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According to the method of state-space averaging, when a 

pulsewidth modulation (PWM) converter enters discontinuous 

conduction mode, the inductor current state is lost from the 

average model of the converter. In this work, it is shown that 
there is neither theoretical nor experimental justification of the 

disappearance of the inductor state as claimed by the method of 
state-space averaging. For example, when the model of the PWM 
switch in discontinuous conduction mode (DCM) is substituted 
in the buck, boost, or buck-boost converter while the inductor 

is left intact, the average model has two poles. The first pole 
f p l  agrees with the single pole of state-space averaging, while 

the second pole f p 2  occurs in the range fp2 2 F,/ir. It is also 
shown that the right-half plane zeros in the control-to-output 
transfer functions of the boost, buck-boost and Cuk converters 

in continuous conduction mode are also present in discontinuous 

conduction mode as well. 
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INTRODUCTION 

In this article the model of the pulsewidth 
modulation (PWM) switch in discontinuous conduction 
mode (DCM) is developed and used in the analysis 
of PWM converters operating in DCM. As in the 
case of continuous conduction mode (CCM) [3] ,  the 
model of the PWM switch in DCM represents the 
dc and small-signal characteristics of the nonlinear 
part of the converter which consists of the active and 
passive switch pair as shown in Fig. 1. In contrast to 
the model in CCM, the model of the PWM switch in 
DCM contains small-signal resistances which damp the 
low-pass filter to the point where two real poles are 
formed. The physical significance of these small-signal 
resistances is easy to understand as they represent the 
load dependent nature of the conversion ratio of these 
converters in DCM. The motivation and advantages 
behind the method of analysis presented here are 
discussed in Part I of this paper [3]. 

Whereas, use of the model of the PWM switch 
in CCM yields the same results as those given by 
the method of state-space averaging, in DCM the 
model of the PWM switch yields results which are 
diferent than those given by state-space averaging 
[l]. The fundamental difference between the two 
methods is that state-space averaging predicts that 
the discontinuous current state does not contribute to 
the order of the average model while the PWM switch 
model predicts otherwise. 

Fig. 1. PWM switch in “common-common” configuration. 

Prior to the development of the methods of analysis 
known today, power supply designers observed the 
transient response of power supplies in continuous 
and discontinuous conduction mode. For the buck, 
boost, and buck-boost converters operating in CCM, 
the transient response was clearly seen to be second 
order. In DCM, however, the transient response of 
these converters seemed to be first order. The methods 
of analysis that were developed later, namely the 
method of state-space averaging [l], literally were 
constrained to yield results that would corroborate 
the observed first-order transient response. The phase 
response in a simple frequency-response measurement 
(up to one-half the switching frequency), however, 
clearly shows that the system is still a second-order 
system. The model of the PWM switch in DCM 
explains these results in a very simple and succinct 
way. When the model of the PWM switch in DCM 
is substituted in the converter while the inductor is 
left intact, the system has two real poles. The first 
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pole f,l is the same as that given by state-space 
averaging, while the second pole fp2 occurs in the 
range f p 2  2 F,/T. The contribution of the second pole 
on the phase response can be significant and easily 
verifiable in the frequency range below one-half the 
switching frequency. Furthermore, since the second 
pole corresponds to a time constant shorter than half 
the switching period, its contribution to the transient 
response will decay in one switching period or less, 
and hence the observed transient response will be 
dominated by the first pole. 

The purpose of this article is two fold: first, to 
present a simple and circuit-oriented approach to 
the analysis of converters in DCM, and second, to 
show that there is simply neither theoretical nor 
experimental justification to the disappearance of the 
discontinuous current state from the average model as 
previously believed and later advocated by the method 
of state-space averaging [l]. 

DC AND SMALL-SIGNAL MODEL OF PWM SWITCH 
IN DCM 

As in the case of the model of the PWM switch in 
CCM [3], the relationship between the average and 
instantaneous terminal voltages remains invariant 
no matter which converter the PWM switch is 
implemented in. Fig. 1 shows the buck-boost converter 
operating in DCM which corresponds to the PWM 
switch in the “common-common’’ configuration. In 
Part I, we considered the model of the PWM switch 
in CCM in the “common-passive” configuration which 
corresponds to the buck converter. The terminal 
voltages and currents of the PWM switch are defined 
in Fig. 2 and the instantaneous terminal currents are 
shown in Fig. 3. According to Fig. 3, the following 
expressions for the average terminal currents and 
voltages can be easily verified 

. i  
1, = +d  

LPk vcp = L-. 
d2Ts 

From these equations the following relationships 
between the average terminal voltages and currents 
can be deduced: 

. d .  
la = - 

d2 

d2 
d Vac = -Vcp 

(3) 

(4) 

2LF, i, 2LF, i, 
(7) d2 = -- - 

d vcp d vac’ 

,“ ‘p 

c 

Fig. 2. Voltages and currents of PWh4 switch. 

p 7, _i 

Fig. 3. Terminal currents of PWM witch in DCM. 

L-6’ 
Fig. 4. Average model of PWM witch in DCM. 

The average model follows from (5)-(7) as shown in 
Fig. 4 where 

Vcp = P V a c  

i, =pi, 

(SC) 
d2 vcp - d2 vac 

p = - - - - -  2LFs i, 2LFs i, ’ 

When the average model is used in the dc analysis of 
PWM converters in DCM, the quantities in (8) are 
replaced by their dc values, i.e., D, V,,, I,, etc. 

The small-signal model is obtained from the 
relationship among the perturbation in average 
terminal quantities at a given dc operating point 
(Ip,Vac,D). Hence, perturbation of (5) and (7) results 
in (after some algebra) 

i, = O a C g  + kid (9a) 
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Fig. 6. Buck converter. 

fig. 5. Smallsignal model of PWM switch in DCM. I' 

where / i l T - a - - j - j  + 
- / r  Vac R 1,'" 

gi = - l a  (9b) ''E - 
V,C 

2 Za 

D '  
ki = - (") Fig. 7. Buck converter to be anilyzed for dc characteristics in 

DCM. 
Perturbation of (6) and (7) results in 

2, = gf 9,, + koa - goD,, (loa) Buck Converter in DCM 

The buck converter shown in Fig. 6 is analyzed for 
dc characteristics, line-to-output, and control-to-output 

DC Analysis: Under dc conditions, point-by-point 
substitution of the average PWM switch model of Fig. 
4 in the buck converter results in the circuit in Fig. 7 

where 

21, 
D (lob) transfer functions. 

ko = - 

(Ioc) 
ZP go = - 

V C P  

21, (lodl from which we get gf = -. 
Vac 

Equations (sa) and (loa) correspond to the equivalent 
circuit model shown in Fig. 5. 

VO = pVac = p(Vg - VO) (11) 

which gives 

(12) 
M = - = L  VO 

Vg 1 + 1 / p '  ANALYSIS OF PWM CONVERTERS USING MODEL 
OF PWM SWITCH IN DCM Next, the amplification factor p of the switch is 

determined in terms of the converter quantities as 
follows: 

In this section the model of the PWM switch 
in DCM is used to analyze the buck, boost, 
buck-boost, and Cuk converters in DCM. The 
buck and Cuk converters are analyzed in detail 
and their experimental and predicted results are 
compared. Whereas, the buck, boost, and buck-boost 

and small-signal characteristics using the method 
of state-space averaging [l], the Cuk converter has 
been analyzed only for dc characteristics while its 

experimentally [2]. Perhaps, the lack of analysis of 

(13) 
D2 I/., - D2 Vo - D2 

2LFs I;,, K M  

2LFs 
(14) 

where 
converters have been analyzed previously for dc M = 45. K = -  

Io ' R .  

Substitution of (13) in (12) gives 

(15) 
1 M = -  K M  

l+-  
0 2  

small-signal characteristics have been determined only 

the Cuk converter in DCM is due to the complicated 
method of state-space averaging as mentioned in [2]. 
Hence, once again, in order to fully appreciate the 
model of the PWM switch, one should go through 
the analysis of the Cuk converter in DCM using the 
method of state-space averaging outlined in [l], which 
to the best of the author's knowledge has not been 
done, and compare it with the method given here 
using the model of the PWM switch. Furthermore, 
it should be more satisfying to use the simple model 
of the PWM switch and obtain more accurate results 
than to use the more complex method of state-space 
averaging and obtain less accurate results. 

which is a quadratic equation in M the root of which is 
given by 

,l 
L 

1 + JTTGqiF. 
M =  

The critical value of K which determines the boundary 
between DCM and CCM can be obtained from (15) by 
letting M = D, which is the value of M in CCM, and 
obtain 

(17) Kcrit = 1 - D. 

This completes the dc analysis of the buck in DCM. 
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Fig. 8. Buck converter to be analyzed for control-to-output 
transfer function in DCM. 

Control-to-Ouput lhnsjier Function: To perform 
this analysis, we substitute the model of the PWh4 
switch in DCM in the buck converter and we short 
Vg as shown in Fig. 8. The small-signal current source 
gfi),, connected between terminals a and c acts like 
a conductance gf as can be easily verified. Hence, the 
three conductances go, g;, and gf can be combined into 
a single conductance while the two controlled current 
sources can be combined in a single current source as 
shown in Fig. 9 where 

kd = k; + ko. (18b) 

Next, we evaluate the small-signal parameters at the dc 
operating point using (9) and (10) as follows: 

Likewise, for r we obtain after afew lines of algebra 
and assuming rLf is negligible in the dc analysis: 

1 
r =  = R ( l -  M ) .  

gi +go + gf 
The control-to-output transfer function can be 
obtained from Fig. 9 

CO - 1 + S/SZI - -  a Hd 1 + als + a2s2 

where 
210 r R  
D r + R + r L f  

Hd = - 

rc, + R  
a2 = LCf 

rL, + r + R '  

Although at this point the control-to-output 
transfer function is completely determined, we should 
perform some analytical simplifications in order to see 
if familiar results known from state-space averaging [l] 
are present in (22). To do so, we rewrite a1 assuming 

Fig. 9. Simplification of circuit in Fig. 8. 

rCf = rL f  = 0 and obtain 

The second term in the brackets can be shown to 
be much less than unity by writing it as follows 

(23) 
- Ts K 1 L  1 

R C f R 1 - M  2 R C f 1 - M '  

But, from (15) we have 
2 1 - M  

K 
-= (g) 

so that (23) can be written as 

The above inequality is true because of two reasons. 
First, the switching time is much shorter than the 
output filter time constant and second, D < M because 
the conversion ratio in CCM ( D )  is less than the 
conversion ratio in DCM for a given D. Hence, we 
have 

1 - M  
a1 2: RCf- 

2 - M '  
Using the inequality in (25), we can show that 

a 2  

a1 
a1 >> - 

so that the quadratic can be factored as 

where 
1 1 2 - M  

R C l - M  
s 1 = - = -  

sp2 = - a 2  = 2 F s ( g )  . 
2 

It can be seen now that the dominant pole is given by 
(27a) which is the same as the single pole given by 
state averaging [l]. There is a second pole, however, 
which satisfies the following general inequality: 

sp2 Fs 
p2 - 2n n 
f - - > - H Z  

which can be easily verified from (27b), as explained 
earlier, by noting that the conversion ratio M in DCM 
is always larger than the conversion ratio in CCM, 
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Fig. 11. Analysis of buck converter for line-toxmtput transfer 
function in DCM. 

vs 

C 

Fig. 12. Cuk converter. 

small-signal perturbation 6, and remove the duty-ratio 
controlled sources k,d and kod from the model of 
PWM switch as shown in Fig. 11. The line-to-output 
transfer function has exactly the same form as the 
control-to-output transfer function in (21) except that 
the low-frequency asymptote is given by M :  

1000 10000 100 

Mapn fude (de! PnPOe I O W !  4 0  

(28) 
00 - 1 + S/&l  

6, 
- -  

AI 1 + a1s + a2s2 

where M ,  s,1, a l ,  and a2 are given in (16) and 
(22b)-(22d). 

10000 Cuk Converter in DCM 
Fig. 10. Experimental and predicted control-toaxput transfer 

function of buck converter for 3 cases of DCM. 

which for the buck converter is given by D. The second 
pole starts at F,/T Hz when the converter is operating 
at the boundary between DCM and CCM and begins 
to move outwards as the converter enters deeper into 
DCM. This result is general and is common to the 
buck, boost, buck-boost, and Cuk converters. It is 
clear then why the contribution of this pole to the 
magnitude response is hardly noticeable but to the 
phase response it is quite noticeable. 

A buck converter was built with the following 
circuit parameters: Lf = 380 pH, Cf = 29 pF, rL, = 
0.120, D = 0.24, F, = 20 KHz, and R = 31, 71, 91R. 
(The zero owing to the ESR of the output filter 
capacitor was in the range of a few hundred kilohertz 
because the capacitor consisted of ten multilayer 
ceramic capacitors in parallel which have negligible 
ESR.) The experimental and predicted results are 
shown in Fig. 10 for three different cases as the 
converter enters deeper into DCM, i.e., R = 31, 
71, 91R. The phase response clearly shows that the 
converter in DCM is still a second-order system and 
not a first-order system as assumed in [l]. 

Open-Loop Line-to-& p u t  Dunsfer Function: 
To perform this analysis, we replace V, with a 

In this section, the Cuk converter shown in Fig. 12 
is analyzed for dc characteristics, control-to-output, 
and line-to-output transfer functions. The dc 
characteristics of this converter in DCM are analyzed 
in detail in [2], but its small-signal characteristics are 
determined only experimentally in [2]. 

Two things are shown here. First, using the model 
of the PWM switch one can determine the small-signal 
characteristics as easily as the dc characteristics. 
Second, the small-signal transfer functions predicted 
in this section agree very well with the experimental 
results given in [2] and confirm the fact that the Cuk 
converter in DCM is a fourth-order system and nor a 
third-order system (because of the disappearance of 
the sum of the inductor current states as claimed in 
[21*) 

DCAnatysis: As in the case of the buck converter, 
point-by-point substitution of the model of the PWM 
switch in the Cuk converter results in the circuit of Fig. 
13 from which we get 

(29) 

The amplification factor p is determined next in terms 
of the converter quantities as follows: 
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Fig. 13. Cuk converter to be analyzed for dc characteristics 

where we have made use of the fact that Vac = Vg, 
Ip = Vo/R. Also, when writing LlllL.2 we have used 
the fact that the current through the active and passive 
terminals is determined by the sum of the currents 
in L1 and L2. Substitution of (30) in (29) results in a 
quadratic equation in M 

which gives 

The critical value of K which determines the boundary 
between CCM and DCM is obtained by letting 
M = D/D’ ,  which is the conversion ratio of the Cuk 
converter in CCM, in (31): 

Kc = Df2.  (33) 

This completes the analysis of the dc characteristics of 
the Cuk converter in DCM. 

Open-Loop Line-to-Ouqut Dansfer Function: 
Point-by-point substitution of the model of the PWM 
switch in DCM in the Cuk converter results in the 
circuit of Fig. 14. The duty-ratio controlled sources are 
removed for the purpose of determining the open-loop 
line-to-output transfer function. The expected form of 
the line-to-output transfer function is of the form 

(34) 

where 

D(s )  = 1 + a1s + 4 2 9 2  + a3s3 + a4s4 

and N ( s )  and D ( s )  are to be determined. Before 
proceeding, the small-signal parameters arc evaluated 
at the operating point as follows: 

As explained in Part I of this paper [3] ,  we can use 
certain network tricks to determine the numerator and 
denominator of a transfer function. These methods 

Fig. 14. Cuk converter to be analyzed for line-to-output transfer 
function. Null conditions for determination of zero due to filter 

current is indicated. 

are also discussed in [4]. I will only discuss here the 
determination of the zeros of (34) which correspond to 
the nulls of the transform output voltage and transform 
filter current. The first null of the transform output 
voltage is clearly given by the null of the impedance 
across it. Hence, one of the nulls is simply given by the 
zero due to the ESR of the output filter capacitor: 

~ 
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The condition of the second zero is given by the null in 
the filter current iL2(s,2) = 0 as shown in Fig. 14. The 
conditions of this second null imply 

which gives a right-half plane zero 

where we have made use of (35b). Hence the 
numerator in (34) is given by 

(37) 

In order to determine the coefficients a; in the 
denominator, one can use the method of time 
constants as explained in [4]. I only give the results 
here (assuming negligible parasitics) and show 
how the fourth-order denominator can b e  factored 
approximately in analytical form and gain valuable 
insight into the dynamics of the converter. The 
denominator in factored form is given by 

D(s)  = (1 + $) (1 + $) (1 + S/WOQ + s2 /u!)  

(39) 
where 



Fig. 15. Experimentally determined line-to-output transfer function 
of Cuk converter in DCM as given in [2]. 

where 

It can be seen that in addition to the dominant pole 
spl ,  there is a second real pole sp2 which has the 
general behavior as explained in (27c). The frequency 
of the quadratic term W O  lies between the two real 
poles. The fact that 1 f Q is equal to the difference of 
two factors accounts for the high Q typically observed 
with the Cuk converter. 

The experimental Cuk converter discussed in [2] 
has the following circuit parameters: Cf = C, = 47pF, 
L1 = L2 = 1 mH, D = 0.37, F, = 20 KHz, and R = 
750. The following components of the line-to-output 
transfer function are computed: M = 0.77, fz2 = 69 Hz 
(right-half-plane zero), fpl = 45 Hz, f p 2  = 8.79 KHz, 
fo = W O  f 2 ~  = 734 Hz, and Q = 16. 

The experimentally determined line-to-output 
transfer function reported in [2, Fig. (26)] is shown 
here in Fig. 15. The predicted results using the model 
of the PWM switch in DCM given in (34), (38), (39) 
are shown in Fig. 16. The remarkably good agreement 
between the experimental and predicted results 
leaves no doubt that the Cuk converter in DCM is a 
fourth-order system and not a third-order system as 
claimed in [2]. In particular, the reader should see 
that the phase shift in excess of 360 degrees is clearly 
indicative of the system being fourth-order with a 
right-half-plane zero. 

Control-to-Output Danger Function: The model 
of the PWM switch in DCM is substituted in the Cuk 
converter and Vg is shorted as shown in Fig. 17. The 
control-to-output transfer function is expected to be of 

Fig. 16. Predicted line-to-output transfer function of Cuk 
converter in DCM using model of PWM switch in DCM. 

Agreement with Fig. 15 is very good. 

the form 

where 

and D(s)  is exactly the same as in (39) and (40). 
Therefore, all we need to determine is the numerator 
C(s)  in (41). As discussed earlier, the numerator of a 
transfer function corresponds to the null conditions 
of a transfer function which for the Cuk converter are 
shown in Fig. 17. The first null condition due to the 
ESR of the output filter capacitor is the same as in 
the case of the line-to-output transfer function and is 
given by (36). The second null condition is given by the 
current in the output filter inductor as shown in Fig. 17 
which for &(s) = 0 shows 

which gives 
koa 

Vac = -gf  + SC, 

Also, we have 

gi II - 
Substitution of (42b) in (43) yields a quadratic 

Finally, substitution of the small-signal parameters 
evaluated at the operating point given in (35) gives the 
numerator C(s)  

s s2 
C ( s ) =  1+-  l-- ( s:~) ( uaQa '2) (44b) 
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1 - u  fig.  17. Cuk converter to be analyzed for control-to-output iOHc 10011z 1 I\HL I U W i Z  

transfer function in DCM' condition corresponding lo zero F,g, 19. predicted contro~~to~output transfer function using model 
of PWM switch in DCM. Agreement with Fig. 18 is very good. due to filter current is shown. 

'\ I - -  \ 
. . -. phose 

0 . 0 3 7  L , = L 2 : l m H  
0,: 0 .5  R , , = H I Z ~ 0 . 3 5 1 ~  

I 
i O O m  IUHZ 

Fig. 18. Experimentally determined control-to-output transfer 
function of Cuk converter in DCM as given in [2].  

where 

1 - W ,  L* M~ 
Qa R 

The quadratic in the numerator corresponds to 
complex right-half-plane zeroes (and not left-half-plane 
zeros as believed in [2]). The experimentally 
determined control-to-output transfer function as 
reported in [2, Fig. (27)] is shown here in Fig. 18. The 
predicted results obtained are shown in Fig. 19. Once 
again, the good agreement between the experimental 
and predicted results confirms the validity of the switch 
model and the fact that the Cuk converter in DCM 
is still a fourth-order system. In particular, the reader 
should pay close attention to the drooping phase past 
the two sharp Q points. (Note: owing, to the high Q in 
the numerator and the denominator, the phase in the 
vicinity of wa and W O  goes through a very sharp drop of 
360 degrees. This may cause the measuring instrument 
to flip the measurement and maintain the reading 
between 180 and -180 degrees, giving the impression 
that the complex zeros are in the left-half-plane (as 
was believed in [2]) as shown in Fig. 18. In order for 
the predicted phase response to look the same as the 

one in Fig. 18, the calculating routine was requested 
to maintain its phase in the range of 180 and -180 
degrees.) 

ZEROS OF CONTROL-TO-OUTPUT TRANSFER 
FUNCTION IN DCM 

In addition to the widespread belief that the 
order of PWM converters in DCM is less than their 
order in CCM by one, there exists the myth that the 
right-half-plane zero in the control-to-output transfer 
function of the boost and buck-boost converters in 
CCM simply disappears in DCM. If we look at the 
complex right-half-plane zero of the Cuk converter in 
DCM given by (44), (45), we find that it has exactly the 
same dependence on the circuit parameters and M as 
does the complex right-half-plane zero in CCM. The 
complex right-half-plane zero of the Cuk converter in 
CCM is determined in [5] to be 

Substitution of the conversion ratio M = D/D' in 
(46a) and (46b) yields the same results given in (45b) 
and (45c). The same holds true for the right-half-plane 
zeros of the boost and buck-boost converters. 

Boost Converter in DCM 

The control-to-output transfer function of the boost 
converter in DCM can be shown to be given by 

where sZ1 is the usual zero due to the output filter 
capacitor given in (36) and 

R 
sz2 = - 

M 2  Lf 

2M-1 1 
,y ___- 
p l =  M - 1  RCf 
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We see that the right-half-plane zero has exactly the 
same dependence on the circuit parameters in DCM 
as in CCM because the right-half-plane zero in CCM 
is given by s22 = RD'2 /L f .  The relative position of the 
right-half-plane zero to the second pole can be easily 
determined and is given by 

CONCLUSIONS 

The model of the PWM switch in DCM, developed 
here, provides a simple and circuit-oriented approach 
to the analysis of PWM converters in DCM. In 
contrast to the model of the PWM switch in CCM, 
the model in DCM contains small-signal resistances 
which damp the low-pass filter to the point where two 
real poles appear. The first pole coincides with the 
well-known pole of state-space averaging, whereas the 
second pole f p 2  occurs in the range f p 2  2 F,/w. 

For the first time, it is shown that the transition 

s*2 = - sp2 > 2Fs. 
1 - 1/M (49) 

from continuous to discontinuous conduction mode 
of operation is not accompanied by a reduction in 
the order of the average model of the  converter. The 
average model in both cases is of the same order, the 
difference being only in the damping. 

Hence, s22 occurs always after the second pole since 
M > 1 for the boost converter. 

Buck-Boost Converter in DCM REFERENCES 

For the buck-boost converter the zeros and the 
poles of the control-to-output transfer function are 
given by 

R 
M(1+ M ) L f  $22 = 

2 ~ 

s -- 
p 1  - RCf 

Again it can be easily seen that the right-half-plane 
zero has the same dependence on M and the circuit 
parameters as the right-half-plane zero in CCM. The 
relative position of s22 to sp2 is given by 

s22 = sP2(1 + 1/M) > 2Fs. (51) 

Hence, as in the case of the boost converter, s,z occurs 
after sp2. 
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