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A continuous damage model and different simplified numerical strategies are proposed
to simulate the behaviour of reinforced concrete (R/C) walls subjected to earthquake
ground motions. For 2D modelling of R/C walls controlled primarily by bending, an
Euler multilayered beam element is adopted. For 3D problems, a multifibre Timoshenko
beam element having higher order interpolation functions has been developed. Finally,
for walls with a small slenderness ratio we use the Equivalent Reinforced Concrete model.
For each case, comparison with experimental results of R/C walls tested on shaking table
or reaction wall shows the advantages but also the limitations of the approach.

Keywords: Damage; multifibre beam; lattice; simplified models; shear walls.

1. Introduction

Simulating the nonlinear behaviour of reinforced concrete (R/C) walls subjected to

severe ground motion is an important problem for the engineering community. Non-

linear dynamic analysis of complex civil engineering structures based on a detailed

finite element model requires large-scale computations and involves delicate solu-

tion techniques. The need to perform parametric studies and the stochastic nature

of the input accelerations necessitate simplified numerical modelling that reduces

computational cost. However, constitutive models for concrete under cyclic loading

have to be able to take into account some complex phenomena such as decrease in

material stiffness due to cracking, stiffness recovery that occurs at crack closure and

inelastic strains concomitant to damage. An optimum idealization is then needed

i.e. one that is sufficiently fine and yet not too costly.

One of the main characteristic of the nonlinear behaviour of concrete under

severe cyclic loading is damage. In order to simulate that we use a continuous

damage model with two scalar damage variables, one for damage in tension and

the other for damage in compression. Unilateral effect (differences in the behaviour
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depending on the sign of the loading [Mazars et al., 1990]) and stiffness recovery

are also included. For 2D modelling of R/C walls whose behaviour is controlled

primarily by bending we choose the classical 2D Euler beam theory. Beams are

divided in several layers where 1D constitutive relationships for steel and concrete

are implemented. For 3D problems, a multifibre Timoshenko beam element with

higher order interpolation functions has been developed. The element is free of

shear locking phenomena, takes into account deformations due to shear and can be

coupled with 2D or 3D constitutive laws. Finally, when dealing with structures with

a slenderness ratio far from the classical beam theory a more reliable representation

of shear deformations and shear stresses has to be provided. One possibility in that

respect — always within the family of simplified modelling strategies — is to use

the Equivalent Reinforced Concrete model that makes use of lattice meshes for

concrete and reinforcement bars. Comparisons with experimental results of R/C

walls tested on shaking table or reaction wall show, for each case, the advantages

but also the limitations of the approach.

2. A Continuous Damage Model for Concrete

Under Cyclic Loading

A constitutive model for concrete under cyclic loading ought to take into account

some observed phenomena, such as decrease in material stiffness due to cracking,

stiffness recovery which occurs at crack closure and inelastic strains concomitant

to damage. To simulate this behaviour we use a continuous damage model with

two scalar damage variables one for damage in tension and one for damage in

compression [La Borderie, 1991]. Unilateral effect and stiffness recovery (damage

deactivation) are also included. Inelastic strains are taken into account thanks to

an isotropic tensor. The total strain is given by

å = åe + åin, (1)

åe =
〈σ〉+

E(1 − D1)
+

〈σ〉−
E(1 − D2)

+
ν

E
(σ − Tr(σ)I ), (2)

åin =
β1D1

E(1 − D1)

∂f(σ)

∂σ
+

β2D2

E(1 − D2)
I, (3)

where:






























Tr(σ) ∈ [0, +∞) →
∂f(σ)

∂σ
= I

Tr(σ) ∈ [−σf , 0) →
∂f(σ)

∂σ
=

(

1 −
Tr(σ)

σf

)

I

Tr(σ) ∈ (−∞,−σf) →
∂f(σ)

∂σ
= 0.I

, (4)

with åe the elastic strains, åin the inelastic strains and σ the stress tensor. I denotes

the unit tensor, Tr(σ) = σij is the crack closure function and σf the crack closure
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Fig. 1. Uniaxial response of the continuous damage model for concrete under cyclic loading.

stress. 〈·〉+ denotes the positive and 〈·〉− the negative part of a tensor. E is the initial

Young’s modulus and ν the Poisson ratio. D1 and D2 are respectively the damage

variables for traction and compression, β1 and β2 are material constants. Damage

criteria are expressed as fi = Yi − Zi (i = 1 for tension or 2 for compression, Yi is

the associated force to the damage variable Zi and Zi a threshold dependent on the

hardening variables). The evolution laws for the damage variables Zi are written as:

Di = 1 −
1

1 + [Ai (Yi − Y0i)]
Bi

, (5)

where Y0i = initial elastic threshold (Y0i = Zi(Di = 0)) and Ai, Bi material

constants. Figure 1 gives the stress-strain response of the model for a uniaxial

traction-compression loading and Fig. 2 a sensibility study on the various parame-

ters of the model using the following values: E = 33 500 MPa, Y01 = 3.3510−4 MPa,

Y02 = 1.5010−2 MPa, A1 = 4.00 × 103 MPa−1, A2 = 7.00 MPa−1, B1 = 1.2, B2 =

1.5, β1 = 1.00 MPa, β2 = −40 MPa, σf = 3.5 MPa [La Borderie, 1991].

3. 2D Modelling of a R/C Wall

A simplified way to model a R/C wall whose behaviour is controlled primarily by

bending is to use 2D multilayered Euler beam elements and concentrated masses at

specific points (Fig. 3). Reinforcement bars are introduced within special composite

layers, whose behaviour is obtained as a combination of those of concrete and steel

according to:

σlayer = (1 − αrel)σconcrete + αrelσsteel , (6)

where σ denotes axial stresses and αrel is the relative area of the reinforcement

in the layer. Uniaxial constitutive laws for concrete and steel are attributed at

each layer and seismic loading is applied as an input motion at the base. Dynamic

analysis for earthquake ground motion is done according to the classical Newmark



288 P. Kotronis & J. Mazars

Fig. 2. Sensibility study on the various parameters of the continuous damage model for traction
and compression [La Borderie, 1991].

scheme (γ = 0.5 and β = 0.25 are typically chosen for optimal result accuracy).

The discrete set of equations obtained is further solved by an iterative Newton

solution procedure, where at each iteration the secant stiffness matrix is used.

This approach has been used to model the nonlinear behaviour of the

CAMUS III specimen tested on the shaking table at CEA Saclay [Combescure

and Chaudat, 2000]. The 1/3rd scaled model is composed of two parallel 5-floor
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Fig. 3. Spatial discretisation of a R/C structure using 2D multilayered Euler beam elements.

 

Fig. 4. CAMUS III — Characteristics of the specimen.

reinforced concrete walls without opening linked by 6 square floors. A highly rein-

forced footing allows the anchorage to the shaking table (Fig. 4). The total mass of

the specimen is 36 000 kg. The mass of each floor, without the additional masses, is

1300kg. The additional masses are determined in order to impose a normal force to

the walls compatible with the vertical stress values commonly found at the base of

such structures — 1.6MPa in this case. The design philosophy follows EC8 provi-

sions that privilege dissipation at a single flexural plastic hinge at the bottom of the

structure. The rest of the wall is designed in order to avoid development of plastic

behaviour anywhere above the base region (see Fig. 4 and Table 1). The target

flexural capacity at the base of the specimen was equal to MSd = 390 kNm. Typical

concrete mixtures were used for the casting of the specimen. Their characteristics

were checked by the usual compressive and splitting tests. Tensile tests performed

before the tests helped also to define the properties of the steel bars.

Table 1. CAMUS III — Steel rein-
forcement for each wall (mm2).

CAMUS III

Sa, Sb Sc
Level 5 132.4 159
Level 4 233 159
Level 3 233 159
Level 2 289.6 159
Level 1 289.6 159
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Fig. 5. CAMUS III — Ground motions: (a) Nice S1 — amax = 0.25 g; (b) Melendy Ranch —
amax = 1.35 g.

During the shaking table tests the specimen was loaded with horizontal acceler-

ation signals parallel to the walls in their own plane. Two types of ground motion

were used: The artificial Nice S1 signal, representative of a far field earthquake and

of the French design acceleration spectra and the Melendy Ranch signal represen-

tative of a near field earthquake (Fig. 5). Nice S1 is rich in terms of frequencies.

Melendy Ranch is short and has a thin effective bandwidth of high accelerations.

The frequency content of the Melendy Ranch signal is rich around 7Hz, which was

proven to be approximately the first natural frequency of the CAMUS III specimen

(6.88Hz). The dynamic tests were performed until collapse of the specimen. By

collapse we mean the appearance of significant cracks on the concrete walls and

plastic strain with possible failure of some bars of the vertical reinforcing steel.

During the first two sequences of the experimental campaign (Nice S1 — 0.42 g

and Nice S1 — 0.24 g) CAMUS III stayed practically in the elastic zone without any

yielding of the steel bars. The following signal however (Melendy Ranch — 1.35 g)

caused important damage to the specimen with extensive cracking and beginning of

crushing at the wall extremities. Permanent displacements were observed at the end

of the sequence, sign of residual cracks and significant yielding of the reinforcement

bars. A large crack appeared throughout the base of each wall. Bending moment

reached the value of the ultimate moment (MRd = 400 kNm: design flexural capacity

for the selected curtailment of vertical bars). It is reminded that the maximum

accelerations of the Melendy Ranch signal were around the first natural frequency

of the specimen.

The experimental campaign was concluded with two more sequences (Nice S1 —

0.64 g and Nice S1 — 1.00 g) that caused the collapse of the specimen (rupture of

steel bars at the base). After the Melendy Ranch seismic input motion, the strain

gages situated just above the level of the construction joint of the first floor of the

CAMUS III specimen indicated high strain values at this level on the one hand,
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and much lower values at the level corresponding to the 2nd and 3rd floor, on

the other hand. Consequently damage seemed to be concentrated at the level of

first storey with large plastic rotation at the base. This fact was confirmed by the

inspection of the specimen after the failure test (Nice S1 — 1.00 g): Almost all the

vertical steel reinforcement bars were broken and buckled just above the level of

the 1st construction joint. The zone where rupture of the bars took place followed

the main cracks at the base. A more detailed presentation covering all aspects

of the experimental program can be found in Combescure and Chaudat [2000].

The 2D numerical model adopted represents each wall as a cantilever beam

(Fig. 6). The wall is divided into 24 vertical Euler beam elements with 37 layers

each. Concentrated masses are introduced at each floor (980 kg for the ground

floor, 3119.5 kg for the fifth floor and 3226.5kg for the others). A single wall is

considered. Bond slip and confinement are not taken into account. The Rayleigh-

based formulation damping coefficients are adjusted according to a white noise

test performed before the experiment (2% on the two first modes). The uniaxial

version of the continuous damage constitutive law is used for concrete and a classical

uniaxial plasticity model with nonlinear kinematic hardening for steel [Armstrong

and Frederick, 1966]. The properties of the materials used for the calculations are

presented in Table 2.

2
4

 b
ea

m
s

37 layers
Concentrated 

masses 

Fig. 6. CAMUS III (multilayered beam element) — Numerical model.

Table 2. CAMUS — Properties of the materials used for
the numerical calculations.

CAMUS III

Compression strength (concrete) MPa 30
Tensile strength (concrete) MPa 2.5
Young’s modulus (concrete) MPa 30 000
Young’s modulus at the base (concrete) MPa 15 000
Poisson coefficient (concrete) — 0.2
Yield stress (steel) MPa 414
Young’s modulus (steel) MPa 200 000
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The Young’s modulus of the base slab is taken smaller due to localised cracking

already visible before the tests (those cracks appeared during the assembly of the

specimens on the table particularly during the tightening of the wall anchorage to

the floors).

Numerical results for two sequences of the experimental program (Nice S1 —

0.42 g and Melendy Ranch — 1.35 g) are presented in Fig. 7. Due to an unreliable

displacement transducer at the top of the specimen comparison of displacements is

presented only at the fifth floor. No calibration of the numerical results has been
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Fig. 7. CAMUS III (multilayered beam element) — Displacement time history at the fifth floor:
(a) Nice S1 — 0.42 g; (b) Melendy Ranch — 1.35 g.
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Fig. 8. CAMUS III (multilayered beam element) — Cracking of the wall at the end of the
experiment. (a) Damage Pattern: Due to Compression — crushing after D2 ≈ 0.15; (b) due to
Tension — cracking after D1 ≈ 0.98.

made, making the comparison with the experimental results similar to the one of “a

blind simulation”. Simulation predicts satisfactory the maximum displacement for

both sequences and there is no shifting between the curves. The damage variables

D1 and D2 in “Eq. (5)” vary normally between 0 (non damaged section) and 1.0

(completely damaged section). By filtering the value of D1 between 0.95 and 1.0

we omit the micro-cracks and we have an image of the bigger cracks of the model.

Figure 8 presents the damage pattern due to compression and tension at the end

of the calculation for the complete loading program.

Comparison with the actual position of cracks shows that the model is able to

reproduce the global trend observed experimentally (creation of the plastic zones

at the base of the walls). The wall is mainly damaged at the base and that is in

accordance with the EC8 design philosophy. For more detailed information and

interpretation of the numerical results the reader is invited to look at [Kotronis,

2000] and [CAFEEL-ECOEST/ICONS, 2001].

4. 3D Modelling of a R/C Wall

In order to simulate — in a simplified manner — the 3D nonlinear behaviour of

a R/C wall under dynamic loading, a 3D multifibre Timoshenko beam element

has been developed [Kotronis, 2000] and [Kotronis et al., 2004]. The difference

with other multifibre Timoshenko beam elements usually found in the literature —

[Guedes et al., 1994; Spacone et al., 1996; Petrangeli et al., 1999] — is that the ele-

ment is displacement-based and has higher order interpolation functions depending

on the material’s properties. It can be implemented to any general-purpose finite

element code without major modifications. The user defines at each fibre a material

and the appropriate constitutive law. The element takes into account deformations

due to shear and uses cubic and quadratic Lagrangian polynomials for the trans-

verse and rotational displacements respectively in order to avoid any shear locking
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phenomena. The interpolation functions take the following form [Friedman and

Kosmatka, 1993]:

{Us} = [N ]{U}, (7)

{Us}
T = {us(x) vs(x) ws(x) θsx(x) θsy(x) θsz(x)}, (8)

{U}T = {u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2}, (9)

1 and 2 being the two nodes of the beam, x the axis of the beam, s the subscript

defining “section variables”, u, v, w the displacements and θx, θy, θz the rotations

according to the x, y, z axis respectively (Fig. 9). [N ] is the matrix containing the

interpolation functions:

[N ] =



















N1 0 0 0 0 0 N2 0 0 0 0 0

0 N3 0 0 0 N4 0 N5 0 0 0 N6

0 0 N∗

3 0 −N∗

4 0 0 0 N∗

5 0 −N∗

6 0

0 0 0 N1 0 0 0 0 0 N2 0 0

0 0 −N∗

7 0 N∗

8 0 0 0 −N∗

9 0 N∗

10 0

0 N7 0 0 0 N8 0 N9 0 0 0 N10



















.

(10)

N1 = 1 −
x

L
; N2 =

x

L
;

N3 =
1

1 + φ

{

2
( x

L

)3

− 3
( x

L

)2

− φ
( x

L

)

+ 1 + φ

}

;

N4 =
L

1 + φ

{

( x

L

)3

−

(

2 +
φ

2

)

( x

L

)2

+

(

1 +
φ

2

)

( x

L

)

}

;

N5 = −
1

1 + φ

{

2
(x

L

)3

− 3
( x

L

)2

− φ
( x

L

)

}

;

N6 =
L

1 + φ

{

( x

L

)3

−

(

1 −
φ

2

)

( x

L

)2

−
φ

2

( x

L

)

}

; (11)

N7 =
6

(1 + φ)L

{

( x

L

)2

−
( x

L

)

}

;

N8 =
1

1 + φ

{

3
( x

L

)2

− (4 + φ)
( x

L

)

+ (1 + φ)

}

;

N9 = −
6

(1 + φ)L

{

( x

L

)2

−
( x

L

)

}

;

N10 =
1

1 + φ

{

3
( x

L

)2

− (2 − φ)
( x

L

)

}

,

with N∗

i = Ni(φ
∗),φ and φ∗ the stiffness ratios due to flexure and shear according to:

φ =
12

L2

(

∫

S Ey2 dS

ky

∫

S GdS

)

,

φ∗ =
12

L2

(

∫

S
Ez2 dS

kz

∫

S
GdS

)

.

(12)
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Fig. 9. Multifibre beam element for R/C structures.

L being the length and S the section of the beam, with ky, kz the shear correction

factors dependent upon the material definition and cross-section geometry [Cowper,

1966], E and G are the Young’s and shear moduli of the beam material. For slender

structures φ and φ∗ equal zero and the resulting stiffness and mass matrices are

reduced to the ones of the Euler-Bernoulli beam theory. The interpolations func-

tions depend on the materials properties and they are calculated only once, for the
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first increment. If {F} and {D} are the section “generalised” stresses and strains

respectively, the section stiffness matrix [Ks] is calculated as [Guedes et al., 1994]:

{F} = [Ks]{D}, (13)

{F}T = {N Ty Tz Mx My Mz}, (14)

with N and T being the axial and shear forces respectively and M the moments.

{D}T = {[u′

s(x)] [v′s(x) − θsz(x)] [w′

s(x) + θsy(x)] [θ′sx(x)] [θ′sy(x)] [θ′sz(x)]}, (15)

[Ks] =



















Ks11 0 0 0 Ks15 Ks16

Ks22 0 Ks24 0 0

Ks33 Ks34 0 0

Ks44 0 0

Ks55 Ks56

sym Ks66



















, (16)

Ks11 =

∫

S

E dS; Ks15 =

∫

S

Ez dS; Ks16 = −

∫

S

Ey dS; Ks22 = ky

∫

S

GdS;

Ks24 = −ky

∫

S

Gz dS; Ks33 = kz

∫

S

GdS; Ks34 = kz

∫

S

Gy dS;

Ks44 =

∫

S

G(kzy
2 + kyz2) dS; Ks55 =

∫

S

Ez2 dS; Ks56 = −

∫

S

Eyz dS;

Ks66 =

∫

S

Ey2 dS.

(17)

The equation that gives the “generalised” strains as a function of the nodal

displacements takes the following form:

{D} = [B]{U}, (18)

[B] =



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.

Finally, the stiffness matrix of the element is given by:

Kelem =

∫ L

0

BT KsB dx. (19)

The implementation of the element was made in the library FEDEAS [Filippou,

1996] of the finite element code FEAP [Taylor, 2000]. In order to validate the

performance of the proposed numerical strategy the experimental results of a R/C U
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shaped wall tested pseudodynamically at the reaction wall of the ELSA laboratory

at JRC Ispra were used [Pégon et al., 2000]. The 3.6m height — 1.0 scaled —

specimen is composed of the U-shaped wall, a lower slab and an upper slab and its

design follows EC8 provisions (Fig. 10). The upper slab is used as the horizontal

load application point while six vertical post-tensioning bars apply a normal force

of 2 MN. These bars are disposed in such a way that the force is applied close to

the inertial centre in order to avoid spurious bending on the structure. Torsional

rotation is prohibited during the tests. The total mass of the specimen is equal to

44 045kg. The wall is loaded in both directions according to “the butterfly path”

presented in Fig. 10.

 

 

 

Fig. 10. U-shaped wall — Description of the specimen and loading history.
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During the first butterfly cycle at 40 mm of the experimental campaign the struc-

ture mainly cracked and an important cyclic degradation was observed. During the

cycle of 80 mm, large buckling and rupture of steels, spalling and severe degrada-

tion of concrete occurred. The structure collapsed at apex of larger magnitude of

the last fly and was not pushed back to a zero displacement state. The U-shaped

wall’s “failure” in both directions occurred when three vertical steel bars broke

straightening up back after buckling in compression [Pégon et al., 2000].

Eleven multifibre Timoshenko beam elements are used for the numerical simu-

lation of the U-shaped wall. 177 fibres simulate the concrete and 46 fibres the steel.

Two Gauss points are considered at each element. Base slab is not simulated and

the wall is considered fixed at the base. The behaviour of the top slab is linear

elastic and rotation of the upper part is prohibited in order to reproduce correctly

the boundary conditions of the test. The uniaxial version of the continuous damage

constitutive law is used for concrete (shear and torsion are considered linear) and

a classical uniaxial plasticity model with nonlinear kinematic hardening for steel.

In order to take into account the influence of the stirrups the compression strength

of the confined concrete is increased up to 30MPa. The properties of the materials

used for the calculations are presented in Table 3.

Comparison of numerical and experimental results for the eight steps of loading

is represented in Fig. 11 (A, B, C letters refer to Fig. 10). One can observe the

ability of the model to simulate relatively well the global behaviour of the specimen

Table 3. U-shaped wall — Properties of the materials
used for the numerical calculations.

U-shaped wall

Young’s modulus (concrete) 28 900 MPa
Poisson coefficient (concrete) 0.25
Compression strength (concrete) 24MPa
Compression strength (confined concrete) 30MPa
Young’s modulus (steel) 200 000 MPa
Poisson coefficient (steel) 0.3
Yield stress (steel) 515 MPa
Ultimate stress (steel) 615 MPa
Ultimate deformation (steel) 24%

Fig. 11. U-shaped wall (multifibre beam element) — Experimental versus numerical results.
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in terms of displacements and forces in both directions up to failure. However, the

interpretation of the results is tedious since the specimen was mainly responding

in shear to resist to high torsion moment and the fibre model is only taking into

account elastic shear and torsion. The results at the global but also at the local level

would be certainly improved with the implementation of a robust 2D or 3D con-

stitutive model for concrete. Note also that the calculation is not time-consuming

allowing for parametrical studies.

5. Modelling of a R/C Shear Wall with a Small Slenderness Ratio

A R/C shear wall of this kind is one that its behaviour is controlled primarily

by shear. For structures with small slenderness ratio (less than 1) a model based

on beam theory has difficulties in reproducing satisfactory shear deformations and

stresses [Mazars et al., 2002]. An alternative simplified method is the so-called

Equivalent Reinforced Concrete model (ERC model) [Mazars et al., 2002; Kotronis

et al., 2003]. The model uses a lattice mesh for predicting the nonlinear behaviour

of shear walls under dynamic loading and is inspired on the Framework Method

[Hrennikoff, 1941]. The basic idea consists of using the patterns of the Framework

Method for 2D or 3D problems coupled with continuous damage mechanics in a

nonlinear context and for a non-homogenous material. The main assumptions of

the proposed strategy are (Fig. 12):

• An elementary volume of reinforced concrete (EV) can be separated into a con-

crete element (C) and a horizontal and a vertical reinforcement bar (SH and SV

respectively). Concrete and steel are then modelled separately using two different

lattices,

• The sections of the bars simulating concrete are derived from the Framework

Method,

SV

SH

Elementary Volume Equiv. lattice Concrete         Steel

=

+

+=

   Cont. medium Equivalent lattice Macroscopic model

concrete

steel

steel concrete

EV

θ θ

C

Fig. 12. The Equivalent Reinforced Concrete (ERC) model.
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• A lattice composed by horizontal and vertical bars coupled with a uniaxial plas-

ticity model with or without hardening simulates steel. The section and position

of the bars coincide with the actual section and position of the reinforcement. In

order to simplify the mesh the method of distribution is used, where the sections

of bars are defined proportional to a corresponding surface area. In that way the

mesh is independent of the geometry of the specimens,

• Perfect bond is assumed between concrete and steel,

• Geometrical symmetry of the pattern is required for cyclic and transient dynamic

loading,

• For at least the type of structure tested hereafter, where the stress field is quite

homogeneous, the number of elements that simulate concrete or steel does not

have a great influence on the result [Kotronis, 2000]. Therefore a “macroscopic”

model can be used instead of the “equivalent lattice” (Fig. 12).

The performance of the ERC model was evaluated on the NUPEC specimen

(a shear wall with a slenderness ratio equal to 0.7, Fig. 13) tested on the shaking

table at the Tadotsu Engineering Laboratory [OECD, 1996]. The objectives of the

test were to comprehend the response characteristics of shear walls at levels ranging

from the elastic state to the elasto-plastic ultimate state and to provide data for

computer code improvement by comparing the results of computer analysis with

the test results. The specimen was excited with horizontal acceleration signals (six

sequences from RUN-1 to RUN-5) parallel to its plane (x direction, see Fig. 14).

The rotation at the top of the specimen was free. The main characteristics of the

specimen are presented in Table 4.

The pattern presented in Fig. 15 and the following equations of the Frame-

work Method (valid for plane stress conditions) are used to calculate the lattice

0.51 m

5.00 m

4.00 m 0.5 m0.5 m

0.51 m

0.075 m

     Base slab

z

y

     Top slab

2
.0

2
 m

 0
.7

6
 m

1
.0

0
m

 3
.7

8
m

     Base slab

z

x

0.10 m

     Top slab

L
e
ft

 f
la

n
g

e 
w

al
l

R
ig

h
t 

fl
an

g
e 

w
al

l

Web wall thickness  0.075 m

2.98 m 3.00 m

5.00 m

4.00 m 0.5 m0.5 m

Front view Side view

Fig. 13. NUPEC — Description of the specimen.
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Table 4. NUPEC — Main characteristics of the specimen.

NUPEC

Type of test Dynamic on a shaking table
Boundary conditions Rotation free at the top
Height/Length ≈ 0.7
Section of web wall m2 0.225
Section of flanges m2 0.596
Horizontal reinforcement % 1.2
Vertical reinforcement % 1.2
Compression strength of concrete MPa 28.6
Tensile strength of concrete MPa 2.3
Young’s modulus of concrete MPa 22 960
Yield strength of steel MPa 384
Young’s modulus of steel MPa 188 000
Normal stress at the base MPa 1.5
Mass (top slab + extra mass) kg (29.1 + 92.9) ∗ 103 = 122 000
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Fig. 14. NUPEC — Loading sequences.

Fig. 15. Framework method — Pattern for plane stress.

simulating concrete:
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k
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Fig. 16. NUPEC specimen (ERC model) — (a) Concrete mesh, (b) Steel mesh.

where k is the ratio between the length and the height α of the pattern and t is the

width of the plate. The angle θ that the diagonals of the concrete lattice form with

horizontal bars has been calibrated with the experimental results and it is found

approximately equal to 45◦ (Fig. 16). Each flange is represented by eight multilay-

ered beams (Euler-Bernoulli hypothesis) to account for possible flexure. The width

of those beams equals the actual length of the flange (2.98m). Six very stiff beams,

free to rotate, simulate the top slab. Distributed masses are introduced at the top

of the wall by three multilayered beams. Base slab is not simulated. Horizontal and

vertical bars simulate horizontal and vertical reinforcement. Their sections and posi-

tions have been found by using the distribution method. Reinforcement in flanges

is introduced through special mixed layers in the beams (Fig. 16). Parameters used

for the materials are the ones already reported in Table 4.

A zoom at the last two sequences (RUN-4 and RUN-5, Fig. 17) shows that the

ERC model predicts correctly the global behaviour of the NUPEC specimen in

terms of maximum values and frequency content even under severe loading (just

before collapse). A crucial parameter for the success of the nonlinear simulation

is the angle θ that the diagonals of the concrete lattice form with the horizontal

bars. This angle depends on the reinforcement ratios in the horizontal and vertical

directions, the loading (normal compressive stress at the base of the specimens and

shear stress) and the boundary conditions. It is related to the direction of the cracks

into the structure (the bars are supposed reproducing the Ritter-Mörsch scheme).

A parametrical study on the influence of this parameter can be found in [Kotronis

et al., 2003]. Results are also significantly improved by considering “the tension

stiffening phenomenon” (tests on reinforced concrete elements demonstrated that

even after extensive cracking, tensile stresses still existed in the cracked concrete

and that they significantly increased the ability of the cracked concrete to resist

shear stresses). Detailed information and interpretation of the numerical results can

be found in [Kotronis, 2000].
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Fig. 17. NUPEC specimen (ERC model) — Displacement time history analysis: (a) RUN-4, (b)
RUN-5.

6. Conclusions

In order to simulate correctly but also quickly the behaviour of R/C walls under

severe ground motions one has to find the right compromise for an optimum ideali-

sation i.e. one that is sufficiently fine and yet not too costly. Various simplified mod-

elling strategies are presented in this work. Truss or beam type elements are used for

the spatial discretisation coupled with a local constitutive law based on continuous

damage mechanics. The advantage of using structural elements is that engineers

are familiar with them and that the resulting mesh has a relatively small number

of degrees of freedom. The multifibre or multilayered aspect is “transparent” to

the user and complicates only the implementation stage of the elements in a finite

element code. Nevertheless, in order to be able to reproduce complex nonlinear

behaviours the constitutive law needs to be advanced enough to take into account

complex phenomena as decrease in material stiffness due to cracking, stiffness recov-

ery that occurs at crack closure and inelastic strains concomitant to damage. More

specifically:

(i) For 2D R/C walls whose behaviour is controlled primarily by bending the use

of Euler multilayered beam elements is a good compromise for an optimum
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idealisation. Comparison with the experimental results of the CAMUS III pro-

gram proves the ability of the proposed strategy to reproduce correctly the

global but also the local behaviour of the specimen in terms of displacements,

forces and damage distribution patterns. However, one has to keep in mind

that a constitutive model based on a continuum mechanics theory has diffi-

culties to reproduce discrete phenomena as the local behaviour of materials

at areas were significant cracks appear. Due to the small reinforcement ratio

of the CAMUS III specimen, failure phenomenon only can happen by rup-

ture of the steel bars under tension, thus post-pick behaviour cannot be well

represented. The lack of information at local scale (for example real strain

in a steel bar at the location of a crack) is the major drawback preventing

the designer from expressing physical criteria describing rupture. Further-

more, it is now well known that the use of local constitutive relationships pro-

vides results that are mesh-dependent. The use of a non-local damage model

[Pijaudier-Cabot and Bažant, 1987] or a local second gradient model [Chambon

et al., 2001; Kotronis et al., 2005] can provide a remedy in this particular

problem.

(ii) In 3D problems where shear deformations are prevailing the use of multifibre

Timoshenko beam elements is necessary. The proposed Timoshenko element

has higher order interpolations functions, is free of shear locking phenomena

and can be implemented to any general-purpose finite element code without

major modifications. Numerical simulation of the U-shaped experimental pro-

gram shows the ability of the element to simulate the global behaviour of the

specimen even under severe loading. However, shear and torsion are considered

linear for the calculations presented throughout this work (the 1D version of

the constitutive continuous damage law is used). In order to reproduce cor-

rectly the behaviour at local level (for example in case of important warping)

the implementation of a 3D robust constitutive law for concrete under cyclic

loading is a necessary step. Another possibility in that respect is to consider a

warping — conduction analogy method [Casaux et al., 2004].

(iii) For structures with small slenderness ratio a model based on the Euler or

Timoshenko beam theory has difficulties in reproducing satisfactory the shear

deformations and stresses. A solution — always within the family of simplified

models — is to use the Equivalent Reinforced Concrete model that privileges

the use of two separate lattices meshes one for concrete and one for steel.

A crucial parameter for the success of the nonlinear simulation is the angle

that the diagonals of the concrete lattice form with the horizontal bars. Other

limitations of the method are that perfect bond is assumed between concrete

and steel — assumption also valid for the other two methods presented in this

work — and the stress field must be quite homogeneous. Finally, although the

extension of the method seems possible in 3D problems, its feasibility has still

to be proven.
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The most serious drawback of all the proposed strategies seems to be the use

of a constant Rayleigh damping matrix. It seems likely that damping is not con-

stant throughout the experiments but changes following the degradation of the

structure. The proposed continuous damage model is not well suited to simulate

this behaviour because it cannot dissipate energy under repeated cycles at constant

loading amplitude. In order to remain within the framework of simplified methods

recent developments investigated the possibility to extend the methods by intro-

ducing simple failure criteria and dissipation at a local (material) level in order to

couple the state of cracking with the level of dissipation by frictional sliding of the

crack surfaces [Ragueneau et al., 2000].
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sité Paris 6.

Mazars, J., Berthaud, Y. and Ramtani, S. [1990] “The unilateral behavior of damaged
concrete,” Engineering Fract. Mechanics 35(4–5), 629–635.

Mazars, J., Kotronis, P. and Davenne, L. [2002] “A new modelling strategy for the
behaviour of shear walls under dynamic loading,” Earthquake Engineering and Struc-
tural Dynamics 31(4), 937–954.

OECD, [1996] “Seismic shear wall ISP. NUPEC’S seismic ultimate dynamic response
test,” Organisation for Economic-Cooperation and Development, Comparison report,
OECD/GD(96)188.

Pégon, P., Plumier, C., Pinto, A., Molina, J., Gonzalez, P., Tognoli, P. and Hubert, O.
[2000] “U-shaped-wall: Description of the experimental set-up,” Report, Joint
Research Center (J.R.C.), Ispra, Italy.

Petrangeli, M., Pinto, P. E., Ciampi, V. [1999] “Fiber element for cyclic bending and shear
of RC structures. I: Theory,” J. Engrg. Mech. 125(9), 994–1001.
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