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ABSTRACT 
This paper is devoted to construction of a mathematical model combining simplicity for practical usage 
and high accuracy. It is based on the solution of an axisymmetric contact problem on penetration of a 
rigid indenter into an elastic half-space with a functionally graded or homogeneous coating. The 
problem is reduced to solution of a dual integral equation. Asymptotically exact expressions for 
indentation force, depth, contact stiffness and distribution of contact pressures are obtained in simplified 
analytical form using one-parameter approximation of the integral equation kernel transform. 
Numerical calculations are provided for a number of homogeneous and functionally graded coatings. 
Accuracy of the solution is analyzed against ratio of Young’s moduli of coating and substrate and the 
value of relative coating thickness. 
Keywords:  contact, penetration, spherical indenter, simple analytical solution, functionally graded 

coating. 

1  INTRODUCTION 
One of the ways to improve reliability and increase the service life of machine parts, elements 
of building structures, components of micro- and nanoelectronics as well as other products 
of modern industry is the modification of the initial surface of products by applying protective 
coatings. Such coatings can have a multilayer or functionally graded structure. In practice, 
nanoindentation is one of commonly used approaches to determine the mechanical 
characteristics of coatings. 
     To interpret the nanoindentation results, methods based on mathematical models that use 
solutions of classical contact problems for isotropic homogeneous materials are widely used. 
Oliver and Pharr proposed [1] and then modernized [2] a method for determining the hardness 
and Young’s modulus of homogeneous isotropic materials, which is based on the Sneddon’s 
solution for an axisymmetric indenter [3]. Field and Swain [4] for the interpretation of the 
spherical indentation results proposed a method that uses Hertz’s solution of the problem of 
a spherical indenter penetration into a homogeneous half-space. Despite the fact that these 
methods do not take into account the influence of the substrate on the experimental results, 
under certain experimental conditions (indentation depth does not exceed 10% of the coating 
thickness [5]) and certain ratios of the mechanical properties of the coating and substrate [6]–
[9] the properties of homogeneous coatings can be recovered. However, applying such 
methods in case of significant difference in Young’s moduli of the coating and substrate can 
lead to significant underestimation or overestimation of reconstructed value of Young’s 
modulus of the coating. In addition, this approach cannot be used to determine the Young’s 
modulus of thin coatings, since the required indentation depth becomes comparable to the 
surface roughness height. In this situation, mathematical models based on contact problems 
for coated solids can be effectively used. 
     Plane and axisymmetric contact problems for elastic solids with coatings with arbitrarily 
varying elastic properties in depth were studied by Ke and Wang [10] and Liu et al. [11]. 
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They used an approximation of the function describing the variation of the Young’s modulus 
by a piecewise linear function. The singular integral equation of the problem was solved by 
the collocation method. Guler and Erdogan [12] constructed a solution of the plane contact 
problem on indentation considering the exponential variation of the elastic moduli by depth 
using similar collocation technique. Argatov et al. [13]–[16] developed mathematical models 
for nanoindentation of samples with a single-layer uniform thick coating using the indenters 
of various shapes. 
     In the papers by Aizikovich [21], Vasiliev et al. [17]–[19] and Volkov et al. [20] solution 
of axisymmetric and plane contact problems for elastic solids with a functionally graded 
coating were constructed using the bilateral asymptotic method. This approach has a few 
advantages. It effectively works for the entire range of values of the relative thickness of the 
coating; arbitrary variation of elastic properties in depth may be modeled. Also, the problem 
solutions are constructed in analytical form. However, the developed models are 
multiparameter, and it is rather difficult to use them in practice. 
     This paper is devoted to the construction of a simplified mathematical model of a spherical 
stamp indentation, allowing to take into account both the elastic properties of the coating and 
the contribution of the substrate. The model is based on the solution of an axisymmetric 
contact problem on indentation of an elastic half-space with functionally graded or 
homogeneous coating by a rigid punch. The solution is also constructed using the bilateral 
asymptotic method [21]. The main difference from the results obtained before is in the fact 
that the kernel transform is approximated by a ratio of two quadratic functions containing 
only one parameter. In this case, the scheme for construction of an approximated analytical 
solution is substantially simplified in comparison with the general case [17]–[20], in which 
the product of quadratic-fractional functions is used. The use of simple one-parameter 
approximation makes it possible to obtain the solution of the problem in an explicit analytical 
form, convenient in practice for engineering calculations. 

2  PROBLEM STATEMENT 
The mathematical model of the indentation of a coating-substrate system by a spherical 
indenter is based on the contact problem of the linear elasticity. The indenter is modeled by 
a rigid spherical punch of radius R (the results can be easily generalized to the case of a 
deformable elastic indenter [22]). The sample is modeled by an elastic half-space consisting 
of the functionally graded or homogeneous elastic layer (coating) of thickness H and a 
homogeneous half-space (substrate). 
 

 

Figure 1:  Statement of the contact problem. 
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     Let us consider the cylindrical coordinate system (r, φ, z), the z axis is orthogonal to the 
surface of the half-space and passes through the center of the punch. Under the action of the 
centrally applied force P, the punch is displaced in the negative direction of the z axis by an 
amount δ. We consider the frictional forces between the base of the punch and the elastic 
layer to be negligibly small. The Young’s modulus and Poisson’s ratio of the half-space vary 
by depth according to the following laws: 
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     Here and after, index (c) corresponds to the coating while index (s) to the substrate. 
     Let the coordinate r be related to the radius of the contact zone a. In this case the boundary 
conditions on the surface of the half-space have the following form 
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     To obtain simpler equations the spherical shape of a punch is approximated by a 
paraboloid. It can be done with high accuracy if R >> a. 
     Complete adhesion at the interface between the coating and the substrate is assumed: 
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     Here u and w are the displacements along r and z axes, respectively; , , ,z r zr     are the 
components of the stress tensor. It is required to find the distribution of contact normal 
pressure: 
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     We assume that both the stresses and displacements vanish at r   and z  . To 
determine the size of the contact area, we will use the classical assumption of zero contact 
stresses at the contact boundary: (1) 0.p   

3  PROBLEM SOLUTION 
Using Hankel integral transforms [23], the integral equation is obtained [17]: 
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     Following notations were used above: H a   is the relative thickness of the coating; 
( )L u  is the kernel transform of the integral equation which is generally determined 

numerically from the Cauchy problem solution for a system of ordinary differential equations 
with variable coefficients [17]. Let Θ and Θs be constants characterizing the effective elastic 
properties of the surfaces of the coating and the substrate: 

    2 2(0) 2(1 (0)) , 2(1 ) .с с s s sE E        (6) 

     To solve eqn (5) we approximate the function L(u) by the expression 
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     Then the solution of the problem has the form analogous to [24] 
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     Constants ( 1,..., )iС i N are determined from a system of linear algebraic equations: 

 
1 1

2 2 2
1

sinh( ) cosh( ) ( ) , 1,2,..., .
N

k i i i k

i i

i k i k

B A A A B
C A k N

B A B

    



  
    

  (9) 

     To analyze the experiments on nanoindentation in practice, the indentation stiffness 
function is used /S dP d  [1]. Its value can be determined experimentally from the slope 
angle of tangent line to the unloading curve (of the graph demonstrating the dependence of 
indenter displacement from the indentation force) at the upper point of this curve (at the 
maximum depth of the indenter displacement). 
     Expressions for punch displacement, indentation force and stiffness have the form [24]: 
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     It is proved [24] that the obtained solution (8)–(12) is asymptotically exact for large and 
small values of the geometrical parameter of the problem λ. The error of the solution for 
intermediate values is related to the accuracy of the approximation of the kernel transform. 
On example of the torsion problem it was shown that these errors are of the same order of 
magnitude [25]. 
     In order to simplify the solution as much as possible, let us assume that N = 1 in eqn (7). 
Then 

    2 2 2 2( ) .L u u A u B    (13) 

     It is important to note that the approximation of the kernel transform is constructed in such 
a way that (0) (0)NL L  is satisfied. We introduce a parameter sβ    characterizing 
the “softness” of the coating. Coatings with β > 1 we call “soft”, while with β < 1 we will 
call “hard” coatings. We also take into account that 1(0)L    [24], hence B A . Thus, 
eqns (8)–(12) may be simplified  
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4  NUMERICAL RESULTS 
To illustrate the simplified solutions obtained, we consider a set of homogeneous and 
functionally graded coatings. Let the Young’s modulus of the substrate be E0 = const, and 
the Poisson’s ratio of both the coating and the substrate is 0.33. Let us consider a number of 
homogeneous coatings for which β = 0.1, 0.2, 0.5, 2, 5, 10 (we will call them coatings 1–6, 
respectively) and four functionally graded coatings: 

coatings 7 and 8:   lin 1
0 1cE E zH     , β = 0.5, 2. 

coatings 9 and 10:    1 1exp
0 1 1 1k kzH k

cE E e e e 
      , k = −3; β = 0.5, 2. 

     Graphs of kernel transforms of integral equations for coatings 1–10 are shown in Fig. 2. 
Kernel transforms for homogeneous coatings converge much faster to unity as u→∞. Kernel 
transforms for soft coatings 4–6, 8, 10 converge more slowly to the value of β−1 as u→0 than 
the kernel transforms for hard coatings 1–3, 7, 9. The smaller value of β, the slower 
convergence is. 
     Table 1 shows the values of error of kernel transforms approximation for coatings 1–10 
using multiparameter approximation (7) and one-parameter approximation (13). As can be 
seen, the more the value of β differs from unity (upward or downward), the higher the error 
of one-parameter approximation. However, for many of the examples considered, even a one-
parameter approximation allows to obtain a sufficiently high accuracy. The error of 
multiparameter approximation for all the examined coatings is not exceeding 0.20%, that 
indicates the high accuracy of the results. 
     To analyze the distribution of contact stresses, it is convenient to introduce dimensionless 
quantities. Let us denote phom(r), Phom, δhom, Shom as the contact stresses, indentation force, 
punch displacement and indentation stiffness, respectively, in the Hertzian contact (for a 
homogeneous half-space with elastic properties that coincide with the substrate). We 
introduce dimensionless variables and functions: 
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     In order to analyze the difference in the distribution of contact stresses for a half-space 
with and without coating, we also consider the relative contact stresses: 
 rel hom( ) ( ) ( )p r p r p r . (20) 
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(a) (b)

Figure 2:  Kernel transforms for (a) homogeneous; and (b) functionally graded coatings. 

Table 1:  Values of error of kernel transforms approximation for coatings 1–10. 

Coating 
no. Type of inhomogeneity β 

Approximation error 
N = 1 N > 1 

1 Homogeneous 0.1 18.61% 0.15% 
2 Homogeneous 0.2 11.78% 0.10% 
3 Homogeneous 0.5 3.80% 0.08% 
4 Homogeneous 2 4.30% 0.05% 
5 Homogeneous 5 12.6% 0.11% 
6 Homogeneous 10 20.70% 0.20% 
7 Linear 0.5 3.80% 0.05% 
8 Linear 2 6.80% 0.06% 
9 Exponential 0.5 6.84% 0.08% 

10 Exponential 2 9.34% 0.07% 
 
     Figs 3–5 demonstrate the graphs of indentation force, depth and stiffness for 
homogeneous coatings 1–6 and functionally graded coatings 7–10 for N = 1 and N >> 1. 
Logarithmic scale is used. For λ→0 the values of P0, δ0, S0 tend to unit, which means that the 
force, depth and stiffness almost equal to the values corresponding to the Hertzian contact. 
     For λ→∞, values of P0 and S0 tend to β−1, and δ0 to 1. This means that these values coincide 
with the Hertzian ones for the elasticity moduli of the coating surface Ec(0), νc(0). The 
behavior of P0 and S0 in a region of intermediate values of λ is very similar to the graph of 
the kernel transform (see Fig. 2). The graphs of P0 and S0 constructed using one-parameter 
and multiparameter approximations are sufficiently close for all the coatings considered, the 
graphs of δ0 are less close to each other. 
     Figs 6 and 7 illustrate the distribution of contact pressure and relative contact pressure for 
coatings 4 and 10. One-parameter approximation allows to achieve a fairly good coincidence 
of the contact pressure distributions for small and large λ values for all the coatings 
considered, as well as for the intermediate λ in the case of a small ratio of the coating and 
substrate elastic moduli. 
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(a) (b)

Figure 3:    Indentation force for (a) homogeneous; and (b) functionally graded coatings for 
N = 1 (solid line) and N >> 1 (dotted line). 

 
(a) (b)

Figure 4:    Indentation depth for (a) homogeneous; and (b) functionally graded coatings for 
N = 1 (solid line) and N >> 1 (dotted line). 

 
(a) (b)

Figure 5:  Indentation stiffness for (a) homogeneous; and (b) functionally graded coatings 
for N = 1 (solid line) and N >> 1 (dotted line). 
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(a) (b)

Figure 6:    Distribution of (a) dimensionless contact stresses; and (b) relative contact 
stresses for a homogeneous coating 4 (β = 2) for N = 1 (red lines) and N >> 1 
(blue lines) for various λ. 

 
(a) (b)

Figure 7:    Distribution of dimensionless contact stresses (a) and relative contact stresses 
(b) for a homogeneous coating 10 (β = 2) for N = 1 (red lines) and N >> 1 (blue 
lines) for various λ. 

     For a more detailed analysis of the accuracy of simplified solutions based on one-
parameter approximation, we compare them with solutions obtained with multiparameter 
(much more accurate) approximation. Relative error of the simplified solution was calculated 
as: 

 1
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     Fig. 8 demonstrates three-dimensional graphs of the relative error Δp(r) for coatings 7 and 
1. For these coatings the one-parameter approximation of the kernel transform has the 
minimal value of 3.5% (for coatings 7 and 3) and maximal value of 29.30% (for coating 1), 
see Table 1. As can be seen, the maximum error in contact pressures is comparable to the 
error of approximation of the transform (3.80% for coating 7 and 18.61% for coating 1). In  
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(a) (b)

Figure 8:  Relative error of the simplified solution for (a) coating 7; and (b) coating 1. 

 
(a) (b)

Figure 9:    Relative error of simplified approximation of the kernel transform for (a) coating 
3; and (b) coating 6. 

the same way as the error graph of a one-parameter kernel transform approximation has two 
distinct hillocks (see Fig. 9), the error of contact pressures have them for any fixed value of 
0 ≤ r < 1, with the exception of a small neighborhood of r ≈ 1. 
     It can be seen from Fig. 8(b) that even with a relatively low accuracy of approximation 
(coating 1) for sufficiently large and small values of λ, the error of the solution is small. Let 
λ0 be the value at which the maximum relative error of contact stresses is less than 1% for all 
λ < λ0. Similarly, λ∞ is such a value that for all λ > λ∞ the error is less than 1%. Table 2 lists 
the values of λ0 and λ∞ for all the 10 coatings. It is important to note that the maximum value 
of Δp(r) is calculated for 0 ≤ r < r0, where r0 is a certain value close to unit. In the vicinity of 
r ≈ 1, for small values of λ, the relative error of contact pressures may be higher than 1%. 
This is due to the peculiarity of the behavior of the relative contact pressure distribution in 
this region. As was noted earlier [18], for any small value of λ there is a small neighborhood 
of r ≈ 1 where prel ≈ β−1/2. Since both the one-parameter and multiparameter approximations 
exactly coincide with the transform values for u = 0 and u → ∞, then Δp(r) → 0 is fulfilled 
for r → 1. However, a narrow area is observed to the left of r = 1 where the value of Δp(r) is 
quite high even for very small values of λ. It should also be noted that the absolute values of  
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Table 2:  Values of λ0 and λ∞ for coatings 1–10. 

Coating 
no. β Type of inhomogeneity λ0 λ∞ max(Δp) 

1 0.1 Homogeneous 0.003 15 29.30% 
2 0.2 Homogeneous 0.005 10 14.52% 
3 0.5 Homogeneous 0.03 50 3.51% 
4 2 Homogeneous 0.01 4 4.22% 
5 5 Homogeneous 0.002 5 12.36% 
6 10 Homogeneous 0.001 6 23.14% 
7 0.5 Linear 0.03 50 3.50% 
8 2 Linear 0.02 100 6.51% 
9 0.5 Exponential 0.03 120 6.33% 

10 2 Exponential 0.03 300 9.13% 

Table 3:  Approximation error for P, S and δ for coatings 1−10. 

Coating 
no. β Type of inhomogeneity ΔP ΔS Δδ 

1 0.1 Homogeneous 10.95% 7.33% 10.14% 
2 0.2 Homogeneous 5.94% 3.65% 5.73% 
3 0.5 Homogeneous 2.93% 2.71% 1.35% 
4 2 Homogeneous 3.02% 2.78% 1.90% 
5 5 Homogeneous 9.65% 9.11% 5.25% 
6 10 Homogeneous 17.53% 16.57% 8.35% 
7 0.5 Linear 3.01% 2.48% 2.44% 
8 2 Linear 4.91% 4.64% 3.50% 
9 0.5 Exponential 5.36% 4.03% 4.53% 

10 2 Exponential 6.62% 6.28% 4.77% 
 
the contact pressure are small near r = 1. That is why the value of relative error in this region 
is less important. 
     Similar to the contact stresses, let us analyze error of simplified expressions for the 
indentation force, depth and stiffness using following expressions: 
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     Approximation error for P, S and δ are presented in the Table 3. For all considered 
coatings the values are even less than the error of approximation of the kernel transform. 
Graphs of relative errors of P, S and δ are illustrated for the coating 3 in Fig. 10.  
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Figure 10:  Relative error of the simplified solution for coating 3. 

5  CONCLUSION 
Simplified analytical expressions for the contact pressure, indentation force, depth and 
stiffness are obtained for the problem on indentation of a half-space with a homogeneous or 
functionally graded coating by a spherical punch. The accuracy of the results is studied in 
details. It is shown that the simplified formulas have sufficiently high accuracy for thin and 
thick coatings and for coatings of arbitrary thickness in the case of a relatively small 
difference in the elastic moduli of the coating and the substrate. For these cases, the obtained 
formulas can be used to recover coating characteristics from the indentation experiment. The 
approach can be applied to wide range of problems which can be reduced to a system of dual 
integral equations, including thermoelastic [26], electroelastic [27], fracture [28] problems. 
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