cλi(ui)riC
l
i

µi
≤ cRl for all l, (7)

let Jc
0 denote the revenue under this static price. Since (7) guarantees that the condition of Lemma 2 is met, we

have Ploss,i[~u] → 0, as c → ∞. Therefore

lim
c→∞

Jc
0

c
= lim

c→∞

∑

i

λi(ui)ui
1

µi
(1 − Ploss,i[~u])

=
∑

i

λi(ui)ui
1

µi
. (8)

If we take the optimal price induced by the upper bound as our static price, then the right hand side of (8) is

exactly the upper bound. Therefore,

lim
c→∞

Jc
s

c
≥ lim

c→∞
Jc

0

c
≥ Jub

and the result follows. Q.E.D.

Proposition 3 can be seen as a network version (with also general holding times) of Theorem 6 in [6]. It tells

us that extending the result of [6] from a single link to a network of links and from exponential holding time

distributions to arbitrary holding time distributions does not change the invariance result. In other words, there

still exists static pricing schemes whose performance can approach that of the optimal dynamic pricing scheme

when the system is large. Further, even though the dynamic pricing scheme can use prediction and exploit prior

knowledge of the parameters of the incoming flows, the upper bound (1) turns out to be indifferent to these

additional mechanisms. This shows that these extra mechanisms have a minimal effect on the long term revenue

when the system is large.

The static schemes are much easier to implement because they do not require the collection of instantaneous

load information. Instead, they only depend on some average parameters, such as the average load, etc. Hence,

they introduce less communication and computation overhead and they are insensitive to feedback delays. In

future work we intend to develop efficient distributed algorithms that can find these static prices. We will discuss

this briefly in Section 5.

11
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Figure 2: The static pricing policy compared with

the upper bound: when the capacity of link 3 is 5

bandwidth units. The dotted line is the upper bound.

Table 1: Traffic and price parameters of 4 classes

Class 1 Class 2 Class 3 Class 4

λmax,i 0.01 0.01 0.02 0.01

umax,i 10 10 20 20

Service Rate 0.002 0.001 0.002 0.001

Bandwidth 2 1 1 2

Table 2: Solution of the upper bound (1) when the

capacity of Link 3 is 5 bandwidth units. The upper

bound is Jub = 127.5

Class 1 Class 2 Class 3 Class 4

ui 9.00 5.00 12.00 10.00

λi(ui) 0.00100 0.00500 0.00800 0.00500

λi(ui)/µi 0.500 5.00 4.00 5.00

Here we report a few numerical results. Consider the network in Fig. 1. There are 4 classes of flows. Their

routes are shown in the figure. Their arrivals are Poisson. The function λi(u) for each class i is of the form

λi(u) =

[

λmax,i

(

1 − u

umax,i

)]+

,

i.e., λi(0) = λmax,i and λi(umax,i) = 0 for some constants λmax,i and umax,i. The price elasticity is then

−λ′
i(u)

λi(u)
=

1/umax,i

1 − u/umax,i
, for 0 < u < umax,i.

The function Fi is thus

Fi(λi) = λi(1 − λi

λmax,i
)umax,i,

which is concave in (0, λmax,i). The holding time is exponential with mean 1/µi. The parameters λmax,i, umax,i,

service rates µi, and bandwidth requirement for each class are shown in Table 1.

12



Table 3: Solution of the upper bound when the capacity of Link 3 is 15 bandwidth units. The upper bound is

Jub = 137.5

Class 1 Class 2 Class 3 Class 4

ui 5.00 5.00 10.00 10.00

λi(ui) 0.00500 0.00500 0.0100 0.00500

λi(ui)/µi 2.50 5.00 5.00 5.00

First, we consider a base system where the 5 links have capacity 10, 10, 5, 15, and 15 respectively. The solution

of the upper bound (1) is shown in Table 2. The upper bound is Jub = 127.5. We then use simulations to verify

how tight this upper bound is and how close the performance of the static pricing policy can approach this upper

bound when the system is large. We use the price induced by the upper bound calculated above as our static price.

We first simulate the case when the holding time distributions are exponential. We simulate c-scaled versions of

the base network where c ranges from 1 to 1000. For each scaled system, we simulate the static pricing scheme,

and report the revenue generated. In Fig. 2 we show the normalized revenue J0/c as a function of c.

As we can see, when the system grows large, the difference in performance between the static pricing scheme

and the upper bound decreases. Although we do not know what the optimal dynamic scheme is, its normalized

revenue J∗/c must lie somewhere between that of the static scheme and the upper bound. Therefore the difference

in performance between the static pricing scheme and the optimal dynamic scheme is further reduced. For

example, when c = 10, which corresponds to the case when the link capacity can accommodate around 100

flows, the performance gap between the static policy and the upper bound is less than 7%. The gap decreases as

1/
√

c.

We now change the capacity of link 3 from 5 bandwidth units to 15 bandwidth units. The solution of the upper

bound is shown in Table 3. The upper bound is J ∗ = 137.5. The simulation result (Fig. 3) confirms again

that the performance of the static policy approaches the upper bound when the system is large. At c = 10, the

performance gap between the static policy and the upper bound is around 10%. Note that in this latter example,

the static price is the same for users with the same price-elasticity even if they traverse different routes. For

example, classes 1 & 2 and classes 3 & 4 have different routes but have the same price (and price-elasticity). In

general, if there is no significant constraint of resources, the maximizing price structure will be independent of

the route of the connection. (A network has no significant constraint of resources if the unconstrained maximizer

of
∑

i Fi(λi) satisfies the constraint (2).) To see this, we go back to the formulation of the upper bound (1). If the

13
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Figure 4: The static pricing policy compared with

the upper bound: when the capacity of link 3 is 5

bandwidth units and the service time distribution is

Pareto.

unconstrained maximizer of
∑

i Fi(λi) satisfies the constraint, then it is also the maximizer of the constrained

problem. In this case the price only depends on the function Fi, which is determined by the price elasticity of the

users. Readers can verify that, in our second example, when the capacity of link 3 is 15 bandwidth units. if we

lift the constraints in (2), and solve the upper bound again, we will get the same result. Therefore in our example,

the optimal price will only depend on the price elasticity of each class and not on the specific route. Since class

1 has the same price elasticity as class 2, its price is also the same as that of class 2, even though it traverses a

longer route through the network. This result perhaps justifies the use of flat pricing in inter-state long distance

telephone service in the United States.

We also simulate the case when the holding time distribution is deterministic. The result is the same as that

of the exponential holding time distribution. The simulation result with heavy tail holding time distribution also

shows the same trend except that the sample path convergence (i.e., convergence in time) becomes very slow,

especially when the system is large. For example, Fig. 4 is obtained when the holding time distribution is

Pareto, i.e., the cumulative distribution function is 1 − 1/xa, with a = 1.5. We use the same set of parameters

as the constrained case above, and let the Pareto distribution have the same mean as that of the exponential

distribution. Note that this distribution has finite mean but infinite variance. This demonstrates that our result is

indeed invariant of the holding time distribution.
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3 Dynamic Routing

We next consider a system with dynamic routing. Many results in the QoS routing literature focus on finding the

“best” route for each individual flow based on the instantaneous network conditions. When these QoS routing

algorithms are used in a dynamic routing setting, the network is typically required to first collect link information

(such as available bandwidth, delay, etc.) on a regular basis. Then, when a request for a new flow arrives, the

QoS routing algorithms are invoked to find a route that can accommodate the flow. When there are multiple

routes that can satisfy the request, certain heuristics are used to pick one of the routes. However, such “greedy”

schemes may be sub-optimal system wide, because a greedy selection may result in an unfavorable configuration

such that more future flows are blocked. Further, an obstacle to the implementation of these dynamic schemes is

that it consumes a significant amount of resources to propagate link states throughout the network. Propagation

delay and stale information will also degrade the performance of the dynamic routing schemes.

In this section, we will formulate a dynamic routing problem that directly optimizes the total system revenue.

Although our model is simplified, it reveals important insight on the performance tradeoff among different dy-

namic routing schemes. We will establish an upper bound on the performance of the dynamic schemes, and show

that the performance of an appropriate chosen static pricing scheme, which selects routes based on some pre-

determined probabilities, can approach the performance of the optimal dynamic scheme when the system is large.

The static scheme only requires some average parameters. It consumes less communication and computation

resources, and is insensitive to network delay. Thus the static scheme is an attractive alternative for control of

routing in large networks.

The network model is the same as in the last section, except that now a user of class i has θ(i) alternative

routes that are represented by matrix {H l
ij} such that H l

ij = 1, if route j of class i uses resource l and H l
ij = 0,

otherwise. The dynamic schemes we consider have the following idealized properties: the routes of existing

flows can be changed during their connection; and the traffic of a given flow can be transmitted on multiple

routes at the same time. Thus our model captures the packet-level dynamic routing capability in the current

Internet. These idealized capabilities allow the dynamic schemes to “pack” more flows into the system. Yet, we

will show that an appropriately chosen static routing scheme will have comparable performance to the optimal

dynamic scheme.

Let ni be the number of flows of class i currently in the network. Consider the k-th flow of class i, k = 1, ..., ni.

Let P k
ij denote the proportion of traffic of flow k assigned to route j, j = 1, ...θ(i). Then, state ~n = {n1, ..., nI}
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is feasible if and only if

There exists P k
ij such that

∑

j

P k
ij = 1, ∀i, k,

and
∑

i,j

riH
l
ij

ni
∑

k=1

P k
ij ≤ Rl for all l.

(9)

The set of all feasible states is Ω = {~n such that (9) is satisfied}.

A dynamic scheme can charge prices based on the current state of the network, or a finite amount of past

history, i.e., prediction based on past history. (For simplicity we consider pricing schemes that are insensitive to

the individual holding times.) An incoming flow will be admitted if the resulting state is in Ω. Once the flow is

admitted, its route (i.e., P k
ij) is assigned based on (9), involving (in an idealized dynamic scheme) possible rear-

rangement of routes of all existing flows. We assume that such rearrangement can be carried out instantaneously.

Thus a dynamic pricing scheme can be modeled by ui(t) = gi(~n(s), s ∈ [t − d, t]), where gi is a function from

Ω
[−d,0] to R. Let ~g = {g1, ..., gI}.

The performance objective is again the expected revenue per unit time generated by the incoming flows admit-

ted into the system. The performance of the optimal dynamic routing scheme is given by:

J∗ , max
~g

E{
∑

i

λi(ui(t))ui(t)
1

µi
} (10)

subject to (9).

The expectation is taken with respect to the steady state distribution. Note that (10) is independent of t because

of stationarity and ergodicity.

The set of dynamic schemes we have described may require complex capabilities (e.g., rearrangements of

routes and transmitting traffic of a single flow over multiple routes) and hence may not be suitable for actual

implementation. We make clear here that we are not advocating implementing such schemes but instead advocate

implementing static schemes. In fact, we will show that, as the system scales, our static scheme will approach the

performance of the optimal idealized dynamic scheme. The static schemes do not require the afore-mentioned

complex capabilities and could be an attractive alternative for network routing.

Let ui = ui(λi) and Fi(λi) = ui(λi)λi. Analogous to Proposition 1, we can derive the following upper bound

on the optimal revenue in (10).

Proposition 4 If the function Fi is concave in (0, λmax,i) for all i, then J∗ ≤ Jub, where Jub is defined as the

solution for the following optimization problem:

Jub , max
λij

∑

i

Fi(
∑

j

λij)
1

µi
(11)

subject to
∑

ij

λij

µi
H l

ijri ≤ Rl ∀l. (12)
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Proof: Assuming that we have already obtained an optimal dynamic policy ~g(.), let u∗
i (t) and P k∗

ij (t) be the price

and routing proportions under such an optimal policy, let λi(t) = λi(u
∗
i (t)) be the corresponding arrival rates,

and let n∗
i (t) be the evolution of the number of calls in the system. Let P ∗

ij(t) =
∑n∗

i (t)
k=1 P k∗

ij (t)/n∗
i (t). We

can treat these as random variables. Let n∗
i , P ∗

ij , and λ∗
i represent random variables with their corresponding

stationary distribution, let λij = E{n∗
i P

∗
ij}µi, since

∑

i,j n∗
i (t)P

∗
ij(t)H

l
ijri ≤ Rl, for all l , we have

∑

i,j

λij

µi
H l

ijri ≤ Rl, for all l.

Therefore λij satisfies (12).

From Little’s Law, we have

E{λ∗
i }/µi = E{n∗

i ] =
∑

j

E{n∗
i P

∗
ij} =

∑

j

λij/µi.

Now if the functions Fi are concave, we have

J∗ = E{
∑

i

Fi(λ
∗
i )

1

µi
} ≤

∑

i

Fi(E{λ∗
i })

1

µi
}

=
∑

i

Fi(
∑

j

λij)
1

µi
≤ Jub,

by Jensen’s Inequality. Q.E.D.

We next construct our static routing policy as follows: The network charges a static price to all incoming

flows, and the incoming flows are directed to alternative routes based on pre-determined probabilities. Note that

the static policy does not have the idealized capabilities prescribed for the dynamic schemes, i.e., all traffic of

a flow has to follow the same path, and rearrangement of routes of existing flows is not allowed. Let {us
i , P

s
ij}

denote such a static policy, where us
i is the price for class i, and P s

ij is the bifurcation probability that an incoming

flow from class i is directed to route j.

Then the optimal static policy can be found by solving:

Js , max
us

i ,P s
ij ,

P

j P s
ij=1

∑

ij

λi(u
s
i )u

s
iP

s
ij

1

µi
[1 − PLoss,ij ], (13)

where PLoss,ij is the blocking probability experienced by users of class i routed to j.

We consider a special static policy derived from the solution of the upper bound in Proposition 4. If λub
ij is

the maximal solution to the upper bound, we let us
i = ui(

∑

j λub
ij ), and P s

ij =
λub

ij
P

j λub
ij

. The revenue with this

static policy differs from the upper bound only by the term (1 − PLoss,ij), and this revenue will be less than Js.

However, under scaling (S), we can show that, as c → ∞, Ploss,ij → 0. Therefore, we have our invariance result

(stated next).
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Proposition 5 In the dynamic routing model, if the function Fi is concave in (0, λmax,i) for all i, then

lim
c→∞

Jc
s/c = lim

c→∞
J∗,c/c = lim

c→∞
Jc

ub/c = Jub

Proof: First we notice again that the normalized upper bound J c
ub/c is fixed over all c. Therefore the optimal price

induced by the upper bound is also independent of c. Since J c
s ≤ J∗,c ≤ Jc

ub = cJub, we only need to show that

limc→∞
Jc

s

c
≥ Jub.

Now consider J c
s . When we use the static price and routing probabilities induced by the upper bound, i.e.,

us
i = ui(

∑

j λub
ij ) and P s

ij =
λub

ij
P

j λub
ij

, then λub
ij = λi(u

s
i )P

s
ij is exactly the arrival rate to path j from flows of class

i. Hence, the constraint of Jub will be satisfied, i.e.,

∑

ij

λub
ij

µi
H l

ijri ≤ Rl ∀l. (14)

Let Jc
0 denote the revenue under this static price. Since (14) guarantees that the condition of Lemma 2 is met, we

have Ploss,ij → 0, as c → ∞. Therefore

lim
c→∞

Jc
0

c
= lim

c→∞

∑

ij

λi(u
s
i )u

s
i

1

µi
P s

ij(1 − Ploss,ij)

=
∑

i

λi(u
s
i )u

s
i

1

µi
= Jub. (15)

Therefore,

lim
c→∞

Jc
s

c
≥ lim

c→∞
Jc

0

c
≥ Jub

and the result follows. Q.E.D.

When the routing is fixed, by replacing λij with λi, and H l
ij with C l

i , we recover Propositions 1 and 3 from

the results in this Section. When there are multiple available routes, the upper bound in Proposition 4 is typically

larger than that of Proposition 1. Therefore one can indeed improve revenue by employing dynamic routing.

However, Proposition 5 shows that, when the system is large, most of the performance gain can also be obtained

by simpler static schemes that routes incoming flows based on pre-determined probabilities. Further, what we

learn is that for large systems the capability to rearrange routes and to transmit traffic of a single flow on multiple

routes does not lead to significant performance gains.

Not only can the static schemes be asymptotically optimal, they also have a very simple structure. Their param-

eters are determined by average conditions rather than instantaneous conditions. Collecting average information

introduces less communication and processing overhead, and it is also insensitive to network delay. Hence the

static schemes are much easier to implement in practice.
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Figure 5: Dynamic Routing Problem

The optimal static scheme also reveals the macroscopic structure of the optimal dynamic routing scheme.

For example, the static price us
i shows the preference of some classes than the others, and the static bifurcation

probability P s
ij reveals the preference on certain routes than the other. While a “greedy” routing scheme tries to

accommodate each individual flow, the optimal static scheme may reveal that one should indeed prevent some

flows from entering the network, or prevent some routes from being used. For our future work we plan to study

efficient distributed algorithms to derive these optimal static parameters.

We use the following example to illustrate the above idea. Consider a triangular network (Fig. 5). There are

three classes of flows, AB, BC, CA. The arrival rates are λAB, λBC , λCA, respectively. There are two possible

routes for each class of calls, i.e., a direct one link path (route 1), and an indirect two links path (route 2). Each

call consumes one channel along the link(s) and holds the link(s) for a mean time of 1 unit. Let the capacity of

all links be R.

Let ~λ = {λAB,1, λAB,2, λBC,1, λBC,2, λCA,1, λCA,2}. Use the notation above, we can formulate the the upper

bound as:

Jub = max
~λ

∑

i=AB,BC,CA

λiui(λi) (16)

λi = λi,1 + λi,2, i = AB, BC, CA

subject to the following resource constraints based on (12):

λAB,1 + λBC,2 + λCA,2 ≤ R

λBC,1 + λAB,2 + λCA,2 ≤ R

λCA,1 + λAB,2 + λBC,2 ≤ R

λi,j ≥ 0, i = AB, BC, CA, j = 1, 2

Let R = 100. We consider the following cases:

19



1) if λAB(u) = λBC(u) = λCA(u) = 100(1 − u). The solution of (16) gives λAB = λBC = λCA =

50,uAB = uBC = uCA = 0.5. It also coincides with the solution of the unconstrained version of (16). This

corresponds to the case of light traffic load. The price is only determined by the price elasticity. There are

multiple solutions for the bifurcation. One example is λi,1 = 50, and λi,2 = 0, i = AB, BC, CA, i.e., all calls

use the direct link.

2) if we change λAB(u) = 500(1 − u), the solution of (16) becomes

λAB,1 = 100, λAB,2 = 59.09, λAB = 159.09, uAB = 0.682

λBC,1 = 40.91, λBC,2 = 0, λBC = 40.91, uCA = 0.591

λCA,1 = 40.91, λCA,2 = 0, λCA = 40.91, uCA = 0.591

This corresponds to the case of heavy traffic load. The price are raised from that of the unconstrained problem in

order to limit incoming traffic. All constraints are binding. Note that here in order to maximize the revenue, the

network should allow flows from class AB to use indirect links when the loads from other classes are light, while

flows from classes BC and CA should not be allowed to use indirect routes. This also reflects the structure of

the optimal dynamic pricing scheme.

4 Elastic Flows

In previous sections we have restricted ourselves to the case when the bandwidth requirements of flows are

fixed. In this section we will extend the model to the case when users can change their bandwidth requirements

according to the current price. For ease of exposition we assume that there is only one route for each class i. The

routes are again represented by the matrix {C l
i} as in Section 2. Flows of class i enter the network according

to a Poisson process with rate λi. The service times of flows of class i are i.i.d. with mean 1/µi. The service

time distribution is general. Let Ui(xi) be the utility function for each class i, where xi is the amount of resource

assigned to a class i flow along its route. We assume that Ui is a continuous differentiable and strictly concave

function of xi, and Ui(0) = 0. This model is appropriate for real-time streaming applications that can change

the transmission rate according to the network congestion level. For example, the utility function Ui(xi) can be

taken as the index of reception quality when the real-time stream is transmitting at rate xi.

The network tries to allocate resources to the flows so that the total utility of all flows supported by the network

is maximized. For each flow, the resource allocation may vary over time. In this section, we will first establish the

optimal dynamic scheme. We will then show, as before, that there exists a static scheme whose performance will

approach that of the optimal dynamic scheme when the system is large. Surprisingly, this near-optimal solution
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is in a “fixed-bandwidth” and “loss-network” form as in Section 2.

4.1 The Optimal Dynamic Scheme

Let ni(t) be the number of flows from class i that are in the network at time t. The optimal resource assignment

is then given by the solution to the following problem:

max
xij

I
∑

i=1

ni(t)
∑

j=1

Ui(xij) (17)

subject to
I

∑

i=1

ni(t)
∑

j=1

xijC
l
i ≤ Rl,

where xij is the amount of resource assigned to flow j of class i.

For any solution of (17), let xi =
∑ni(t)

j=1 xij/ni(t). If we let all flows from class i consume the same amount

of resource xi, then the constraint above is also satisfied, and

I
∑

i=1

Ui(xi)ni(t) ≥
I

∑

i=1

ni(t)
∑

j=1

Ui(xij),

since Ui is concave. Therefore (17) is equivalent to the following optimization problem:

J∗(~n(t)) , max
xi

I
∑

i=1

ni(t)Ui(xi) (18)

subject to
I

∑

i=1

ni(t)xiC
l
i ≤ Rl,

where J∗(~n(t)) can be interpreted as the total utility achieved by the system at time t. For each t we can solve

(18) and obtain the optimal assignment xi(t). Over time, this policy will optimize the total utility.

In the past (e.g., [3, 4, 9]) this model has been used to study the behavior of TCP congestion control when

the number of flows in the system is fixed. It has been shown that there exist distributed algorithms that can

drive the flows to the optimal resource assignment. The notion of “price” arises naturally as Lagrange multipliers

for the constraints. Some examples of such distributed algorithms resemble the control of TCP in the Internet.

Therefore, TCP congestion control can be seen to maximize the total utility of a group of users with concave

utility functions. Our model is different from theirs because we consider the dynamics caused by the arrivals and

departures of flows. We are interested in finding alternative forms of resource assignment schemes that can also

achieve near optimal total utility when the system is large. These schemes can then be used in cases when TCP

does not work as well.
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4.2 An Upper Bound

Let E[ni] be the stationary mean of ni(t), i.e., E[ni] = λi/µi. We formulate another optimization problem:

Jub , max
xi

I
∑

i=1

E[ni]Ui(xi) (19)

subject to
I

∑

i=1

E[ni]xiC
l
i ≤ Rl.

Proposition 6 The expected total utility is upper bounded by Jub, i.e. E[J∗] ≤ Jub, where the expectation is

taken with respect to the steady state distribution of ni(t).

Proof: Note that J∗ is a function of ~n(t) = {ni(t), i = 1, ...I}. Then Jub = J∗(E[~n]).

To show that E[J∗(~n)] ≤ J∗(E[~n]), it is sufficient to show that J∗(~n) is a concave function of ~n, i.e., for any

~n1 = [n1
1, n

1
2, ..., n

1
I ], ~n

2 = [n2
1, n

2
2, ..., n

2
I ] and 0 ≤ a ≤ 1, let ni = an1

i + (1 − a)n2
i , ~n = [ni], we need

J∗(~n) ≥ aJ∗(~n1) + (1 − a)J∗(~n2)

In order to show this, let x1
i , x

2
i be the optimal assignment leading to J ∗(~n1) and J∗(~n2) respectively. Let

xi =
an1

i x
1
i + (1 − a)n2

i x
2
i

an1
i + (1 − a)n2

i

then
I

∑

i=1

(

an1
i + (1 − a)n2

i

)

xiC
l
i ≤ Rl

Since Ui is concave, we have

Ui(xi) ≥
an1

i Ui(x
1
i ) + (1 − a)n2

i Ui(x
2
i )

an1
i + (1 − a)n2

i

Hence,

J∗(~n) ≥
I

∑

i=1

(an1
i + (1 − a)n2

i )Ui(xi)

≥
I

∑

i=1

(

an1
i Ui(x

1
i ) + (1 − a)n2

i Ui(x
2
i )

)

= aJ∗(~n1) + (1 − a)J∗(~n2)

and the result follows. Q.E.D.
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4.3 Static Policy

Let x0 = {x0
1, x

0
2, ..., x

0
I} be the corresponding maximizing parameter of (19). Now consider the following

control algorithm with a static rate assignment: when a new flow from class i arrives to the network, it will be

assigned a rate x0
i if there is enough capacity available along its route, otherwise it will either be blocked, or,

equivalently, be assigned a rate 0. Therefore, the flow is still elastic except that the rate is chosen according to

the average condition as in (19) rather than the instantaneous condition as in (18). The flow will hold the same

amount of resource x0
i until it leaves the system.

In such a system, the stationary mean utility will be

Js ,

I
∑

i=1

λi

µi
Ui(x

0
i )(1 − Ploss,i),

where Ploss,i is the blocking probability of class i. Under scaling (S), we have the following proposition.

Proposition 7 In the elastic flow model,

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
E[J∗,c] = lim

c→∞
1

c
Jc

ub = Jub.

Proof: Since
∑I

i=1
λi

µi
x0

i C
l
i =

∑I
i=1 E[ni]x

0
i C

l
i ≤ Rl, as c → ∞, we have Ploss,i → 0. Therefore

Jc
s/c =

I
∑

i=1

λi

µi
Ui(x

0
i )(1 − Ploss,i)

→
I

∑

i=1

E[ni]Ui(x
0
i ) = Jc

ub/c.

Now Jc
s/c ≤ E[J∗,c]/c ≤ Jc

ub/c, then the result follows. Q.E.D.

An application of this result is on the control of real-time flows (e.g. audio and video streaming) on the Internet.

A central question in congestion control of streaming traffic is its fairness with respect to TCP. When real-time

flows and TCP flows coexist in the same network, they should consume comparable bandwidth, and neither flows

should be starved by the other. Among the existing congestion control schemes for real-time flows, some use

the same AIMD (Additive Increase Multiplicative Decrease) idea as TCP [11]. They are usually fair with TCP if

timeouts occur infrequently. However, these schemes typically produce a TCP-like saw-tooth type of trajectory,

which leads to rapid changes in reception quality. Such rapid changes in quality are disconcerting for the viewer

of multimedia flows [12]. Equation-based congestion control does not use AIMD and produces smoother rates

at small time-scales. However, simulation results show that at time-scales around 10 seconds, the fluctuation is
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still quite significant [13]. There are yet other schemes, such as some binomial algorithms [14], which change

the rate slower than TCP. However they are also slower in adapting to changing network conditions.

Note that fairness objectives are very closely related to the utility maximization objectives. For example,

proportional fairness is equivalent to maximizing the total utility of a group of users with log-utility functions. If

we adopt utility maximization as a substitute for the fairness requirement, we can use the result above to obtain

a new class of congestion-control algorithms for real-time traffic. For example, consider the special case when α

portion of the flows are real-time flows, and the rest are TCP flows. To be precise, let nRT
i (t) and nTCP

i (t) denote

the number of real-time flows and TCP flows, respectively, at time t. Then their stationary means are E[nRT
i ] =

αE[ni] and E[nTCP
i ] = (1−α)E[ni]. Let us assign the fixed bandwidth x0

i to real-time flows, and allow them to

use the same amount of bandwidth throughout the connection. Such fixed bandwidth allocation is beneficial to

streaming applications because it ensures a stable reception quality for the viewer. Therefore the expected total

utility achieved by real-time flows is given by JRT = E[nRT
i ]Ui(x

0
i )(1 − P

RT
loss,i) = αJub(1 − P

RT
loss,i), where

P
RT
loss,i is the blocking probability experienced by the real-time flows. The total utility achieved by TCP flows at

time t is given by the following optimization problem:

JTCP , max
xi

I
∑

i=1

nTCP
i (t)Ui(xi), (20)

subject to
I

∑

i=1

nTCP
i (t)xiC

l
i ≤ Rl −

I
∑

i=1

nRT
i (t)xiC

l
i .

The expected total utility achieved by both the real-time flows and the TCP flows, JRT + E[JTCP] is bounded

from above by Jub and bounded from below by Js. Therefore, by Proposition 7,

lim
c→∞

JRT,c + E[JTCP,c]

c
= lim

c→∞
Jc

ub

c
= Jub,

where JRT,c, JTCP,c and Jc
ub are the respective utility when the system is scaled by c. Now since lim

c→∞
JRT,c

c
=

αJub, we conclude that lim
c→∞

E[JTCP,c]
c

= (1 − α)Jub. Note that by Proposition 7, (1 − α)Jub is also the limit of

the normalized expected total utility achieved by the TCP flows as c → ∞, when the remaining portion α of the

flows are also TCP flows. This shows that when the same utility functions are used for real-time flows and TCP

flows, assigning the fixed bandwidth x0
i to real-time flows does not degrade the performance of the TCP flows

when the system is large.

It is interesting to compare existing congestion-control schemes with our scheme above. In existing schemes,

flows start from an arbitrary initial condition, and congestion control is exercised during the connection. In our

scheme, congestion control is exercised at the beginning of the connection. The congestion controller reacts to

changing network condition by choosing the correct initial bandwidth assignment for incoming flows. Although
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our scheme does not modify the bandwidth assignment for on-going flows, the difference between the total utility

of our scheme and the optimal utility is minimal (when the system is large). Therefore, in the long run, the real-

time flows and TCP flows will receive fair share of the bandwidth. In future work we plan to investigate the

problem of efficiently distributing our congestion controller over the network.

5 Conclusion and Future Work

In this work we study pricing as a mechanism to control large networks. We show under very general settings

that an appropriately chosen static pricing scheme is asymptotically optimal when the system is large. We have

established these results for admission control, dynamic routing, and control of elastic flows.

The above results have important implications in the networks of today and in the future. Compared with

dynamic pricing schemes, static pricing schemes have some desirable properties. They are less computationally

intensive, and consume less network bandwidth. Their performance will not degrade as the network delay grows.

Our results show that when the system is large, as in broadband networks, the difference between static pricing

schemes and dynamic pricing schemes is minimal.

Having said this, it should be noted that the parameters of the static schemes are obtained from some global

optimization problem (e.g., (1), (11) and (19) ) which requires coordination among possibly all elements of the

network. To make the static schemes implementable, it is important to develop efficient distributed algorithms

that can find these parameters. Here we briefly discuss one possible approach.. Note that the optimization

problems for the upper bounds are very similar to the optimization flow control problems studied in [4]. For

example, in (1), if we let xi = λiri/µi and Ui(xi) = Fi(xiµi/ri)/µi, and identify the index s with i, we will get

the primal problem in [4]. Similar to [4], we can define the dual problem for (1) in terms of Lagrange multipliers.

Define the Lagrangian as:

L(~λ, ~p) =
∑

i

Fi(λi)
1

µi
−

∑

l

pl(
∑

i

λi

µi
riC

l
i − Rl)

=
∑

i

{

Fi(λi) − λiri

∑

l

C l
ip

l

}

1

µi
+

∑

l

plRl,

where

~λ = [λ1, ..., λI ] and

~p = [p1, ..., pL].
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The objective function of the dual problem is then:

D(~p) = max
~λ

L(~λ, ~p) =
∑

i

Bi(pi)
1

µi
+

∑

l

plRl,

where

Bi(pi) = max
λi∈[0,λmax,i]

{Fi(λi) − λiripi} and (21)

pi =
∑

l

C l
ip

l. (22)

The dual problem is:

min
~p≥0

D(~p).

Given ~p, the dual objective function D(~p) can be decomposed into I seperate subproblems (21). If we interpret

pl as the implicit cost per bandwidth unit at link l, then pi given by (22) is the total cost per bandwidth unit for all

links in the path of class i. This pi captures all the necessary information about the path class i traverses. From a

implementation point of view, the core routers generate the implicit costs pl. The edge router needs to know the

price-elasticity of class i. The edge router can then probe the implicit costs pl at all core routers class i traverses.

With pi and the function Fi, it can determine the price for class i by solving (21).

In [4], a distributed algorithm for the implicit cost pl is derived for each resource l, which updates pl according

to the current instantaneous measurement of load at the resource l. A totally distributed algorithm is then de-

rived. Following along this path, we are currently studying distributed algorithm for static pricing schemes. The

difference is that, for our case, the “load” is the average arrival rate, which has to be estimated by measurement

over certain time windows.

Note that in the distributed algorithms for static pricing schemes, the network still needs to generate and com-

municate the implicit costs between different network elements. However, the computation and communication

involved will be much smaller than in the optimal dynamic pricing scheme. In the optimal dynamic pricing

scheme, the network has to acquire the instantaneous global state ~n(t), and then compute the right price for each

network state. While in the static schemes, only one set of static prices needs to be found given the network

topology and the functions Fi. Therefore, the computation and propagation of the implicit costs pl can be much

slower than the evolution of the network state. Once the distributed algorithm converges, the prices ui (and the

implicit costs pl) stay unchanged until the network topology or the load condition Fi change.
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6 Appendix

The models in Sections 2 and 3 can be shown to be stationary and ergodic under very general conditions. A

common feature of the model is that flows of class i arrive at the network according to a Poisson process with

rate λi(ui), where ui is the price charged to users from class i. The price ui can depend on the current state of

the system, or a finite amount of past history (i.e., prediction based on past history), or even some parameters

of the incoming flow. Thus our model is similar to a network of M/G/N/N queues except that now we have the

“feedback” introduced by the price ui, which makes modeling somewhat more complex. We will see next that

the system will be stationary and ergodic under very general conditions.

Proposition 8 Assume that the arrival rates λi(u) are bounded above by some constant λ0, for all classes i,

the service times are i.i.d. with finite mean and independent of the arrivals. If the price is only dependent on

the current state of the system, or a finite amount of past history (i.e., prediction based on past history), or

the parameters of the incoming flows, then any stochastic process that is only a function of the system state is

asymptotically stationary and the stationary version is ergodic.

Proof: Let us first look at the case of a single resource with users coming from a single class i. To develop the

result, we need to take a different but equivalent view of the original model. In the original system, the arrival rate

is a function of the current price. In the new but equivalent system, the arrival rate is constant but the arrivals are

“thinned” by a probability as a function of the price. Specifically, in the new model, the arrivals are Poisson with

constant rate λ0. Each arrival now carries a value v that is independently distributed, with distribution function

P{v ≥ u} = λi(u)/λ0. The value v of each arrival is independent of the arrival process and service times. If

v < u, where u is the current price charged to the incoming call at the time of arrival, the call will not enter the

system. We can see that with this construction, at each time instant, the arrivals are bifurcated with probability

of success equal to P{v ≥ u} = λi(u)/λ0. Therefore the resultant arrivals (after thinning) in the new model are

also Poisson with rate λ0P{v ≥ u} = λi(u). Thus the model is equivalent to the original model.

To show stationarity and ergodicity, we need to construct a so called “regenerative event,”i.e., a restarting point

after which the system behaves independently of the past. Let d time units denote the length of the finite amount

of past history used in the prediction (d = 0 if no prediction is performed.) Let {τ e
n, τ s

n, vn}, −∞ < n < ∞,

be the n-th arrival’s interarrival time, service time, and value, respectively (note this is the arrival of the Poisson

process before bifurcation). Define “epoch n” to be the time of the n-th arrival. Let

Qn = 1{τ
s
n−1 ≥ τ e

n − d} + 1{τ
s
n−2 ≥ τ e

n + τ e
n−1 − d}

+... + 1{τ
s
n−k ≥

k−1
∑

j=0

τ e
n−j − d} + ...
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Also let An = {Qn = 0}. Then An can be interpreted as the event that “all potential arrivals (i.e., those before

bifurcation) have cleared the system d time units before epoch n”. The event An is a regenerative event, that is,

if event An occurs, then after epoch n, the system will evolve independently from the past (this is true because

we assume that the price is only dependent on the current state of the network, or a finite amount of past history

with length d). The events An are stationary, i.e., if we define T as the shift operator, T{{τ e
ni

, τn
ni

, vni
} ∈ Bi, i =

1...k} = {{τ e
ni+1, τ

n
ni+1, vni+1} ∈ Bi, i = 1...k}, then An = T

nA0, and P{An} = P{A0}. Note that An does

not depend on either vn or the price u. Now to proceed with the proof, we need the following lemma.

Lemma 9 Let the sequence of service times τ s be i.i.d., and E[τ s] < ∞, then P{A0} > 0.

Proof: We follow [15]. For some a > 0, m ≥ 1,

P{A0} ≥ P

{

{τ e
0 ≥ a + d}

k=m
⋂

k=1

{

τ s
−k ≤ a

}

∞
⋂

k=m+1







τ s
−k ≤

−1
∑

j=−k+1

τ e
j













= P{τ e
0 ≥ a + d}

m
∏

k=1

P{τ s
−k ≤ a}

P







∞
⋂

k=m+1







τ s
−k ≤

−1
∑

j=−k+1

τ e
j













.

This can be interpreted as the following: A0 is the event that {Q0 = 0},i.e., all potential arrivals have cleared the

system d time before epoch n. The event on the right of the inequality above says that, of all potential arrivals

before epoch 0, the last arrival arrives before a time interval of a + d (τ e
0 ≥ a + d); the last m arrivals all have

service time less than a ; and finally, the rest of the arrivals leave the system before epoch −1. Obviously this is

a smaller event than A0.

From now on we will focus on this smaller event only. Now choose a such that P{τ s
−k ≤ a} = q > 0, we also

have P{τ e
n ≥ a + d} = p > 0, since the interarrival times are exponential.

Then

P{A0} ≥ pqm
P







∞
⋂

k=m+1







τ s
−k ≤

−1
∑

j=−k+1

τ e
j













= pqm
P{B},

where B is the event inside the bracket. We only need to show P{B} > 0 for some m.

Choose b < E{τ e
n}. Then

P{Bc} = P







∞
⋃

k=m+1







τ s
−k >

−1
∑

j=−k+1

τ e
j
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≤ P







∞
⋃

k=m+1







−1
∑

j=−k+1

τ e
j < b(k − 1)







∞
⋃

k=m+1

{

τ s
−k ≥ b(k − 1)

}







≤ P







∞
⋃

k=m+1







−1
∑

j=−k+1

τ e
j < b(k − 1)













+ P

{ ∞
⋃

k=m+1

{τ s
−k ≥ b(k − 1)}

}

.

Now as m → ∞, the first term goes to

P







⋂

m

∞
⋃

k=m+1







−1
∑

j=−k+1

τ e
n < b(k − 1)













= P







−1
∑

j=−k+1

τ e
n < b(k − 1) i.o.







= 0

by Strong Law of Large Numbers (since b < E{τ e
n}).

On the other hand, as m → ∞, the second term goes to

P

{ ∞
⋃

k=m+1

{τ s
−k ≥ b(k − 1)}

}

≤
∞

∑

k=m+1

P{τ s
−k ≥ b(k − 1)} → 0

since E{τ s
n} < ∞.

Therefore we can choose m large enough such that P{Bc} < 1/2. And

P{A0} ≥ pqm
P{B} ≥ pqm1/2 > 0.

Q.E.D.

Note that the above lemma shows that in our system regenerative events occur with positive probability for

arbitrary holding time distributions (with finite mean).

Now by Borovkov’s Ergodic Theorem [15], the distribution of the state of the system converges as n → ∞ to

the distribution of the stationary process. Ergodicity follows from the lemma below.

Lemma 10 The regenerative event An is positive recurrent, i.e., let T1 = inf{Xn ∈ An}, then E{T1|X0 ∈
A0} < ∞, where Xn is the state of the system at epoch n.

Proof: First note that

P{Xn ∈ An at least once} = P

{∞
⋃

1

An

}

.

Again let T be the shift operator, Let B =
⋃∞

1 An, then TB ⊂ B, and P{TB} = P{B}, because B is

also a stationary event. Therefore TB and B differ by a set of measure zero, B is an invariant set. Since

the arrivals are ergodic, P{B} = 0 or 1. However, since P{B} ≥ P{A0} > 0, therefore P{B} = 1, i.e.,

P{Xn ∈ An at least once} = 1.
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By [16], Prop 6.38.

E{T1|X0 ∈ A0} =
1

P{A0}
< ∞.

Q.E.D.

Since the regenerative event is positive recurrent, the state of the system is both stationary and ergodic, i.e.,

any random process that depends only on the state of the system is both stationary and ergodic [17].

For the case of multiple classes and multiple links, we can construct the equivalent system in the following

way: Assuming there are I classes, we first construct Poisson arrivals with rate Iλ0. Each of these arrivals is

assigned to class i with probability 1/I , and each of these assignments is independent of each other. The service

time is then generated according to the service time distribution of class i. Each class i arrival carries a value

v that is independently distributed, with distribution function Pi{v ≥ ui} = λi(ui)/λ0. The value v of each

arrival is independent of the arrival process and service times. If v < ui where ui is the current price for class i

at the time of the arrival, the call will not enter the system. Following the same idea as in the first paragraph of

the proof, it is easy to show that such a constructed system is equivalent to the original system.

The initial Poisson arrivals with rate Iλ0 can be interpreted as “all potential arrivals from all classes.” Let

{τ e
n, τ s

n} be the n-th arrival’s interarrival time and service time respectively. It then follows that the sequence of

service times τ s
n is again i.i.d. with finite mean, and it is independent of the arrivals. Hence, we can construct

the event A0 as before, which is now the event that “all potential arrivals from all classes have cleared the system

d time units before epoch n.” Again this event is the “regenerative event” for the system, and we can show that

P{A0} > 0, and A0 is positive recurrent. Therefore, the system is asymptotically stationary and the stationary

version is ergodic. Q.E.D.
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