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the contour does not need to be the whole circle, but can be any 
arc of it. The whole range of the unit circle has to be calculated by 
the FFT (the undesired range is redundant and wasted in the con- 
ventional FFT method). 

The conventional Wigner distribution, like the FFT, is intrinsi- 
cally a global baseband analysis tool. The Wigner spectrum is al- 
ways computed from DC to the folding frequency of the whole 
distribution. In many applications, such as speech signal process- 
ing and acoustic signature extraction, spectral analysis is con- 
cerned over a narrow band of frequencies away from baseband. 
Although sampling period and sample points can be increased in 
the FFT to achieve sufficient spectral resolution, this will destroy 
the short-time stationary assumption of the signal, and also greatly 
increase the computation time. The proposed CZT approach can 
select any desired frequency range and choose arbitrary resolution 
for signal analysis without the above limitations. 

IV.  CONCLUSIONS 

The pseudo-Wigner distribution with the chirp Z transform has 
been studied as a useful tool for the analysis of time-varying sig- 
nals. It is capable of zooming onto any desired frequency range of 
interest. This results in more reliable and accurate spectral analysis 
on the time-frequency plane. 
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Simplified Gradient Calculation in Adaptive IIR 
Lattice Filters 

Jose A. Rodriguez-Fonollosa and Enrique Masgrau 

Abstract-A simplified algorithm is presented for computing the gra- 
dient in adaptive IIR lattice filters. For a filter with N zeros and N 
poles, this algorithm requires only order Ncomputations and it is shown 
to be completely equivalent to the previously proposed formulation 
which has a complexity of order N Z .  
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I .  INTRODUCTION 

The lattice realization of adaptive IIR filters has been shown to 
be an important alternative to the direct form [I]-[4]. It is well 
known that lattice forms have excellent finite-precision properties. 
Furthermore, in adaptive applications, its primary advantage is that 
stability can be controlled with essentially no computation, while 
in the direct form, stability monitoring is either computationally 
expensive or  too restrictive in the coefficient space [3]. 

The complexity of the gradient has always been the major draw- 
back of the lattice realization. In the direct form it is possible to 
calculate the gradient with a simple algorithm of order N ,  but in 
the lattice form, the formulation originally proposed by [ I ]  requires 
order N 2  computations. Nevertheless, in this correspondence it is 
shown that the lattice form gradient can also be calculated with a 
simplified algorithm, thus making this structure more competitive 
with the direct o r  other IIR realizations. 

A first effort to simplify this result was reported in [ 5 ] ,  where a 
simplified algorithm was also derived, but it was based on an ap- 
proximation which was shown to cause convergence problems. The 
algorithm we have derived does not neglect any term, and, there- 
fore, it is completely equivalent to the gradient proposed in [ l ] ,  
although it has only a complexity of order N. 

11. IIR LATTICE FILTER 

The adaptive IIR lattice filter (Fig. 1) consists of a feedback lat- 
tice structure characterized by the reflection coefficients { A  ( n ) }  and 
a feedforward structure characterized by the coefficients { z ) , ( n ) ) .  

The forward and backward residuals of each stage are calculated 
as 

./\+I@) = x ( n )  ( l a )  

f o r i  = , . . .  , N d o  

L(n) = A + , ( n )  - k , (n)  b,(n)  (Ib) 

(IC) b,+,(n + 1) = b,(n) + k , ( n ) A ( n )  

end do 

b,(n + 1) =f,(n) (Id) 

where x ( n )  is the filter input. 

residuals weighted by the feedforward coefficients 
Then, the output y ( n )  is obtained as the sum of the backward 

N +  I 

y (n )  = , = I  c b,(n + 1) U , @ ) .  

A .  Gradient 

The gradient vector is formed with the derivative of the output 
y ( n )  with respect to the coefficients: 

( 3 )  

The gradient components for the feedforward coefficients are 

(4) 

but the components that correspond to the reflection coefficients 
need a recursive method [ I ] .  This method computes the auxiliary 

simply computed as 

O , ( i )  = b,(n + I )  

1053-587X/91/0700-1702$01 .OO 0 1991 IEEE 



IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39, NO. 7.  JULY 1991 I703 

0 - 
A -  I 

yq.lc") 
Fig. 1. The IIR lattice filter including one of the additional lattice struc- 

tures required to compute the gradient with the previous method. 

gradients 

for each i and j using the expressions 

that require the boundary conditions PJo(n + 1 )  = +,o(n) and r$,/.,,+ I 

= 0. Then, the gradients $J(n)  are computed as 
N +  I 

$,(.I = c P,,@ + 1) v,(n). 
, = I  

This recursive computation of each component for a reflection 
coefficient corresponds to the equations of a separate lattice filter 
whose inputs are the forward and backward residuals of the adap- 
tive lattice (Fig. 1). Following this approach, N additional lattice 
filters are required to compute all the components, and, therefore, 
the complexity of this method is of order N2.  

B. New Algorithm 

As it can be observed in Fig. 1, the gradient component $, (n) is 
the output of a time-varying filter whose input is x ( n ) .  In the fol- 
lowing, in order to work with transfer functions, we will make the 
assumption that the coefficients adapt slowly. This approximation 
was, in fact, used to derive the previous recursive gradient equa- 
tions (5) and it introduces essentially no degradation in the perfor- 
mance of adaptive IIR filters [3], [6]. 

The derivation of the proposed algorithm starts expressing the 
transfer function " , ( z )  of the above mentioned filter as the com- 
bination of two terms (Fig. 1) 

*,(4 = F,(z) G,(z) - B,k)  E,(z) (6) 

where Fi(z) and B,(z)  are the transfer functions from the input to 
the upper and lower outputs of the first lattice, respectively, and 
Ei ( z )  and G, ( z )  are the transfer functions of the second lattice that 
go, respectively, from the upper and lower input to the output. In 
the rest of this section, it is shown that there is a relation between 
the two terms of \ k , ( z )  and the terms of *,-l(z) and q , + l ( z ) .  This 
relation allows a recursive computation of these terms and avoids 
the necessity of using a separate lattice structure for each gradient 
$, (n). 

It can easily be derived from ( I )  that 

F,(z )  = F , + , ( z )  - k,B;(z) ( 7 4  

(7b) ZB,+I(Z) = k ,F , (z )  + B,(z) 

with FN+I(z)  = 1 and z B , ( z )  = F , ( z ) .  It can also be shown from 
the transposed IIR lattice structure that 

E,+I(z) = E,(z) + k,+tGi+l(Z) ( 8 4  

(8b) 

with EN(z)  = H ( z )  and G N ( z )  = z ) ~ + ~ .  and where H ( z )  is the trans- 
fer function of the adaptive lattice filter. 

Multiplying (7) by E, ( z )  and G,(z) ,  and (8) by F , ( z )  and B ; ( z ) ,  
we obtain the following eight equations (Fig. 2): 

zG,(z )  = -~,+~E,+I(z) + G,+I(z )  + ZU;+I 

( 9 4  

(9b) 

(9c) 

( 9 4  

Fi+~(z)  Ei+,(z) F,+I(z) E~(z) + ~,+IF,+I(z) G,+I(z )  (9e) 

F, ( z )  E, (4 = F, + I ( z )  E; (z)  - k, B, (4 E, (4 

zBi + I ( z )  E; (z)  = k, F; ( z )  E; (z) + B, ( z )  E, ( z )  

F,(z) G;(z) = F;+~(z) G;(z) - k,B;(z )  G,(z) 

zB, + I (11 G, ( z )  = k, F, (z)  GI ( z )  + B, (2)  GI (I) 

zFi+i(z) G;(z) = -k,+iFi+I(z) E,+I(z) + F;+I(z) G,+I(z) 

+ Z ~ , + I F , + l ( Z )  (9f) 

(9g) Bi+l(z) E,+I(z) = Bi+~(z) Ei(z) + ~;+IB;+I(z) G,+I(z )  

zB~+I(z) G,(z)  = - ~ ~ + I B ~ + I ( z )  E,+I(z) + B,+I(z) G,+I(z) 

+ ~~I+IB,+I (Z)  (9h) 

and the boundary conditions 

Note that in Fig. 2 ,  we have represented the above equations in the 
time domain. For example, f;e, (n) corresponds to F, ( z )  E, (I), i .e . ,  
f, e, (n) is the output of a filter whose transfer function is F, ( z )  E, ( z )  
and its input x (n). 

As Fig. 2 illustrates, these equations cannot be used as they ap- 
pear above, but they can be rearranged in a computable way. In 
fact, several combinations are possible, and in Fig. 3 we have rep- 
resented one of them. The resulting algorithm, in the time domain, 
is the following: 

blel(n) =.fiel@ - 1) (104  

blgl(n) =fig1(n - 1) (lob) 
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"i+l b,+ 
Fig. 2.  Graph illustrating the equations (9) that relate the terms involved 

in the gradient computation of the proposed method. 

vi+ lbi+ l(n+l 1 

Fig. 3 .  Graph illustrating the proposed algorithm for calculating the gra- 
dient. 

jei(n) = j + l e i ( n )  - kih)biei(n)  (1  3b) 

end do 

where (1 lg) is the result of combining (9g) and (9h). 
Observe that, apart from the computation of ai, only 5N - 1 

multiplications per iteration are required to obtain the gradient 
components, while the previous algorithm requires 3N2 + N. The 
major drawback of the proposed algorithm is the computation of ai 
from ki because it requires N - 1 multiplications and divisions. 

111. COMMENTS 
The proposed order N formulation is nothing more than an effi- 

cient structure for the realization o f  the filters that compute the 
gradient. Therefore, if the coefficients were kept fixed, the gradient 
computed with the proposed algorithm would be the same as the 
one given by the previous order N 2  formulation. 

When the coefficients are adapted, the computed values will not 
be exactly the same, nevertheless, no differences are expected in 
the behavior of the adaptive IIR algorithms using the conventional 
gradient computation and those using the proposed formulation. In 
fact, it is known that both algorithms can be associated to the same 
ordinary differential equation (ODE) [6], which governs their con- 
vergence properties. 

We have performed several computer simulations to compare the 
performance of the proposed O(N)  formulation and the conven- 
tional O(N2)  formulation, and we have found no difference in their 
behavior. In these simulations we used the full Hessian and the 
diagonal Hessian adaptive algorithms [4] in a system-identification 
configuration. 

IV. CONCLUSIONS 

An efficient method has been derived to compute the gradient in 
adaptive IIR lattice filters. It reduces the complexity of the previous 
algorithm by an order o f  magnitude and allows the development o f  
robust adaptive IIR algorithms with a cost proportional to the filter 
order. 
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NFIR Nonlinear Filter 

Xin Wang 

Absfracf-A new nonlinear filter is introduced in this correspon- 
dence. As the output of this filter is nearest in distance to the output 
of a FIR linear phase filter, we call it the NFIR filter. After choosing 
the impulse response of the FIR filter properly, the NFIR filter can 
clean impulsive noise and preserve edges of signals. As a special case 
of the NFIR filter, a nearest mean (NEME) filter is derived. Theoretical 
analysis shows that the NEME filter is better than the median filter in 
smoothing additive Gaussian noise. In addition, based on the definition 
of the NEME filter, a new interpretation of the low-pass property of 
the median filter with window width 3 is described. Also, the perfor- 
mance of the nearest mean filter on a noisy edge is quantitatively com- 
pared with that of the median and mean filters. 

I. INTRODUCTION 

As our visual perception is heavily based on edge information, 
a number of nonlinear filters have been presented [ 11. They attempt 
to remove the effects of noise while retaining the edges of signals. 

The median filter is one well-known method. Its simplicity and 
edge preservation characteristics made it attractive in speech and 
image processing. Indeed, the median filter is used in an ever- 
growing variety of applications. Many authors have analyzed the 
statistical and root signal properties of the median filter [2]-[5]. 

Though the median filter can preserve edges, it is not good at 
smoothing Gaussian noise. A worthwhile goal is to find some new 
nonlinear filters which are better than the median filter in smooth- 
ing Gaussian noise. 

Based on the me.dian filter, some novel filters have been pro- 
posed. Bednar and Watt [6] presented an alpha-trimmed filter. Hei- 
nonen and Neuvo [7] introduced a class of FIR-median hybrid fil- 
ters. Recently, Coyle e? al. [8] presented an algorithm for optimal 
stack filtering. 

Based on the mean filter, Kundu et al. [9] proposed a generalized 
mean filter for the removal of impulsive noise. Pitas and Venetsan- 
opulos [lo] presented a nonlinear mean filter. According to the var- 
ied nonlinear functions, the output of this filter can be the arith- 
metic mean, harmonic mean, geometric mean, or Lp mean. They 
can smooth Gaussian noise more effectively than the median filter 
but cannot simultaneously remove both positive and negative 
spikes. 

In general, all the nonlinear filters can be divided into two 
classes, A and B ,  which are described as follows: 

Let set X and Y consist of the discrete input signals x ( n )  and the 
output signals y ( n ) ,  respectively. If Y C X, the filter belongs to 
class A;  otherwise the filter belongs to class B .  The median filter 
and nonlinear mean filter are two representatives of these two 
classes. 
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In this correspondence, a NFIR nonlinear filter is introduced. It 
can clean impulsive noise and preserve edges effectively. 

The statistical properties of this filter are analyzed for input sig- 
nals with Gaussian density function. As a special case of the NFIR 
nonlinear filter, a NEME filter is derived. 

Theoretical analysis shows that the NEME filter is the best one 
from class A in smoothing Gaussian noise. 

11. DEFINITION OF THE NFIR FILTER 

Let x ( n )  ( -  03 < n < 03) be a discrete input sequence with 
additive noise, where n is integer value. One purpose is to smooth 
noise without smearing the edges of signals. 

A simple method for smoothing noise is to let the noisy signal 
x ( n )  be filtered by a FIR filter. 

Let h(n)  (-N 5 n 5 N) be the impulse response of a linear 
phase FIR filter. Suppose that h(k) = h( - k )  ( 1  5 k 5 N) and h(k)  
h 0 ( - N  5 k 5 N). The output of the FIR filter at position n is 

N 

p(n) = c h(k) x ( n  - k ) .  (1) 
K =  - N  

After applying the FIR filter to the input signal x ( n ) ,  the edges 
of signals would be blurred at the output. In addition, as impulsive 
noise consists of very large positive or negative spikes of short 
duration, the linear FIR filtering is not a useful tool in impulse 
noise removal. However, this disadvantage can be avoided by using 
a nonlinear operation on the output sequence of the FIR filter. 

Consider a window with length 2 M + 1 and x (n)  is the central 
sample, where 0 < M s N .  If 

l x (4  - p(n)l = min I x h )  - p(n)l. ( 2 )  
n - M 5 in 5 n + M 

Then the output of the new filter is defined as 

y ( n )  = x @ ) .  (3) 

Since the output of this filter is nearest in distance to the output 
of the FIR filter, we call it the NFIR filter. 

If M = 0 in ( 2 ) ,  then y ( n )  = x ( n ) .  In this case, the output of the 
NFIR filter is equal to the input sequence x ( n ) .  

With different values of h(n) ,  the NFIR filter has varied prop- 
erties. Our attempt is to determine the impulse response h(n)  to 
make the NFIR filter clean impulsive noise and preserve edges of 
signals. For this purpose some constraints on h(n) are derived be- 
low: 

N 

Condition 1: h(k) = 1. (4) 

If the input x ( n )  = d (-03 < n < a), condition 1 makes the 
output p(n)  = d. 

k =  - N  

Condition 2: h(0) < 1/2.  ( 5 )  

This condition enables the NFIR filter to clean impulsive noise. To 
see this, suppose there is an impulse at position n :  then x ( n )  = d 
andx(m) = 0 (m # n ) .  From ( l ) ,  we have p ( n )  = h(0 )d .  Accord- 
ing to h(0) < 1 / 2  and the definition of the NFIR filter, we obtain 
y ( n )  = 0. Thus, condition 2 is proven. 

- I  0 

Condition 3: h(k) < 1 /2  and h(k) > 1/2.  
k = - N  k =  - N  

(6) 

With condition 3, the NFIR filter can preserve edges of signals. 
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