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ABSTRACT

For reconstructing a complex object wavefront from dig-
ital holograms, we propose a new penalized-likelihood ap-
proach based on the measurement statistics and edge-preserving
regularization. The log-likelihood is complicated since the
measurements are related to the magnitude of the complex
beam. We use optimization transfer to derive a new sim-
plified iterative algorithm that monotonically decreases the
cost function. Unlike the conventional FFT-based holographic
reconstruction method, the new approach uses all of the
measured data, and can be applied to holograms with any
(known) reference beam pattern. Simulation results demon-
strate the potential for improved image quality.

1. INTRODUCTION

In digital holography, the interference between a reference
beam and a wavefront from an object of interest is recorded
by an electronic sensor such as a CCD array. Under ap-
propriate sampling conditions, one can reconstruct the com-
plex object wave from the digital hologram. The classical
computer reconstruction method for off-axis holograms is to
compute the 2D FFT of the measured hologram, use a win-
dow to select the small portion of the spectrum correspond-
ing to the appropriate interference term, shift that portion
to DC, zero pad, and then take the inverse 2D FFT. (The
method is a 2D analog of demodulation of AM audio sig-
nals.) This simple approach is applicable only to plane wave
reference beams, uses only a small fraction of the measured
data, yet can still suffer from interference from the other
terms, and accounts for noise only implicitly by spectral
apodization. The potential use of digital holography for
biological microscopy has renewed interest in finding im-
proved reconstruction methods for digital holograms,e.g.,
[1].

We recently proposed a new numerical reconstruction
approach [2] formulated from first principles including the
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physical optical model and a statistical model for measure-
ment noise. The problem is ill-posed, so we perform penalized-
likelihood estimation using edge-preserving regularization.
The log-likelihood is quite complicated since the object wave
is complex whereas the measurements are related to the
magnitude of the sum of the object beam and the reference
beam. Using optimization transfer techniques, we derived
in [2] an iterative algorithm that monotonically decreases
the cost function each iteration and thus typically converges
to a local minimizer. The computation per iteration is com-
parable to the EM algorithm for image restoration. The ap-
proach can be applied to holograms with any (known) refer-
ence beam pattern, including the types of spherical patterns
seen in practice. Simulation results show that this statistical
approach has the potential to improve image quality in digi-
tal holography relative to conventional reconstruction meth-
ods. In this paper, we derive a simpler iterative algorithm for
this problem.

2. THEORY

As described in detail in [2], the problem of image recon-
struction in digital holography can be posed as the following
penalized-likelihood estimation problem:

x̂ = arg min
x∈CM

Ψ(x) (1)

Ψ(x) = Ł(x) + R(x) ,

where x = (x1, . . . , xM ) denotes the vector of unknown
pixel values in the object to be recovered, Ł(x) denotes
the negative log-likelihood, and R(x) denotes a roughness
penalty function. We assume a Poisson statistical model for
the measurements:

yi ∼ Poisson{ȳi(x)} , i = 1, . . . , N (2)

ȳi(x) = |[Ax]i + ui|2 + ri, (3)

where A ∈ CN×M denotes the system matrix that models
the imaging system, ui ∈ C denotes the ith sample of the



reference beam, ri ∈ [0,∞) denotes the additive effect of
detector dark current and possible gaussian readout noise
[3], yi ∈ R denotes the ith element of the hologram mea-
surement (e.g., recorded by a CCD detector) and

[Ax]i =
M∑

j=1

aijxj . (4)

We assume that A, {ui}, {ri}, {yi}, are all known, and
the goal is to determine the image pixel values x. For in-
dependent measurements, the corresponding negative log-
likelihood is

Ł(x) =
N∑

i=1

hi([Ax]i + ui)

hi(z) =
(
|z|2 + ri

)
− yi log

(
|z|2 + ri

)
. (5)

The minimization problem (1) is challenging because x
is complex and hi(·) is non-quadratic. One can show that
the (column) gradient of Ł(x) is

∇Ł(x) = A′ diag

{
2

(
1− yi

ȳi(x)

)}
(Ax + u), (6)

where “′” denotes Hermitian transpose. One could attempt
to find the minimizer x̂ by applying a gradient descent al-
gorithm of the form

x(n+1) = x(n) − α∇Ψ(x(n)) . (7)

However, the conventional “trial and error” approach to choos-
ing the step size α is inconvenient; in general this approach
is not guaranteed to monotonically decrease the cost func-
tion so divergence is possible. The dominant computation
for each iteration of any such algorithm is the gradient (6);
this requires one multiplication by A and by A′. This is
comparable to the EM algorithm for image restoration.

In [2], we proposed to apply the optimization transfer
principle to solve this minimization problem [4]. For each
iteration n, we find a surrogate function φ(n) that satisfies
the two conditions:

φ(n)(x(n)) = Ψ(x(n))
φ(n)(x) ≥ Ψ(x) .

These majorization conditions ensure that the optimization
transfer algorithm

x(n+1) = arg min
x∈C

φ(n)(x)

will monotonically decrease the cost function, i.e.,

Ψ
(
x(n+1)

) ≤ Ψ(x(n)) .

Since the cost function is nonconvex, such monotonic meth-
ods typically will converge to a local minimizer near the
initial guess x(0).

In this paper, we describe an alternative approach that
may be somewhat simpler. Given a current guess x, let the
(negative) gradient define a search direction

d = −∇Ψ(x)

and consider the 1D “line search” minimization problem

α(n) = arg min
α

f(α)

f(α) = Ψ(x + αd) .

We propose to apply the principles of optimization trans-
fer to this 1D minimization problem. (An algorithm for a
simpler problem that employed a similar 1D search strategy
was described in [5].) Note that

f(α) =
N∑

i=1

gi(α) + R(x + αd)

where
gi(α)

4
= hi([A(x + αd)]i + ui)

and

ġi(α) = 2 real
(

[Ad]?i

(
1− yi

ȳi(x + αd)

)
([A(x + αd)]i + ui)

)
,

where “?” denotes conjugate. The key idea here is that the
functions gi(·) have bounded curvature, so it is possible to
find quadratic surrogate functions of the form

qi(α;α′) = gi(α′) + ġi(α′)(α− α′) +
1
2

c̆i(α′) (α− α′)2,
(8)

where the curvatures c̆i are chosen such that

qi(α;α′) ≥ gi(α). (9)

The condition qi(α′;α′) = gi(α′) is satisfied by construc-
tion. Similarly one can find a quadratic surrogate func-
tion for R(x + αd), call it q0(α; α′), with curvature c̆0(α′)
[6, 7]. Then we have the overall quadratic surrogate for
f(α) constructed as follows:

q(α; α′) =
N∑

i=0

qi(α; α′).

We can minimize this surrogate analytically, leading the fol-
lowing “sub-iteration” for finding the minimizing value of
α:

αnew = arg min
α

q(α; αold) = αold − q̇(αold;αold)
q̈(αold;αold)

= αold − ḟ(αold)∑N
i=0 c̆i(αold)

. (10)



Being based on the optimization transfer principle, this sub-
iteration is guaranteed to decrease f(·) monotonically. We
initialize it with αold = 0, which then ensures that when
the resulting αnew (after one or more sub-iterations) is used
within the overall iteration (7), the overall algorithm is mono-
tonic.

3. CURVATURES

It remains to find curvatures for (8) that ensure the majoriza-
tion condition (9). Using (5) and (4), we have that

gi(t) = mi(t)− yi log mi(t),

where

mi(t)
4
= |[A(x + td)]i + ui|2 + ri = |li + tpi|2 + ri

= t2 |pi|2 + 2t real(l?i pi) + |li|2 + ri

li
4
= [Ax]i + ui, pi

4
= [Ad]i .

For brevity we also write

mi(t) = wit
2 + 2bit + vi

ṁi(t) = 2(wit + bi),

where wi
4
= |pi|2, bi

4
= real(l?i pi), and vi

4
= ri + |li|2. The

derivatives of gi are:

ġi(t) =
[
1− yi

mi(t)

]
ṁi(t)

g̈i(t) =
[
1− yi

mi(t)

]
m̈i(t) +

yi

m2
i (t)

ṁ2
i (t).

It is shown in [2] that the following expression is a suit-
able choice for the curvature that will ensure majorization:

c̆i(s) = arg max
t 6=s

δi(t; s), δi(t; s)
4
=

ġi(t)− ġi(s)
t− s

,

provided the maximum is positive and finite. Considering
the particular form of mi(t) in this problem, we can solve
for c̆i(s) analytically.

Hereafter we drop the subscript ”i” for simplicity. Be-
cause ṁ(t) is linear in t, one can show that

δ(t; s) = 2w +
y

m(s)
m(t)ṁ(s)−m(s)ṁ(t)

(t− s)m(t)
.

Elementary simplifications lead to

m(t)ṁ(s)−m(s)ṁ(t)
t− s

= 2[wb(t + s) + w2st + 2b2 − wv].

Extrema of δ(·; s) occur at the zeros of its derivative
with respect to t, i.e., where

0 =
∂

∂t

m(t)ṁ(s)−m(s)ṁ(t)
(t− s)m(t)

or equivalently

m(t)[wb + w2s] = [wb(t + s) + w2st + 2b2 − wv]ṁ(t)
0 = w(wb + w2s)t2 + 2w(wbs + 2b2 − wv)t

+ 2b2(ws + 2b)− vw(ws + 3b).

This is a quadratic formula in t, so one can easily find its
roots. One can then check the values of δ at each root. Since
mi is a quadratic function of t, the curvature g̈i(t) is a ra-
tional function of t, and one can show that it is bounded.
So the root corresponding to the larger (necessarily finite)
value of δ will be an appropriate choice for c̆i. Typically,
these polynomial manipulations require much less compu-
tation than computing the cost function gradient (6).

4. SIMULATION RESULTS

Fig. 1a shows a simulated 1D hologram generated according
to the model (2) for the case where A corresponds to convo-
lution with a 3-point moving average filter, for the complex
signal shown in Fig. 1b.

Fig. 2a shows the conventional reconstruction obtained
by windowing one of the sidelobes of the spectrum of the
recorded hologram. This estimate is noisy and has ringing.

Fig. 2b shows the proposed penalized-likelihood esti-
mate x̂ using edge-preserving regularization. The NRMS
error of this approach is about 7%, compared to 14% for the
conventional approach.

Fig. 3 shows the conventional and proposed penalized-
likelihood reconstruction for a 2D complex object using the
same setup as in [2]. The NRMS error is about 14% for the
proposed approach and 40% for the conventional approach.
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Fig. 1. Simulated 1D hologram data and true object.

5. DISCUSSION

We have described an algorithm for penalized-likelihood re-
construction in for digital holography that is an alternative
to the method described in [2]. As in [2], this approach
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Fig. 2. Magnitude and phase of estimate x̂.

b) Hologram and its spectrum
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Fig. 3. Simulation and reconstruction of 2D complex object.

can improve the quality of the image relative to the con-
ventional FFT-based holographic reconstruction technique.
Moreover, unlike the conventional approach, our statistical
reconstruction is not limited by the assumption of a planar
reference beam.
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