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a b s t r a c t

Shell-of-revolution frusta that possess symmetry in a plane perpendicular to the axis of revolution of

the shell are often encountered as parts of bigger shell assemblies, and these frusta can have a wide

variety of possible midsurface geometries such as spherical, ellipsoidal, toroidal, parabolic or hyperbolic.

This paper presents a new technique for the simplification of the derivation of the influence coefficients

for symmetric frusta of shells of revolution. The key strategy is the reduction of the number of

unknowns of the problem by decomposing a system of arbitrary shell-edge actions into symmetric and

anti-symmetric components conforming to the equatorial symmetry of the configuration.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Shell-of-revolution frusta that possess symmetry in a plane
perpendicular to the axis of revolution of the shell are often
encountered as parts of bigger shell assemblies. We will refer to the
plane of symmetry that is perpendicular to the axis of revolution of
the shell as the ‘‘equatorial plane’’. Such symmetric shell frusta can
have a variety of possible midsurface geometries such as spherical,
ellipsoidal, toroidal, parabolic or hyperbolic. Some examples are
illustrated in Fig. 1, where the axis of revolution of the shell is
denoted by R�R and the equatorial plane of symmetry is denoted
by E�E. Here the shell frustum may represent the thickened part of
an elevated liquid-containment shell in the zones around the
supports (which are usually located at the equator for such tanks),
or the edges of the frustum may simply be junctions of the frustum
to another shell of different geometry (i.e. discontinuities in slope
or radius of curvature of the shell meridian).

In analytical treatments of the axisymmetric bending of shells
of revolution, a flexibility-type approach is often employed, where
the membrane solution is taken as an approximate particular
integral of the full bending-theory equations, while a system of
axisymmetric bending moments and shearing forces applied upon
the shell edges is taken as the homogeneous solution [1]. The
latter will be referred to as ‘‘edge actions’’, and their effect upon
the shell as the ‘‘edge effect’’. This approximation is known to be
very accurate in the case of thin shells of radius-to-thickness ratio
ll rights reserved.
r/t greater than 30 (many shells in civil and mechanical
engineering belong to this category), with errors being of the
order of only t2/r2in comparison with unity [2,3]. This allows the
stresses and deformations in the entire shell to be determined by
superimposing the effects of the membrane solution with those of
the edge actions.

In the flexibility analysis of thin axisymmetrically loaded shells
of revolution, the edge actions are initially regarded as unknowns
(or ‘‘redundants’’ in the terminology of the force method of
structural analysis), and appropriate compatibility conditions
must be imposed at the shell edges in order to allow the
evaluation of these redundants [1]. In this process, we require
the values of edge rotations and displacements associated with
the surface loading (these are readily given by the membrane
solution), as well as edge rotations and displacements associated
with an arbitrary set of edge actions.

Fig. 2(a) shows an arbitrary set of axisymmetric edge actions
applied upon the upper and lower edges of a symmetric shell-of-
revolution frustum: {M1, H1} at the upper edge, and {M2, H2} at the
lower edge. The actions {M1, M2} are bending moments per unit
length of the respective edge of the shell, while {H1, H2} represent
horizontal shearing forces per unit length of the shell edge
(assuming the axis of revolution of the shell R�R is vertical). Fig.
2(b) shows deformations arising at the shell edges as a result of
the applied edge actions: {V1, d1} at the upper edge, and {V2, d2} at
the lower edge. The deformations {V1, V2} are rotations of the shell
meridian (taken as positive when anticlockwise on the left of the
axis of revolution of the shell), while {d1, d2} are horizontal
displacements of the shell (taken as positive when away from the
axis of revolution of the shell).

www.sciencedirect.com/science/journal/twst
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Fig. 1. Symmetric shell-of-revolution frusta: (a) spherical; (b) ellipsoidal; (c) toroidal; (d) hyperboloidal; (e) paraboloidal.

Fig. 2. Actions and deformations at the edges of a symmetric shell-of-revolution frustum (axis of revolution assumed to be vertical): (a) bending moments {M1, M2} and

horizontal shearing forces {H1, H2}; (b) rotations {V1, V2} and horizontal displacements {d1, d2}.
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We will adopt the coordinate f to denote the meridional angle
measured from the upward direction of the axis of revolution of
the shell, to the normal to the shell midsurface at the point in
question (Fig. 2). The alternative coordinate c denotes the
meridional angle measured from the equatorial plane E�E to the
normal to the shell midsurface at the point in question. From
the diagrams, it is clear that the relationship c ¼ (p/2)�f holds.
The parameter co is simply the value of c corresponding to the
upper edge of the shell.

We may express the bending-related edge deformations in
terms of the edge actions causing them in the following
manner [1]:

V1

d1

V2

d2

2
66664

3
77775 ¼

I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44

2
66664

3
77775

M1

H1

M2

H2

2
66664

3
77775 (1)
The Iij (i ¼ 1,y, 4; j ¼ 1,y, 4) are the influence coefficients
which, if known, enable the edge deformations caused by any
system of edge actions {M1, H1, M2, H2} to be fully evaluated. The
determination of influence coefficients for various shells has
received much attention in the past. For instance, Stern and Tsui
[4] have obtained such coefficients for thin spherical-shell frusta
on the basis of a practically exact solution for the axisymmetric
bending of the spherical shell, whereas Zingoni and Pavlovic [5]
have exploited an approximate but accurate solution for the
axisymmetric bending of non-shallow spherical shells to derive
influence coefficients for spherical-shell frusta. Both studies [4,5]
also establish criteria that enable the bending effects at one edge
of the spherical-shell frustum to be decoupled from those at the
other edge, permitting a simplification of the shell analysis.
However, the determination of influence coefficients for shells of
revolution of more complex geometry remains a computationally
challenging task, even if an exact mathematical solution for the
shell-bending problem is known for the shell geometry in
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question, since such solutions are generally cumbersome to
implement in practical shell analyses. Here, we present a strategy
that considerably simplifies the derivation of influence coeffi-
cients for symmetric shell-of-revolution frusta. Once such flex-
ibility coefficients are known, they can easily be incorporated into
computer programmes for the structural analysis of multi-shell
assemblies.

Shell behaviour here is assumed to be linear elastic, which is
generally valid for service conditions. Calculations based on the
linear-elastic small-deformation theory of shells are very useful
for gaining insight on the response of the shell under moderate
loading conditions, and many existing shell structures have been
successfully designed on the basis of this alone. Indeed modern
design standards such as Eurocode 3 (for steel structures) allow
room for such options [6,7]. Of course, nonlinear shell theories are
required for studying the full spectrum of shell response, and for
predicting shell behaviour near collapse [8]. Numerical modelling
becomes indispensable for nonlinear problems. This is particu-
larly so in the case of thin metal shells such as steel tanks and
silos, where instability phenomena dominate shell behaviour, and
the possibility of geometric imperfections has to be taken into
account [6,7]. A comprehensive review of the literature on the
buckling of thin shells has been given by Teng [9].

The analytical considerations of this paper are not material-
specific, and equally apply to any isotropic shell, provided that the
assumptions of shell behaviour being linear-elastic and shell
geometry being perfect are reasonably accurate. Although valid
for all non-shallow thin shells of revolution subjected to
axisymmetric loading conditions, the approach is particularly
useful for shells of double curvature (the type illustrated in Fig. 1).
2. Solution strategy for symmetric shell-of-revolution frusta

The strategy proposed here for the simplification of the
solution procedure for shell influence coefficients is to decompose
the system of arbitrary edge redundants {M1, H1, M2, H2} into
symmetric components {Ms, Hs} and anti-symmetric components
{Ma, Ha}, as depicted in Fig. 3. As we are concerned with only small
elastic deformations of the shell, the principle of superposition is
valid, and by reference to Fig. 3, we can write

M1 ¼ Ms þMa; H1 ¼ Hs þ Ha (2a)

M2 ¼ Ms �Ma; H2 ¼ Ha � Hs (2b)

where the symmetric and anti-symmetric components are given
by

Ms ¼
M1 þM2

2
; Hs ¼

H1 � H2

2
(3a)
Fig. 3. Decomposition of the original system of edge actions {M1, H1, M2, H2} into
Ma ¼
M1 �M2

2
; Ha ¼

H1 þ H2

2
(3b)

Finding the influence coefficients for the symmetric and anti-
symmetric sub-systems of Fig. 3 involves only two unknowns for
each sub-system, instead of the four unknowns of the original
system. If we can obtain these (i.e. the sub-system influence
coefficients), then the influence coefficients of the original system
follow via linear combinations similar to the relations given by
Eqs. (2a) and (2b).

Consider the deformations V1 and d1 at the upper edge of the
shell frustum (Fig. 2(b)). These may be written as linear
combinations of symmetric and anti-symmetric components as
follows:

V1 ¼ f 11Ms þ f 12Hs þ g11Ma þ g12Ha (4a)

d1 ¼ f 21Ms þ f 22Hs þ g21Ma þ g22Ha (4b)

Making use of the relations in Eqs. (3a) and (3b), we may
express these deformations in the form

V1 ¼ f 11
M1 þM2

2

� �
þ f 12

H1 � H2

2

� �
þ g11

M1 �M2

2

� �

þ g12
H1 þ H2

2

� �
(5a)

d1 ¼ f 21
M1 þM2

2

� �
þ f 22

H1 � H2

2

� �
þ g21

M1 �M2

2

� �

þ g22
H1 þ H2

2

� �
(5b)

leading to the matrix form

V1

d1

" #
¼

f 11 þ g11

2

� �
f 12 þ g12

2

� �
f 11 � g11

2

� �
�f 12 þ g12

2

� �

f 21 þ g21

2

� �
f 22 þ g22

2

� �
f 21 � g21

2

� �
�f 22 þ g22

2

� �
2
66664

3
77775

�

M1

H1

M2

H2

2
666664

3
777775 ¼

a11 a12 b11 b12

a21 a22 b21 b22

" # M1

H1

M2

H2

2
666664

3
777775 (6)

where the {aij, bij; i ¼ 1, 2; j ¼ 1, 2} are linear combinations of fij

and gij {i ¼ 1, 2; j ¼ 1, 2} as given on the first line.
From symmetry, and taking into account the sign convention in

Fig. 2, the full flexibility relationships (upper and lower shell
symmetric components {Ms, Hs} and anti-symmetric components {Ma, Ha}.
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edges taken together) are clearly

V1

d1

V2

d2

2
66664

3
77775 ¼

a11 a12 b11 b12

a21 a22 b21 b22

b11 b12 �a11 a12

b21 b22 a21 �a22

2
66664

3
77775

M1

H1

M2

H2

2
66664

3
77775 (7)

Thus all we need to evaluate are the eight parameters {aij, bij;
i ¼ 1, 2; j ¼ 1, 2}.
3. Application to spherical-shell frusta

Symmetric spherical-shell frusta may be regarded as ‘‘non-
shallow’’ if the angle co (Fig. 2) does not exceed 451. Many
spherical shell segments encountered in practical applications
satisfy this condition. For such non-shallow spherical shells, the
Geckeler approximation may be adopted as the theoretical basis
for the estimation of edge effects in the shell. The Geckeler
approximation is quite accurate in estimating the bending
behaviour of thin spherical shells in regions where the angular
coordinate f is greater than 451 [10]. In those symmetric frusta
where the total subtended angle 2co exceeds 901, the two edges of
the frustum would be sufficiently far apart anyway to permit a
decoupled treatment of edge effects, for which the decomposition
technique presented in this paper would not be necessary.

The Geckeler approximation applies more generally to all
relatively steep-sided shells of revolution. It exploits the rapidly
varying and highly damped character of edge bending effects,
allowing the neglecting of lower-derivative terms of the Reiss-
ner–Meissner governing differential equations of bending of shells
of revolution, in relation to higher-derivative terms [1,2]. The
bending behaviour of the shell in the edge zone has a close
analogy with the behaviour of a beam on an elastic foundation
[11], and indeed some investigators have successfully developed
solution procedures for specific shells of revolution on the basis of
this analogy [12]. Guggenberger [13] has also pointed out an
interesting analogy between shell edge bending and the deforma-
tion behaviour of a circular ring beam under eccentric axisym-
metric loading. In combination with the membrane solution,
Geckeler-type formulations provide a practical and effective
theoretical basis for estimating the stresses in discontinuity zones
of a variety of containment shell structures [14–17]. For thin
spherical shells, the Geckeler approximation results in the
equation

d4Qf

df4
þ 4l4Qf ¼ 0 (8)

where Qj is the transverse shear force per unit length of the shell
(as seen in the meridional section), f is the meridional angle
(measured as in Fig. 2) and l is the shell-slenderness parameter,
defined as follows:

l4
¼ 3ð1� n2Þ

a2

t2
(9)

The parameters n, a and t are the Poisson’s ratio of the shell
material, the shell radius and the shell thickness (assumed to be
constant), respectively. Eq. (8) is similar to the governing equation
for the axisymmetric bending of circular cylindrical shells. The
general solution of the above differential equation may be written
in terms of the angular coordinate c (refer to Fig. 2) as

Qf ¼ C1 sin lc sinh lcþ C2 sin lc cosh lc

þ C3 cos lc sinh lcþ C4 cos lc cosh lc (10)

where {C1, C2, C3, C4} are constants of integration. We may split
the solution into components belonging to the symmetric and
anti-symmetric deformation fields of the shell, as follows:

Qs ¼ C2 sin lc cosh lcþ C3 cos lc sinh lc (11a)

Qa ¼ C1 sin lc sinh lcþ C4 cos lc cosh lc (11b)

In the present approach, Eqs. (11a) and (11b) are consi-
dered separately. The objective is to obtain values of edge
deformations {Vs, ds} and {Va, da} for the symmetric and anti-
symmetric fields of deformations, respectively, on the basis of the
solutions in Eqs. (11a) and (11b). Edge-related internal stress
resultants fNb

f;N
b
yg and internal bending moments {Mf, My} per

unit length of the shell, in the meridional and hoop directions,
respectively, as well as internal deformations {Vb, db}, are given by
the following relations consistent with the Geckeler approxima-
tion [1]:

Nb
f ¼ �Qf cot f ¼ �Qf tan c (12a)

Nb
y � �

dQf

df
¼ þ

dQf

dc
(12b)

Mf � �
a

4l4

d3Qf

df3
¼ þ

a

4l4

d3Qf

dc3
(13a)

My � nMf (13b)

Vb
�

1

Et

d2Qf

df2
¼

1

Et

d2Qf

dc2
(14a)

db
� �

a

Et
ðsin fÞ

dQf

df
¼ þ

a

Et
ðcos cÞ

dQf

dc
(14b)

The superscript b simply denotes that the effects are associated
with the homogeneous bending problem (edge loading) rather
than the membrane solution (surface loading). Note that
dc ¼ �df since c ¼ (p/2)�f (Fig. 2). Stress resultants follow
the convention that tension is positive, while bending moments
are considered positive if tending to reduce the curvature of the
shell meridian (as in Fig. 2(a)).

Let us first consider the symmetric field of deformations. The
shear force Qf assumes the value Qs (Eq. (11a)). For the application
of the edge action Ms at the upper edge of the shell (Fig. 3), the
relevant boundary conditions are

ðMfÞc¼co
¼ Ms; ðNfÞc¼co

¼ 0 (15a,b)

Applying these boundary conditions to expressions (12a) and
(13a) (with Qs being given by Eq. (11a)) leads to the following
solutions for the constants C2 and C3:

C2 ¼
f 2

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

2l
a

� �
Ms (16a)

C3 ¼
�f 3

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

2l
a

� �
Ms (16b)

where the parameters {f1, f2, f3, f4} are defined as follows:

f 1 ¼ cos lco cosh lco (17a)

f 2 ¼ cos lco sinh lco (17b)

f 3 ¼ sin lco cosh lco (17c)

f 4 ¼ sin lco sinh lco (17d)

Similarly, for the application of the edge action Hs at the upper
edge of the shell (Fig. 3), the relevant boundary conditions are

ðMfÞc¼co
¼ 0; ðNfÞc¼co

¼ �Hs sin co (18a,b)
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leading to the solutions

C2 ¼
f 1 þ f 4

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
Hs cos co (19a)

C3 ¼
f 1 � f 4

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
Hs cos co (19b)

Evaluating at c ¼ co the deformations Vb and db (Eqs. (14a) and
(14b)) due to the application of Ms and those due to the
application of Hs, using the respective values of the constants C2

and C3, and superimposing the results, we obtain the deforma-
tions at the upper edge

Vs1 ¼
2l2

Et

1

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

� �

� ðf 2
2 þ f 2

3Þ
2l
a

Ms þ ff 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3ÞgHs cos co

� �
(20a)

ds1 ¼
la

Et
ðcos coÞ

1

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

� �
ff 1ðf 2 � f 3Þ
�

þf 4ðf 2 þ f 3Þg
2l
a

Ms þ fðf 1 þ f 4Þ
2
þ ðf 1 � f 4Þ

2
gHs cos co

�
(20b)

At the lower edge, we put c ¼ �co and obtain

Vs2 ¼ �
2l2

Et
ðC2f 2 � C3f 3Þ ¼ �Vs1 (21a)

ds2 ¼ þ
la

Et
ðcos coÞfC2ðf 1 þ f 4Þ þ C3ðf 1 � f 4Þg ¼ ds1 (21b)

as expected from symmetry.
We may therefore finally write the edge deformations for the

symmetric field as follows:

Vs

ds

" #
¼

1

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

�

ðf 2
2 þ f 2

3Þ
4l3

Eat
ff 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þg

2l2

Et
cos co

ff 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þg
2l2

Et
cos co fðf 1 þ f 4Þ

2
þ ðf 1 � f 4Þ

2
g
la

Et
cos2 co

2
66664

3
77775

Ms

Hs

2
666664

3
777775 (22)

The above is the symmetric part of Eqs. (4a) and (4b):

Vs

ds

" #
¼

f 11 f 12

f 21 f 22

" #
Ms

Hs

" #
(23)

For the anti-symmetric field of deformations, the shear force Qf

assumes the value Qa (Eq. (11b)). We proceed in exactly the same
steps as before, and end up with the following results for the edge
deformations for the anti-symmetric field:

Va

da

" #
¼

1

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

�

ðf 2
1 þ f 2

4Þ
4l3

Eat
ff 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þg

2l2

Et
cos co

ff 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þg
2l2

Et
cos co fðf 2 þ f 3Þ

2
þ ðf 2 � f 3Þ

2
g
la

Et
cos2 co

2
66664

3
77775

Ma

Ha

2
666664

3
777775 (24)
The above is the anti-symmetric part of Eqs. (4a) and (4b):

Va

da

" #
¼

g11 g12

g21 g22

" #
Ma

Ha

" #
(25)

4. Final influence coefficients for the spherical shell

The full set of 16 influence coefficients for the bending of the
symmetric spherical-shell frustum is given by Eq. (7), where the
eight parameters {aij, bij; i ¼ 1, 2; j ¼ 1, 2} are the linear
combinations of the fij and gij {i ¼ 1, 2; j ¼ 1, 2} as given in
Eq. (6). The results for the fij are given by Eq. (22) read in
conjunction with Eq. (23), while those for the gij are given by
Eq. (24) read in conjunction with Eq. (25). Evaluating the aij and bij

in accordance with the linear combinations of Eq. (6), we obtain
the coefficients

a11 ¼
f 2

2 þ f 2
3

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
þ

f 2
1 þ f 2

4

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

( )

�
2l3

Eat
¼ A11

2l3

Eat

a12 ¼
f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
þ

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

� �

�
l2

Et
cos co ¼ A12

l2

Et
cos co

b11 ¼
f 2

2 þ f 2
3

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
�

f 2
1 þ f 2

4

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

( )

�
2l3

Eat
¼ B11

2l3

Eat

b12 ¼ �
f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
þ

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

� �

�
l2

Et
cos co ¼ B12

l2

Et
cos co

a21 ¼ a12

a22 ¼
ðf 1 þ f 4Þ

2
þ ðf 1 � f 4Þ

2

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
þ
ðf 2 þ f 3Þ

2
þ ðf 2 � f 3Þ

2

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

( )

�
la

2Et
cos2 co ¼ A22

la

2Et
cos2 co

b21 ¼ � b12

b22 ¼ �
ðf 1 þ f 4Þ

2
þ ðf 1 � f 4Þ

2

f 1ðf 2 þ f 3Þ � f 4ðf 2 � f 3Þ
þ
ðf 2 þ f 3Þ

2
þ ðf 2 � f 3Þ

2

f 1ðf 2 � f 3Þ þ f 4ðf 2 þ f 3Þ

( )

�
la

2Et
cos2 co ¼ B22

la

2Et
cos2 co (26a 2 h)

with the fi (i ¼ 1,y, 4) as previously defined (Eqs. (17a)–(17d)).
The non-dimensional influence coefficients {Aij, Bij} (correspond-
ing to the {aij, bij}) are the terms in the braces of the above
equations, and significantly, these are functions of only one
parameter lco.

Denoting by Z the parameter lco, we may plot the results for
the non-dimensional influence coefficients {A11, A12, A22, B11, B12,
B22} versus Z. These plots are shown in Fig. 4, which may be used
to read off the non-dimensional values for a shell frustum of any
given radius a, shell thickness t or half-angle of opening co, and
converted to actual influence coefficients via the multiplying
factors in Eqs. (26a–h).

In these plots, notice that as the parameter Z increases beyond
Z ¼ 1.2, the coefficients A11 and A12 closely approach the limiting
value of 2.0 while A22 approaches the limiting value of 4.0. The
coefficients B11, B12 and B22 tend towards zero but more slowly,
only becoming rather insignificant when Z exceeds 1.7. These
limiting values for the non-dimensional influence coefficients are,
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Fig. 4. Plots of non-dimensional influence coefficients {Aij, Bij} for a symmetric spherical-shell frustum.
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of course, the values corresponding to a decoupled analysis of
edge effects, so in this sense the plots also provide pictorial
estimates of the errors inherent in the common simplification of
ignoring edge interaction in shell frusta.
5. Validation of results

The 16 influence coefficients for a general non-shallow
spherical frustum (refer to Eq. (1)) have been previously derived
via a computationally challenging conventional procedure that
culminated in the following closed-form results for the influence
coefficients [5]:

I11 ¼
4l3

Eat
1þ

2

K
f1þ 2 sin2 bþ sin 2b� e�2bg

� �
(27a)

I12 ¼
2l2

Et
ðsin f1Þ 1þ

2

K
f1þ 2 sin2 b� cos 2bg

� �
(27b)

I13 ¼ �
4l3

Eat

2

K
febðsin bþ cos bÞ þ e�bðsin b� cos bÞg

� �
(27c)

I14 ¼
2l2

Et
ðsin f2Þ

4

K
sin bðeb � e�bÞ

� �
(27d)

I21 ¼ I12 (27e)

I22 ¼
2la

Et
ðsin2 f1Þ 1þ

2

K
f1þ 2 sin2 b� sin 2b� e�2bg

� �
(27f)

I23 ¼ �
sin f1

sin f2

� �
I14 (27g)

I24 ¼
2la

Et
ðsin f1Þðsin f2Þ

2

K
febðsin b� cos bÞ þ e�bðsin bþ cos bÞg

� �
(27h)

I31 ¼ �I13 (27i)

I32 ¼ �I23 ¼
sin f1

sin f2

� �
I14 (27j)

I33 ¼ �I11 (27k)
I34 ¼
sin f2

sin f1

� �
I12 (27l)

I41 ¼ �I14 (27m)

I42 ¼ �I24 (27n)

I43 ¼ I34 ¼
sin f2

sin f1

� �
I12 (27o)

I44 ¼ �
sin2 f2

sin2 f1

 !
I22 (27p)

where f1 and f2 are the values of the meridional-angle
coordinate f (refer to Fig. 2) corresponding to the upper and
lower edges, respectively, of the shell frustum, and the parameters
b and K are defined as follows:

b ¼ lðf2 �f1Þ (28a)

K ¼ e2b þ e�2b � 2ð1þ 2 sin2 bÞ (28b)

Let us consider a numerical example, and compare the influence
coefficients calculated on the basis of the present approach with
those computed from Eqs. (27a)–(27p) above. The parameters
chosen for the numerical example are

a

t
¼ 100; n ¼ 0:15; co ¼ 10� ¼ 0:1745;

ðf2 � f1Þ ¼ 2co ¼ 20� ¼ 0:3490

From Eq. (9), l ¼ 13.0861. Therefore Z ¼ lco ¼ 2.2835.
From Eqs. (17a)–(17d), f1 ¼ �3.2409; f2 ¼ �3.1743; f3 ¼

+3.7500; f4 ¼ +3.6729.
From Eqs. (28a) and (28b), b ¼ 4.5670; K ¼ 9259.0920.
Table 1 compares the influence coefficients aij and bij (i ¼ 1, 2;

j ¼ 1, 2) as calculated using the present formulation for the
symmetric spherical-shell frustum, versus their counterparts
using the conventional approach of Ref. [5] (i.e. Eqs. (27a)–(27p)
above). The results agree exactly (the tiny discrepancies are just
rounding-off arithmetical errors), showing that the newly pro-
posed formulation is completely valid and capable of giving the
correct results.
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Table 1
Validation of proposed formulation.

Results of present symmetric

formulation

Results of conventional flexibility

formulation [5]

a11 ¼ 2.0014(2l3/Eat) I11 ¼ 2.0014(2l3/Eat)

a12 ¼ 2.0018(l2/Et)cosco ¼ a21 I12 ¼ 2.0016(l2/Et)cosco ¼ I21

b11 ¼ 0.0472(2l3/Eat) I13 ¼ 0.0472(2l3/Eat)

b12 ¼ �0.0824(l2/Et)cosco ¼ �b21 I14 ¼ �0.0822(l2/Et)cosco ¼ �I23

a22 ¼ 4.0024(la/2Et)cos2co I22 ¼ 4.0024(la/2Et)cos2co

b22 ¼ �0.0700(la/2Et)cos2co I24 ¼ �0.0704(la/2Et)cos2co
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6. Concluding remarks

In this article, a new approach has been presented for the
computation of influence coefficients for frusta of thin shells of
revolution that have symmetry about the equatorial plane. The
key feature of the method is the decomposition of the deforma-
tion field into symmetric and anti-symmetric components,
allowing the solution for constants of integration of the homo-
geneous shell-bending problem to be determined relatively easily.
The influence coefficients of the original problem are obtained by
linearly combining coefficients for the symmetric and anti-
symmetric deformation fields. The procedure has been applied
to the case of a spherical-shell frustum, and a numerical example
used to validate the method.

The present method considerably simplifies the determination
of influence coefficients for shells of revolution in question, and is
particularly useful for tackling unusual shell geometries for which
the governing equations of bending are difficult to solve. Even
where the geometry of the shell midsurface is of well-known form
(spherical, parabolic, ellipsoidal, toroidal, etc.), the thickness
variation of the shell may be such that the governing shell-
bending equations are complicated, and the homogeneous
solution too cumbersome to apply. The proposed approach may
be used to simplify the flexibility formulation of the problem.

In this study we have used the decomposition technique to
generate closed-form analytical results for influence coefficients
more conveniently. For shell-bending problems not amenable to
exact mathematical solution, the present strategy can still be used
in conjunction with numerical techniques (such as the differential
quadrature method [18]) to simplify the solution of the relevant
algebraic equations.
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