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Abstract: The goal of this research project is to model the effect of confinement by means 

of fiber reinforced polymer (FRP) externally bonded wrapping, hence to provide a 

simplified closed form solution to determine directly the ultimate confined concrete 

strength. Common cross-section shapes for reinforced concrete (RC) columns are 

considered herein, namely square and rectangular. The simplified model is derived from a 

more refined iterative confinement model proposed by the same authors to evaluate the 

entire stress-strain relationship of confined concrete. Based on a detailed analysis of the 

stress state through Mohr’s circle, a simplified closed form solution is proposed to account 

for the non-uniformly confined concrete performance exhibited in non-axisymmetric 

sections. The non-uniform confining stress field exhibited in such cross-sections is 

explicitly considered by means of the mean value integral of the pointwise variable stress 

state over the cross-section. The key aspect of the proposed methodology is the evaluation 

of the effective equivalent pressure to be inserted in any triaxial confinement model, to 

account for the peculiarities of square and rectangular cross-sections. Experimental data, 

available in the literature and representative of a wide stock of applications, were compared 

to the results of the theoretical simplified model to validate the proposed approach, and 

satisfactory results were found. 

Keywords: simplified modeling; closed form solution; confined concrete strength;  

FRP confinement; columns; non-circular cross-sections; externally bonded reinforcement  
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1. Introduction 

Within the applications of composites in construction, the confinement of reinforced concrete (RC) 

columns is one of the most common. Confinement studies date back to early 20th century; however, 

only in last few decades have extensive experimental and theoretical research documented fiber 

reinforced polymer (FRP) confinement efficiency (a theoretical background can be found in Di 

Ludovico et al. [1], and a comprehensive updated state-of-the-art on a large amount of confinement 

tests and models is presented in Ozbakkaloglu et al. [2] and Pham and Hadi [3]). For both building 

columns and bridge piers, the strengthening using FRP strips ensures an easy and fast installation, a 

strength and/or ductility increase, a high durability, low impact on the use of the structure and almost 

no increase of mass and geometrical dimensions of the members. Recently, wrapping techniques and 

materials different from externally bonded strips have been under exam also, like tightly wound glass 

FRP (GFRP) wires [4] or pre-tensioned propylene ropes [5] without any adhesive.  

The confining action of FRP jackets performs better on circular columns, whose geometrical 

configuration allows the pressure due to fiber wrapping to be uniformly effective on the entire  

cross-section. The first models proposed at the beginning of last century were based on the  

Coulomb plasticity criterion (e.g., [6]), so they were based on solid mechanics. It was highlighted that 

the Coulomb plasticity criterion was very simple, because it proposed a linear relationship between 

lateral confining pressure, fl, and confined concrete strength, fcc, both normalized by unconfined 

concrete strength, fco (Equation (1)), needing the evaluation of a constant, k1. Solid mechanics-based 

models have been developed in last few decades, for instance based on triaxial plasticity and calibrated 

experimentally (e.g., [7]), and they were inserted also into international codes (e.g., [8] in the form of 

Equation (2)). Solid mechanics-based models have been also proposed [9] to account for the 

confinement of hollow cross-sections; but due to the non-uniform confining stress field inside the 

cross-section, they are iterative models. However, to overcome the uncertainty on the definition of 

sophisticated models, many authors proposed statistically-based models. Regression analyses of the 

experimental results led to models mainly based on the form reported in Equation (3), where the 

constants, a and b, are determined according to the best fitting of the experimental data (and 

sometimes, a and b can be expressed as functions depending also on different parameters). 
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Whatever the basis of the confinement model, it is crucial to identify uniquely the lateral confining 

pressure, fl, to be adopted in the calculation. Most of the models, those that are empirical in nature, 

have been calibrated against their own sets of experimental data [10]. 

A more complex behavior characterizes square and rectangular columns; in these cases, due to the 

presence of the corners, a part of the cross-section remains unconfined, so that square and rectangular 
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cross-section columns were found to experience less increase in strength and ductility than their 

circular counterparts. This is because the distribution of lateral confining pressure in circular sections 

is uniform, in contrast to square and rectangular sections, in which the confining pressure varies from a 

maximum at the corners along diagonals, to a minimum in between. Similar to the confinement with 

steel hoops, that loss of effectiveness has been usually “conventionally” modeled with parabolic areas 

defined by the corners and eventually by longitudinal steel bars. This conventional approach still 

represents an unresolved issue, even in terms of code provisions. Usually, confinement models 

proposed in the International Design Codes (e.g., [11–13]) and in the scientific literature for  

non-circular sections are based on conventional parabolic arching action; parabolic shaped regions are 

considered, within which the concrete is fully and uniformly confined, while outside the confinement 

is zero. The evaluation of confining pressure usually is based on an equivalent circular cross-section 

with diameter D equal to the diagonal of the rectangular cross-section. 

2. Theoretical Basis of the Proposed Simplified Approach 

Existing analytical models for predicting the behavior of FRP-confined concrete are mostly derived 

for cylindrical plain concrete columns. Most of the existing models available for non-circular confined 

concrete assessment both in terms of ultimate capacity and of stress-strain relationships, rely on an 

assumed value of an “equivalent” lateral confining pressure. 

Despite the great research effort in the experimental field, considerable work is still needed to fully 

outline a definitive analytical model to predict the behavior of FRP confined concrete. A contribution 

in this direction, to deepen knowledge on non-axisymmetric or non-uniform confinement, is provided 

by this work. 

2.1. Refined Iterative Models 

It was originally proposed [14] to adopt Airy’s functions to evaluate the in-plane stress field in 

square concrete cross-sections, under the plane strain assumption (i.e., assuming that the increment of 

stress due to confinement is produced without any out of plane strain). Starting from that original 

model, the nonlinear behavior of concrete is accounted for by adopting a secant approach; however, 

that model provides an “average” confining stress field that is substantially uniform, even in the 

square, non-circular cross-sections [15]. 

The authors of [9] proposed a model for hollow cross-sections, where the key innovative aspect of 

the model is the evaluation of the contribution of a confining stress field not equal in the two 

transverse directions, x and y (or, in particular, for circular hollow cross-sections, in the radial and 

circumferential direction). The different and variable contributions were evaluated in each point of the 

cross-section, explicitly considering a plasticity model for concrete under triaxial compression. 

However, that model is a refined iterative one, and it required the meshing of the cross-section to 

evaluate the pointwise performance of concrete confinement. 

The transverse stresses (i.e., passive confinement pressure) induced by steel stirrups, either for 

square or rectangular cross-sections of concrete members axially loaded, are herein evaluated through 

Airy’s functions in a plain strain state assumption, according to the procedure originally proposed  

for square sections only confined by steel stirrups [14]. The formulation, applying to rectangular  
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cross-sections and steel stirrups, is finally extended to the case of FRP reinforcement. FRP wrapping is 

made of elements without flexural stiffness and with a thickness equivalent to the stirrup cross-section 

over the stirrups’ spacing. The proposed model for rectangular cross-sections converges to the 

confinement of square sections simply considering two equal sides for the cross-section. 

2.1.1. Airy’s Function f(x,y) for Non-Circular Cross-Section Confinement 

The polynomial Airy’s function, f(x,y) [14], proposed for rectangular cross-sections is: 
22
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The stresses evaluated according to Equation (5) satisfy equilibrium conditions in the assumption of 

no mass forces. 
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Compatibility is granted by Equation (6), and boundary pressures px and py are related to the 

internal stresses, namely σ and τ, through direction cosines, αx, αy, of the normal to the sides of the 

cross-section according to Equation (7).  
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σ α τ αx x yx y xp  ; τ α σ αxy x y y yp   (7)

The unknown parameters to be determined are five, but compatibility condition, Equation (6), 

reduces the number of unknowns to four, since unknown C must satisfy the relation: 

2 0x yA A C    (8)

The confining stress field inside the cross-section hence is provided by Equation (5): 
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The stress field at the boundaries is depicted in Figure 1, where all the symbols are illustrated. 

Figure 1. Boundary stresses and symbols explanation.  
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It is assumed that the boundary stresses, i.e., px and py, are positive if they conform to the local 

positive axes: in the case of the cross-section depicted in Figure 1, px has αx = 1, αy = 0 and x = Lx, 

while py has αx = 0, αy = 1 and y = Ly, according to Equation (7). 

2.1.2. Displacement Compatibility 

The four unknown parameters, Ax, Ay, Bx and By, have to be determined ensuring displacement 

compatibility, in the two principal directions, x and y, of the confining device and the concrete sides of 

the cross-section in both directions perpendicular and parallel to the sides. The compatibility is derived 

for stirrups (i.e., elements with flexural stiffness, EfIs, and axial stiffness, EfAs); the cross-section area 

is equal to As, spacing to S and Young’s modulus to Ef. The results are simplified in the case of FRP 

wrapping, where the flexural stiffness, Is, is negligible (i.e., Is = 0). 

The displacements of concrete along x (or y, exchanging x with y) due to confining pressures can be 

evaluated as:  
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The concrete displacement (or deformed shape), in the direction, x, of the side of the cross-section 

perpendicular to x (i.e., the vertical short side of cross-section depicted in Figure 1), Vx,c┴, is obtained 

from Equation (10) and x = Lx. Similarly, the concrete displacement, in the direction, x, of the side of 

the cross-section parallel to x (i.e., horizontal long side of cross-section depicted in Figure 1), Vx,c║,  

is obtained from Equation (10), considering x = Lx and y = Ly. These concrete displacements due to 

confining pressure (concrete contraction) have to be detracted to the expansion along x, νεzLx, related 

to the axial strain, εz. Axial strain multiplied by the apparent Poisson ratio (dilation ratio), ν, represents 

the natural, transverse dilation of the concrete cross-section counteracted by the confining device, 

yielding to the passive confinement pressure and concrete transverse contraction, Vx,c┴ and Vx,c║. 

Each leg of the stirrups can be modeled as a restrained beam: in particular, it has a fixed boundary 

at the corner, while in the middle section, due to symmetry, it has its rotations restrained, for bending 

effects, and a fixed boundary, for extensional effects. 

The axial displacement in the direction, x, of the leg parallel to x, Vx,f║, is due to an axial load 

evaluated by integrating shear stresses, τyx, acting on that side (i.e., the horizontal long side of the  

cross-section depicted in Figure 1) and by integrating confining pressures on the leg perpendicular to  

x of the stirrup:  

3
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The transverse displacement of the leg perpendicular to x, Vx,f┴, is obtained by adding to the 

displacement, Vx,f║, the bending displacement of the stirrup (i.e., the vertical short side of the  

cross-section depicted in Figure 1), in the direction, x, due to the confining pressure, px,. In the 

following expression, EfIs is the bending stiffness of the stirrup. 
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2.1.3. Evaluation of Parameters Ax, Ay, Bx and By 

The least squares method is adopted to evaluate the four unknown coefficients, Ax, Ay, Bx and By, of 

Airy’s function. The compatibility in a direction either perpendicular or parallel to each side of the 

cross-section both along the x and y axes is guaranteed by minimizing the function, g (involving the 

scatter of the deformed shapes between concrete and stirrups) by setting to zero the derivatives with 

respect to the four parameters Ax, Ay, Bx and By: 
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In particular, the perpendicular displacement (e.g., to the x axis) is a function of y; hence, the 

integral mean value is considered for both concrete and stirrup displacements. The system (14) yields 

to the values of the relevant parameters. The result, simplified in the case of FRP wrapping (Is = 0;  

t = As/S), is presented for Ax and Bx (and Ay and By, exchanging X with Y):  
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(16)

2.1.4. The Case of Square Cross-Sections 

Furthermore, assuming a square cross-section (i.e., assuming Lx = Ly = L, Ax = Ay = A and  

Bx = By = B), it is possible to converge to the confinement model for square cross-sections. 

The confining stress field inside the cross-section in the case of square cross-sections is given by 

Equation (9), and it is totally symmetric: 
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In this framework, the two parameters, A and B, of Airy’s function are rewritten as: 
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2.2. Simplified Model for Square Sections 

Theoretical results, based on the iterative refined model, meshing the cross-section and considering 

explicitly the pointwise anisotropic confining stress field, have been found [16] to be in satisfactory 

agreement with the experimental data available in the scientific literature. A previous refined iterative 

confinement model is herein simplified to account for square sections. 

The main goal is to account for the non-uniform confining stress field in the non-circular  

cross-sections (and different, in different directions), but without explicitly discretizing the cross-section. 

To avoid the meshing of the section, consequential time consumption and need for software-based 

approaches, the integral mean is evaluated to provide a closed form solution for this problem. The 

main idea at the basis of the simplified model is related to the classical Mohr–Coulomb failure 

envelope theory (Figure 2), according to which, for concrete/soil confined by lateral stress (σ3), the 

axial stress (σ1) is [17]: 

2
1 3

φ φ
σ 2 tan 45 σ tan 45

2 2
c

             
   

 (19)

In Equation (19), σ1 represents the axial strength (σ1 = fcc), σ3 the lateral confining pressure (σ3 = fl), 

c the cohesion and φ the internal friction angle of the concrete/soil. When σ3 = 0, i.e., in the unconfined 

situation, the unconfined concrete strength (in this case, σ1 = fco) can be evaluated removing the lateral 

confining pressure, hence assuming σ3 = 0 in Equation (19), yielding to: 

co

φ
2 tan 45

2
f c

     
 

 (20)

Equation (19) can be rewritten to evaluate directly the confined concrete strength: 

2
cc co l co 1 l

φ
tan 45

2
f f f f k f

         
 

 (21)

The angle of internal friction of concrete varies usually from 36° to 45° [17], and it is not easily 

estimated from experimental tests. Hence, the angle of internal friction can be assumed as a linear 

function of concrete strength (Figure 3, where fco is in MPa) as [18]: 

 coφ 36 35 1 45f       (22)
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Figure 2. Unconfined and confined concrete strength and Mohr–Coulomb failure envelope.  

    

Figure 3. Parameter k1 of the confinement model: Equations (21) and (22). 

 

One of the first applications of this theory to confinement was proposed by Richart et al. [6]  

in 1928, and they suggested k1 = 4.1 corresponding to about φ = 37°, which is an average value for 

concrete subjected to low confinement pressure. Using triaxial tests, many other authors proposed 

different expressions for k1; for instance, k1 = 3.5 was proposed by Teng et al. [19]. Recent studies 

(e.g., two of the latest are Moran and Pantelides [20] and Girgin [21]) suggested, to best-fit 

experimental data, that the value of k1 should be also assumed as a function of the confinement level 

and should take into account the influence of the concrete strength on the ultimate behavior. 

2.2.1. Conventional Procedures to Account for Non-Circular Cross-Sections 

In the case of non-circular cross-sections, a shape factor, ke, is usually defined (Equation (23) as the 

ratio between the area of “conventional” effectively confined concrete, Acon, to the gross sectional area, 

Ag = 4LxLy. The effective confined area (Figure 4) is conventionally defined using parabolic arc 

segments extending between the rounded corners of the section [1].  

   22
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Figure 4. Confined and unconfined portion of the section (“conventional” approach).  

FRP, fiber reinforced polymer.  

 

In the case of confinement models based on Equation (1), the shape factor, ke, can be also adopted 

to evaluate an “effective” lateral confining pressure. The average strength of a confined concrete 

column can be evaluated as the axial capacity, Ncc (given by the sum of the strength contribution of the 

confined area, Acon, multiplied by fcc and the cover, unconfined, area, Acov, multiplied by fco) divided by 

the gross area of the section, Ag: 

   co 1 l con co cov co con cov 1 l concc con
cc co 1 l

g g g g

f k f A f A f A A k f AN A
f f k f

A A A A

   
      (24)

The “effective”, or better, the “equivalent”, lateral pressure, kefl, is the value to be inserted in the 

confinement model Equation (1) to obtain directly the average strength of the confined concrete in 

non-circular sections, Equation (24). The main limit of this approach is that the confinement is assumed 

uniformly constant in between the parabola and zero outside them; furthermore, it is underlined that, 

even if this procedure was pragmatically extended by many authors and codes (e.g., [11–13]) and also  

to the models based on nonlinear Equations (2) and (3), the physical meaning of ke depicted in 

Equation (24) is not preserved in those cases. 

To provide an “effective” lateral pressure, fl, based on solid mechanics approaches (hence, accounting 

on the variability of confining pressure over the cross-section) rather than on this “conventional” 

simplified approach, the following novel procedure is proposed. 

2.2.2. Novel Model for “Effective” Confining Pressure 

In non-circular applications, the confining pressure is not uniform in the plane of the cross-section 

(in two perpendicular principal directions, σ3 = fl,min and σ2 = fl,max are different), but in any case, the 

failure envelope can be related to the minimum confining pressure, σ3 (Figure 5), the failure circle 

being independent of σ2. 
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Figure 5. Confined concrete strength (related to the Mohr–Coulomb failure envelope 

theory) under a non-uniform (σ2 > σ3) confining pressure field.  

  

Hence, the strength of concrete is related only to the minimum confining pressure in each point and 

integrated over the cross-section. The resultant axial force over cross-section Area Ag is evaluated by 

the integration of pointwise stresses and then divided by the total area, Ag, to provide directly the 

average confined concrete strength, fcc,sq (see Equation (25)). In this way, an average lateral pressure 

(the term in brackets in Equation (25)) is evaluated, which can be assumed as the “effective” confining 

pressure to be inserted in the confinement model to obtain directly, and without any meshing and 

pointwise evaluation, the confined concrete strength in square sections. 
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Given the equation of minimum confining pressure (minimum principal stress), fl,min, 
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the closed form solution of fl,sq is given by the solution of integrals in brackets in Equation (25): 
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In Equation (27) many parameters appear: L is the half length of a side of the square cross-section; 

Ef and tf are, respectively, the Young’s modulus and total thickness of the wrap; εl is the strain in the 

wrap; and finally, the nonlinear mechanical properties of concrete are (secant) Young’s modulus Ec 
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and apparent Poisson ratio (dilation ratio) ν at failure. However, it can be easily verified that for typical 

values of involved parameters, the numerical influence of ν (even ranging widely between zero and 

two) is negligible in Equation (27); hence, to simplify the evaluation, ν can be approximately fixed 

equal to 0.5. This simplifies the calculation, while more refined evaluations can be based on the 

iterative evaluation of ν = εl/εcc. Conversely, Ec has a major impact, and it can be evaluated iteratively 

as the ratio between fcc (evaluated according to Equation (25)) and ultimate concrete strain, εcc, which 

can be assumed [6] equal to: 

cc
cc co

co

ε ε 5 4
f

f

 
  

 
 (28)

In the previous equation, εcc is the concrete strain corresponding to fcc, and convergence on Ec can 

be found via a spreadsheet with very few iterations, starting with a trial value equal to the elastic 

tangent, Ec. In this procedure, the evaluation of ultimate concrete strain plays a crucial role to account 

for concrete nonlinearities (ν and Ec); hence, it will be the focus of future developments and 

improvements of the predictability of the model. The procedure is based on the evaluation of fcc,sq 

(according to Equation (25)), where fl,sq is evaluated based on trial Ec (according to Equation (27)); this 

value of fcc,sq is divided by εcc (according to Equation (28)), providing the new value of Ec which 

converges to the previous trial Ec in very few iterations. It is noted that Equation (25) is the core of the 

methodology, it being possible to insert every confinement model to calculate fcc. However, the 

resulting integral does not always have a simple closed form solution, as in the case of the linear model, 

Equation (21), adopted in this study (which is based on the Mohr–Coulomb failure envelope theory). 

3. Proposed Simplified Confinement Model for Rectangular Sections 

3.1. Implementation of the Model 

Theoretically, the direct integration of Equation (25) for rectangular cross-sections (with stresses 

evaluated according to Equation (9) based on coefficients Ax, Ay, Bx and By, provided by Equations (15) 

and (16)) is feasible, and it provides results for rectangular cross-sections, as well. However, it does 

not provide simple closed form solutions, and it can be solved numerically via computer algebra 

software (CAS). Because the aim of this paper is to provide a direct, practical tool, oriented toward  

the profession, a further simplification was conceived of to model confinement for rectangular  

cross-sections. 

The basic idea is that a rectangular cross-section can be assumed as in between two square sections, 

for which a simplified, yet reliable, confinement model has been just provided. A rectangular section 

having side aspect ratio ζ = Lx/Ly = 1 is a square section, so that the confined concrete strength should 

be equal to fcc,sq; on the other hand, a rectangular section having side aspect ratio ζ ≥ 3 is a slender 

wall-like cross-section, so that the confined concrete strength should be evaluated according to another 

specific model proposed by the authors for such a cross-section shape [22]. Finally a cross-section 

having 1 < ζ < 3 is expected to be in between the two limit cases, and it is the suggested range of 

applicability for this model. In view of this basic idea, the behavior of a rectangular cross-section is 

assumed as in between the behavior of two square cross-sections having the sides equal to the longest 



Polymers 2014, 6 1198 
 

 

(2Lx) and the shortest (2Ly) sides of the rectangular cross-section. In this procedure, the adopted 

confinement equation, Equation (21), is linear; hence, the average of fcc,sq for the two considered 

“limit” square cross-sections yields to the average of the lateral confining stresses:  

cc,sq cc,sq l,sq l,sq
cc,rect co 1 co 1 l,rect

( ) ( ) ( ) ( )

2 2
x y x yf L f L f L f L

f f k f k f
 

        (29)
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f
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 (30)

An outline of the proposed model is depicted in Figure 6. Similarly to the case of square  

cross-sections, the nonlinear parameter, Ec, can be found with very few iterations (as discussed in 

Section 2.2.2), and the influence of ν is again negligible, as will be discussed during the experimental 

validation of the model.  

Figure 6. Outline of the proposed simplified confinement model. 
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3.2. Validation of the Model 

The proposed confinement model has been validated by means of experimental theoretical comparisons 

based on an experimental database [23–41] involving 136 square columns and 44 rectangular columns. 

The minimum and maximum dimensions of the cross-sections in the database are 150 and 1270 mm, 

always with ζ ≤ 2; the concrete unconfined strength ranges between 12 and 54.1 MPa. Different fiber 

types for wraps were used with a total thickness ranging between 0.047 and 9.6 mm and an elastic 

modulus ranging between five and 355 GPa. In this sense, the database is representative of a wide 

stock. The validation is summarized in the following Tables 1 and 2 and in Figure 7, dividing, in the 

well-known format of the 45° line, square sections from rectangular sections. Common synthetic 

indexes showing the reliability of the confinement model (e.g., [2]) are the average, µ, of the ratios of 

confined concrete strength (theoretical fcc,sq or fcc,rect over experimental fcc,EXP) and their coefficient of 

variation (CV). It results that µ is equal to 0.90 and 0.97, while CV is equal to 13% and 12%, 

respectively, for square and rectangular cross-sections, with the approximated constant ν value assumed 

equal to 0.5. The average, µ, focuses on overall model accuracy, and it is noted that ratios lower than 

one represent safe side predictions, because the prediction is lower than the actual experimental value. 

Similarly, CV shows the magnitude of the associated variability to the mean error. 

Figure 7. Validation of the proposed model (experimental vs. theoretical strength; 45° line). 

   

Implementing an iterative procedure also to determine ν as the ratio between lateral and axial strain, 

ν = εl/εcc, µ results in being equal to 0.92 and 0.97, while CV is equal to 13% and 12%, respectively, 

for square and rectangular cross-sections. It is clear that the improvement in terms of predictions is not 

relevant compared to the added complexity of the model.  
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Table 1. Experimental theoretical comparison: square cross-sections. 

Ref. 
fco 

(MPa) 
2L 

(mm) 
Fiber 

tf 

(mm) 
Ef 

(GPa) 
εl 

(%) 
fcc,EXP 

(MPa) 
fl,sq 

(MPa) 
fcc,sq 

(MPa) 
THEOR. 

EXP. 
Campione (2006) 

[23] 

12.0 150 CFRP 0.165 230.0 1.50 15.1 0.84 15.27 1.01 

12.0 150 CFRP 0.330 230.0 1.50 17.8 1.20 16.67 0.94 

Rousakis et al. 

(2007) [24] 

33.0 200 CFRP 0.117 240.0 1.55 38.4 0.66 35.69 0.93 

33.0 200 CFRP 0.117 240.0 1.55 38.8 0.66 35.69 0.92 

33.0 200 CFRP 0.351 240.0 1.55 45.9 1.72 39.94 0.87 

33.0 200 CFRP 0.351 240.0 1.55 42.4 1.72 39.94 0.94 

33.0 200 CFRP 0.585 240.0 1.55 55.6 2.48 42.98 0.77 

33.0 200 CFRP 0.585 240.0 1.55 59.5 2.48 42.98 0.72 

33.0 200 GFRP 0.351 65.0 2.80 42.6 0.97 36.94 0.87 

33.0 200 GFRP 0.351 65.0 2.80 41.8 0.97 36.94 0.88 

33.0 200 GFRP 0.702 65.0 2.80 44.4 1.83 40.37 0.91 

33.0 200 GFRP 0.702 65.0 2.80 47.3 1.83 40.37 0.85 

33.0 200 GFRP 1.053 65.0 2.80 51.9 2.56 43.29 0.83 

33.0 200 GFRP 1.053 65.0 2.80 55.5 2.56 43.29 0.78 

34.2 200 CFRP 0.117 240.0 1.55 42.2 0.66 36.84 0.87 

34.2 200 CFRP 0.117 240.0 1.55 41.9 0.66 36.84 0.88 

34.2 200 CFRP 0.351 240.0 1.55 45.2 1.71 41.07 0.91 

34.2 200 CFRP 0.351 240.0 1.55 45.7 1.71 41.07 0.90 

34.2 200 CFRP 0.585 240.0 1.55 54.6 2.46 44.06 0.81 

34.2 200 CFRP 0.585 240.0 1.55 54.9 2.46 44.06 0.80 

38.0 200 GFRP 0.351 65.0 2.80 40.4 0.97 41.88 1.04 

38.0 200 GFRP 0.351 65.0 2.80 39.1 0.97 41.88 1.07 

38.0 200 GFRP 0.702 65.0 2.80 52.8 1.81 45.28 0.86 

38.0 200 GFRP 0.702 65.0 2.80 52.4 1.81 45.28 0.86 

38.0 200 GFRP 1.053 65.0 2.80 59.8 2.52 48.14 0.81 

38.0 200 GFRP 1.053 65.0 2.80 60.2 2.52 48.14 0.80 

39.9 200 GFRP 0.351 65.0 2.80 43.1 0.78 43.06 1.00 

39.9 200 GFRP 0.351 65.0 2.80 37.7 0.78 43.06 1.14 

39.9 200 GFRP 0.702 65.0 2.80 54.2 1.21 44.79 0.83 

39.9 200 GFRP 0.702 65.0 2.80 47.1 1.21 44.79 0.95 

39.9 200 GFRP 1.053 65.0 2.80 59.5 1.46 45.82 0.77 

39.9 200 GFRP 1.053 65.0 2.80 61.5 1.46 45.82 0.74 

Wang and Wu 

(2008) [25] 

31.7 150 CFRP 0.165 219.0 1.99 33.2 1.35 37.09 1.12 

31.7 150 CFRP 0.330 219.0 1.99 35.2 2.30 40.90 1.16 

52.1 150 CFRP 0.165 225.7 1.92 53.7 1.42 57.91 1.08 

52.1 150 CFRP 0.330 225.7 1.92 55.9 2.58 62.67 1.12 

31.9 150 CFRP 0.165 219.0 1.99 33.6 1.35 37.29 1.11 

31.9 150 CFRP 0.330 219.0 1.99 42.2 2.31 41.12 0.97 

54.1 150 CFRP 0.165 225.7 1.92 55.8 1.42 59.94 1.07 

54.1 150 CFRP 0.330 225.7 1.92 59.4 2.60 64.77 1.09 
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Table 1. Cont. 

Ref. 
fco 

(MPa) 
2L 

(mm) 
Fiber 

tf 

(mm) 
Ef 

(GPa) 
εl 

(%) 
fcc,EXP 

(MPa) 
fl,sq 

(MPa) 
fcc,sq 

(MPa) 
THEOR. 

EXP. 

Wang and Wu 

(2008) [25] 

32.3 150 CFRP 0.165 219.0 1.99 39.8 1.35 37.71 0.95 

32.3 150 CFRP 0.330 219.0 1.99 56.5 2.32 41.56 0.74 

52.0 150 CFRP 0.165 225.7 1.92 55.9 1.42 57.81 1.03 

52.0 150 CFRP 0.330 225.7 1.92 63.0 2.58 62.56 0.99 

30.7 150 CFRP 0.165 219.0 1.99 43.7 1.34 36.05 0.83 

30.7 150 CFRP 0.330 219.0 1.99 68.0 2.28 39.80 0.59 

52.7 150 CFRP 0.165 225.7 1.92 57.6 1.42 58.52 1.02 

52.7 150 CFRP 0.330 225.7 1.92 80.3 2.58 63.30 0.79 

31.8 150 CFRP 0.165 219.0 1.99 50.0 1.35 37.19 0.74 

52.7 150 CFRP 0.165 225.7 1.92 62.6 1.42 58.52 0.93 

52.7 150 CFRP 0.330 225.7 1.92 89.8 2.58 63.30 0.70 

Harries and 

Carey  

(2003) [26] 

32.4 152 GFRP 3.000 4.9 1.60 37.9 0.47 34.28 0.90 

32.4 152 GFRP 9.000 4.9 1.60 43.2 1.23 37.30 0.86 

31.2 152 GFRP 3.000 4.9 1.60 37.4 0.48 33.11 0.89 

31.2 152 GFRP 9.000 4.9 1.60 39.0 1.31 36.43 0.93 

Shehata et al. 

(2002) [27] 

23.7 150 CFRP 0.165 355.0 1.50 27.5 1.47 29.53 1.07 

29.5 150 CFRP 0.165 355.0 1.50 40.4 1.55 35.69 0.88 

Lam et al. (2006) 

[28] 

35.3 150 CFRP 0.167 230.0 1.50 41.2 1.02 39.39 0.96 

35.3 150 CFRP 0.334 230.0 1.50 60.4 1.66 41.98 0.69 

Ilki and 

Kumbasar (2003) 

[29] 

32.8 250 CFRP 0.165 230.0 1.50 32.7 0.68 35.53 1.09 

32.8 250 CFRP 0.165 230.0 1.50 32.3 0.68 35.53 1.10 

32.8 250 CFRP 0.495 230.0 1.50 41.4 1.72 39.69 0.96 

32.8 250 CFRP 0.495 230.0 1.50 40.6 1.72 39.69 0.98 

32.8 250 CFRP 0.825 230.0 1.50 56.7 2.41 42.46 0.75 

32.8 250 CFRP 0.825 230.0 1.50 53.6 2.41 42.46 0.79 

Al-Salloum 

(2006) [30] 

28.7 150 CFRP 1.200 75.1 1.50 41.2 1.99 36.62 0.89 

30.9 150 CFRP 1.200 75.1 1.50 42.5 2.04 39.06 0.92 

Harajli  

(2006) [31] 

42.0 152 CFRP 0.900 82.0 1.50 49.5 1.77 49.17 0.99 

42.0 152 CFRP 0.900 82.0 1.50 46.2 1.77 49.17 1.06 

42.0 152 CFRP 0.900 82.0 1.50 48.7 1.77 49.17 1.01 

Masia et al. 

(2004) [32] 

26.3 152 GFRP 1.000 19.1 2.40 31.3 0.89 29.83 0.95 

26.3 152 GFRP 2.000 19.1 2.40 31.6 1.60 32.66 1.03 

26.3 152 GFRP 1.000 19.1 1.50 41.3 0.56 28.53 0.69 

Mandal et al. 

(2005) [33] 

31.5 458 GFRP 3.000 19.1 1.50 36.5 0.56 33.76 0.92 

31.5 458 GFRP 3.000 19.1 1.50 37.5 0.56 33.76 0.90 

31.9 152 GFRP 3.000 10.3 1.50 37.3 0.88 35.41 0.95 

31.9 152 GFRP 3.000 10.3 1.50 36.4 0.88 35.41 0.97 

31.9 152 GFRP 3.000 10.3 1.50 34.1 0.88 35.41 1.04 

31.9 152 GFRP 9.000 10.3 1.50 53.6 2.03 40.03 0.75 

31.9 152 GFRP 9.000 10.3 1.50 46.6 2.03 40.03 0.86 

31.9 152 GFRP 9.000 10.3 1.50 48.5 2.03 40.03 0.83 

Wang and Wu 

(2008) [25] 

15.0 279 GFRP 2.000 87.0 1.40 26.0 1.35 20.27 0.78 

15.0 279 GFRP 9.600 17.0 1.40 22.0 1.31 20.14 0.92 

Tao et al. (2008) 

[34] 

43.0 152 GFRP 1.260 13.6 1.69 50.7 0.59 45.38 0.89 

43.0 152 GFRP 2.520 13.6 1.69 51.6 1.12 47.53 0.92 

43.0 152 GFRP 3.780 13.6 1.69 53.8 1.59 49.44 0.92 
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Table 1. Cont. 

Ref. 
fco 

(MPa) 
2L 

(mm) 
Fiber 

tf 

(mm) 
Ef 

(GPa) 
εl 

(%) 
fcc,EXP 

(MPa) 
fl,sq 

(MPa) 
fcc,sq 

(MPa) 
THEOR. 

EXP. 

Tao et al.  

(2008) [34] 

43.0 152 GFRP 5.040 13.6 1.69 54.2 2.00 51.12 0.94 

43.0 152 GFRP 1.260 13.6 1.69 51.2 0.59 45.38 0.89 

43.0 152 GFRP 2.520 13.6 1.69 51.2 1.12 47.53 0.93 

43.0 152 GFRP 3.780 13.6 1.69 53.3 1.59 49.44 0.93 

43.0 152 GFRP 5.040 13.6 1.69 55.0 2.00 51.12 0.93 

43.0 152 GFRP 2.520 13.6 1.69 50.7 1.12 47.53 0.94 

43.0 152 GFRP 3.780 13.6 1.69 52.9 1.59 49.44 0.93 

Micelli and 

Modarelli  

(2013) [35] 

28.0 150 CFRP 0.330 221.0 1.40 32.0 1.13 32.50 1.02 

28.0 150 CFRP 0.165 221.0 1.40 36.2 0.77 31.06 0.86 

28.0 150 CFRP 0.330 221.0 1.40 42.1 1.13 32.50 0.77 

Faella et al.  

(2004) [36] 

30.0 150 GFRP 0.480 80.7 3.50 32.1 2.42 39.65 1.23 

30.0 150 GFRP 0.480 80.7 3.50 32.5 2.42 39.65 1.22 

30.0 150 GFRP 0.480 80.7 3.50 41.5 2.42 39.65 0.95 

30.0 150 GFRP 0.480 80.7 3.50 34.1 2.42 39.65 1.16 

30.0 150 GFRP 0.480 80.7 3.50 41.9 2.42 39.65 0.95 

30.0 150 GFRP 0.480 80.7 3.50 38.9 2.42 39.65 1.02 

30.0 150 GFRP 0.960 80.7 3.50 42.5 3.93 45.69 1.07 

30.0 150 GFRP 0.960 80.7 3.50 49.3 3.93 45.69 0.93 

30.0 150 GFRP 0.960 80.7 3.50 51.2 3.93 45.69 0.89 

30.0 150 GFRP 0.960 80.7 3.50 52.9 3.93 45.69 0.86 

30.0 150 GFRP 0.960 80.7 3.50 58.7 3.93 45.69 0.78 

30.0 150 GFRP 0.960 80.7 3.50 55.5 3.93 45.69 0.82 

Ombres  

(2006) [37] 

17.4 150 CFRP 0.047 240.0 1.42 20.0 0.32 18.68 0.93 

17.4 150 CFRP 0.094 240.0 1.42 23.1 0.60 19.76 0.85 

17.4 150 CFRP 0.094 240.0 1.42 21.1 0.60 19.76 0.94 

17.4 150 CFRP 0.094 240.0 1.42 20.2 0.60 19.76 0.98 

17.4 150 CFRP 0.141 240.0 1.42 26.4 0.82 20.66 0.78 

17.4 150 CFRP 0.141 240.0 1.42 26.8 0.82 20.66 0.77 

17.4 150 CFRP 0.141 240.0 1.42 27.5 0.82 20.66 0.75 

17.4 150 CFRP 0.188 240.0 1.42 30.6 1.01 21.40 0.70 

17.4 150 CFRP 0.188 240.0 1.42 27.9 1.01 21.40 0.77 

17.4 150 CFRP 0.188 240.0 1.42 30.7 1.01 21.40 0.70 

Demers and 

Neale (1999) [38] 

32.3 152 GFRP 1.050 10.5 2.00 33.1 0.45 34.10 1.03 

32.3 152 GFRP 1.050 10.5 2.00 33.0 0.45 34.10 1.03 

32.3 152 CFRP 0.900 25.0 1.50 34.1 0.66 34.96 1.03 

42.2 152 CFRP 0.900 25.0 1.50 46.4 0.68 44.94 0.97 

42.2 152 CFRP 0.900 25.0 1.50 46.3 0.68 44.94 0.97 

Rochette and 

Labossiere  

(2000) [39] 

42.0 152 CFRP 0.900 82.7 1.50 43.2 1.93 49.81 1.15 

42.0 152 CFRP 0.900 82.7 1.50 47.4 1.93 49.81 1.05 

42.0 152 CFRP 0.900 82.7 1.50 50.4 1.93 49.81 0.99 

43.9 152 CFRP 1.500 82.7 1.50 48.3 2.82 55.33 1.15 

43.9 152 CFRP 1.200 82.7 1.50 50.9 2.42 53.71 1.06 

43.0 152 AFRP 1.260 13.6 1.70 50.7 0.59 45.40 0.90 

43.0 152 AFRP 2.520 13.6 1.70 51.6 1.13 47.59 0.92 

43.0 152 AFRP 3.780 13.6 1.70 53.7 1.62 49.55 0.92 

43.0 152 AFRP 5.040 13.6 1.70 54.2 2.05 51.30 0.95 

43.0 152 AFRP 1.260 13.6 1.70 51.2 0.59 45.40 0.89 
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Table 2. Experimental theoretical comparison: Rectangular cross-sections. 

Ref. 
fco 

(MPa) 
2Lx 

(mm) 
2Ly 

(mm) 
Fiber 

tf 

(mm) 
Ef 

(GPa) 
εl 

(%) 
fcc,EXP 
(MPa) 

fl,rect 
(MPa) 

fcc,rect 

(MPa) 
THEOR.

EXP. 

Lam et al. 

(2006) [28] 

35.3 188 150 CFRP 0.334 230.0 1.50 51.4 1.55 41.53 0.81 

35.3 225 150 CFRP 0.334 230.0 1.50 43.9 1.47 41.20 0.94 

35.3 263 150 CFRP 0.334 230.0 1.50 40.5 1.40 40.93 1.01 

35.3 300 150 CFRP 0.334 230.0 1.50 39.0 1.35 40.72 1.04 

35.3 188 150 CFRP 0.167 230.0 1.50 38.8 0.93 39.05 1.01 

35.3 225 150 CFRP 0.167 230.0 1.50 38.4 0.87 38.81 1.01 

35.3 263 150 CFRP 0.167 230.0 1.50 37.7 0.83 38.63 1.02 

35.3 300 150 CFRP 0.167 230.0 1.50 37.4 0.79 38.49 1.03 

Ilki and 

Kumbasar 

(2003) [29] 

34.0 300 150 CFRP 0.165 230.0 1.50 35.2 0.83 37.33 1.06 

34.0 300 150 CFRP 0.165 230.0 1.50 38.7 0.83 37.33 0.96 

34.0 300 150 CFRP 0.495 230.0 1.50 40.4 2.00 42.00 1.04 

34.0 300 150 CFRP 0.495 230.0 1.50 38.4 2.00 42.00 1.09 

34.0 300 150 CFRP 0.825 230.0 1.50 49.2 2.71 44.88 0.91 

34.0 300 150 CFRP 0.825 230.0 1.50 51.3 2.71 44.88 0.87 

Rochette and 

Laboissiere 

(2000) [39] 

42.0 203 152 GFRP 0.900 86.0 1.50 45.8 1.66 48.72 1.06 

42.0 203 152 GFRP 0.900 86.0 1.50 43.7 1.66 48.72 1.11 

43.9 203 152 GFRP 1.500 86.0 1.50 44.3 2.36 53.49 1.21 

43.9 203 152 GFRP 1.200 86.0 1.50 44.4 2.05 52.23 1.18 

Demers and 

Neale  

(1999) [38] 

17.6 200 150 CFRP 0.165 221.0 1.40 24.8 0.56 19.79 0.80 

17.6 200 150 CFRP 0.330 221.0 1.40 31.2 0.75 20.54 0.66 

17.6 200 150 GFRP 0.460 86.0 2.30 26.8 0.95 21.35 0.80 

Chaallal et al. 

(2003) [40] 

37.7 354 250 GFRP 0.600 60.0 1.30 39.6 0.47 39.61 1.00 

22.8 635 318 CFRP 0.167 280.0 0.90 23.3 0.30 23.97 1.03 

22.8 635 318 CFRP 0.334 280.0 0.90 28.5 0.57 25.03 0.88 

24.1 1270 635 CFRP 3.173 280.0 0.90 35.2 1.72 30.92 0.88 

Parving and 

Wang  

(2001) [41] 

46.4 510 360 GFRP 1.160 72.0 4.50 48.3 2.59 56.94 1.18 

49.7 510 360 GFRP 2.900 72.0 4.50 53.2 5.42 71.86 1.35 

53.8 510 360 GFRP 1.200 77.0 4.40 64.0 2.73 65.01 1.02 

46.8 510 360 GFRP 0.960 80.0 4.20 52.9 2.23 55.90 1.06 

47.6 740 510 GFRP 0.960 80.0 4.20 48.1 1.60 54.11 1.13 

Micelli and 

Modarelli 

(2013) [35] 

28.0 200 150 CFRP 0.165 221.0 1.40 30.3 0.63 30.50 1.01 

28.0 200 150 CFRP 0.330 221.0 1.40 34.1 0.90 31.56 0.93 

28.0 200 150 GFRP 0.230 85.0 2.28 32.2 0.65 30.59 0.95 

Ombres  

(2006) [37] 

27.1 300 150 CFRP 0.047 240.0 1.42 28.5 0.25 28.05 0.98 

27.1 300 150 CFRP 0.047 240.0 1.42 28.5 0.25 28.05 0.98 

27.1 300 150 CFRP 0.094 240.0 1.42 30.5 0.49 29.00 0.95 

27.1 300 150 CFRP 0.094 240.0 1.42 30.5 0.49 29.00 0.95 

27.1 300 150 CFRP 0.141 240.0 1.42 34.4 0.72 29.90 0.87 

27.1 300 150 CFRP 0.141 240.0 1.42 33.3 0.72 29.90 0.90 

27.1 300 150 CFRP 0.141 240.0 1.42 32.2 0.72 29.90 0.93 

Shehata et al. 

(2002) [27] 

23.7 188 94 CFRP 0.165 235.0 1.50 25.8 1.07 27.92 1.08 

23.7 188 94 CFRP 0.330 235.0 1.50 33.2 1.58 29.95 0.90 

29.5 188 94 CFRP 0.165 235.0 1.50 32.0 1.14 34.05 1.06 

29.5 188 94 CFRP 0.330 235.0 1.50 38.7 1.76 36.52 0.94 
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4. Conclusions 

The proposed simplified model was derived from a more refined iterative confinement model 

previously proposed by the same authors. This represents an attempt to account for the pointwise 

variability of the confinement stress field over the cross-section, but keeping a simplified calculation, 

without meshing the cross-section. Hence, an “effective” confining pressure was provided to obtain 

directly the confined concrete strength in square sections. In any case, the model accounts explicitly 

for the non-uniform confined concrete performance pointwise exhibited in non-axisymmetric sections 

by means of the integral mean of stresses over the cross-section. However, the integration method 

discussed in the paper provides also refined solutions for rectangular cross-sections; a simple closed 

form solution cannot be provided, but CAS software only provides the numerical solution to the 

problem. To preserve the scope of providing simplified equations, a further assumption was introduced 

in the case of rectangular cross-sections: they are considered as in between the behavior of two “limit” 

square cross-sections, having sides equal to the shortest and longest sides of the rectangular cross-section. 

To account for concrete nonlinearity close to failure, the model is still iterative (but very few iterations 

provide converge); in any case, the iterations can be simply implemented in a spreadsheet. Future 

development will include the improvement of concrete ultimate strain evaluations related to the nonlinearities. 

To validate the proposed approach, experimental data, representative of a wide stock of common 

typical confinement applications, available in the literature, were compared to the predictions of the 

theoretical simplified analysis, and satisfactory agreement was achieved. The simplified model gives 

rather accurate results despite the heavily reduced computational effort, if compared to the refined 

iterative algorithm previously proposed by the same authors. 
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