Distribution Category:
Mathematics and Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 Sourh Cass Avenue
Argonne, IL 60439-4801

ANL--93/8
DE93 011975
ANL-93/8

Simplified Linear Equation Solvers Users Manual

by
William Gropp
Mathematics and Computer Science Division
Barry Smith
Department of Mathematics
University of California, Los Angeles

February 1993

This work was supported in part by the Office of Scientific Computing, U.S. Department of Energy.

Contents

Abstract 1
1 Introduction 2
1.1 Why simplified 3
1.2 Makefiles 4
1.3 Linking 4
1.4 Installing the SLES package 6
1.5 Restrictions 6
1.6 Further information 6
2 Solver Methods 7
2.1 Solver context 7
2.2 Getting the methods from the command line 9
3 Creating the Matrix 10
4 Direct Methods 12
4.1 Sparse matrix orderings 12
4.2 Pivoting 13
4.3 Blocking 13
4.4 Example 14
5 Iterative Methods 15
5.1 Preconditioners 15
5.2 Initial guess 16
5.3 Method options 16
5.3.1 ICC 16
5.3.2 ILU 16
5.3.3 SSOR 17
5.3.4 BDD 17
5.3.5 OSM 19
5.4 Accelerators 22
5.4.1 Convergence tests and iteration control 22
5.4.2 GMRES 24
6 Monitoring Performance 25
7 Adding New Methods 26
7.1 Method registry 26
7.2 Accelerator registry 27
7.3 Matrix orderings registry 27
7.4 Sparse matrix formats 27
7.5 Restricting the choices 27
8 Using SLES with Fortran 29
9 Debugging and Optimizations 31
9.1 Error messages 32
9.2 Performance debugging 32
10 Hints on Choosing Methods 33
11 Examples 34
11.1 Poisson problem 34
11.2 Fortran example 36
11.3 Graphical interface 38
12 Summary of Routines 40
12.1 SLES routines 40
12.2 Sparse matrix routines 44
12.3 Miscellaneous routines 46
12.3.1 Iterative method routines 46
12.3.2 System timers 47
12.3.3 Graphics tocls 47
Acknowledgraents 49
Bibliography 49
Function Index 50

Simplified Linear Equation Solvers Users Manual

by

William Gropp and Barry Smith

Abstract

The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

Chapter 1

Introduction

The SLES (Simplified Linear Equation Solvers) package provides a powerful, yet easy-to-use interface to methods for solving systems of linear equations of the form

$$
A x=b .
$$

This package provides access to both direct and iterative solvers and allows you to switch easily from one method to another. The matrix representation is "data-structure neutral;" this means that virtually any sparse (or dense) matrix representation may be used directly. All that is necessary is to define a few operations on the matrix data structure. In addition, it is relatively easy to extend the set of known methods, including the iterative accelerator, direct factorization, and preconditioning. Any extension may be made without modifying a single line of the SLES package.

SLES provides a large and growing set of matrix representations, including dense, AlJ, and dynamic sparse row-oriented format. These features make this package ideal both for new projects and for existing applications.

There are four steps in using the routines in this package. First, you create a solver context with SVCreate. This context holds information specific to each technique. Second, you may change any options, such as the kind of sparse matrix ordering or the iterative accelerator, and then use SVSotUp to set up the solvers. Third, you solve the system with SVSolve. Fourth, you remove the solver context with SVDestroy. Multiple systems may be solved with multiple calls to SVSolve.

Among the design requirements for the routines provided by the SLES package is the requirement that the calling sequences and routines be identical for all methods. This means that to change the method used to solve
a linear system, you need only change the method argument to SVCreate, and nothing else.

This manual mentions all of the routines in the SLES package; however, usage instructions are provided only for the more common routines. More detailed information about the routines mentioned in this manual may be found in the man pages (using toolman). SLES is part of a larger package, PETSc (Portable, Extensible Tools for Scientific computing). toolman is one of the tools provided by PETSc for accessing the detailed documentation on the routines. PETSc also provides an number of routines that may be of interest to users of SLES, including routines to report on floating point errors, memory space tracing, and debugging. See the man pages for more information.

1.1 Why simplified

Despite the apparent power and flexibility of the SLES package, this package actually provides a simplified version of more flexible and powerful routines that are part of the PETSc package. The simplifications include a restriction to uniprocessors and vectors that are contiguous in memory. Other simplifications include less access to all of the options of the iterative solvers and a matrix-based representiation of the linear system.

The underlying tools, particularly the iterative routines, have none of these restrictions. They may be easily used in a parallel environment and with vectors with arbitrary storage formats (including vectors distributed across a parallel machine and vectors that are stored in sophisticated data structures, such as oct-trees, or stored out-vi-core). In addition, the design of these routines makes it easy to replace each module with one optimized to a specific problem or application.

The SLES package is designed to sit on top of these more powerful but more complicated routines and to make it easier for you to solve linear systems that do not have special needs. You do not need to know about or understand the lower level routines. SLES provides a consistant, simple, and easy to use interface to a more powerful set of routines. If you find that SLES does not give you the functionallity that you need, you should then (and only then) investigate these other parts of PETSc.

1.2 Makefiles

PETSc has a system of makefiles that has been designed to enable the same makefile to build libraries or programs on a wide variety of architectures. For some examples, see the makefiles in any of the example directories. Basically, these use a few variables to control exactly what options the makefile uses.

The variables that must be defined on the make command line are listed below:

ARCH Architecture. Common values include sun4, rs6000, and intelnx.
BOPT Level of optimization. Use BOPTfg for debugging, BOPT=0pg for profiling, and BOPT=0 for production.

Note that at least BOPT and ARCH must be set on the make command line or defined with shell environment variables; without these values, the makefiles in PETSc will not work.

In addition, a variety of variables are defined for use within the user's makefile. The most important of these are as follows:

BASEOPT Flags for the C compiler. This includes options like -g.
BASEOPTF Flags for the Fortran compiler.
SLIB
System libraries that PETSc need. Often, this variable is empty, but it may include special libraries that are needed for the implementation of PETSc for particular architectures (the SGI workstations are an example). The math library (-1 m) is not included by default, though many of the routines will require that library.

These are values that are provided by the makefile system for your use; they should not be changed.

1.3 Linking

To build programs with PETSc, you need to link with a number of libraries. To simplify the use of PETSc for both program development and production computing, PETSc has separate libraries for debugging, profiling, and production. These libraries are in the following directories:
debugging 'tools.core/libs/libsg'

```
profiling 'tools.core/libs/libsOpg'
production 'tools.core/libs/libs0'
```

So that the libraries for many different architectures can reside on the same filesystem, the name of the architecture (such as 'sun4' or 'rs6000') defines an additional directory level. For example, the debugging libraries for the Sun 4 are found in the directory 'tools.core/libs/libsg/sun4'.

There are two libraries that you may need to link with. These are 'tools.a' and 'system.a'. For example, a partial makefile is shown below that builds the program 'example' for Sun 4's:

```
ITOOLSDIR \(=/\) usr/local/tools.core
LIBDIR \(=\$(\) ITOOLSDIR)/libs/libs0/sun4
example: example.o
    \$(CLINKER) -0 example -0 example.o \}
    \$(LIBDIR)/tools.a \$(LIBDIR)/system.a -lm
include \(\$\) (ITOOLSDIR)/bmake/\$(ARCH). 0
include \$(ITOOLSDIR)/bmake/\$(ARCH)
```

This builds a production version of 'example' on a Sun 4. The include lines include definitions for CLINKER (the linker for C programs), as well as the rule to compile a C program that uses the PETSc macros (making sure the appropriatiz flags are defined). The makefiles that come with the standard PETSc distribution use the macro $\$(A R C H)$ to hold the place of one of the many architectures, including Sun 4, to which PETSc has been ported.

SLES includes some graphical aids for displaying, for example, the progress of the solution algorithm. Using these requires a few additional libraries. In the example above, we simply add the 'Xtools . a' library (part of PETSc) and the X11 Window System library '-1X11':

```
ITOOLSDIR = /usr/local/tools.core
LIBDIR = $(ITOOLSDIR)/libs/libs0/sun4
example: example.o
    $(CLINKER) -o example -O example.o \
        $(LIBDIR)/Xtools.a $(LIBDIR)/tools.a \
        $(LIBDIR)/system.a -1X11 -lm
include $(ITOOLSDIR)/bmake/$(ARCH).0
include $(ITOOLSDIR)/bmake/$(ARCH)
```


1.4 Installing the SLES package

The SLES package is available by anonymous ftp from 'info.mcs.anl.gov' in the directory 'pub/pdetools'. The file 'sles.tar. 2 ' is a compressed tar file containing all of the code and documentation. The file 'solvers.ps.Z' is a compressed postscript file containing this document. To install the package, transfer the tar file, uncompress it, and do

```
tar xf tools_solvers.tar
```

This will create a directory 'tools.core' as a subdirectory of the current directory. Then do
cd tools.core
bin/install >kinstall.log k
(assuming the C -shell). This will create all versions of the package (debugging, profiling, and production). Should you wish to produce only a single version such as the debugging version, (for example, to limit the amount of disk space used by the package), do
bin/install -libs g >\&install.log 2

1.5 Restrictions

This package is intended primarily for linear systems that arise from the discretization of partial differential equations and that are not extremely poorly conditioned. Methods for more poorly conditioned problems, or ones that contain singular principal submatrices, will be included at a later date.

1.6 Further information

Every routine mentioned here has a Unix man page. For brevity, these are not attached to this document. They are found in 'tools.core/man'.

This document is available in "latexinfo" form for users of GNU Emacs. A sample 'localdir' file is in 'tools.core/docs/localdir'. Emacs must be informed about these "info" files with a command like
(satq Info-directory-list (list "/usr/local/tools.core/docs" Info-directory))
where '/usr/local/tools.core' is the home of the PETSc code.
This package is continually growing through the addition of new routines. Suggestions (and bug reports) should be e-mailed to 'groppemcs. anl.gov'.

Chapter 2

Solver Methods

A wide variety of techniques, including preconditioned iterative methods and direct sparse elimination, are available for the solution of systems of linear equations. The method to be used is selected when the routine SVCreate is called. This routine returns a pointer to a structure, called a contcxt, that holds the data needed to specify the type of method and any parameters that it may need.

2.1 Solver context

The solver context is the key to using the solver library. This context, created with the SVCreate routine, contains all of the data needed to describe the solver method. You can think of the solver context as a way to encapsulate a large number of subroutine arguments into a single structure. The advantages to using the context instead of individual parameters are many; they include

- much shorter argument lists,
- easy-to-add features without changing calling sequences, and
- easy-to-use, nested (as opposed to recursive) algorithms.

The solver context is of type (SVCtx *). The format of SVCreate is
SVCtx *SVCreate (mat, name)
where mat is a sparse matrix context and namo is one of
SVLU Direct (possibly sparse) factorization

SVNOPRE No preconditioning. This method and all that follow it are preconditioners for an iterative method.

SVJacobi Jacobi preconditioning
SVSSOR SSOR preconditioning
SVILU Incomplete factorization
SVICC Incomplete Cholesky factorization
SVICCJP Incomplete Cholesky factorization (Jones and Plassmann) [3]

SVBDD Block diagonal
SVOSM Overlapping Schwarz (additive and multiplicative)
Following the SVCreate call, you may set various options. These are described in more detail in Section 5.3 and have the form SVSetxix (). An important feature of the optional arguments is that any that are inappropriate for a particular solver are simply ignored. This means that you do not need to change the source code when choosing a different solver method.

Once any options have been chosen, you use the routine
SVSetUp to initialize all of the data for the chosen method. The format of this routine is

SVSetUp(ctx);
At this point, you may also set options for the iterative method. Then the system may be solved with the routine SVSolve. The format of this routine is

SVSolve(ctx, b, x)
double *b, *x;
where b is the right-hand side and x is the computed solution.
Multiple right-hand sides b may be solved by calling SVSolve multiple times.

When you are done solving this linear system, use the routine
SVDestroy to recover the solver context (not doing so will create a storage leak). The format of this routine is

SVDestroy (ctx)
This frees only the space associated with the solver. It does not free the matrix that was input to SVCreate.

2.2 Getting the methods from the command line

SLES provides three routines that may be used to extract the desired method from the command line. The routine SVGetMethod gets the solver's method. The format is

SVGetMethod (Argc, argv, neme, svmethod)
int *Argc
char **argv, *name;
SVIETHOD *svmethod;
where the first two arguments are the arguments to the main routine, name is the name to be used on the command line (-svmothod is the default if name is NULL), and the chosen method is returned in svmethod. If no method is specified on the command line, svmothod is unchanged. This routine purges the solver method arguments from the argument list.

The routine ITGetMethod does the same thing, but for the iterative accelerators. The default value of name is -itmethod. The format of this routine is

ITGetMethod (Argc, argv, name, itmethod)
int \quad Arge;
char **argv, *nyne;
ITMETHOD *itmethod;
The routine SpGetOrdering does the same for the matrix orderings. The default value of name is -ordering. The format of this routine is

SpGetOrdering (Arge, argv, name, ordering)
int *Argc;
char **argv, *name;
SPORDERTYPE *ordering;
These are only available for C programs as Fortran does not i : Jvide^{2} portable way to access the command line arguments.

Chapter 3

Creating the Matrix

The SLES package uses matrices in the SMEIT sparse format. These routines will be described in cot:splete detail in another manual. Here we give you a subset sufficient for using SLES.

Just as the SLES package uses a context variable to hide various details from you, the SMEIT package uses its own context to provide a general, data-structure-independent interface to a collection of sparse matrix routines.

The routine SpCreate creates the most general supported type of sparse matrix. Most users of SLES should use this type. The format of this routine is

SpMat *SpCreate (rows, cols, nmax)
int rows, cols, nmax;
The matrix is of size rows x cols. The value amax is the number of nonzeros in each row; this may be used to speed up the process of adding elements to the matrix. This is only an optimization; it is not a limit on the number of nonzeros in each row of the matrix. A good value of nmax is often zero, allowing the matrix to grow dynamically.

The more sophisticate? user may choose other storage formats with the Sp<format>Create routines, where <format> is one of the known formats. Formats currently available include dense (format = Dn) and AIJ (<format> $=$ AIJ). Additional formats may be defined by the expert user.

If the matrix is already available, a routine of the form Sp<format>CreateFromData should be used. For example, the routine SpDnCreatoFromData creates a matrix context from a dense matrix; the routine SpAIJCreateFromData does the same for a matrix in AIJ format.

To add an element to a sparse matrix created with any type of
SpCreate, use the routine SpAddValue. The format of this routine is
SpAddValue(mat, value, row, col)
SpMat *mat;
double value;
int row, col;
Parameters row and col are zero-origin indexed; that is, they take on values between zero and rows-1, (respectively cols-1). The parameter value is added to the matrix element already present. In other words, after the execution of

SpAddValue (mat, 1.0, , 0);
SpAddViue(mat, $1.0,0,0$);
the value of mat $[0,0]$ is two, not one. The routine SpSetValue may be used to set a single value. To add to every element in a row, use the routine SpAddInRow. The format of this routine is

SpAddInRow (mat, row, n, v, cols)
SpMat *mat;
int row, n , *cols;
double *V;
This adds $\boldsymbol{\nabla}[\mathrm{i}]$ to row row and column cols[i], for n elements.
When the matrix is no longer needed, the routine SpDestroy will recover all of the space that it is using. This routine will work regardless of the underlying data structure used to store the sparse matrix.

Chapter 4

Direct Methods

Sparse direct methods are appropriate for relatively small systems of equations and for cases where iterative methods are not robust enough. The solver name SVLU selects this method. This forms an LU factorization of the matrix (perhaps with a permuted ordering of rows and columns).

Three options are supported for this direct factorization. Two control the ordering of the matrix; the third is used to (possibly) speed the factorization. These options are ignored when an iterative solver is used.

4.1 Sparse matrix orderings

The routine SVSetLUOrdering choses an ordering strategy that is used to reduce fill and to speed the solution process. The currently recognized orderings are

ORDER_ND Nested dissection. This is often the most efficient ordering for matrices that come from discretizations of PDEs.

ORDER_QMD Quotient Minimum Degree. This is often the best ordering in terms of space, but it is often the most expensive in time.

ORDER_RCM Reverse Cuthill-McGee. This is often a good ordering for skyline-like methods.

ORDER_1WD One-way dissection.
The format of this routine is

SVSetLUOrdering (svctx, ordering)
where suctx is a solver context from SVCreate and ordering is one of the orderings (i.e., ORDER_ND). The orderings provided at this time come from the netlib versions from SPARSPAK (see [2] for more information on these routines). Since these ordering routines are intended for symmetric matrices, SLES applies them to the matrix structure of the lower triangular part of the matrix. This ensures that the methods produce valid orderings for most nonsymmetric matrices and produce the same ordering as they would on a symmetric A.

In addition to these, additional ordering methods may be defined with the routine SpOrderRegister.

4.2 Pivoting

Pivoting is used to avoid or reduce numerical problems that car. arise in solving a linear system. The routine SVSetLUPivoting allows you to select a pivoting method. Currently, the only pivoting strategies supported do a priori pivoting, moving small elements off the diagonal of the unfactored matrix. These are PIVOT_PRE_SYM (for symmetric pivoting) and PIVOT_PRE_NONSYM (for nonsymmetric pivoting). The format of this routine is

SVSetLUPivoting(etx, pivot_type)
By default, PIVOT_NONE (for no pivoting) is used.
SLES currently does not support partial pivoting for numerical stability, except for the dense matrix type (where it is the default choice).

4.3 Blocking

The routine SVSetLUThreshold sets a minimum block size to use in searching for blocks of rows in the matrix. If the problem has a natural blocksize, such as a multicomponent PDE with m unknowns per mesh point, set the threshold to m . The format of this routine is

SVSetLUThreshold(ctx, bsize)
where bsize is the block size. A good default threshold is four.
Blocking affects only the eificiency of memory access; it does not change the algorithms used (that is, it does not use a blocked LU factorization; rather, it arranges to compute the same LU factorization but with aggregate operations, similar to BLAS Levels 2 and 3).

4.4 Example

This section presents a code fragment that illustrates the use of these routines. Note that neither of the SVSetLUxxx routines is required; they are provided to allow you to castomize the solver.

This code uses LU factorization with quotient minimum degree ordering to slve the problem mat*x=b for x. The routine is told that a block size of 8 is a good choice for this problem.

```
svctx = SVCreate( mat, SVLU );
SVSetLUOrdering( svctx, ORDER_QMD );
SVSetLUThreshold( svctx, 8 );
SVSetUp( svctx );
SVSolve( svctx, b, x );
SVDestroy( svctx );
```


Chapter 5

Iterative Methods

The SLES package provides a wide variety of iterative methods. These are organized by the choice of preconditioner rather than the choice of iterative method. This approach was taken because the choice of preconditioner more strongly determines the performance and behavior of the method than the choice of iterative method.

5.1 Preconditioners

The preconditioners supported include
SVILU Incomplete factorization with fill
SVICC Incomplete Cholesky
SVICCJP Jones and Plassmann's incomplete Cholesky
SVSSOR SSOR
SVBDD Block diagonal decomposition
SVOSM Overlapping Schwarz method
SVJacobi Jacobi
SVNOPRE No preconditioning (identity matrix)
The matrix used for constructing the preconditioner is the input matrix to SVCreate; you may change this matrix with SVSetPrecondMat. This
routine s particularly useful when a good preconditioner can be defined by a matrix with fewer nonzero elements or a special structure. The routine must be called before SVSetUp.

5.2 Initial guess

The initial guess is taken as zero unless the routine SVSetUseInitialGuess is used. The initial guess is placed in the " x " vector; this is the vector that holds the solution in SVSolve. If the initial guess is not selected, it is not necessary to preset the x-vector to zero. The format of this routine is

SVSetUseInitialGuess(ctx, flag)
where flag is one if the value in x is to be used as the initial guess, and zero if the initial guess is the zero vector. Here, x is the solution argument to SVSolve(ctr, b, x).

5.3 Method options

Several of the preconditioners have a number of options that may be used to improve the method's performance. These options are ignored when they are not appropriate for the solver being used.

5.3.1 ICC

The incomplete Cholesky methods have no parameters, but there are two diagnostics. These are SVGotICCAlpha and SVGotICCFailures. These routines may be called after SVSolve to determine how well the ICC preconditioner worked with the vatrix.

5.3.2 ILU

ILU (Incomplete LU factorization) is a powerful and general method. The simplest ILU involves computing the $L U$ factor of the matrix, discarding any elements that would introduce fill (nonzero values where A has a zero element). Better performance can often be obtained by allowing some of the elements in L and U to fill in. There are a number of ways to select which elements are allowed. One is a level of fill, which looks at the ancestry of an element. If the fill would be caused by an element that was in the original matrix, it is fill of level 1 . Fill caused by level 1 fill is called fill of level 2,
and so on. The amount of such fill may be set with the routine SVSetILUFill. The format of this routine is

SVSetILUFill (svctx, fill)
where fill is the level of fill. The default level of fill is zero (no fill).
Another way of choosing the amount of fill is to set a numeric tolerance. Values smaller than this are discarded. This tolerance is set with the routine SVSetILUDropTol. The format of this routine is

SVSetILUDropTol(svetx, rtol)
double rtol;
where rtol is a relative tolerance; values smaller than this, relative to the norm of the row, are discarded. If rtol is greater than zero, fill (set with SVSetILUFill) specifies the maximum number of nonzeros allowed in each row of the factored mairix.

One problem with ILU is that matrices that are nonsingular may have singular factors or poorly conditioned factors. The routine SVSetILUPivoting gives you some control over the type of pivoting that is applied to the matrix. The pivot choices are the same as for SVLU (see Section 4.2).

5.3.3 SSOR

The SSOR method has one parameter, the acceleration value omega. This value should be between zero and two, and is set with the routine SVSetSSOROmega. The default value is 1.0 (giving the Gauss-Seidel method).

5.3.4 BDD

The block diagonal method uses (possibly approximate) solutions to a blockdiagonal restriction of the original matrix to precondition the problem. This preconditioner is most popular on parallel computers, where its application is perfectly parallel. However, this method is often less effective than others in this package, including the highly parallel overlapping Schwarz methods (SVOSM).

There are many degrees of freedom in defining a block-diagonal preconditioner. These include the precise decomposition and the methods used on each block. Naturally, we use the solver package to solve the systems for each block. Default decompositions and methods are provided, though these are not optimal choices. It is legal to use SVBDD as the solver method on each domain.

5.3.4.1 Solver method

To set the solver method to be used on each domain, use SVSetBDDDefaul Me Mod. The format of this routine is

SVSetBDDDefaultMethod (svctx, svmethod)
where svmethod is any valid solver method (such as SVILU). Note, however, that many iterative accelerators require the same preconditioner to be applied at each step. If this is the case (for example, using ITGMRES), use the routine SVSetIts to set some small limit on the number of iterations to take. Alternatively, set the relative convergence tolerance to be roughly machine epsilon. Take note that using inner iterations is not for the faint-hearted.

5.3.4.2 Decomposition

The routine SVSetBDDDomainsNumber sets the number of blocks in the blockdiagonal decomposition. The format of this routine is

SVSetBDDDomainsNumber (svcty, n)
where n is the number of blocks. The blocks are defined as consecutive rows in the matrix. For example, if the matrix has 1000 rows and SVSetBDDDomainsNumber (svctx,10) is used, then there are 10 blocks, consisting of the submatrices of the original matrix A (in Fortran- 90 array notation) $\mathrm{A}(1: 100,1 ; 100), \mathrm{A}(101: 200,101: 200), \ldots, \mathrm{A}(901: 1000,901: 1000)$. A default choice is made by the package for the number of domains; this is currently the square root of the size of the matrix. This choice generates line-blocked decomposition for square meshes in two dimensions.

You may define more general decompositions by using the routine SVSetBDDDomainsNumber, followed by SVSetBDDDecomp for each of the blocks. SVSetBDDDecomp is given the rows (numbered from zero) that belong to each block (or domain). The format of this routine is

SVSetBDDDecomp(svctx, i, idx, nv)
where i is the number of the domain (numbered from zero), idx is an array of rows that belong to that domain, and $n v$ is the number of rows in this domain.

5.3.4.3 Special decompositions

For discrete operators arising from two-dimensional Cartesian meshes, where the matrix is ordered according to the naturai ordering, the routine SVSetBDDRegularDomains2d may be used to specify the decomposition. The format of this routine is

SVSetBDDRegularDomains2d(svctx, nx, ny, nc)
where the mesh is $n x$ by ny, with nc components at each mesh point. The components are assumed to be numbered first (so a two-component problem has the first two matrix rows at the first mesh point). This routine uses SVSetBDDDecomp to define the domains.

5.3.5 OSM

The overlapping Schwarz method uses (possibly approximate) solutions to a collection of smaller problems, usually generated by decomposing a physical domain into pieces, then defining overlaps in terms of neighboring points. A critical component for efficient overlapping Schwarz methods is a small global or coarse-grid problem that is defined on the smaller domains. However, the method can be applied without this global problem, at some (potentially large) cost in efficiency.

Many degrees of freedom exist in defining an overlapping Schwarz preconditioner. These include the precise decomposition, the amount of overlap, and the methods used on each domain. Naturally, we use the solver package to solve the systems for each domain. Default decompositions and methods are provided, though these are not optimal choices. It is legal to use SVOSM as the solver method on each domain.

5.3.5.1 Solver method

To set the solver method to be used on each domain, use SVSetOSMDefaultMethod. The format of this routine is SVSetOSMDefaultMethod (svetx, svmethod) where svmethod is any valid solver method (such as SVILU).

5.3.5.2 Decomposition

The routine SVSetOSMDomainsNumber sets the number of blocks in the blockdiagonal decomposition. The format of this routine is

SVSetOSMDomainsNumber (svctx, n)
where n is the number of blocks. The blocks are defined as consecutive rows in the matrix. For example, if the matrix has 1000 rows and SVSetOSMDomainsNumber (svctx, 100) is used and the overlap is zero, then there are 10 blocks, consisting of the submatrices of the original matrix A (in Fortran-90 array notation) $\mathbf{A}(1: 100,1 ; 100), \mathbf{A}(101: 200,101: 200), \ldots$, $A(901: 1000,901: 1000)$. A default choice is made by the package for the
number of domains; this is currently the square root of the size of the matrix. This choice generates line-blocked decomposition for square meshes in two dimensions.

5.3.5.3 Overlap

The amount of overlap is set with SVSetOSMDefaultOverlap. The format of this routine is

SVSetOSMDefaultOverlap (svctx, j)
where j is the amount of overlap. Here, overlap is defined algebraically. An overlap of zero is identical to the block-diagonal decomposition. An overlap of one or greater augments each diagonal block with additional rows (and corresponding columns) according to the following recursive rule. For each block in the partition with overlap $k-1$, list the indices of all columns outside of the block that contain a nonzero entry in any row of the block. Add the rows corresponding to indices in this list to the current block to obtain the block of overlap k.

5.3.5.4 General decompositions

A more general decomposition may be defined by using the routine SVSet.OSMDomainsNumber, followed by SVSetOSMDecomp for each of the blocks. This routine is given the rows (numbered from zero) that belong to each block (or domain). The format of this routine is

SVSotOSMDecomp(svctx, i, idx, nv)
where i is the number of the domain (numbered from zero), idx is an array of rows that belong to that domain, and $n v$ is the number of rows in this domain. Among other uses, you can use this decomposition to select disjoint sets of rows with the same "color" in multicolored preconditioners.

5.3.5.5 Special decompositions

For two-dimensional Cartesian meshes, where the matrix is ordered according to the natural ordering, you may use the routine SVSetOSMRegularnomains2d to specify the decomposition. The format of this routine is

SVSetOSMRegularDomains2d(svctx, nx, ny, nc)
where the mesh is $n x$ by ny, with nc components at each mesh point. The components are assumed to be numbered first (so a two-component problem
has the first two matrix rows at the first mesh point). This routine uses SVSetOSMDecomp to define the domains.

5.3.5.6 Additive and multiplicative OSM

There are two principal types of Schwarz methods: additive (like Jacobi) and multiplicative (like Giauss-Seidel). For uniprocessors, the multiplicative method is usually the best choice. However, for parallel processors, the aduitive technique may be more efficient (or may not, depending on many factors). Multicoloring can be used to create intermediate methods. The routine SVSotOSMSDefaultMult sets the choice of method. The format is

SVSetOSMDefaultMult (svetx, q)
where q is 1 for multiplicative Schwarz and 0 for additive Schwarz. By default, multiplicative Schwarz is used.

5.3.5.7 Defining the global problem

The global, or coarse, problem is key to getting the best performance from domain decomposition preconditioners. While a discussion of the details of this problem is beyond the scope of this manual (see, for example [1] for a discussion of the importance of the global problem), the basic idea is to restrict the number of unknowns to a smaller space, solve an appropriate system in that space, and interpolate that solution back to the full problem. This is reminiscent of multigrid, and there are a number of practical and theoretical similarities.

- To specify the global problem, we need to specify the restriction and interpolation operations, the matrix for the global problem, and the method used to solve the global problem. In addition, the mapping from a domain to the global problem (that is, the indices of the global vector $c[i]$ that "bcrder" a domain) need to be specified. Each of these can be set once SVCreate is called.

The routine SVSetOSMGlobalInterpolation sets the interpolation routine. This routine must interpolate from the entire global problem to the entire original problem.

The routine SVSetOSMGIobalRestriction sets the restriction routine. This routine must restrict from the entire full problem to the global problem.

The routine SVSetOSMGlobalMatrix specifies the global problem to solve by giving the matrix in SMEIT sparse matrix form.

The routine SVSetOSMGlobalSolver specifies the solver context to use in solving the global problem.

The routine SVSetOSMGlobalDecomp specifies the mapping to global points from the indicated subdomain. The routines defined by SVSetOSMGlobalRestriction and SVSetOSMGlobalProjection may use this information.

More information on these routines may be found in the man pages or the reference manual.

5.4 Accelerators

The available accelerators comprise

ITCG Conjugate gradient

ITCGS
ITBCGS
ITTFQMR

ITGMRES

ITTCQMR
ITCHEBYCHEV
ITRICHARDSON

Conjugate gradient squared
BiCG-Stab
Freund's transpose-free QMR
Generalized minimum residual
Chan's transpose-free QMR
Chebychev
Richardson
The choice of accelerator is made with SVSetAccelerator. The format is
SVSetAccelerator (svctx, itmethod)
where itmethod is one of the iterative accelerators (e.g., ITTFQMR). This must be called before SVSotUp. Accelerator options must be set after SVSetUp is called but before the call to SVSolve.

5.4.1 Convergence tests and iteration control

By default, all accelerators have a simple convergence test (based on a relative reduction in the norm of the residual), an upper limit on the number of iterations, and no runtime display of the progress of the iteiation. Each of these defaults may be individually overridden.

The routine SVSetConvergenceTest allows you to provide a different routine to test for convergence.

The routine SVSetMonitor allows you to provide a routine that is called once per iteration. The routine ITXMonitor may be of interest; this monitor displays a graph of the progress of the iteration. To use this routine, use this code fragment before calling SVSetup:

SVSetMoniter(svctx, ITXMonitor, (void*)0);
ITXMonitor ($0,0,-2,0.0$);
(the call to ITXMonitor is needed to initialize ITXMonitor; it is unnecessary if only one system of equations is to be solved). You will also need to add the libraries 'tools.core/libs/libs\$(BOPT)/\$(ARCH)/Xtools.a -1X11', where BOPT is one of g (debugging), 0 (production), or Opg (profiling).

The routine SVSetIts allows you to set the maximum number of iterations that an iterative method will use in attempting to solve the problem. The format of this routine is

SVSetIts(svctx, maxits)
where maxits is the maximum number of iterations allowed.
The routine SVSetRelativeTol sets the convergence tolerance if the default convergence criteria is used. The format of this routine is

SVSetRelativeTol (svctx, tol)
double tol;
where tol is the relative reduction in the residual needed before the convergencr. criterion is satisfied.

The routine SVSetAbsoluteTol sets the absolute convergence tolerance if the default convergence criteria is used. The format of this routine is

SVSetAbsoluteTol (svctx, tol)
double tol;
where tol is the absolute size of the residual needed before the convergence criterion is satisfied.

When both SVSetRelativeTol and SVSetAbsoluteTol are used, convergence is signaled when either criterion is satisfied.

Additional options are supported by the iterative package for use by the expert user. These include whether the preconditioner is applied on the right, on the left, or symmetrically and whether a residual history should be kept. In addition, there are a few options that are specific to particular accelerators. Changing these requires knowledge of the iterative package.

5.4.2 GMRES

The GMRES method has one parameter. This is the number of iterations between restarts (strictly speaking, the GMRES here is restarted GMRES(k)). This parameter may be set with the routine SVSetGMRESRestart. The format of this routine is

SVSerGMRESRestart(svctx, its)
where its is the number of iterations (or directions) before restarting GMRES.

Chapter 6

Monitoring Performance

The SLES package provides a convenient way to monitor the performance of the various methods. After each call to a SLES routine, you may request the number of floating-point operations and amount of memory used so far.

The macro SVGetFlops gives the number of floating-point operations (flops) so far. The format is

SVGetFlops (svctx, a)
where a is an int that will be assigned the number of flops.
The routine SVSe: FlopsZero sets the running count of flops to zero. The format is SVSetFlopsZoro(svctr).

The macro SVGetMemory gives the amount of space used by the solver context, in bytes. The format is

SVGetMemory (svctx, a) where a is an int that will be assigned the amount of memory used.

The routine SYGetCPUTime returns the time used by the process in seconds For elapsed time, the routines SYusc_clock and SYuscDiff may be used to access the elapsed time, with microsecond granularity on those systems that support fine-grain clocks, for example,

```
SYtime_t t1, t2;
SYusc_clock( &t1);
<code to time>
SYusc_clock( &t2 );
printf( "Time is Y/\r`n", SYuscDiff( &t2, &t1 ) );
```

Note: These features are not fully implemented in the current release. These routines will return values, but they may be underestimates.

Chapter 7

Adding New Methods

You can easily add new methods to the SLES package, without changing a single line of code in the SLES package. You simply call a routine to insert the new methods into a list of known methods. These methods are then known to the appropriate GotMothod routine as if it were part of the core package. Thus, with the SLES package you can make use of new developments in algorithms and implementations without changing your program; you need only relink your code. No longer must you choose between using older algorithms or making significant changes to your code.

7.1 Method registry

A method is added to the SLES package by registering a creation routine. You do this with the routine SVRegister. The format of this routine is SVRegister (id, name, routine)
int id;
char *name;
void *(*routine) (SVCtx *svctx, SpMat *mat);
where id is a unique idensifier, name is a string that names the method, and routine is a routine that creates the method. The best way to see how to write such a routine is to examine the implementation of the methods included with the SLES package, such as SVILU (in 'tools. core/solvers/ilu. c' or SVOSM (in file 'tools core/solvers/osm. [ch]'). After this routine is called, SVGetMothod will accept name as a known solver method and return id and the corresponding solver's type.

7.2 Accelerator registry

Iterative accelerators are registered in much the same way as solver methods, using the routine ITRegister instead of SVRegister. ITGetMethod will accept name as a known iterative accelerator.

7.3 Matrix orderings registry

Matrix orderings (for sparse direct factorizations) are registered with the routine SpOrderRegister. SpGetOrdering will now accept name as a known matrix reordering.

7.4 Sparse matrix formats

Sparse matrices are not registered in the same way as solver methods or iterative accelerators. Instead, you must write three routines that respertively create, extract a row from, and insert a row into the matrix. In many cases, an additional routine that forms a row-format SMEIT sparse matrix from an existing one should also be written. However, once a SMEIT sparse matrix is generated, all of the other routines in SLES will work. The details of this process are beyond the scope of this manual.

You may also provide other routines, such as a matrix-vector product that is optimized for the particular data structure. For each of these routines, if you do not provide one, a default routine (built by using the routine to extract rows from the matrix) will be used. Thus, all of the operations used by the solver package are available regardless of the sparse matrix data-structure; for more efficient execution, you may provide customized routines.

7.5 Restricting the choices

One disadvantage of providing a large variety of methods, all of which are available at run time, is that it can greatly increase the size of an executable program. While this may not be serious for virtual-memory machines, it can be a major problem for programs running on massively parallel computers, where each processor has a copy of the executable image. To change the routines that are loaded when the executable is created, write a routine called SVRegisterall, and link it into your program ahead of the PETSc
library. This routine should contains SVRegister calls for each method desired. For example, to restrict the program to direct LU factorization and ILU preconditioning, use

```
void SVRegisterAll()
{
    SVRegister(SVLU, "lu", SViCreateLU);
    SVRegister(SVILU, "ilu", SViCreateILU);
}
```

Similarly, the iterative methods may be restricted by providing a routine ITRegisterAll. For example, to restrict the iterative methods to CG and GMRES, use

```
void ITRegisterAll()
{
ITRegister(ITCG, "cg", ITCGCreate);
    ITRegistor(ITGMRES, "gmres", ITGMRESCreate);
}
```

The matrix orderings for the direct sparse factorizations may be restricted by providing a routine SpOrderRegisterAll. For example, to restrict the orderings to nested dissection, use
void SpOrderRegisterAll()
\{ SpOrderRegister(ORDER_MD, "nd", SpOrderND);
\}
To recover the small amount of space used by the registries, use the routine SVRegisterDestroy for the solver's registry, the routine ITRegisterDestroy for the iterative accelerator's registry, and the routine SpOrderRegisterDestroy for the ordering's registry. Of course, once the registries are eliminated, they are no longer available.

Chapter 8

Using SLES with Fortran

SLES is fully callable from Fortran. All routines have the same names as the C versions. The arguments follow the usual Fortran conventions; you do not need to worry about passing pointers or values.

All "pointers" should be declared as integers in Fortran; this includes the solver context variable (svctx). The include file 'tools.core/solvers/svfort.h'contains parameter definitions for the solver and iterative methods and matrix orderings. Error messages generated by the PETSc package at run time will not indicate the Fortran file and line number where they occurred; instead, they will indicate the line in the interface file. Other than this, everything is the same.

The library 'tools.core/fort/\$(ARCH)/fort. a' provides a Fortran interface to the SLES routines. This library must occur ahead of the 'tools' libraries. For example, this makefile fragment links a Fortran program (oxample) with the appropriate libraries:

ITOOLSDIR $=/$ usr/local/tools.core
LDIR $\quad=\$($ ITOOLSDIR) $/ 1 \mathrm{ibs} / \mathrm{libs} \$$ (BOPT) $\$$ (PROFILE) $/ \$$ (ARCH)
LIBS $\quad=\$(L D I R) /$ tools.a $\$($ LDIR $) /$ system.a -1 m
FLIBS $=\$($ ITOOLSDIR)/fort/\$(ARCH)/fort.a
include \$(ITOOLSDIR)/bmake/\$(ARCH). \$(BOPT) \$(PROFILE)
include \$(ITOOLSDIR)/bmake/\$(ARCH)
example: example.o
\$(FLINKER) -0 example \$(BASEOPTF) example.0 \$(FLIBS)
\$(LIBS) \}
\$(LAPACK) \$(BLAS)
\$(RM) example.o

This assumes that SLES is installed in '/usr/local/tools.core' and that the program may be using LAPACK and/or the BLAS (these are standardized linear algebra packages available on many systems. In particular, some vendors provide optimized versions of the BLAS that significantly out perform portable versions). Programs that do not use these routines can leave the libraries \$(LAPACK) and \$(BLAS) out. Note that the dense matrix routines (associated with SpDnCreate and SpDnCreateFromData) require both LAPACK and the BLAS.

This interface library is constructed automatically from the \mathbf{C} program files. Thus, it should always match the C versions (any new routine added to SLES autrmatically becomes available to both C and Fortran users; no special interface code needs to be written). If you are interested in how this is accomplished, look in the directory 'tools.core/c2fort'. The program in this directory uses the same approach that is used to generate the manual pages from the C scurce files.

Chapter 9

Debugging and Optimizations

A number of tools are available to aid in debugging a program that uses the SLES package.

The simplest is to use SpHult to check that the computed solution is actually a good one by calculating the residual with the original matrix. Note that if the original matrix is very poorly ccaditioned, a preconditioned iterative method could find an excellent solution to the preconditioned problem that was a poor solution to the original problem.

Another tool that can help in debugging a SLES code is the iterative monitor (set with SVSetMonitor) which displays, for example, the solution or the residual at the current iteration. The FETSc package provides some graphics display tools that may also be helpful. These include ITXMonitor (graphs the norm of the residual) and ITXMonitoraval (graphs the value of the residual vector on a rectangular mesh). The routine XBQMatix may be used to display the matrix; this can be useful in verifying that the problem being solved is the one intended.

Finally, do not forget to take advantage of the debugging library in 'tools.core/libs/libsg' and dbx. For performance debugging, use the profiling library, in 'tools.core/libs/libs0pg', and the -pg compiler switch (or $\operatorname{BOPT}=0 \mathrm{pg}$, if you are using the PETSc makefiles) when compiling and linking your application. Then the usual tools, such as gprof, may be used to gain insight into the execution-time performance of the program.

9.1 Error messages

The debugging version of the PETSc package will generate error tracebacks of the form

Line linenumber in filename: message
Line linenumber in filename: message
Line linenumber in filename: message
The first line indicates the file where the error was detected; the subsequent lines give a traceback of the routines that were calling the routine that detected the error. A message may or may not be present; if present, it gives more details about the cause of the error.

The production libraries ('libs0/tools.a') are often built without the ability to generate these tracebacks (or even detect many errors).

9.2 Performance debugging

There are a number of ways to identify performance bugs or problems. One is to look at the achieved computational rate (so-called megaflops) for the setup and solve phases. Values that are low (relative, for example, to the LINPACK benchmark numbers) may indicate that the implementation is not making effective use of the computer hardware. This problem may be caused, for example, by the choice of sparse matrix format. Choosing a different format, particularly one that is not dynamic (such as IJA or AIJ), way give better performance.

More detailed information may be gather by using the profiling library ('tools.core/libs/libs0pg/\$ARCH/tools.a' and the gprof utility (available on most though not all Unix systems).

Chapter 10

Hints on Choosing Methods

This chapter contains some hints for choosing the methods to use in the SLES package. Please note that each problem is different and may have special features that make other choices more appropriate.

If the problem is small ($n<100$), use SVLU with the default ordering (ORDER_ND). Direct factorization may also be appropriate if high relative accuracy is required and the problem is of moderate size.

For larger problems, if the matrix is symmetric, use either of the approximate factorizations SVICC or SVICCJP, or SVSSOR, with iterative accelerator ITCG.

For nonsymmetric matrices, use incomplete factorization with fill (SVILU) and an iterative accelerator ITGMRES, ITBCGS, or ITTFQMR.

Large systems of equations that are generated by discretizations of PDEs can solved more effectively with SVOSM as long as a global problem can be provided.

Some singular systems can be solved if the null-space is known in advance. For example, the "pressure" equation often has Neumann boundary conditions, making the vector $(1,1, \ldots, 1)$ a null-vector for the matrix.

Chapter 11

Examples

This chapter contains a few examples of programs that use SLES to solve linear systems. More examples may be found in the directory 'tools.core/solvers/examples'.

11.1 Poisson problem

Our first example solves a simple Poisson problem on the unit square using any of the available methods. A C shell script following this example shows how to generate a table comparing 68 different methods for this model problem. This example demonstrates how easy it is to produce a comparison of methods by using this package.

```
#include "tools.h"
#include "solvers/svctx.h"
main(argc,argv)
int arge; char *argv;
{
SVMETHOD svmethod;
ITMETHOD itmethod;
SPORDERTYPE ordering;
SpMat *mat;
SVCtx *svctx;
int n,m;
double *b, *x;
n = 16;
```

```
svmethod = SVILU;
itmethod = ITGMRES;
ordering = ORDER_ND;
SYArgGetInt( kargc, argv, 1, "-n", tn );
SVGetMethod( &argc, argv, 0, Esvmethod );
ITGetMethod( &argc, argv, 0, eitmethod );
SpGetOrdering( &argc, argv, 0, &ordering );
m = n * n;
mat = FDBuildLaplacian2d( n, n, 0.0, 0.0, 0.0);
svctx = SVCreate( mat, svmethod );
SVSetAccelerator( svctx, itmethod );
SVSetLUOrdering( svctx, ordering );
SVSetUp( svctx );
x = DVCreateVector( lm ); DVset( km, 1.0, x );
b = DVCreateVector( &m );
SpMult( mat, x, b );
printf( "Solved in %d iterations\n",
    SVSolve( svctx, b, x ) );
}
```

To produce a tatle comparing various methods, run this csh script: foreach ordsring (nd rcm qmd 1 wd)
echo "lu \$ordering"
example -n \$N -sv lu -ordering \$ordering
end
foreach svmethod (jacobi ssor ilu icc \}
iccjp bdd osm nopre)
foreach itmethod (richardson chebychev cg \backslash gmres tcqur bcgs cgs tfqmi)
echo "\$svmethod \$itmethod"
example -n $\$ \mathrm{~N}$-sv \$svmethod -itmethod \$itmethod end
end

11.2 Fortran example

This example shows how SLES may be used from Fortran. This example solves a, simple 1-dimenisional Poisson problem. A sample makefile follows the program, showing how to use the Fortran interface libraries.

```
    Program Main
C Include PARAMETERS for methods otc.
    include '/usr/local/tools.core/solvers/sviort.h'
    integer spereate, svereate
    integer svsolve
C
c
C
c croate oxample right hand side
c
c create example matrix, 1D discrote Laplaciain
c
    1lag = 0
    matrix = spcreate(M, H,0)
    if (matrix .oq. O ) goto 100
c
c
c create solver context
c
    1lag = 2
    solvor = svcreate(natrix,SVSSOR)
```

```
        if ( solver .eq. 0 ) goto 100
c
c set nested dissection for matrix ordering
c
    C2ll svsetluordering(soiver,ORDER_mD)
c
c
c
        call svserup(solvor)
        call svsetrelativetol(solver,1.d-8)
c
c
c
        flag = 4
        its = svsolve(solver,b,x)
        if ( its .eq. -1 ) goto 100
C
c
        call svdestroy(solver)
c
c
c
    calculate residual
        call spmult(matrix,x,r)
        norm = 0.d0
        do }30\textrm{i}=1,\textrm{I
            r(i) = b(i) - r(i)
            norm = norm + r(i)*r(i)
        continue
        norn = dsqre(norm)
        print*, 'Iterations ',its,' Morm of residual',norm
c
c
    free the space used by matrix
c
        call spdestroy(matrix)
        stop
100 continue
    print*, 'Error in call to SLE'S libraries',ilag
    ond
```

The makefile for this program is (from 'tools .core/solvers/examples/makefile'): ALL: example

```
ITOOLSDIR = /usr/local/tools.core
LDIR = $(ITOOLSDIR)/libs/libs$(BOPT)$(PROFILE)/$(ARCH)
LIBS = $(LDIR)/tools.a $(LDIR)/Xtools.a $(LDIR)/system.a
FLIBS =$(ITOOLSDIR)/fort/$(ARCH)/fort.a
```

```
example: example.o
    $(FLINKER) -o example $(BASEOPTF) example.o \
    $(FLIBS) $(LIBS)
```

include \$(ITOOLSDIR)/bmake/\$(ARCH). \$(BCIPT) \$(PROFILE)
include \$(ITOOLSDIR)/bmake/\$(ARCH)

11.3 Graphical interface

SLES can be used with a graphical user interface (GUI). Tcl/Tk (a shellbased X interface) makes it easy to provide a mexu-driven interface.

Figure 11.1 gives an example of the type of iaterface that can be constructed with SLES and Tck/Tk.
The source code for this interface can be found in 'tools .core/solvers/examples/winex'.

This interface allows you to use menus to choose the solver method and accelerator, parameters (as appropriate, by method and accelerator), and problem size. The graphics area allows for the display of the norm of the residual as a function of interation, or for the ac:ual residual, displayed as a two-dimensional contour plot. A summary line is displayed at the end of the computation in the text window at the bottom of the interface window.

Figure 11.1: Example graphical interface to SLES

Chapter 12

Summary of Routines

This chapter contains a brief summary of the routines in this manual, as well as a few routines (e.g., SpPrint) from PETSc that may be of use. This chapter is organized into three major parts: the SLES routines (SVxxx), the sparse-matrix routines ($\mathrm{S}_{\mathrm{p}} \mathrm{xxx}$), and miscellaneous routines. This last section has three subsections, containing routines for system timers, registering iterative accelerators, and graphics tools that are designed to work with the SLES routines. The beginning of each section lists the include files that are needed by C programmers. Fortran users should use the 'svfort.h' file.

12.1 SLES routines

```SVctx *SVCreate(mat,name) SpMat *mat; SVIETHOD name;```	Given a sparse matrix, creates an SVctx structure; this structure will then be used in solving linear systems.
```MACRO void SVDestroy(ctx) SVctx *ctx;```	Destroys a solver context created by SVCreate().
```MACRO void SVGetFlops(ctx,flops) SVctx *ctx; int *flops;```	Returns number of flops used related to solver context since creation of solver context or since a call to SVSetFlopsZero().


```MACRO void SVGetICCAlpha( ctx, alpha ) SVctx *ctx; double *alpha;```	Returns shift factor needed for incomplete Choleski factorization before positive definite preconditioner was found.
```MACRO void SVGetICCFailures( ctx, count ) SVctx *ctx; int *count;```	Returns the number of shifts needed for incomplete Choleski factorization before positive definite preconditioner was found.
```MACRO void SVGetMemory(ctx,mem) SVctx *ctx; int *mem;```	Returns the amount of space used by the solver context.
```void SVGetMethod( Argc, argv, sname, svmethod) int *Argc; char *argv, *sname; SVMETHUD *svmethod;```	Given the argument list, return the selected method
void SVRegisterAll ()	This routine registers all the SERIAL linear system solve, in the SV package.
void SVRegisterDestroy ()	Frees the list of SERIAL iterative solvers which have been registered.
```void SVRegister( name, sname, create ) int name; char *sname; void (*create)();```	Given a solver name (integer) and a function pointer; adds the solver to the SERIAL solver package.
```MACRO void SVSetAbsoluteTol( ctx, tol ) SVctx *ctx; double tol;```	Sets the absolute tolerance for convergence.
```MACRO void SVSetAccelerator( ctx, type ) SVctx *ctx; ITMETHOD type;```	Sets the type of accelerator to use for the iterative process.


```void SVSetBDDRegularDomains2d( ctx, n1, n2, nc ) SVctx *ctx; int n1, n2, nc;```	Set the domains for a $\mathrm{n} 1 \times \mathrm{n} 2$ regular mesh
```MACRO void SVSetConvergenceTest ( ctx, converge, cctx ) SVctx *ctx; int (*converge)(); void *cctx;```	Sets the function that is to be used to determine convergence.
	Resets the flop counter associated with a solver context. See SVGetFlops().
```MACRO void SVSetGMRESRestart( ctx, its ) SVctx *ctx; int its;```	Sets the number of iterations before using a restart for GMRES.
```MACRO void SVSetILUDropTol( ctx, fill ) SVctx *ctx; int fill;```	Sets the drop tolerance for the incomplete LU preconditioner.
```MACRO void SVSetILUFill( ctx, fill) SVctx *ctx; int fill;```	Sets the level of fill for the incomplete LU preconditioner.
```MACRO void SVSetILUPivoting( ctx, pivoting) SVctx *ctx; int pivoting;```	Sets the pivoting type to be used for the factorization in the linear system solve using LU.
```MACRD void SVSetIts( ctx, max_its ) SVctx *ctx; int max_its;```	Sets the maximum number of iterations allowed.
```MACRO void SVSetLUOrdering( ctx, ordering ) SVctx *ctx; int ordering;```	Sets the order type to be used for the factorization in the linear system solve using LU.


```HACRO void SVSetLUPivoting( ctx, pivoting ) SVctx *ctx; int pivoting;```	Sets the pivoting type to be used for the factorization in the linear system solve using LU.
```MACRO void SVSetLUThreshold( ctx, threshold ) SVctx *ctx; int threshold;```	Sets the minimum block size to use in the LU factorization. Four is generally a good number.
```MACRO vOid SVSetMonitor(ctx, monitor, mctx) SVctx *ctx; void (*monitor)(), *mctx;```	Sets the routine that monitors the residual at each iteration of the iterative method. The default simple prints the residual at each iteration. Look in the iter directory for more information.
```void SVSetNullSpace( ctx, has_cnst, nv, v ) SVctx *ctx; int has_cnst, nv; double **v;```	Sets the null space for a linear system.
```void SVSetOSMRegularDomains2d( ctx, n1, n2, nc ) SVctx *etx; int ni, n2, nc;```	Sets the domains for a $\mathrm{n} 1 \times \mathrm{n} 2$ regular mesh.
```void SVSetOSMRegularOverlap2d( ctx, n1, n2, nc, w1, w2) SVctx *etx; int n1, n2, nc, w1, #2;```	Sets the overlap indices for a $\mathrm{n} 1 \times \mathrm{n} 2$ regular mesh.
```MACRO void SVSetPrecondMat( ctx, bmat ) SVctx *ctx; SpMat *bmat;```	Set the matrix to be used for the preconditioning.
```MACRO void SVSetRelativeTol(ctx, to1) SVctx *ctx; double tol;```	$\begin{aligned} & \text { Sets the tolerance for convergence; by } \\ & \text { default it } \mathrm{i} \text { a relative decrease in the } \\ & \text { two-norm of the residual of tol. } \end{aligned}$


```MACRO void SVSetSSOROmega(ctx, omega) SVctx *ctx; double omega;```	Sets the relaxation factor for SSOR. The default is one.
```MACRO void SVSetUp(ctx) SVctx *ctx;```	Called after a call to SVCreate(), allocates space which will be needed later in the call to SVSolve().
```MACRO void SVSetUseInitialGuess( ctx, flag ) SVctx *ctx; int flag;```	Use the value in " $x$ " as the initial guess for iterative solvers.
```MACRO int SVSolve(ctx,b,x) SVctx *ctx; vaid *b,*x;```	Solves the linear system. Called after a call to SVCreate() and a call to SVSetUp().

12.2 Sparse matrix routines

```SpMat #SpAIJCreateFromData( nr, ne, ia, ja, a, maxnz ) int nr, nc, *ia, *ja, maxnz; double *a;```	Creates an AlJ matrix descriptor, given an existing AlJ format matrix
$\begin{aligned} & \text { SpMat *SpAIJCreate(nr, nc, } \\ & \quad \text { maxnz ) } \\ & \text { int nr, ne, maxnz; } \end{aligned}$	Creates an AIJ matrix descriptor
```void SpAddInRou( mat, rou, n, v, c ) SpMar *mat; int row, n, *C; double *V;```	Adds a row to a sparse matrix.
```void SpAddValue( mat, val, i, j ) SpMat *mat; double val; int i, j;```	Adds to an entry in a matrix. If the entry is not present, creates it.


SpMat *SpCreate( $n, m, \max$ ) int $n, m, m m a x ;$	Allocates an $\mathrm{n} \times \mathrm{m}$ sparse matrix (row format).
void SpDestroy (m)   SpMat *m;	Frees a sparse matrix (any format).
```SpMat *SpDnClampToSparse( mat, rtol, n ) SpMat *mat; double rtol; int n;```	Forms a sparse matrix from a dense one.
```SpMat *SpDnCreateFromData(nr, nrd, nc, p ) int nr, nrd, nc; double *p;```	Creates a dense matrix descriptor, given an existing dense matrix.
SpMat *SpDnCreate( nr, nc ) int $\mathrm{nr}, \mathrm{nc}$;	Creates a dense matrix descriptor.
```void SpGetOrdering( Argc, argv, sname, ordering ) int *Argc; char *argv, *sname; SPORDERTYPE *ordering;```	Return the selected ordering, given the argument list.
void SpMult(m, vin, vout) SpMat *m; double *vin, *vout;	Computes a matrix-vector product.
void SpOrderRegisterAll()	Registers all the matrix-ordering methods.
void SpOrderRegisterDestroy ()	Frees the list of ordering routines that have been registered.
```void SpOrderRegister(name, sname, order) SPORDERTYPE name; char *sname; void (*order)();```	Given a matrix ordering routine and an integer, registers that ordering routine, so that a user can call SpOrder() with that integer and have the correct ordering routine called.
```void SpPrintMatlab( fp, B, name ) FILE *fp; SpMat *B; char *name;```	Prints a sparse matrix to a given FILE, in MATLAB format.


$\begin{aligned} & \text { void SpPrint }(f p, B) \\ & \text { FILE *fp; } \\ & \text { SpMat *B; } \\ & \hline \end{aligned}$	Prints a sparse matrix to a given FILE.
```void SpSetInRow( mat, row, n, v, c ) SpMat *mat; int row, n; int *c; double *v;```	Sets a row in a sparse matrix.

### 12.3 Miscellaneous routines

### 12.3.1 Iterative method routines

\#include "tools.h"
*include "solvers/svctx.h"

```void ITGetMethod( Argc, argv, sname, itmethod ) int *Arge; char **argv, *sname; ITMETHOD *itmethod;```	Returns the selected method, given the argument list.
void ITRegisterall ()	Registers all the iterative methods in the IT package. To prevent all the methods from being registered and thus save memory, copy this routine and register only those methods desired.
void ITRegisterDestroy ()	Frees the list of iterative solvers registered by ITRegister().
```void ITRegister(name, sname, create) int name; char *sname; ITCntx *(*create)();```	Adds the iterative method to the iter package, given an iterative name (ITMETHOD) and a function pointer.

### 12.3.2 System timers

*include "tools.h"
"include "system/system.h"

double SYGetCPUTime()	Returns the time in seconds used by   the process.
\#include "tools.h"   "include "system/system.h"   "include "system/time/usec.h"	


double SYuscDiff (a1, a2)	Returns the difference between two   values.
SYusc_time_t *a1, *a2;	Converts a fast $\mu$ sec clock value into   seconds.
double SYuscValue ( a )	Cets a timer value (elapsed time)   with high resolution.
MACRO void SYusc_clock(a)	
SYusc_time_t *a;	

### 12.3.3 Graphics tools

*include "tools.h"
\#include "solvers/svctx.h"

```void ITXMonitorLimits( maxit, mres ) int maxit; double mres;```	Sets the limits for the residual monitor.
```void ITXMonitorMeshSize( nx, ny ) int nx, ny;```	Sets the mesh size for the display of $2-d$ contour plots in monitoring iter package performance.
```void ITXMonitorMultiComponent( nc, ncx, ncy, extract, cmp ) int nc, ncx, ncy, cmp; void (*extract)();```	Informs ITXMonitor how to handle multicomponent problems.


```void ITXMonitorRVal( itP, usrP, n, rnorm ) ITCntx *itP; void *usrP; int n; double rnoram;```	Simple X Windows code to display the value of the residual at each iteration in the iterative solvers.
```void ITXMonitor( itP, usrP, n, rnorm ) ITCntx *itP; void *usrP; int n; double rnorm;```	Simple X Windows code to display the residual at each iteration in the iterative solvers.
void XBQMatrix (mat, nc) Splat *mat; int nc;	Displays a sparse matrix on the display.

Acknowledgments

The work described in this report has benefited from conversations with and use by a large number of people. Among the contributers are David Keyes and David Levine, who read the drafts, and the eurly users who requested additional functionality and were patient with our bug fixes.

Bibliography

[1] M. Dryja and O. Widlund. Towards a unified theory of domain decomposition algorithms for eliiptic problems. In T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, editors, Third International Symposium on Domain Decomposition Methods, pages 3-21, Philadelphia, 1990. SLAM.
[2] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.
[3] Mark T. Jones and Paul E. Plassmann. An improved incomplete Cholesky factorization. Preprint MCS-P206-0191, Mathematics and Computer Science Division, Argonne National ', aboratory, Argonne, D., 1991.

Function Index

I

ITGetMethod9
ITRegister 27
ITRegisterAll 28
ITRegisterDestroy 28
ITXMonitor 23, 31
ITXMonitorRVal 31
S
SpAddInRow 11
SpAddValue 11
SpAIJCreateFromData 10
SpCreate 10, 11
SpDestroy 11
SpDaCreateFromData 10
SpGetOrdering 9
SpMult 31
SpOrderRegister 13, 27
SpOrderRegisterAll 28
SpOrderRegister Destroy 28
SpSetValue 11
SVCreate 7
SV Destroy 8
SVGetFlops 25
SVGetICCAlpha 16
SVGetICCFailures 16
SVGetMemory 25
SVGetMethod 9
SVRegister 26, 27
SVRegisterAll 27
SVRegisterDestroy 28
SVSetAbsoluteTol 23
SVSetAccelerator 22
SVSetBDDDecomp 8, 19
SVSetBDDDefaultMethod 18
SVSetBDDDomainsNumber 18
SVSetBDDRegularDomains2d 18
SVSetConvergenceTest 23
SVSetFlopsZero 25
SVSetGMRESRestart 24
SVSetILUDropTol 17
SVSetILUFill 17
SVSetILUPivoting 17
SVSetIts 23
SVSetLUOrdering 12
SVSetLUPivoting 13
SVSetLUThreshold 13
SVSetMonitor 23, 31
SVSetOSMDecomp 20, 21
SVSetOSMDefaultMethod 19
SVSetOSMDefaultOverlap 20
SVSetOSMDomainsNumber 19, 20
SVSetOSMGlobai iseomp 22
SVSetOSMGiloballnterpolation 21
SVSetOSMGlobalMatrix 21
SVSetOSMGlobalRestriction 21
SVSetOSMCilobalSolver 22
SVSetOSMRegular Domains2d 20
SVSetOSMSDefaultMult 21
SVSetPrecondMat 15
SVSetRelativeTol 23
SVSetSSOROmega 17
SVSetUp 8
SVSetUselnitialGuess 16
SVSolve 8
SYGetCPUTime 25
SYusc_clock 25
SYuscDiff 25
X
XBQMatix 31

Distribution for ANL-93/8

Internal:

J. M. Beumer (100)
F. Y. Fradin
U. D. Gropp (25)
G. W. Pieper
R. L. Stevens
C. L. Uilkinson

All Patent Department
TIS File

External:

DOE-OSTI, for distribution per UC-405 (54)
All-E Library
AML-W Library
Manager, Chicago Field Office, DOE
Mathomatics and Computer Science Division Revier Comittee:
W. U. Bledsoe, The University of Texas, Austin
B. L. Buzbee, Eational Center for Atmospheric Research
J. G. Glimm, State University of Mot York at Stiny Brook
M. T. Heath, University of Illinois, Urbana
E. F. Infante, University of Minnesota
D. D'Leary, University of Maryland
R. E. O'Malley, Rensselaer Polytechnic Institute
M. H. Schultz, Yale University
J. Cavallini, Department of Energy - Energy Research
F. Hores, Department of Energy - Energy Research
B. Smith, University of California, Los Angeles (15)

