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Simplified Linear Equation Solvers
Users Manual

by

William Gropp and Barry Smith

Abstract

The solution of large sparse systems of linear equations is at the

heart of many algorithms in scientific computing. The SLES package

is a set of easy-to-use yet powerful and extensible routines for solving

large sparse linear systems. The design of the package allows new

techniques to be used in existing applications without any source code

changes in the applications.



Chapter 1

Introduction

The SLES (Simplified Linear Equation Solvers) package provides a powerful,

yet easy-to-use interface to methods for solving systems of linear equations

of the form

Az=b.

This package provides access to both direct and iterative solvers and allows

you to switch easily from one method to another. The matrix representa-

tion is "data-structure neutral;" this means that virtually any sparse (or

dense) matrix representation may be used directly. All that is necessary is

to define a few operations on the matrix data structure. In addition, it is

relatively easy to extend the set of known methods, including the iterative

accelerator, direct factorization, and preconditioning. Any extension may

be made without modifying a single line of the SLES package.

SLES provides a large and growing set of matrix representations, includ-

ing dense, AIJ, and dynamic sparse row-oriented format. These features

make this package ideal both for new projects and for existing applications.

There are four steps in using the routines in this package. First, you cre-

ate a solver context with SVCreate. This context holds information specific

to each technique. Second, you may change any options, such as the kind of

sparse matrix ordering or the iterative accelerator, and then use SVSotUp to

set up the solvers. Third, you solve the system with SVSolve. Fourth, you

remove the solver context with SVDestroy. Multiple systems may be solved

with multiple calls to SVSo1ve.

Among the design requirements for the routines provided by the SLES

package is the requirement that the calling sequences and routines be iden-

tical for all methods. This means that to change the method used to solve
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a linear system, you need only change the method argument to SVCreate,

and nothing else.

This manual mentions all of the routines in the SLES package; however,

usage instructions are provided only for the more common routines. More

detailed information about the routines mentioned in this manual may be

found in the man pages (using toolman). SLES is part of a larger package,

PETSc (Portable, Extensible Tools for Scientific computing). toolman is

one of the tools provided by PETSc for accessing the detailed documentation

on the routines. PETSc also provides an number of routines that may be

of interest to users of SLES, including routines to report on floating point

errors, memory space tracing, and debugging. See the man pages for more

information.

1.1 Why simplified

Despite the apparent power and flexibility of the SLES package, this package

actually provides a simplified version of more flexible and powerful routines

that are part of the PETSc package. The simplifications include a restric-

tion to uniprocessors and vectors that are contiguous in memory. Other

simplifications include less access to all. of the options of the iterative solvers

and a matrix-based representation of the linear system.

The underlying tools, particularly the iterative routines, have none of

these restrictions. They may be easily used in a parallel environment and

with vectors with arbitrary storage formats (including vectors distributed

across a parallel machine and vectors that are stored in sophisticated data

structures, such as oct-trees, or stored out-ut-core). In addition, the design

of these routines makes it easy to replace each module with one optimized

to a specific problem or application.

The SLES package is designed to sit on top of these more powerful but

more complicated routines and to make it easier for you to solve linear

systems that do not have special needs. You do not need to know about

or understand the lower level routines. SLES provides a consistant, simple,

and easy to use interface to a more powerful set of routines. If you find that

SLES does not give you the functionallity that you need, you should then

(and only then) investigate these other parts of PETSc.
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1.2 Makefiles

PETSc has a system of makefiles that has been designed to enable the same

makefile to build libraries or programs on a wide variety of architectures. For

some examples, see the makefiles in any of the example directories. Basically,

these use a few variables to control exactly what options the makefile uses.

The variables that must be defined on the make command line are listed

below:

ARCH Architecture. Common values include sun4, rs6000, and intelnx.

BOPT Level of optimization. Use BOPT=g for debugging, BOPT=Opg

for profiling, and BOPT=O for production.

Note that at least BOPT and ARCH must be set on the make command line or

defined with shell environment variables; without these values, the makefiles

in PETSc will not work.

In addition, a variety of variables are defined for use within the user's

makefile. The most important of these are as follows:

BASEOPT Flags for the C compiler. This includes options like -g.

BASEOPTF Flags for the Fortran compiler.

SLIB System libraries that PETSc need. Often, this variable

is empty, but it may include special libraries that are

needed for the implementation of PETSc for particu-

lar architectures (the SGI workstations are an example).

The math library (-im) is not included by default, though

many of the routines will require that library.

These are values that are provided by the makefile system for your use; they

should not be changed.

1.3 Linking

To build programs with PETSc, you need to link with a number of libraries.

To simplify the use of PETSc for both program development and produc-

tion computing, PETSc has separate libraries for debugging, profiling, and

production. These libraries are in the following directories:

debugging 'tools. core/libs/libsg'
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profiling

production

'tools.core/libs/libs0pg'

'tools.core/libs/libsO'

So that the libraries for many different architectures can reside on the same

filesystem, the name of the architecture (such as 'sun4' or 'rs6000') defines

an additional directory level. For example, the debugging libraries for the

Sun 4 are found in the directory 'tools. core/libs/libsg/sun4'.

There are two libraries that you may need to link with. These are

'tools. a' and 'system. a'. For example, a partial makefile is shown below

that builds the program 'example' for Sun 4's:

ITOOLSDIR = /usr/local/tools.core

LIBDIR = $(ITOOLSDIR)/libs/libs0/sun4

example: example.o

$(CLINKER) -o example -0 example.o \

$(LIBDIR)/tools.a $(LIBDIR)/system.a -lm

include $(ITOOLSDIR)/bmake/$(ARCH).0

include $(ITOOLSDIR)/bmake/$(ARCH)

This builds a production version of 'example' on a Sun 4. The include lines

include definitions for CLINKER (the linker for C programs), as well as the

rule to compile a C program that uses the PETSc macros (making sure the

appropriate flags are defined). The makefiles that come with the standard

PETSc distribution use the macro $(ARCH) to hold the place of one of the

many architectures, including Sun 4, to which PETSc has been ported.

SLES includes some graphical aids for displaying, for example, the progress

of the solution algorithm. Using these requires a few additional libraries. In

the example above, we simply add the 'Xtools. a' library (part of PETSc)

and the X1I Window System library '-1X11':

ITOOLSDIR = /usr/local/tools.core

LIBDIR = $(ITOOLSDIR)/libs/libs0/sun4

example: example.o

$(CLINKER) -o example -0 example.o \

$ (LIBDIR) /Xtools .a $ (LIBDIR) /tools . a
$(LIBDIR)/system.a -1X11 -lm

include $(ITOOLSDIR)/bmake/$(ARCH).0

include $(IT0OLSDIR)/bmake/$(ARCH)
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1.4 Installing the SLES package

The SLES package is available by anonymous ftp from 'info .mcs. ani.gov'

in the directory 'pub/pdetools'. The file 'sles. tar. Z' is a compressed tar

file containing all of the code and documentation. The file 'solvers.ps .Z'

is a compressed postscript file containing this document. To install the

package, transfer the tar file, uncompress it, and do

tar xf tools-solvers.tar

This will create a directory 'tools.core' as a subdirectory of the current

directory. Then do

cd tools.core

bin/install >tinstall.log 

&

(assuming the C-shell). This will create all versions of the package (debug-

ging, profiling, and production). Should you wish to produce only a single

version such as the debugging version, (for example, to limit the amount of

disk space used by the package), do

bin/install -libs g >tinstall.log t

1.5 Restrictions

This package is intended primarily for linear systems that arise from the

discretization of partial differential equations and that are not extremely

poorly conditioned. Methods for more poorly conditioned problems, or ones

that contain singular principal submatrices, will be included at a later date.

1.6 Further information

Every routine mentioned here has a Unix man page. For brevity, these are

not attached to this document. They are found in 'tools. core/man'.

This document is available in "latexinfo" form for users of GNU Emacs.

A sample 'localdir' file is in 'tools. core/docs/localdir'. Emacs must

be informed about these "info" files with a command like

(setq Info-directory-list (list "/usr/local/tools.core/docs"

Info-directory))

where '/usr/local/tools. core' is the home of the PETSc code.

This package is continually growing through the addition of new routines.

Suggestions (and bug reports) should be e-mailed to 'groppamcs . and .gov'.
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Chapter 2

Solver Methods

A wide variety of techniques, including preconditioned iterative methods

and direct sparse elimination, are available for the solution of systems of

linear equations. The method to be used is selected when the routine

SVCreate is called. This routine returns a pointer o a structure, called a

context, that holds the data needed to specify the type of method and any

parameters that it may need.

2.1 Solver context

The solver context is the key to using the solver library. This context, cre-

ated with the SVCreate routine, contains all of the data needed to describe

the solver method. You can think of the solver context as a way to encap-

sulate a large number of subroutine arguments into a single structure. The

advantages to using the context instead of individual parameters are many;

they include

* much shorter argument lists,

* easy-to-add features without changing calling sequences, and

* easy-to-use, nested (as opposed to recursive) algorithms.

The solver context is of type (SVctx *). The format of SVCreate is

SVctx *SVCreate( mat, name 

)

where mat is a sparse matrix context and namo is one of

SVLU Direct (possibly sparse) factorization
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SVNOPRE No preconditioning. This method and all that follow it

are preconditioners for an iterative method.

SVJacobi Jacobi preconditioning

SVSSOR SSOR preconditioning

SVILU Incomplete factorization

SVICC Incomplete Cholesky factorization

SVICCJP Incomplete Cholesky factorization (Jones and Plassmann)

[3]

SVBDD Block diagonal

SVOSM Overlapping Schwarz (additive and multiplicative)

Following the SVCreate call, you may set various options. These are

described in more detail in Section 5.3 and have the form SVSetxxx(). An

important feature of the optional arguments is that any that are inappropri-

ate for a particular solver are simply ignored. This means that you do not

need to change the source code when choosing a different solver method.

Once any options have been chosen, you use the routine

SVSetUp to initialize all of the data for the chosen method. The format of

this routine is

SVSetUp( ctx );

At this point, you may also set options for the iterative method. Then

the system may be solved with the routine SVSolve. The format of this

routine is

SVSolve( ctx, b, x 

)

double *b, *x;

where b is the right-hand side and x is the computed solution.

Multiple right-hand sides b may be solved by calling SVSolve multiple

times.

When you are done solving this linear system, use the routine

SVDestroy to recover the solver context (not doing so will create a storage

leak). The format of this routine is

SVDestroy( ctx 

)

This frees only the space associated with the solver. It does not free the

matrix that was input to SVCreate.
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2.2 Getting the methods from the command line

SLES provides three routines that may be used to extract the desired method

from the command line. The routine SVGetMethod gets the solver's method.

The format is

SVGetMethod( Argc, argv, n;," e, svmethod 

)

int *Argc;

char **argv, *name;

SVMETHOD *svmethod;

where the first two arguments are the arguments to the main routine, name is

the name to be used on the command line (-svmethod is the default if name

is NULL), and the chosen method is returned in svmethod. If no method is

specified on the command line, svmethod is unchanged. This routine purges

the solver method arguments from the argument list.

The routine ITGetMethod does the same thing, but for the iterative

accelerators. The default value of name is -itmethod. The format of this

routine is

ITGetMethod( Argc, argv, name, itmethod 

)

int *Argc;

char **argv, *nume;

ITMETHOD *itmethod;

The routine SpGetOrdering does the same for the matrix orderings. The

default value of name is -ordering. The format of this routine is

SpGetOrdering( Arg:., argv, name, ordering 

)

int *Argc;

char **argv, *name;

SPORDERTYPE *ordering;

These are only available for C programs as Fortran does not pvide a

portable way to access the command line arguments.
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Chapter 3

Creating the Matrix

The SLES package uses matrices in the SMEIT sparse format. These rou-

tines will be described in cor::plete detail in another manual. Here we give

you a subset sufficient for using SLES.

Just as the SLES package uses a context variable to hide various details

from you, the SMEIT package uses its own context to provide a general,

data-structure-independent interface to a collection of sparse matrix rou-

tines.

The routine SpCreate creates the most general supported type of sparse

matrix. Most users of SLES should use this type. The format of this routine

is

Sp~at *SpCreate( rows, cols, nmax 

)

int rows, cols, nmax;

The matrix is of size rows x colas. The value amax is the number of

nonzeros in each row; this may be used to speed up the process of adding

elements to the matrix. This is only an optimization; it is not a limit on

the number of nonzeros in each row of the matrix. A good value of nmax is

often zero, allowing the matrix to grow dynamically.

The more sophisticate: user may choose other storage formats with the

Sp<format>Create routines, where <format> is one of the known formats.

Formats currently available include dense (format = Dn) and AIJ (<format>

= AIJ). Additional formats may be defined by the expert user.

If the matrix is already available, a routine of the form

Sp<format>CreateFromData should be used. For example, the routine

SpDnCreateFromData creates a matrix context from a dense matrix; the

routine SpAIJCreateFromData does the same for a matrix in AIJ format.
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To add an element to a sparse matrix created with any type of

SpCreate, use the routine SpAddValue. The format of this routine is

SpAddValue( mat, value, row, col 

)

SpMat *mat ;

double value;

int row, col;

Parameters row and col are zero-origin indexed; that is, they take on

values between zero and rows-1, (respectively cols-1). The parameter

value is added to the matrix element already present. In other words, after

the execution of

SpAddValue( mat, 1.0, I, 0 );

SpAddVaiue( mat, 1.0, 0, 0 );

the value of mat[0 ,0] is two, not one. The routine SpSetValue may be

used to set a single value. To add to every element in a row, use the routine

SpAddlnRow. The format of this routine is

SpAddlnRow( mat, row, n, v, cols 

)

SpMat *mat ;

int row, n, *cols;

double *v;

This adds v[i] to row row and column cols[i], for n elements.

When the matrix is no longer needed, the routine

SpDestroy will recover all of the space that it is using. This routine will

work regardless of the underlying data structure used to store the sparse

matrix.
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Chapter 4

Direct Methods

Sparse direct methods are appropriate for relatively small systems of equa-

tions and for cases where iterative methods are not robust enough. The

solver name SVLU selects this method. This forms an LU factorization of

the matrix (perhaps with a permuted ordering of rows and columns).

Three options are supported for this direct factorization. Two control the

ordering of the matrix; the third is used to (possibly) speed the factorization.

These options are ignored when an iterative solver is used.

4.1 Sparse matrix orderings

The routine SVSetLUOrdaring choses an ordering strategy that is used to

reduce fill and to speed the solution process. The currently recognized or-

derings are

ORDER.ND

ORDER.QMD

ORDER.RCM

Nested dissection. This is often the most efficient order-

ing for matrices that come from discretizations of PDEs.

Quotient Minimum Degree. This is often the best order-

ing in terms of space, but it is often the most expensive

in time.

Reverse Cuthill-McGee. This is often a good ordering for

skyline-like methods.

ORDER.AWD One-way dissection.

The format of this routine is
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SVSetLUOrdering( svctx, ordering 

)

where svctx is a solver context from SVCreate and ordering is one of the

orderings (i.e., ORDER.ND). The orderings provided at this time come from

the netlib versions from SPARSPAK (see [2] for more information on these

routines). Since these ordering routines are intended for symmetric matrices,

SLES applies them to the matrix structure of the lower triangular part of

the matrix. This ensures that the methods produce valid orderings for most

nonsymmetric matrices and produce the same ordering as they would on a

symmetric A.

In addition to these, additional ordering methods may be defined with

the routine SpOrderRegister.

4.2 Pivoting

Pivoting is used to avoid or reduce numerical problems that ca:. arise in

solving a linear system. The routine SVSetLUPivoting allows you to se-

lect a pivoting method. Currently, the only pivoting strategies supported

do a priori pivoting, moving small elements off the diagonal of the un-

factored matrix. These are PIVOT.PRE.SYM (for symmetric pivoting) and

PIVOT.PRE.NONSYM (for nonsymmetric pivoting). The format of this rou-

tine is

SVSetLUPivoting( ctx, pivot-type 

)

By default, PIVOT.NONE (for no pivoting) is used.

SLES currently does not support partial pivoting for numerical stability,

except for the dense matrix type (where it is the default choice).

4.3 Blocking

The routine SVSetLUThreshold sets a minimum block size to use in search-

ing for blocks of rows in the matrix. If the problem has a natural blocksize,

such as a multicomponent PDE with m unknowns per mesh point, set the

threshold to m. The format of this routine is

SVSetLUThreshold( ctx, bsize 

)

where bsize is the block size. A good default threshold is four.

Blocking affects only the efficiency of memory access; it does not change

the algorithms used (that is, it does not use a blocked LU factorization;

rather, it arranges to compute the same LU factorization but with aggregate

operations, similar to BLAS Levels 2 and 3).
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4.4 Example

This section presents a code fragment that illustrates the use of these rou-

tines. Note that neither of the SVSetLUxxx routines is required; they are

provided to allow you to customize the solver.

This code uses LU factorization with quotient minimum degree ordering

to )lve the problem mat*x=b for x. The routine is told that a block size of

8 is a good choice for this problem.

svctx = SVCreate( mat, SVLU );

SVSetLUOrdering( svctx, ORDER..QMD );

SVSetLUThreshold( svctx, 8 );

SVSetUp( svctx ) ;

SVSolve( svctx, b, x ;

SVDestroy( svctx );
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Chapter 5

Iterative Methods

The SLES package provides a wide variety of iterative methods. These are

organized by the choice of preconditioner rather than the choice of iterative

method. This approach was taken because the choice of preconditioner more

strongly determines the performance and behavior of the method than the

choice of iterative method.

5.1 Preconditioners

The preconditioners supported include

Incomplete factorization with fill

Incomplete Cholesky

SVICCJP

SVSSOR

SVBDD

SVOSM

SVJacobi

SVNOPRE

Jones and Plassmann's incomplete Cholesky

SSOR

Block diagonal decomposition

Overlapping Schwarz method

Jacobi

No preconditioning (identity matrix)

The matrix used for constructing the preconditioner is the input matrix

to SVCreate; you may change this matrix with SVSetProcondMat. This

15
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routine .s particularly useful when a good preconditioner can be defined by

a matrix with fewer nonzero elements or a special structure. The routine

must be called before SVSetUp.

5.2 Initial guess

The initial guess is taken as zero unless the routine SVSetUselnitialGuess

is used. The initial guess is placed in the "x" vector; this is the vector that

holds the solution in SVSolve. If the initial guess is not selected, it is not

necessary to preset the x-vector to zero. The format of this routine is

SVSetUselnitialGuess( ctx, flag 

)

where flag is one if the value in x is to be used as the initial guess, and

zero if the initial guess is the zero vector. Here, x is the solution argument

to SVSolve( ctx, b, x ).

5.3 Method options

Several of the preconditioners have a number of options that may be used

to improve the method's performance. These options are ignored when they

are not appropriate for the solver being used.

5.3.1 ICC

The incomplete Cholesky methods have no parameters, but there are two

diagnostics. These are SVGetICCAlpha and SVGetICCFailures. These rou-

tines may be called after SVSolve to determine how well the ICC precondi-

tioner worked with the matrix.

5.3.2 ILU

ILU (Incomplete LU factorization) is a powerful and general method. The

simplest ILU involves computing the LU factor of the matrix, discarding

any elements that would introduce fill (nonzero values where A has a zero

element). Better performance can often be obtained by allowing some of the

elements in L and U to fill in. There are a number of ways to select which

elements are allowed. One is a level of fill, which looks at the ancestry of an

element. If the fill would be caused by an element that was in the original

matrix, it is fill of level 1. Fill caused by level 1 fill is called fill of level 2,
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and so on. The amount of such fill may be set with the routine

SVSetILUFill. The format of this routine is

SVSetILUFill( svctx, fill 

)

where f ill is the level of fill. The default level of fill is zero (no fill).

Another way of choosing the amount of fill is to set a numeric tolerance.

Values smaller than this are discarded. This tolerance is set with the routine

SVSetILUDropTol. The format of this routine is

SVSetILUDropTol( svctx, rtol 

)

double rtol;

where rtol is a relative tolerance; values smaller than this, relative to the

norm of the row, are discarded. If rtol is greater than zero, fill (set with

SVSetILUFill) specifies the maximum number of nonzeros allowed in each

row of the factored matrix.

One problem with ILU is that matrices that are nonsingular may have

singular factors or poorly conditioned factors. The routine

SVSetILUPivoting gives you some control over the type of pivoting that

is applied to the matrix. The pivot choices are the same as for SVLU (see

Section 4.2).

5.3.3 SSOR

The SSOR method has one parameter, the acceleration value omega. This

value should be between zero and two, and is set with the routine

SVSetSSOROmega. The default value is 1.0 (giving the Gauss-Seidel method).

5.3.4 BDD

The block diagonal method uses (possibly approximate) solutions to a block-

diagonal restriction of the original matrix to precondition the problem. This

preconditioner is most popular on parallel computers, where its application

is perfectly parallel. However, this method is often less effective than others

in this package, including the highly parallel overlapping Schwarz methods

(SVOSM).

There are many degrees of freedom in defining a block-diagonal precon-

ditioner. These include the precise decomposition and the methods used

on each block. Naturally, we use the solver package to solve the systems

for each block. Default decompositions and methods are provided, though

these are not optimal choices. It is legal to use SVBDD as the solver method

on each domain.
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5.3.4.1 Solver method

To set the solver method to be used on each domain, use

SVSetBDDDefaultMethod. The format of this routine is

SVSetBDDDef aultMethod( svctx, svmethod 

)

where svmethod is any valid solver method (such as SVILU). Note, however,

that many iterative accelerators require the same preconditioner to be ap-

plied at each step. If this is the case (for example, using ITGMRES), use the

routine SVSetIts to set some small limit on the number of iterations to take.

Alternatively, set the relative convergence tolerance t- be roughly machine

epsilon. Take note that using inner iterations is not for the faint-hearted.

5.3.4.2 Decomposition

The routine SVSetBDDDomainsNumber sets the number of blocks in the block-

diagonal decomposition. The format of this routine is

SVSetBDDDomainsNumber( svctx, n 

)

where n is the number of blocks. The blocks are defined as consecutive rows

in the matrix. For example, if the matrix has 1000 rows and

SVSetBDDDomainsNumber(svctx,10) is used, then there are 10 blocks, con-

sisting of the submatrices of the original matrix A (in Fortran-90 array nota-

tion) A(1:100,1;100), A (101:200,101:200),.. ., A(901:1000,901:1000).

A default choice is made by the package for the number of domains; this is

currently the square root of the size of the matrix. This choice generates

line-blocked decomposition for square meshes in two dimensions.

You may define more general decompositions by using the routine

SVSetBDDDomainsNumber, followed by SVSetBDDDecomp for each of the blocks.

SVSetBDDDecomp is given the rows (numbered from zero) that belong to each

block (or domain). The format of this routine is

SVSetBDDDecomp( svctx, i, idx, nv 

)

where i is the number of the domain (numbered from zero), idx is an array

of rows that belong to that domain, and nv is the number of rows in this

domain.

5.3.4.3 Special decompositions

For discrete operators arising from two-dimensional Cartesian meshes, where

the matrix is ordered according to the natural ordering, the routine

SVSetBDDRegularDomains2d may be used to specify the decomposition.

The format of this routine is
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SVSetBDDRegularDomains2d( svctx, nx, ny, nc 

)

where the mesh is nx by ny, with nc components at each mesh point. The

components are assumed to be numbered first (so a two-component problem

has the first two matrix rows at the first mesh point). This routine uses

SVSetBDDDecomp to define the domains.

5.3.5 OSM

The overlapping Schwarz method uses (possibly approximate) solutions to a

collection of smaller problems, usually generated by decomposing a physical

domain into pieces, then defining overlaps in terms of neighboring points.

A critical component for efficient overlapping Schwarz methods is a small

global or coarse-grid problem that is defined on the smaller domains. How-

ever, the method can be applied without this global problem, at some (po-

tentially large) cost in efficiency.

Many degrees of freedom exist in defining an overlapping Schwarz pre-

conditioner. These include the precise decomposition, the amount of overlap,

and the methods used on each domain. Naturally, we use the solver package

to solve the systems for each domain. Default decompositions and methods

are provided, though these are not optimal choices. It is legal to use SVOSM

as the solver method on each domain.

5.3.5.1 Solver method

To set the solver method to be used on each domain, use

SVSetOSMDefaultMethod. The format of this routine is

SVSetOSMDefaultMethod( svctx, svmethod 

)

where svmethod is any valid solver method (such as SVILU).

5.3.5.2 Decomposition

The routine SVSetOSMDomainsNumber sets the number of blocks in the block-

diagonal ''composition. The format of this routine is

SVSetOSMDomainsNumber( svctx, n 

)

where n is the number of blocks. The blocks are defined as consecutive rows

in the matrix. For example, if the matrix has 1000 rows and

SVSetSMDomainsNumber(svctx,100) is used and the overlap is zero, then

there are 10 blocks, consisting of the submatrices of the original matrix A

(in Fortran-90 array notation) A(1:100,1;100), A(101:1.00,101:200), ...

,

A(901:1000,901:1000). A default choice is made by the package for the
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number of domains; this is currently the square root of the size of the matrix.

This choice generates line-blocked decomposition for square meshes in two

dimensions.

5.3.5.3 Overlap

The amount of overlap is set with SVSetOSMDef aultOverlap. The format

of this routine is

SVSetOSMDefaultOverlap( svctx, j 

)

where j is the amount of overlap. Here, overlap is defined algebraically. An

overlap of zero is identical to the blck-diagonal decomposition. An overlap

of one or greater augments each diagonal block with additional rows (and

corresponding columns) according to the following recursive rule. For each

block in the partition with overlap k - 1, list the indices of all columns

outside of the block that contain a nonzero entry in any row of the block.

Add the rows corresponding to iwdices in this list to the current block to

obtain the block of overlap k.

5.3.5.4 General decompositions

A more general decomposition may be defined by using the routine

SVSetOSMDomainsNumber, followed by SVSetOSMDecomp for each of the blocks.

This routine is given the rows (numbered from zero) that belong to each

block (or domain). The format of this routine is

SVSetOSMDecomp( svctx, i, idx, nv 

)

where i is the number of the domain (numbered from zero), idx is an array

of rows that belong to that domain, and nv is the number of rows in this

domain. Among other uses, you can use this decomposition to select disjoint

sets of rows with the same "color" in multicolored preconditioners.

5.3.5.5 Special decompositions

For two-dimensional Cartesian meshes, where the matrix is ordered accord-

ing to the natural ordering, you may use the routine

SVSetOSMRegular'omains2d to specify the decomposition. The format of

this routine is

SVSetOSMRegularDomains2d( svctx, nx, ny, nc 

)

where the mesh is nx by ny, with nc components at each mesh point. The

components are assumed to be numbered first (so a two-component problem
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has the first two matrix rows at the first mesh point). This routine uses

SVSetOSMDecomp to define the domains.

5.3.5,6 Additive and multiplicative OSM

There are two principal types of Schwarz methods: additive (like Jacobi)

and multiplicative (like Gauss-Seidel). For uniprocessors, the multiplicative

method is usually the best choice. However, for parallel processors, the

additive technique may be more efficient (or may not, depending on many

factors). Multicoloring can be used to create intermediate methods. The

routine SVSetOSMSDefaultMult sets the choice of method. The format is

SVSetOSMDefaultMult( svctx, q 

)

where q is i for multiplicative Schwarz and 0 for additive Schwarz. By

default, multiplicative Schwarz is used.

5.3.5.7 Defining the global problem

The global, or coarse, problem is key to getting the best performance from

domain decomposition preconditioners. While a discussion of the details of

this problem is beyond the scope of this manual (see, for example [11 for

a discussion of the importance of the global problem), the basic idea is to

restrict the number of unknowns to a smaller space, solve an appropriate

system in that space, and interpolate that solution back to the full problem.

This is reminiscent of multi grid, and there are a number of practical and

theoretical similarities.

f To specify the global problem, we need to specify the restriction and

interpolation operations, the matrix for the global problem, and the method

used to solve the global problem. In addition, the mapping from a domain

to the global problem (that is, the indices of the global vector c[i] that

borderr" a domain) need to be specified. Each of these can be set once

SVCreate is called.

The routine SVSetOSMGlobalInterpolation sets the interpolation rou-

tine. This routine must interpolate from the entire global problem to the

entire original problem.

The routine SVSetOSMGlobalRestriction sets the restriction routine.

This routine must restrict from the entire full problem to the global problem.

The routine SVSetOSMGlobalMatrix specifies the global problem to solve

by giving the matrix in SMEIT sparse matrix form.
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The routine SVSetOSMGlobalSolver specifies the solver context to use

in solving the global problem.

The routine SVSetOSMGlobalDecomp specifies the mapping to global

points from the indicated subdomain. The routines defined by

SVSetOSMGlobalRestriction and SVSetOSMGlobalProjection may use this

information.

More information on these routines may be found in the man pages or

the reference manual.

5.4 Accelerators

The available accelerators comprise

ITCG Conjugate gradient

ITCGS Conjugate gradient squared

ITBCGS BiCG-Stab

ITTFQMR Freund's transpose-free QMR

ITGMRES Generalized minimum residual

ITTCQMR Chan's transpose-free QMR

ITCHEBYCHEV Chebychev

ITRICHARDSON Richardson

The choice of accelerator is made with SVSetAccelerator. The format is

SVSetAccelerator( svctx, itmethod 

)

where itmethod is one of the iterative accelerators (e.g., ITTFQMR). This

must be called before SVSetUp. Accelerator options must be set after SVSetUp

is called but before the call to SVSolve.

5.4.1 Convergence tests and iteration control

By default, all accelerators have a simple convergence test (based on a rel-

ative reduction in the norm of the residual), an upper limit on the number

of iterations, and no runtime display of the progress of the ite ation. Each

of these defaults may be individually overridden.
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The routine SVSetConvergenceTest allows you to provide a different

routine to test for convergence.

The routine SVSetMonitor allows you to provide a routine that is called

once per iteration. The routine ITXMonitor may be of interest; this monitor

displays a graph of the progress of the iteration. To use this routine, use

this code fragment before calling SVSetup:

SVSetMonitor(svctx,ITXMonitor,(void*)O);

ITXMonitor(0,0,-2,0.0);

(the call to ITXMonitor is needed to initialize ITXMonitor; it is unnecessary

if only one system of equations is to be solved). You will also need to add

the libraries 'tools.core/libs/libs$(BOPT)/$(ARCH)/Xtools.a -11iI',

where BOPT is one of g (debugging), 0 (production), or Opg (profiling).

The routine SVSetIts allows you to set the maximum number of itera-

tions that an iterative method will use in attempting to solve the problem.

The format of this routine is

SVSetIts( svctx, maxits 

)

where maxits is the maximum number of iterations allowed.

The routine SVSetRelativeTol sets the convergence tolerance if the

default convergence criteria is used. The format of this routine is

SVSetRelativeTol( svctx, tol 

)

double tol;

where tol is the relative reduction in the residual needed before the conver-

gence. criterion is satisfied.

The routine SVSetAbsoluteTol sets the absolute convergence tolerance

if the default convergence criteria is used. The format of this routine is

SVSetAbsoluteTol( svctx, tol 

)

double tol;

where tol is the absolute size of the residual needed before the convergence

criterion is satisfied.

When both SVSetRelativeTol and SVSetAbsoluteTol are used, con-

vergence is signaled when either criterion is satisfied.

Additional options are supported by the iterative package for use by the

expert user. These include whether the precondition-or is applied on the

right, on the left, or symmetrically and whether a residual history should

be kept. In addition, there are a few options that are specific to particular

accelerators. Changing these requires knowledge of the iterative package.
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5.4.2 GMRES

The G MRES method has one parameter. This is the number of iterations be-

tween restarts (strictly speaking, the GMRES here is restarted GMRES(k)).

This parameter may be set with the routine SVSetGMESRestart. The for-

mat of this routine is

SVSetGMRESRestart( svctx, its 

)

where its is the number of iterations (or directions) before restarting GM-

RES.
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Chapter 6

Monitoring Performance

The SLES package provides a convenient way to monitor the performance

of the various methods. After each call to a SLES routine, you may request

the number of floating-point operations and amount of memory used so far.

The macro SVGetFlops gives the number of floating-point operations

(flops) so far. The format is

SVGetFlops( svctx, a 

)

where a is an int that will be assigned the number of flops.

The routine SVSe-FlopsZero sets the running count of flops to zero.

The format is SVSetFlopsZero(svectz).

The macro SVGetMemory gives the amount of space used by the solver

context, in bytes. The format is

SVGetMemory( svctx, a 

)

where a is an int that will be assigned the amount of memory used.

The routine SYGetCPUTime returns the time used by the process in sec-

onds For elapsed time, the routines SYusc.clock and SYuscDiff may be

used to access the elapsed time, with microsecond granularity on those sys-

tems that support fine-grain clocks, for example,

SYtime.t ti, t2;

SYusc.clock( (tI );

<code to time>

SYusc.clock( kt2 );

printf ( "Time is %1f\n", SYuscDiff ( (t2, &tl ) );

Note: These features are not fully implemented in the current release.

These routines will return values, but they may be underestimates.
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Chapter 7

Adding New Methods

You can easily add new methods to the SLES package, without changing a

single line of code in the SLES package. You simply call a routine to insert

the new methods into a list of known methods. These methods are then

known to the appropriate GetMethod routine as if it were part of the core

package. Thus, with the SLES package you can make use of new develop-

ments in algorithms and implementations without changing your program;

you need only relink your code. No longer must you choose between using

older algorithms or making significant changes to your code.

7.1 Method registry

A method is added to the SLES package by registering a creation routine.

You do this with the routine SVRegister. The format of this routine is

SVRegister( id, name, routine 

)

int id;

char *name;

void *(*routine)( SVCtx *svctx, SpMat *mat );

where id is a unique identifier, name is a string that names the method,

and routine is a routine that creates the method. The best way to see

how to write such a routine is to examine the implementation of the meth-

ods included with the SLES package, such as SVILU (in

'tools. core/solvers/ilu. c'or SVOSM (in file 'tools. core/solvers/osm. [ch]').

After this routine is called, SVGetMethod will accept name as a known solver

method and return id and the corresponding solver's type.
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7.2 Accelerator registry

Iterative accelerators are registered in much the same way as solver methods,

using the routine ITRegister instead of SVRegister. ITGetMethod will

accept name as a known iterative accelerator.

7.3 Matrix orderings registry

Matrix orderings (for sparse direct factorizations) are registered with the

routine SpOrderRegister. SpGetOrdering will now accept name as a known

matrix reordering.

7.4 Sparse matrix formats

Sparse matrices are not registered in the same way as solver methods or

iterative accelerators. Instead, you must write three routines that respec-

tively create, extract a row from, and insert a row into the matrix. In many

cases, an additional routine that forms a row-format SMEIT sparse matrix

from an existing one should also be written. However, once a SMEIT sparse

matrix is generated, all of the other routines irl SLES will work. The details

of this process are beyond the scope of this manual.

You may also provide other routines, such as a matrix-vector product

that is optimized for the particular data structure. For each of these rou-

tines, if you do not provide one, a default routine (built by using the routine

to extract rows from the matrix) will be usod. Thus, all of the operations

used by the solver package are available regardless of the sparse matrix

data-structure; for more efficient execution, you may provide customized

routines.

7.5 Restricting the choices

One disadvantage of providing a large variety of methods, all of which are

available at run time, is that it can greatly increase the size of an executable

program. While this may not be serious for virtual-memory machines, it can

be a major problem for programs running on massively parallel computers,

where each processor has a copy of the executable image. To change the

routines that are loaded when the executable is created, write a routine

called SVRegisterAll, and link it into your program ahead of the PETSc
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library. This routine should contains SVRegister calls for each method

desired. For example, to restrict the program to direct LU factorization and

ILU preconditioning, use

void SVRegisterAll()

{

SVRegister(SVLU, "lu", SViCreateLU);

SVRegister(SVILU, "ilu",* SViCreateILU);

}

Similarly, the iterative methods may be restricted by providing a routine

ITRegisterAll. For example, to restrict the iterative methods to CG and

GMRES, use

void ITRegisterAll()

{
ITRegister(ITCG, "cg", ITCGCreate);

ITRegister(ITGMRES, "gares", ITGMRESCreate);

}

The matrix orderings for the direct sparse factorizations may be re-

stricted by providing a routine SpOrderRegisterAll. For example, to re-

strict the orderings to nested dissection, use

void SpOrderRegisterAll()

{

SpOrderRegister(ORDER..ND, "nd", SpOrderND);

}

To recover the small amount of space used by the registries, use the

routine SVRegisterDestroy for the solver's registry, the routine

ITRegisterDestroy for the iterative accelerator's registry, and the routine

SpOrderRegisterDestroy for the ordering's registry. Of course, once the

registries are eliminated, they are no longer available.
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Chapter 8

Using SLES with Fortran

SLES is fully callable from Fortran. All routines have the same names as

the C versions. The arguments follow the usual Fortran conventions; you do

not need to worry about passing pointers or values.

All "pointers" should be declared as integers in Fortran; this includes

the solver context variable (svctx). The include file

'tools . core/solvers/svfort . h' contains parameter definitions for the solver

and iterative methods and matrix orderings. Error messages generated by

the PETSc package at run time will not indicate the Fortran file and line

number where they occurred; instead, they will indicate the line in the in-

terface file. Other than this, everything is the same.

The library 'tools .core/fort/$ (ARCH)/ftort . a' provides a Fortran in-

terface to the SLES routines. This library must occur ahead of the 'tools'

libraries. For example, this makefile fragment links a Fortran program

(example) with the appropriate libraries:

ITOOLSDIR /usr/local/tools.core

LDIR $(ITOOLSDIR)/libs/libs$(BOPT)$(PROFILE)/$(ARCH)

LIBS = $(LDIR)/tools.a $(LDIR)/system.a -la
FLIES * $(ITOOLSDIR)/fort/$(ARCH)/fort.a

include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)$(PROFILE)

include $(ITOOLSDIR)/bmake/$(ARCH)

example: example.o

$(FLINKER) -o example $(BASEOPTF) example.o $(FLIBS)

$(LIBS) \

$(LAPACK) (BLAS)

$(RM) example.o
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This assumes that SLES is installed in '/usr/local/tools . core' and that

the program may be using LAPACK and/or the BLAS (these are standard-

ized linear algebra packages available on many systems. In particular, some

vendors provide optimized versions of the BLAS that significantly out per-

form portable versions). Programs that do not use these routines can leave

the libraries $(LAPACK) and $(BLAS) out. Note that the dense matrix rou-

tines (associated with SpDnCreate and SpDnCreateFromData) require both

LAPACK and the BLAS.

This interface library is constructed automatically from the C program

files. Thus, it should always match the C versions (any new routine added

to SLES automatically becomes available to both C and Fortran users; no

special interface code needs to be written). If you are interested in how this

is accomplished, look in the directory 'tools. core/c2fort'. The program

in this directory uses the same approach that is used to generate the manual

pages from the C scarce files.
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Chapter 9

Debugging and

Optimizations

A number of tools are available to aid in debugging a program that uses the

SLES package.

The simplest is to use SpMult to check that the computed solution is ac-

tually a good one by calculating the residual with the original matrix. Note

that if the original matrix is very poorly cditioned, a preconditioned iter-

ative method could find an excellent solution to the preconditioned problem

that was a poor solution to the original problem.

Another tool that can help in debugging a SLES code is the iterative

monitor (set with SVSetMonitor) which displays, for example, the solution

or the residual at the current iteration. The PETSc package provides some

graphics display tools that may also be helpful. These include ITXNonitor

(graphs the norm of the residual) and ITXMoitorRVal (graphs the value of

the residual vector on a rectangular mesh). The routine XBQMatiz may be

used to display the matrix; this can be useful in verifying that the problem

being solved is the one intended.

Finally, do not forget to take advantage of the debugging library in

'tools.core/libs/libsg' and dbx. For performance debugging, use the

profiling library, in 'tools .core/libs/libsOpg', and the -pg compiler switch

(or BOPT=Opg, if you are using the PETSc makefiles) when compiling and

linking your application. Then the usual tools, such as gprof, may be used

to gain insight into the execution-time performance of the program.
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9.1 Error messages

The debugging version of the PETSc package will generate error tracebacks

of the form

Line linenumber in filename: message

Line linenumber in filename: message

Line linentumber in filename: message

The first line indicates the file where the error was detected; the sub-

sequent lines give a traceback of the routines that were calling the routine

that detected the error. A message may or may not be present; if present,

it gives more details about the cause of the error.

The production libraries ('libsO/tools .a') are often built without the

ability to generate these tracebacks (or even detect many errors).

9.2 Performance debugging

There are a number of ways to identify performance bugs or problems. One

is to look at the achieved computational rate (so-called megaflops) for the

setup and solve phases. Values that are low (relative, for example, to the

LINPACK benchmark numbers) may indicate that the implementation is

not making effective use of the computer hardware. This problem may be

caused, for example, by the choice of sparse matrix format. Choosing a

different format, particularly one that is not dynamic (such as IJA or AIJ),

may give better performance.

More detailed information may be gather by using the profiling library

('tools . core/libs/ib5Opg/$ARCH/tools . a' and the gprof utility (avail-

able on most though not all Unix systems).
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Chapter 10

Hints on Choosing Methods

This chapter contains some hints for choosing the methods to use in the

SLES package. Please note that each problem is different and may have

special features that make other choices more appropriate.

If the problem is small (n< 100), use SVLU with the default ordering

(ORDER.ND). Direct factorization may also be appropriate if high relative

accuracy is required and the problem is of moderate size.

For larger problems, if the matrix is symmetric, use either of the approx-

imate factorizations SVICC or SVICCJP, or SVSSOR, with iterative accelerator

ITCG.

For nonsymmetric matrices, use incomplete factorization with fill (SVILU)

and an iterative accelerator ITGMRES, ITBCGS, or ITTFQMR.

Large systems of equations that are generated by discretizations of PDEs

can solved more effectively with SVOSM as long as a global problem can be

provided.

Some singular systems can be solved if the null-space is known in ad-

vance. For example, the "pressure" equation often has Neumann boundary

conditions, making the vector (1, 1,...,1) a null-vector for the matrix.
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Chapter 11

Examples

This chapter contains a few examples of programs that use SLES to solve

linear systems. More examples may be found in the directory

'tools.core/solvers/examples'.

11.1 Poisson problem

Our first example solves a simple Poisson problem on the unit square using

any of the available methods. A C shell script following this example shows

how to generate a table comparing 68 different methods for this model prob-

lem. This example demonstrates how easy it is to produce a comparison of

methods by using this package.

*include "tools.h"

*include "solvers/svctx.h"

main (argc,argv)

int argc; char *argv;

{

SVMETHOD svmethod;

IThETHOD itmethod;

SPORDERTYPE ordering;

SpMat *mat;

SVCtx *svctx;

int n, m;

double *b, *x;

n = 16;
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svmethod = SVILU;

itmethod = ITGMRES;

ordering = ORDER.ND;

SYArgGetInt( kargc, argv, 1, "-n", kn );

SVGetMethod( kargc, argv, 0, ksvmethod );

ITGetMethod( kargc, argv, 0, kitmethod );

SpGetOrdering( kargc, argv, 0, ordering );

m n*n;

mat = FDBuildLaplacian2d( n, n, 0.0, 0.0, 0.0 );

svctx = SVCreate( mat, svmethod );

SVSetAccelerator( svctx, itmethod );

SVSetLUOrdering( svctx, ordering );

SVSetUp( svctx ) ;

x = DVCreateVector( km ); DVset( km, 1.0, x ;

b = DVCreateVector( km );

SpMult( mat, x, b );

printf( "Solved in %d iterations\n",

SVSolve( svctx, b, x ) );
}

To produce a table comparing various methods, run this csh script:

foreach ord ring ( nd rca qmd Ivd 

)

echo "lu $ordering"

example -n $N -sv lu -ordering $ordering

end

foreach svmethod (jacobi ssor ilu icc \

iccjp bdd osm nopre)

foreach itmethod ( richardson chebychev cg \
gmres tcqr bcgs cgs tfqmr 

)

echo "$svmethod $itmethod"

example -n $N -sv $svmethod -itmethod $itmethod

end

end
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11.2 Fortran example

This example shows how SLES may be used from Fortran. This example

solves a simple 1-dimenisional Poisson problem. A sample makefile follows

the program, showing how to use the Fortran interface libraries.

Program Main

C Include PARAMETERS for methods etc.

include '/usr/local/tools. core/solvers/svfort .h'

integer spcreate, svcreate

integer svsolve

c

c

parameter ( 1= 20 

)

integer matrix, solver, flag, its

double precision b(), x(1), r(), norm

c
c create example right hand side

c

do 10 i=1,1

b(i) = i

10 continue

c
c create example matrix, 1D discrete Laplaciain

c

flag = 0

matrix = spcreate(l,1,0)

if C matrix .eq. 0 ) goto 100

c

call spaddvalue(matrix,2. dO,0,0)

call spaddvalue(matrix,-1.dO,0,1)

do 20 i=1,1-2

call spaddvalue(matrix,-1.dO,i,i-1)

call spaddvalue(matrix,2.dO,i,i)

call spaddvalue(matrix,-1.dO,i,i+1)

20 continue

call spaddvalue(matrix,2.dO,N-1,1-1)

call spaddvalue(matrix,-1.dO,N-1,1-2)

c
c create solver context

c
flag = 2

solver = svcreate(matrix,SVSSOR)
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if ( solver .eq. 0 ) goto 100

set nested dissection for matrix ordering

call svsetluordering(solver,ORDER5RD)

setup solver context

call svsetup(zolver)

call svsetrelativetol(solver,I.d-8)

solve a linear system

flag = 4

its = svsolve(solver,b,x)

if ( its .eq. -1 ) goto 100

free the space used by solver

call svdestroy(solver)

calculate residual

call spmult(matrix,x,r)

norm = 0.d0

do 30 i=1,x

r(i) = b(i) - r(i)

norm = norm + r(i)*r(i)

30 continue

norm = dsqrt(norm)

print*, 'Iterations ',its,

free the space used by matrix

call spdestroy(matrix)

stop

' Norm of residual',norm

100 continue

print*, 'Error in call to SLES libraries',flag

end

The makefile for this program is (from 'tools . core/solvers/examples/makefile'):

ALL: example
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ITOOLSDIR = /usr/local/tools.core

LDIR = $(ITOOLSDIR)/libs/libs$(BOPT)$(PROFILE)/$(ARCH)

LIBS = $(LDIR)/tools .a $(LDIR)/Xtools .a $(LDIR)/system.a

FLIBS = $(ITOOLSDIR)/fort/$ (ARCH) /fort . a

example: example.o

$(FLINKER) -o example $(BASEOPTF) example.o \

$(FLIBS) libsBS)

include $(ITOOLSDIR)/bmake/$(ARCH).$(BCPT)$(PROFILE)

include $(ITOOLSDIR)/bmake/$(ARCH)

11.3 Graphical interface

SLES can be used with a graphical user interface (GUI). Tcl/Tk (a shell-

based X interface) makes it easy to provide a menu-driven interface.

Figure 11.1 gives an example of the type of interface that can be con-

structed with SLES and Tck/Tk.

The source code for this interface can be found in

'tools.core/solvers/examples/winex'.

This interface allows you to use menus to choose the solver method and

accelerator, parameters (as appropriate, by method and accelerator), and

problem size. The graphics area allows for the display of the norm of the

residual as a function of interation, or for the ac':ual residual, displayed as

a two-dimensional contour plot. A summary line is displayed at the end of

the computation in the text window at the bottom of the interface window.
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Chapter 12

Summary of Routines

This chapter contains a brief summary of the routines in this manual, as

well as a few routines (e.g., SpPrint) from PETSc that may be of use. This

chapter is organized into three major parts: the SLES routines (SVxxx), the

sparse-matrix routines (Spxxx), and miscellaneous routines. This last sec-

tion has three subsections, containing routines for system timers, registering

iterative accelerators, and graphics tools that are designed to work with the

SLES routines. The beginning of each section lists the include files that are

needed by C programmers. Fortran users should use the 'svfort.h' file.

12.1 SLES routines

*include "tools.h"

*include "solvers/svctx.h"

SVcti *SVCrzat.(mat,name) Given a sparse matrix, creates an

SpMat *mat; SVctx structure; this structure will

SVNETHOD name; then be used in solving linear

systems.

MACRO void SVDestroy(ctx) Destroys a solver context created by

SVctx *ctx; SVCreate().

MACRO void Returns number of flops used related
SVGotFlops(ctx,flops) to solver context since creation of

SVctx *ctx; solver context or since a call to

int *f lops; SVSetFlopsZero().
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MACRO void SVGetICCAlpha( ctx, Returns shift factor needed for

alpha ) incomplete Choleski factorization

SVctx *ctx; before positive definite precondition

double *alpha; was found.

MACRO void SVGetICCFailures ( Returns 1.he number of shifts needed

ctx, count ) for inc-complete Choleski factorization

SVctx *ctx; before positive definite precondition

int *count; was found.

MACRO void SVGetMemory(ctx ,mem) Returns the amount of space used by

SVctx *ctx; the solver context.

int *mem;

void SVGetMethod( Argc, argv, Given the argument list, return the

sname, svmethod ) selected method

int *Argc;

char *argv, *sname;

SVMETHUD *svmethod;

void SVRegisterAll() This routine registers all the SERIAL

linear system solve in the SV

package.

void SVRegisterDestroy() Frees the list of SERIAL iterative

solvers which have been registered.

void SVRegister( name, same, Given a solver name (integer) and a

create ) function pointer; adds the solver to

int name; the SERIAL solver package.

char *sname;

void (*create)();

MACRO void SVSetAbsoluteTol( Sets the absolute tolerance for

ctx, tol ) convergence.

SVctx *ctx;

double tol;

MACRO void SVSetAccelerator( Sets the type of accelerator to use for

ctx, type ) the iterative process.

SVctx *ctx;

ITMETHOD type;
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void SVSetBDDRegularDomains2d( Set the domains for a nl x n2 regular

ctx, ni, n2, nc ) mesh

SVctx *ctx;

int ni, n2, nc;

MACRO void Sets the function that is to be used

SVSetConvergenceTest ( to determine convergence.

ctx, converge, cctx 

)

SVctx *ctx;

jnt (*converge)();

void *cctx;

MACRO void SVSetFlopsZero( ctx Resets the flop counter associated

) with a solver context. See

SVctx *ctx; SVGetFlops().

MACRO void SVSetGMRESRestart( Sets the number of iterations before

ctx, its ) using a restart for GMRES.

SVctx *ctx;

int its;

MACRO void SVSetILUDropTol ( Sets the drop tolerance for the

ctx, fill ) incomplete LU preconditioner.

SVctx *ctx;

int fill;

MACRO void SVSetILUFill( ctx, Sets the level of fill for the

fill ) incomplete LU preconditioner.

SVctx *ctx;

int fill;

MACRO void SVSetILUPivoting( Sets the pivoting type to be used for

ctx, pivoting ) the factorization in the linear system

SVctx *ctx; solve using LU.

ant pivoting;

MACRO void SVSetIts( ctx, Sets the maximum number of

max.its ) iterations allowed.

SVctx *ctx;

ant max.its;

MACRO void SVSetLUOrdering( Sets the order type to be used for the

ctx, ordering ) factorization in the linear system

SVctx *ctx; solve using LU.

nt ordering;
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HACRO void SVSetLUPivoting( Sets the pivoting type to be used for

ctx, pivoting ) the factorization in the linear system

SVctx *ctx; solve using LU.

int pivoting;

MACRO void SVSetLUThreshold( Sets the minimum block size to use i

ctx, threshold ) the LU factorization. Four is

SVctx *ctx; generally a good number.

int threshold;

MACRO void SVSetMonitor(ctx, Sets the routine that monitors the

monitor, mctx) residual at each iteration of the

SVctx *ctx; iterative method. The default simple

void (*monitor)(), *mctx; prints the residual at each iteration.

Look in the iter directory for more

information.

void SVSetNullSpace( ctx, Sets the null space for a linear

has.cnst, nv, v ) system.

SVctx *ctx;

int has.cnst, nv;

double **v;

void SVSetOSMRegularDomains2d( Sets the domains for a nl x n2

ctx, ni, n2, nc ) regular mesh.

SVctx *ctx;

int ni, n2, nc;

void SVSetOSMRegularOverlap2d( Sets the overlap indices for a n1 x n2

ctx, n1, n2, nc, vi, regular mesh.

v2 

)

SVctx *ctx;

int ni, n2, nc, vi, v2;

MACRO void SVSetPrecondMat ( Set the matrix to be used for the

ctx, bmat ) preconditioning.

SVctx *ctx;

SpMat *bmat;

MACRO void Sets the tolerance for convergence; b

SVSetRelativeTol(ctx, default it i3 a relative decrease in the

tol) two-norm of the residual of tol.

SVctx *ctx;

double tol;
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MACRO void SVSetSSOROmega(ctx, Sets the relaxation factor for SSOR.

omega) The default is one.

SVctx *ctx;

double omega;

MACRO void SVSetUp(ctx) Called after a call to SVCreate(),

SVctx *ctx; allocates space which will be needed

later in the call to SVSolve().

MACRO void Use the value in "x" as the initial

SVSetUselnitialGuess( guess for iterative solvers.

ctx, flag 

)

SVctx *ctx;

int flag;

MACRO int SVSolve(ctx,b,x) Solves the linear system. Called after

SVctx *ctx; a call to SVCreate() and a call to

void *b,*x; SVSetUp().

12.2 Sparse matrix routines

SpMat *SpAIJCreateFromData( nr, Creates an AIJ matrix descriptor,

nc, ia, ja, a, maxnz given an existing AIJ format matrix

)

int nr, nc, *ia, *ja, maxnz;

double *a;

SpMat *SpAIJCreate( nr, nc, Creates an AIJ matrix descriptor

maxnz 

)

int nr, nc, maxnz;

void SpAddlnRow( mat, row, n, Adds a row to a sparse matrix.

v, c 

)

SpMat *mat;

int row, n, *c;

double *v;

void SpAddValue( mat, val, i, j Adds to an entry in a matrix. If the

) entry is not present, creates it.

SpMat *mat;

double val;

int i, j;
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SpMat *SpCreate( n, m, mmax ) Allocates an n x in sparse matrix

int n, m, mmax; (row format).

void SpDestroy( m ) Frees a sparse matrix (any format).

SpMat *m;

SpMat *SpDnClampToSparse ( mat, Forms a sparse matrix from a dense

rtol, n ) one.

SpMat *mat;

double rtol;

int n;

SpMat *SpDnCreateFromData( nr, Creates a dense matrix descriptor,

nrd, nc, p ) given an existing dense matrix.

int nr, nrd, nc;

double *p;

SpMat *SpDnCreate( nr, nc ) Creates a dense matrix descriptor.

int nr, nc;

void SpGetOrdering( Argc, argv, Return the selected ordering, given

sname, ordering ) the argument list.

int *Argc;

char *argv, *sname;

SPORDERTYPE *ordering;

void SpMult( m, vin, vout ) Computes a matrix-vector product.

SpMat *m;

double *vin, *vout;

void SpOrderRegisterAll() Registers all the matrix-ordering

methods.

void SpOrderRegisterDestroy() Frees the list of ordering routines

that have been registered.

void SpOrderRegister(name, Given a matrix ordering routine and

sname, order) an integer, registers that ordering

SPORDERTYPE name; routine, so that a user can call

char *sname; SpOrder() with that integer and have

void (*order)(); the correct ordering routine called.

void SpPrintMatlab( fp, B, name Prints a sparse matrix to a given

) FILE, in MATLAB format.

FILE *fp;

SpMat *B;

char *name;
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Ivoid SpPrint( fp, B ) Prints a sparse matrix to a given

FILE *fp; FILE.

SpMat *B;

void SpSetInRow( mat, row, n, Sets a row in a sparse matrix.

v, c 

)

SpMat *mat ;

int row, n;

int *c;

double *v;

12.3 Miscellaneous routines

12.3.1 Iterative method routines

#include "tools.h"

#include "solvers/svctx.h"

void ITGetMethod( Argc, argv, Returns the selected method, given

sname, itmethod ) the argument list.

int *Argc;

char **argv, *sname;

ITMETHOD *itmethod;

void ITRegisterAll() Registers all the iterative methods in

the IT package. To prevent all the

methods from being registered and

thus save memory, copy this routine

and register only those methods

desired.

void ITRegisterDestroy() Frees the list of iterative solvers

registered by ITRegister().

void ITRegister(name, sname, Adds the iterative method to the iter

create) package, given an iterative name

int name; (ITMETHOD) and a function
char *sname; pointer.

ITCntx *(*create)();
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12.3.2 System timers

#include "tools.h"

*include "system/system.h"

double SYGetCPUTime() Returns the time in seconds used by

the process.

#include "tools.h"

*include "system/system.h"

#include "system/time/usec.h"

double SYuscDiff( al, a2 ) Returns the difference between two

SYusc.time.t *al, *a2; values.

double SYuscValue( a ) Converts a fast psec clock value into

SYusc.time.t *a; seconds.

MACRO void SYusc.clock(a) Gets a timer value (elapsed time)

SYusctimet *a; with high resolution.

12.3.3 Graphics tools

*include "tools.h"

*include "solvers/svctx.h"

void ITXMonitorLimits( maxit, Sets the limits for the residual

mres ) monitor.

int maxit ;

double mres;

void ITXMonitorMeshSize( nx, ny Sets the mesh size for the display of

) 2-d contour plots in monitoring iter

int nx, ny; package performance.

void ITXMonitorMultiComponent( Informs ITXMonitor how to handle

nc, ncx, ncy, multicomponent problems.

extract, cmp 

)

int nc, ncx, ncy, cmp;

void (*extract)();
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void ITXMonitorRVal( itP, usrP, Simple X Windows code to display

n, rnorm ) the value of the residual at each

ITCntx *itP; iteration in the iterative solvers.

void *usrP;

int n;

double rnorm;

void ITXMonitor( itP, usrP, n, Simple X Windows code to display

rnorm ) the residual at each iteration in the

ITCntx *itP; iterative solvers.

void *usrP;

int n;

double rnorm;

void XBQMatrix( mat, nc ) Displays a sparse matrix on the

SpMat *mat ; display.

int nc;
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