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Abstract: As smart structures are becoming increasingly ubiquitous in our daily life, the need for
efficient modeling electromechanical coupling devices is also rapidly advancing. Smart structures
are often made of piezoelectric materials such as lead zirconate titanate (PZT), which exhibits strong
nonlinear behavior known as hysteresis effect under a large applied electric field. There have been
numerous modeling techniques that are able to capture such an effect; some techniques are suitable
for obtaining physical insights into the micro-structure of the material, while other techniques
are better-suited to practical structural analyses. In this paper, we aim to achieve the latter. We
propose a simplified phenomenological macroscopic model of a nonlinear ferroelectric actuator. The
assumption is based on the direct relation between the irreversible strain and irreversible electric
field, and the consequently irreversible polarization. The proposed model is then implemented in a
finite element framework, in which the main features such as local return mapping and the tangent
moduli are derived. The outcomes of the model are compared and validated with experimental data.
Therefore, the development presented in this paper can be a useful tool for the modeling of nonlinear
ferroelectric actuators.

Keywords: phenomenological; ferroelectric; piezoelectric; PZT

1. Introduction

In recent years, the pressing need to characterize the interactions between machines
and the physical world has driven the high demand for the development of
micro-electromechanical systems (MEMS). At the heart of MEMS’ design is the electrome-
chanical materials that are capable of reciprocal converting between electrical and mechani-
cal energy. An important subclass of electromechanical coupling material is piezoelectric
materials, such as lead zirconate titanate (PZT). For applications that function at a low
electric field, the piezoelectric material behaves linearly and its modeling is straightforward.
However, in applications where a large electric field is required, the piezoelectric material
exhibits nonlinear behavior with a hysteresis effect. This behavior can be categorized as a
sub-class of piezoelectricity, namely ferroelectricity. In contrast to piezoelectric material,
ferroelectric materials are characterized by a non-zero spontaneous polarization in the
absence of an applied electric field, and the direction of this spontaneous polarization
can be altered by changing the direction of the electric field. A detailed description of
ferroelectricity can be found in other excellent review articles [1–4].

Microscopically, in PZT, switching polarization occurs when the titanium ions switch
from one equilibrium position to another. The occurrence of such behavior in a single
crystal has motivated the construction of the micro-electromechanical material model. In the
first attempt to create this model, Hwang et al. [5] considered a ferroelectric polycrystal
as a set of randomly oriented single crystals of a mono-domain without domain walls,
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such that the remanent state can be simplified to belong to six possible configurations.
Under externally applied fields, the discrete transformation from one domain invariant to
another is postulated via a critical energy-switching criterion. Subsequently, the response
of the polycrystal was averaged based on the Reuss approximation of uniform stress and
electric field. To account for interactions between grains, a modified energy criterion [6–9]
or self-consistent homogenization techniques [10,11] were developed. Furthermore, to relax
the assumption of complete switching that might induce instability, Huber et al. [10]
proposed an incremental switching theory, in which the transformation from one state to
another occurs continuously, followed by a self-consistent mean field homogenization to
predict the overall response of polycrystal ferroelectric materials. Several finite-element
implementations of a micro-electromechanical model were introduced [6,9,12–15] that
could demonstrate their ability to capture the underlying physical switching. However,
these might not be practical for structural analysis due to their high computational cost.
There have only been a few attempts to achieve a more affordable micro-electromechanical
material model. One notable work proposed replacing the random grain orientation
distribution with a deterministic set of directions [16].

However, the phenomenological approach describes the ferroelectric response at a
macroscopic level such that the computational cost is more favorable for structural analysis.
In terms of numerical efficiency, the Preisach model seems to be the most convenient
approach, in which the irreversible polarization can be reconstructed from the measured
hysteresis polarization loop. In other words, a hysteresis operator that takes the applied
electric field as the input and yields polarization as the output is determined by the fitting
parameters from the hysteresis curve. The Preisach operator approach originated from
ferromagnetic studies [17,18], which then naturally lend themselves to ferroelectricity [5,19],
where irreversible polarization is obtained from the Preisach operator. Later, the irreversible
strain can be directly related to the irreversible polarization or be reconstructed separately
from the butterfly strain loop [20]. Once these operators are determined, they can be
incorporated into an efficient finite-element framework [21,22]. The Preisach operator was
also successfully incorporated into structural elements such as beams and shells in the
works of Butz et al. [23] and Schulz et al. [24].

However, it should be noted that the Preisach model is not thermodynamically consis-
tent. A thermodynamically consistent approach would strictly satisfy the second law of
thermodynamics by introducing a dissipation potential. The dissipation potential and the
free energy describe the ferroelectric material state via state variables. Specifically, the po-
larization switching phenomenon is characterized through a set of internal variables, such
as remanent strain and remanant polarization. The first macroscopic phenomenological
description of ferroelectricity was proposed by Chen et al. [25,26], who introduced the dy-
namic response of the electric displacement of a poled ferroelectric material. The theoretical
foundation of a thermodynamic framework was laid by Bassiouny and Maugin [27–29].
In their framework, they establish an analogy to plasticity theory, in which the Helmholtz
free energy is attributed from observable reversible variables and history-dependent inter-
nal variables. Strictly following the Clausius–Duhem inequality, the constitute laws and
evolution form of the flux variables can be obtained for isotropic and kinematic harden-
ing rules. Cock and McMeeking [30] later introduced an explicit expression for the yield
function that determines when the switching process takes place with a demonstration
of a 1D model. This framework was later rigorously refined by Landis [31] for a fully
coupled, multi-axial in 3D model. In this work, closed-form tangent moduli were obtained
and exhibited a symmetric form. Moreover, different switching surfaces were proposed
and shown to agree with the experimental data. Such an accurate model comes at high
cost, as nine internal variables were introduced and posed challenges to the determination
coefficients for switching functions. Thus, a simplified version of Landis’s work was pre-
sented by McMeeking [32], in which a one-to-one relation between irreversible strain and
polarization is assumed, such that the number of internal variables can be reduced. In a
parallel body of works, Kamlah et al. [33], also prepared a macroscopic framework that is
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suitable for finite-element implementations. In their formulation, the irreversible strain is
aligned with the direction of the applied electric field and directly related to the irreversible
polarization. Additionally, four different loading criteria were introduced, two of which
signify the irreversible processes, while the other two govern the fully poled saturated
state. By refining the work of Kamlah et al. [1,33,34], with the additive decomposition of
irreversible polarization stemming from the electric field and stress origin, Elhadrouz [35]
also presented constitutive laws for ferroelectric and ferroelastic materials with the deriva-
tion of tangent moduli that could be suitable for finite-element implementations. A similar
work has been proposed by Schwaab et al. [36] using the mixed finite-element framework.

A combination of a physically based microscopic model and phenomenologically
based macroscopic model was also proposed. The first work in this direction was proposed
by Zhou and Chattopadhyay [37], where the evolution of electric polarization with a varied
electric field was motivated by the change in the dipole moment of the unit cell. Moreover,
by using two sets of internal state variables, one of which is a texture tensor character-
izing the orientation distribution function and a vector value for describing the macro-
scopic irreversible states, Mehling et al. [38] proposed a microscopically motivated phe-
nomenological model, developing upon the theory framework of Kamlah. More recently,
Stark et al. [39,40] introduced a hybrid framework, in which the volume fractions of the
domain variants are chosen as the internal state variables.

To model a thin-film structure, a mesoscopic model, such as the phase-field method,
is often a favorable choice [41]. The phase-field model also describes phenomenological
behavior; however, the total polarization or spontaneous polarization is governed by a time-
dependent diffusion equation [42–45]. Although phase-field method is a very powerful
tool to describe the phase-transition effect, unfortunately it has a high computational cost
and is not feasible for structural analysis. Moreover, material coefficients in the phase-
field method are not trivially obtained from experiments but extracted from lower-scale
modeling, such as density functional theory [46,47].

It is of interest to point out that, in the works of McMeeking and Landis [31,32],
the saturated or locked-up phenomenon of remanent polarization or strain were introduced
through the choice of hardening function, meaning that only one switching function is
required. A similar framework was presented by Schroder [48–50]; however, the invari-
ant of the state variables (reversible and irreversible) was chosen to be the argument of
the energy and dissipation functions, together with a finite-element formulation. All the
preceding works have utilized irreversible strain and polarization as the internal variables,
which could entail an additional change in variables in a finite-element formulation where
displacement and electric potential are considered as degrees of freedom. To circumvent
this issue, instead of using the hybrid formulation from Ghandi [51] or performing two-
step solving procedure from Kamlah et al. [34], Klinkel [52] proposed a fully coupled
phenomenological model that employs irreversible strain and irreversible electric fields
as internal variables. This work is as rigorous as the work from Landis [31], yet a detailed
return-mapping and finite-element formulation were also provided. It should be empha-
sized that, in the modeling of ferroelectric devices, besides a reliable constitute model,
numerical implementation is also of importance. For the computational aspects, readers
are encouraged to read the works of Semenov [53] and Stark [54], which contain a detailed
discussion on the return mapping and provide a derivation of the tangent moduli.

In this work, we present a simplified phenomenological model, which is formulated
based on the irreversible electric field. The proposed model is inspired by the work of
Klinkel [52]; however, we invoke the one-to-one relation between irreversible electric
field and strain. By combining these two main features, the proposed model is not only
advantageous for the numerical formulation and modeling but can also reduce the number
of internal variables. Specifically, the evolution of the irreversible electric field can be
determined from a simple dissipation potential that invokes only the coercive polarization.
As a result, the determination of tangent elastic, piezoelectric and dielectric tensors, which
are necessary for finite-element solutions, can be facilitated, as only the differentiation with
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respect to the irreversible electric field is required. Moreover, the simpler material model
also allows for us to validate our numerical predictions with the experimental results of
a micro-sized, multi-layered ferroelectric actuator, in which fewer ferroelectric material
parameters are needed, demonstrating the feasibility of the proposed model for realistic
modeling applications. The rest of the paper is structured as follows. In Section 2, we will
present the background theory where the simple tangent moduli are obtained as a result
of the one-to-one simplification. A detailed procedure to obtain the evolution of internal
variables at the Gauss-point level, as well as the boundary value problem of ferroelectricity,
are presented in Section 3. Based on the FEM formulation, we will demonstrate and validate
our numerical results from our in-house code in Section 4 before we make some concluding
remarks in Section 5.

2. Background Theory
2.1. Notations

The continuum model of ferroelectricity will be derived in a Cartesian coordinate
system whose basis vectors are e1, e2, e3. Scalar will be denoted by a normal symbol,
e.g., a, β, while vector and higher-order tensors are denoted by bold symbols. Con-
ventional tensor calculus notations will be made using Einstein summation, which is
used throughout. Inner product over one index (dot product) is denoted by (·), so that
a · b = aibi

(
∀i, j = 1, 2, 3, a ∈ R3, b ∈ R3). Inner product over two indices (contraction)

is denoted by (:), e.g., A : b = AijBij
(
∀i, j = 1, 2, 3, A, B ∈ R3 ×R3). Dyadic product is

denoted by (⊗) so that (a⊗ b)ij = aibj
(
∀i, j = 1, 2, 3, a ∈ R3, b ∈ R3).

2.2. Basic Equations

Consider a homogeneous domain of ferroelectric material of volume Ω, bounded
by the boundary ∂Ω such that ∂Ω = ∂Ωu ∪ ∂Ωϕ = ∂Ωσ ∪ ∂Ωω and ∂Ωu ∩ ∂Ωσ = ∅,
∂Ωϕ ∩ ∂Ωω = ∅. ∂Ωu and ∂Ωϕ are the portion of boundary on which displacement u and
electrical potential ϕ are prescribed, respectively. Similarly, ∂Ωσ and ∂Ωω are the boundary
portion on which mechanical traction t and surface charge ω are prescribed, respectively,
as shown schematically in Figure 1. It is assumed that the ferroelectric domain is free of
body force and charge carriers, so that the governing equations, including the balance of
linear momentum and Gauss’s law, are given as follows:

∇ · σ = 0, in Ω, (1a)

∇ ·D = 0, in Ω, (1b)

where ∇ = ∂
∂xi

is the Nabla operator, σ is the second-order Cauchy stress tensor, and D is
the electric displacement vector. The boundary is subjected to the following conditions

u = ū, on ∂Ωu, (2a)

ϕ = ϕ̄, on ∂Ωϕ, (2b)

t = σ · n = t̄, on ∂Ωσ, (2c)

ω = D · n = ω̄, on ∂ΩD, (2d)

in which the ¯(◦) denotes the prescribed variables; the constitute laws that relate the stress
σ and electric displacement D to the kinematic variables mechanical strain ε and electric
field E will be discussed in the next section. Under the assumption of small deformation,
the (total) strain is given as the symmetric part of the displacement gradient, as follows

ε =
1
2

(∇u + u∇). (3)
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Figure 1. Schematic of a continuum ferroelectric body.

The (total) electric field is given as the gradient of scalar electrical potential

E = −∇ϕ. (4)

In the context of ferroelectricity, these two total kinematic variables can be decomposed
into reversible and irreversible parts

ε = εr + εi, (5a)

E = Er + Ei, (5b)

where εr, Er are reversible strain and reversible electric field, respectively, whereas εi, Ei are
irreversible strain and irreversible electric field, respectively. The irreversible polarization
Pi is related to the irreversible electric field Ei by

Pi = −κ · Ei, (6)

where κ is the second-order dielectric tensor.

2.3. Thermodynamic Consistency

The main ingredient of the proposed formulation is the assumption that the irreversible
strain is forced to be in alignment with the irreversible polarization (or indirectly with
the irreversible electric field) such that there is a one-to-one correspondence between
the irreversible electric field and irreversible strain. As noted in McMeeking [32], this
assumption might not be justified in some types of piezoelectric material; however, it can
be valid for the majority of piezoelectric materials, including our PZT material, as will be
shown in the following sections. Besides, such a one-to-one relation has been utilized by
several authors in the phenomenological model [1,22,50]. The one-to-one relation reads
as follows:

εi =
εs

2(Es)2

Ä
3Ei ⊗ Ei − (Ei · Ei)I

ä
, (7)

where I is the second-order identity tensor, Es and εs are the two material properties, namely
the saturation electric field and saturation strain, respectively. Equation (7) resembles the
electrostriction effect, where the induced-deformation is volume-preserved.

To phenomenologically describe ferroelectric material, the Helmholtz free energy that
takes kinematic variables ε, E and internal variables εi, Ei as independent arguments is
defined as follows [52]

ψ
Ä

ε, εi, E, Ei
ä
=

1
2

Ä
ε− εi

ä
: C :

Ä
ε− εi

ä
+

β

Es E · e :
Ä

ε− εi
ä
− 1

2

Ä
E− Ei

ä
· κ ·
Ä

E− Ei
ä
+ ψ̄
Ä

εi, Ei
ä

, (8)

where C, e and κ are the fourth-order elastic tensor, third-order piezoelectric tensor and
second-order dielectric material tensors, respectively. While the elastic and dielectric energy
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takes the quadratic form (the first and third terms), the piezoelectric coupling energy (the
second term) is proportional to the coefficient β = Ei · eP, with eP, denoting the normalized
direction vector of polarization. This indicates that the electromechanical coupling effect
can only take place with non-zero remanent polarization and is fully coupled when the
material is fully poled. In Equation (8), ψ̄

Ä
εi, Ei

ä
defines the hardening potential that will

be implicitly defined in the next sections. It should be noted that although the irreversible
strain εi can be replaced by irreversible electric field Ei, it will be kept for the sake of clarity.

Within the theory of electro-elastic continuum, the second-law of thermodynamic
dictates the following inequality of dissipation

D := σ : ε̇−D · Ė− ψ̇ ≥ 0, (9)

where the ˙(◦) indicates time derivative. For instance,

ψ̇ :=
∂ψ

∂ε
: ε̇ +

∂ψ

∂εi : ε̇i +
∂ψ

∂E
· Ė +

∂ψ

∂Ei · Ė
i. (10)

Under the framework of rational continuum mechanics, upon substituting
Equation (8) into Equation (9), the constitutive equations for σ and D and driving forces σ̂

and “D can be obtained

σ :=
∂ψ

∂ε
= C :

Ä
ε− εi

ä
+

β

Es e · E, (11a)

D := −∂ψ

∂E
= − β

Es e :
Ä

ε− εi
ä
+ κ ·

Ä
E− Ei

ä
, (11b)

σ̂ := − ∂ψ

∂εi = C :
Ä

ε− εi
ä
+

β

Es e · E− ∂ψ̄

∂εi , (11c)“D := − ∂ψ

∂Ei = −
eP

Es E · e :
Ä

ε− εi
ä
− κ ·

Ä
E− Ei

ä
− ∂ψ̄

∂Ei , (11d)

where the so-called back-stress
∂ψ̄

∂εi = 0 in our simplified model,
∂ψ̄

∂Ei = DB is referred to

as back-electric displacement and will be explicitly detailed in the following sections. In
Equations (10) and (11), the dissipation inequality Equation (9) can be reduced to

D := σ̂ : ε̇i + “D · Ėi ≥ 0, (12)

which involves the rate of change of the irreversible strain εi and electric field Ei. Therefore,
upon utilizing the one-to-one relation from Equation (7), the reduced dissipation inequality
can be further simplified, as follows:

D =
εs

2(Es)2

Ä
6σ̂ · Ei − 2

(
I : σ̂

)ä
· Ėi + “D · Ėi = ‹D · Ėi ≥ 0, (13)

where ‹D =
εs

2(Es)2

Ä
6σ̂ · Ei − 2

(
I : σ̂

)ä
︸ ︷︷ ︸

D

+“D = D + “D (14)

To signify when irreversible processes take place, we introduce the dissipation potential

φ :=

Ä‹D · eP
ä2

(Pc)2 − 1 ≤ 0, (15)

where Pc is the coercive polarization and related to the coercive electric field through the
dielectric constant. The evolution of internal variable, i.e., Ei thanks to the one-to-one
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assumption in Equation (7), occurs in the direction that maximizes the dissipation potential.
In other words, by minimizing the following Lagrangian

L := −D
Ä

σ̂, “Dä+ λφ
Ä

σ̂, “Dä→ min, (16)

where λ is the Lagrange multiplier, the evolution equation of the irreversible electric field

Ėi = λ
∂φ

∂‹D = λẼ, (17)

and the loading/unloading conditions

λ ≥ 0, φ ≤ 0, λφ = 0, (18)

can be obtained. In Equation (17), we define

Ẽ =
∂φ

∂‹D =
2

(Pc)2

Ä‹D · eP
ä

eP (19)

To derive tangent moduli from the rate of the constitute laws, using Equations (17) and (19),
the consistency equation is firstly expressed as

φ̇ =
∂φ

∂‹D · ‹̇D +
∂φ

∂Ei · Ė
i

= Ẽ · ‹̇D + λ
∂φ

∂Ei · Ẽ = 0. (20)

As ‹D is defined as in Equation (14), the first product of the above equation can be
written as

Ẽ · ‹̇D = Ẽ ·
Ç

∂‹D
∂ε
· ε̇ + ∂‹D

∂E
· Ė +

∂‹D
∂Ei · Ė

i

å
= Ûσ : ε̇ + ÙD · Ė + λ

ñ
∂‹D
∂Ei :

Ä
Ẽ⊗ Ẽ

äô
,

where Ûσ = Ẽ · ∂‹D
∂ε

, (21a)ÙD = Ẽ · ∂‹D
∂E

. (21b)

Consequently, from the consistency Equation (20), we can determine the Lagrange
multiplier λ, as follows

λ =
Ûσ : ε̇ + ÙD · Ė

χ
, (22)

in which the denominator is given by

χ = −
ñ

∂‹D
∂Ei :

Ä
Ẽ⊗ Ẽ

ä
+

∂φ

∂Ei

ô
(23)

Upon substituting Equation (23) into Equation (17), the evolution of the irreversible
electric field can be expressed in terms of λ as

Ėi = Ẽ
Ûσ : ε̇ + ÙD · Ė

χ
(24)
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As a result, by taking time derivative of the constitutive laws Equations (11a) and (11b)
and making use of (24), the rate form of constitutive laws can be written as

σ̇ =

ï
1
χ

Å
∂σ

∂Ei · Ẽ
ã
⊗ Ûσ + C

ò
: ε̇ +

ï
1
χ

Å
∂σ

∂Ei · Ẽ
ã
⊗ ÙD +

β

Es e
ò
· Ė,

= C̃ : ε̇ + ẽσ · Ė,
(25)

Ḋ =

ï
1
χ

Å
∂D
∂Ei · Ẽ

ã
⊗ Ûσ − β

Es e
ò

: ε̇ +

ï
1
χ

Å
∂D
∂Ei · Ẽ

ã
⊗ ÙD + κ

ò
· Ė,

= ẽD : ε̇ + κ̃ · Ė,
(26)

with

C̃ =

ï
1
χ

Å
∂σ

∂Ei · Ẽ
ã
⊗ Ûσ + C

ò
, (27a)

ẽσ =

ï
1
χ

Å
∂σ

∂Ei · Ẽ
ã
⊗ ÙD +

β

Es e
ò

, (27b)

ẽD =

ï
1
χ

Å
∂D
∂Ei · Ẽ

ã
⊗ Ûσ − β

Es e
ò

, (27c)

κ̃ =

ï
1
χ

Å
∂D
∂Ei · Ẽ

ã
⊗ ÙD + κ

ò
, (27d)

being the tangent elastic, piezoelectric and dielectric tensors. To this end, we established the
necessary constitutive laws (in rate-form) that can be used in the boundary value problem
described in Section 2.2. However, as can be seen from Equation (27), the tangent moduli
depend on the evolution of internal variable Ei, which is governed by Equations (15), (17)
and (18) and will be addressed in the next section. The partial derivatives with respect to
Ei can be found in Appendix A.

3. Finite-Element Formulation

This section presents the finite-element implementation of the proposed model. The key
variable that describes hysteresis behavior and determines the tangent moduli, the irre-
versible electric field Ei, will be obtained by the return mapping technique. Subsequently,
weak-form ferroelectricity and its linearization are introduced and discretized by finite-
element approximation. The local (Gauss-point level) and global system of nonlinear
equations are solved by the Newton–Raphson method.

3.1. Return Mapping

In order to solve the evolution Equation (17), a backward Euler time marching scheme
is employed. Specifically, the time-discretization form of Equation (17) can be written as

Ei
n+1 = Ei

n + γn+1Ẽn+1, (28a)

φn+1 =

Ä‹Dn+1 · eP
ä2

(Pc)2 − 1, (28b)

γn+1 ≥ 0, φn+1 ≤ 0, γn+1φn+1 = 0, (28c)

with n as the pseudo-time step, γn+1 = λn+1/∆t. Regarding plasticity, the operator splitting
technique is employed. Firstly, in the predictor step, the trial state of the irreversible electric
field can be obtained by ’freezing’ the switching process
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γtrial
n+1 = 0, (29a)

Ei,trial
n+1 = Ei

n, (29b)

εi,trial =
εs

2(Es)2

Ä
3Ei,trial ⊗ Ei,trial − (Ei,trial · Ei,trial)I

ä
, (29c)

σ̂trial = C :
Ä

ε− εi,trial
ä
+

β

Es e · E, (29d)“Dtrial = − 1
Es E · e :

Ä
ε− εi,trial

ä
− κ
Ä

E− Ei,trial
ä

, (29e)‹Dtrial =
εs

2(Es)2

Ä
6σ̂trial · Ei,trial − 2

Ä
I : σ̂trial

ää
+ “Dtrial, (29f)

φtrial
n+1 =

Ä‹Dtrial
n+1 · eP

ä2

(Pc)2 − 1. (29g)

The value of φtrial
n+1 is evaluated, such that when φtrial

n+1 ≤ 0, the trial states are registered
as the true states. Otherwise, if φtrial

n+1 > 0, the switching process takes place and is governed
by the following set of nonlinear equations

Ei
n+1 = Ei

n + γn+1Ẽn+1, (30a)

φn+1 =

Ä‹Dn+1 · eP
ä2

(Pc)2 − 1 = 0, (30b)

where xn+1 =
[
Ei

n+1, γn+1
]T are the unknown variables. Let us define a residual vector

Rn+1 =

ñ
Ra

n+1
Rb

n+1

ô
=

Ei
n+1 − (Ei

n + γn+1Ẽn+1)Ä‹Dn+1·eP
ä2

(Pc)2 − 1

. (31)

Then, the solution of the system of nonlinear equations Equation (30) can be updated
in the local (Gauss-point level) Newton–Raphson procedure as follows

xk+1
n+1 = xk

n+1 −
ï

∂Rn+1

∂x

ò−1
· R
Ä

xk
n+1

ä
, (32)

with k as the Newton iteration step and

∂Rn+1

∂x
=

 ∂Ra

∂Ei
n+1

∂Ra

∂γn+1

∂Rb

∂Ei
n+1

∂Rb

∂γn+1

 =

 I− γn+1
∂Ẽn+1
∂Ei

n+1
−Ẽn+1

2
(Pc)2
‹Dn+1 · ∂‹Dn+1

∂Ei
n+1

0

 (33)

For the sake of clarity, the return mapping algorithm is presented in Algorithm 1. Once
the evolution of the irreversible electric field is determined, the obtained solution Ei

n+1 is
then used to calculate the tangent moduli according to Equation (27), which is subsequently
utilized to compute the tangent matrices, as will be shown in the next section.
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Algorithm 1: Return mapping algorithm.

Input:εn, En, Ei
n;

Output:Ei
n+1, γn+1 ;

Compute trial states from Equation (29);
if φtrial

n+1 ≤ 0 then
(◦)n+1 = (◦)trial

n+1;
else

Perform local Newton–Raphson;

Initial values x0 =
[
Ei

n γn
]T ;

while
‖xk+1 − xk‖
‖xk‖

> tol do

Compute (local) residual vector Equation (31);
Compute (local) Jacobian matrix Equation (33);
Compute xk+1

n+1 from Equation (32);

return (◦)n+1;

3.2. Weak-Form and Solving Procedure

With the definition of σ and D, the weak form of ferroelectrostatic can be written as

δπ = δψ− δψext =
∫

Ω
σ : δε dV −

∫
Ω

D · δE dV −
∫

∂Ω
δu · t̄ dA +

∫
∂Ω

δϕω̄ dA , (34)

in which π = ψ− ψext is defined as the total potential.
Linearizing the weak form, we can obtain

∆δπ =
∫

Ω
δε :

∂σ

∂ε
: ∆ε dV +

∫
Ω

δε :
∂σ

∂E
: ∆E dV −

∫
Ω

δE · ∂D
∂ε

: ∆ε dV −
∫

Ω
δE · ∂2D

∂E∂ · ∆E
dV (35)

To perform finite-element analysis, the primary variables u, ϕ and their variations
δu, δϕ are approximated by linear shape functions (note that hereafter, the matrix form
is adapted)

u = Nuũ, δu = Nuδũ, (36a)

ϕ = Nϕϕ̃, δϕ = Nϕδϕ̃, (36b)

so that, from the kinematics relation, the strain and electric field can be discretized as follows

ε = Buũ, δε = Buδũ, (37a)

E = Bϕϕ̃, δE = Bϕδϕ̃, (37b)

where the shape functions matrices Nu, Nϕ and differential shape functions matrices Bu,
Bϕ can be found in the Appendix B for more details.

Using the approximations and employing the arbitrariness of the test functions,
the residual vector G(u,ϕ) =

[
Gu, Gϕ

]T can be obtained as

Gu := Gu,int −Gu,ext =
∫

Ω
Bu,Tσ

(
u, ϕ

)
dV −

∫
∂Ω

Nu,T t̄ dA = 0, (38a)

Gϕ := Gϕ,int −Gϕ,ext = −
∫

Ω
Bϕ,TD

(
u, ϕ

)
dV +

∫
∂Ω

Nϕ,Tω̄ dA = 0, (38b)
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where the T superscript indicates the transpose matrix. The nonlinear equation is solved
by the Newton–Raphson approach, in which the incremental nodal degrees of freedom can
be obtained from ï

Kuu Kuϕ

Kϕu Kϕϕ

òï
∆ũ
∆ϕ̃

ò
=

ï
Gu,ext

Gϕ,ext

ò
−
[

Gu,int
Ä

ũl
n+1,ϕ̃l

n+1

ä
Gϕ,int

Ä
ũl

n+1,ϕ̃l
n+1

ä], (39)

where l is the (global) Newton–Raphson iteration and, in view of Equation (35), the tangent
stiffness matrices are given as

Kuu =
∫

Ω
Bu,TC̃Bu dV , (40a)

Kuϕ = −
∫

Ω
Bu,T ẽσBϕ dV , (40b)

Kϕu = −
∫

Ω
Bϕ,T ẽDBu dV , (40c)

Kϕϕ = −
∫

Ω
Bϕ,Tκ̃Bϕ dV , (40d)

where C̃, ẽσ, ẽD and κ̃ are the tangent elastic, piezoelectric and dielectric moduli, as
defined in Equation (25). Details of matrix forms and necessary partial derivative terms
can be found in the Appendix B. The overall finite element implementation is summarized
in Algorithm 2.

Algorithm 2: Finite element framework of ferroelectricty.

foreach time step n do
repeat

foreach Element do
foreach Gauss point do

Compute kinematic variables ε, E;
Extract Ei

n;
Perform return mapping procedure from Algorithm 1;
Compute elemental tangent moduli from Equation (27);
Compute elemental internal force vectors from Equation (38);
Compute elemental tangent stiffness matrices from Equation (40)

Assembly global internal force and tangent matrices;

Solve to find incremental nodal degrees of freedom Equation (39);
Check convergence;

until Convergence;

4. Numerical Examples

In order to illustrate and validate the ferroelectric responses predicted by our model,
various numerical examples will be performed and compared with other numerical and
experimental results. We will first demonstrate the hysteresis and mechanical depolar-
ization behaviors in a 1D setting under stress-free or electric-field-free assumption. We
will further demonstrate and compare both hysteresis and mechanical depolarization with
an experimental measurement of a 3D ferroelectric cube. Finally, the feasibility of our
proposed model will be validated to the model the micro-ferroelectric actuator.

4.1. Analytical Solutions

Before performing finite-element analysis, let us examine the nonlinear response of
ferroelectricity from a simple 1D setting, which might be useful to calibrate hardening
parameters. To illustrate the hysteresis behavior, a set of material parameters of a typical
ferroelectric ceramic are chosen and shown in Table 1. Note that the coercive field can
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be found from Ec = Pc/κ or, inversely, the saturation polarization can be derived from
Ps = Esκ. Similar to [55], the back-electric displacement DB is chosen as

DB =
∂ψ̄

∂Ei = kEi + aatanh

Ç
Ei

bEs

å
, (41)

with material parameters k, a, b given in Table 1, so that ‹D takes the form‹D =
εs

(Es)2 σ̂Ei − E
Es e(ε− εi)− κ(E− Ei)− kEi − aatanh

Ç
Ei

bEs

å
(42)

Table 1. Material parameters of PZT ceramic [52].

C (N/m2) e (C/m2) κ (C2/(Nm2)) Pc (C/m2) Es (V/m) k (C2/(Nm2)) b a (C2/(Nm2)) σc (N/m2)

80× 109 25.5802 15× 10−9 1.5× 10−2 2× 107 14.985× 10−9 1.001 0.053 50× 106

By assuming a stress-free state, one can obtain the reversible strain from the
constitutive relation

εr = ε− εi =
−Ei

Es
e
C

E (43)

Consequently, the hysteresis loops can be described by solving for Ei from the com-
bination of Equation (42) and the consistency equation Equation (15), i.e., ‹D = ±Pc, as a
function of applied electric field E, whose profile is shown in Figure 2a, with Emax = 2Ec

e2

C(Es)2 E2Ei − κ(E− Ei)− kEi − aatanh

Ç
Ei

bEs

å
= ±Pc (44)

The solution was obtained numerically using function fzero in Matlab©. The evolution
of Ei, accompanied by the yield function along the applied electric field, is shown in
Figure 2a. Initially, at the state 1©, the material is unpoled, meaning that there is zero
net spontaneous polarization and zero remanent electric field (or remanent polarization).
The value of the yield function at the initial state is −1. As the external electric field
increases from 1© to 2©, the yield function increases from −1 to 0 and the material still
behaves linearly. Note that piezoelectric coupling does not exist in this range, as the internal
variables do not develop. When the electric field reaches the coercive value at state 2©, a
switching process starts to take place, in which the yield function reaches 0 value and the
irreversible electric field starts to nonlinearly develop from 0 to −Es from 2© to 3©. When
the electric field decreases from its maximum value at 3© to zero at 4©, the yield function
becomes negative and the material shows a linear piezoelectric effect as the irreversible
electric field is ‘locked’ at −Es, meaning that the material undergoes upward-aligned
polarization. As the electric field further decreases in the opposite direction from state
4©, the yield function reaches zero, signifying that a switching phenomenon takes place.

Between states 4© and 5©, the irreversible electric field Ei evolves nonlinearly and changes
its orientation from −Es to zero at the coercive threshold ( 5© is the opposite of 2©). When
the electric field decreases to the minimum value at state 6©, the yield function remains
at 0 and the irreversible electric field continues to nonlinearly increase until it reaches the
value Es, where the polarization is completely switched to the opposite direction. This
downward-aligned polarization remains unchanged when the electric field increases again,
from the minimum at 6© to zero at 7©, and the material will again behave as a linear
piezoelectric material but with the opposite poling direction from that of states 3©– 4©.
Apparently, to switch the poling direction, an electric field must be applied in the opposite
direction, as can be seen again at states 2©– 3©.
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Figure 2. (a) Evolution of yield function φ and internal variable Ei in stress-free conditions, which are
electric field-driven with the profile shown as a blue curve. The black arrow schematically represents
the orientation of the polarization of microscopic unit-cells, which attribute to the overall polarized
states 1©, 2©, etc. (b,c) Polarization hysteresis and strain butterfly loops were obtained from the
solution of Equation (44).

In the current setting, all other variables can be described upon the obtained irre-
versible electric field Ei, including the hysteresis loops of polarization in Figure 2b and
mechanical strain in Figure 2c. Specifically, the one-to-one relation (7) is used to calculate
the irreversible strain εi, which is subsequently utilized in Equation (43) to compute re-
versible and total strains, εr and ε, respectively. Meanwhile, the irreversible polarization Pi

and electric displacement D can be computed from Equations (6) and (11b), which, in a 1D
setting, can be written as

Pi = −κEi, (45a)

D = − β

Es e
Ä

ε− εi
ä
+ κ(E− Ei) (45b)

Next, we demonstrate the mechanical depolarization characteristics. In this case,
the initial state of the ferroelectric material is assumed to be the poled state, corresponding
to 4© in Figure 2a. In the poled state, a compressive (negative) stress, whose profile in
shown in Figure 3a with σmax = 5σc, where σc is the coercive stress, is applied, and the
remanent electric field is determined from the following nonlinear consistency equation

εs

(Es)2 σ̂Ei + κEi − kEi − aatanh

Ç
Ei

bEs

å
= ±Pc. (46)
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Figure 3. (a) Evolution of yield function φ and internal variable Ei in a zero-electric field, with
compressive stress with profile shown as a blue curve. (b,c) The mechanical depolarization of electric
displacement and mechanical strain obtained from the solution of Equation (46).

Similarly, a built-in fzero Matlab function was used to solve Ei under the applied σ.
The change in Ei, together with the change in the yield function, are shown in Figure 3a.
When the compressive stress σ is applied, the switching process takes place as the yield
function remain at zero, i.e., φ = 0, and in the manner that the negative irreversible electric
field Ei is increased, corresponding to the reduction in positive electric polarization. In the
beginning, where the compressive stress is still small, Ei only changes slightly, as it is in
the ‘locked’ state. Afterwards, it changes rapidly to a fixed value as the magnitude of
compressive stress reaches 5σc. Upon the decrease in compressive stress, the yield function
becomes negative φ < 0 and material should behave linearly with a remanent electric field
of 28% as its maximum value. The non-zero remanent electric field that occurs as the stress
returns to zero is a deficiency of the proposed model, as explained by Equation (46). This
drawback is similar to what has been observed in [32], where only the positive remanent
strain can be aligned with the remanent polarization. As a result, the proposed model is
limited to describing the mechanical depolarization induced by large compressive stress,
as will be shown in the following examples.

Nevertheless, from the evolution result of Ei, we can determine the electric displace-
ment and total strain as follows

ε = (ε− εi) + εi =
σ

C
+ β
Ä

Ei
ä2

, (47a)

D = − β

Es e
σ

C
+ κ(E− Ei), (47b)

where the reversible strain at the zero-electric field is obtained from the constitutive law (11a)
for 1D settings as (ε − εi) =

σ

C
. The results characterizing mechanical depolarization are

shown in Figure 3b,c. We note that the remaining 28% irreversible electric field corresponds
to the remaining 0.08357 C/m2 electric displacement and 0.0155 mechanical strain.
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4.2. Ferroelectric Cube

In this section, we illustrate and compare our simplified model with the fully coupled
model from [52] and experimental measurement. The schematic of the example is shown
in Figure 4, where the bottom surface of the cube with size L = 10 mm is mechanically
constrained and electrically grounded; meanwhile, the top surface is subjected to electric
potential or compression force. The cube is assumed to be made from lead lanthanum zir-
conate titanate (PLZT), whose material parameters are adapted from [52] as an 3D extension
of the 1D experimental setup [5] and shown in Table 2. In addition, the hardening function
is also extended from 1D (Equation (41)) to 3D, such that the back-electric displacement is
given as

DB =
∂ψ̄

∂Ei =

Å
kβ + aatanh

Å
β

bEs

ãã
eP, (48)

where β is given in Equation (8) and eP =
[
0, 0, 1

]T . The hardening function in Equation (48)
will be used for the rest of the paper.

Figure 4. Schematic of a PLZT cube under mechanical constraint in the bottom and applied voltage
difference between the bottom and top electrodes.

Table 2. Material properties of PLZT for the problem depicted in Figure 4. Note that the coefficients
are given in terms of Voigt notation for transversely isotropic material.

Elastic moduli 109 (N/m2) Piezoelectric constants (C/m2)
C11 C12 C13 C33 C44 e13 e33 e15
109 59 59 109 109 −14.96 50.116 38.148

Dielectric permittivity Ferroelectric parameters
(10−9 C/Vm)
κ11 κ33 Ps (C/m2) Ec (C/m2) εs k (C/Vm) b a (C/Vm)
1.125 1.125 0.25 3.6× 105 0.00144 1.1249× 10−9 1.0001 1.0097× 10−4

Similar to the previous 1D ferroelectric bar example, hysteresis behaviors and me-
chanical depolarization are demonstrated. In the first loading case, an electric field that
has similar profile to Figure 2a but with maximum value of 8× 105 V/m is applied, which
is equivalent to a electrical potential of 8 V, as prescribed on the top electrode. The ap-
plied electric field results in hysteresis behaviors of polarization and mechanical strain,
as depicted in Figure 5a,b, showing the excellent agreement between the results from our
simplified model and both the fully coupled model and experimental measurement.

To study the mechanical depolarization in our model, the initial state is assumed
to be the poled state of the first loading case, i.e., initial Ei

3 = −Es. With respect to
this initial state, the total electric displacement and strain are equal to their respective
saturation values. Upon this state, a compression force whose magnitude increases from
0 to 2125 N, then decreases back to 0, is applied, which is similar to the compressive
stress profile in Figure 3a. The largest compressive force value induces a compressive
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stress that is double the coercive stress. Under this compressive stress state, the sample
is depolarized, in which electric displacement and total strain decrease with the increase
in compressive force before approaching nearly zero values under the unloading process.
Depolarization behaviors are illustrated in Figure 5c,d and are, again, compared with the
fully coupled model [52] and experimental measurements [5]. While the proposed method
can yield acceptable depolarization results for small compressive stresses, its deficiency,
as explained in the previous section, emerges at large compressive stresses, such that larger
remanent polarization and strain are predicted as compared to the experiment and fully
coupled model.
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Figure 5. Comparison of ferroelectric and mechanical depolarization response of the problem
described in Figure 4, with results from the fully coupled model from Klinkel [52] and experimental
measurement from Hwang et al. [5]. (a,b) Hysteresis behavior; (c,d) mechanical depolarization
behavior of fully poled material under compressive stress σ33 of electric displacement and strain
components, D3 and ε33.

4.3. Ferroelectric Actuator

In this example, we demonstrate the feasibility of using our proposed model in the
simulation of a micro-actuator that consists of a sputtering PZT layer of 2 µm thickness on
top of a silicon substrate of thickness 725 µm that is loaded into a clamping device, as shown
in Figure 6. The test structure is essentially a cantilever beam of length of length and width
21 mm× 5 mm. The PZT layer is sandwiched between two 100 nm Platinum (Pt) electrodes,
deposited by the physical vapor deposition (PVD) technique. Since the electrode thickness
is much smaller than the PZT layer and the substrate, their mechanical contribution can
be ignored in the simulation. While the bottom Pt electrode covers the bottom PZT layer,
the top Pt electrode only partially covers the area 14 mm× 4 mm of the top surface of the
PZT layer. The actuator is driven by an AC electric field through the thickness direction
of the PZT layer by grounding the bottom electrode and applying alternating voltages
(at 10 Hz) to the top electrode, which is much lower than the resonance frequency of our
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device (about 1.6 kHz); hence, this is appropriate for the quasi-static regime of our model.
By measuring the induced out-of-plane displacement from applied voltage using Laser
Doppler Vibrometer (Polytec LDV), the performance of the micro-actuator can be assessed.

Figure 6. Modeling of ferroelectric micro-actuator. (a) Clamped micro-actuator sample. (b) Schematic
of the micro-actuator. (c) Mesh and stack configuration of the micro-actuator.

We modelled the micro-actuator with the hexagonal element mesh of the micro-
actuator, as shown in Figure 6c. The left surface of the beam is fixed, whereas the elec-
tric potential of bottom nodes of PZT layer are set to be zero while the top nodes with
x < 14 mm are prescribed with non-zero voltage to represent the partial top electrode cover-
age. As the driving frequency is low, the model is assumed to be quasi-static. In our model,
the material properties of the stack are given in Table 3, where only the active PZT layer
has a nonlinear ferroelectric response and the other layers are assumed to be linearly elastic
with 2 Lamé parameters. Note that the ferroelectric parameters of PZT layer are chosen to
match with measured hysteresis loops. Under the applied voltage of 40 V across the PZT
layer thickness or equivalently electric field E3 = 20× 106 V/m, we obtain the polarization
hysteresis and displacement butterfly loops from the experiment and numerical model
shown in Figure 7. The numerical model can make good predictions compared to the
measured data. However, while the mathematical description yields a symmetric hysteresis
loop with respect to both electric field and polarization axes, i.e., the positive and negative
remanent polarization has the same magnitude. The symmetric hysteresis profiles are also
often observed in an experimental setting for ’bulk’ piezoelectric ceramic. However, this is
not always the case for a realistic thin piezoelectric film, where the asymmetric hysteresis
profile could be caused by different underlying physical effects, such as the existence of a
dead layer or trapped charges (interested readers can find the description of a deformed
hysteresis loop in ferroelectric material in [56,57]). Such charge imperfections are likely to
give rise to an additional built-in electric field, which is different to the internal irreversible
electric field or the applied external electric field in the scope of our work. It should also be
noted that the phase-field approach would be more suitable to describe these microscopic
events [58,59]; however, it is also possible to include, for instance, a space charge carrier in
the phenomenological model [60].
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Figure 7. Comparison of the ferroelectric response of the micro-actuator depicted in Figure 6 between
simulation and measurement. (a) Polarization hysteresis loop. (b) Butterfly loop of displacement at
the tip of the top electrode.

Table 3. Material properties of the multilayer micro-actuator depicted in Figure 6.

PZT Layer
Elastic moduli (109 N/m2) Piezoelectric constants (C/m2)
C11 C12 C13 C33 C44 e31 e33 e15
127.2 80.2 84.7 117.4 23 −16.0 11.7 17
Dielectric permittivity Ferroelectric parameters
(10−9 C/Vm)
κ11 κ22 Ps (C/m2) Ec (C/m2) εs k (10−9C/Vm) b a (C/Vm)
15.1 6.2 0.36 4.8× 106 0 6.2 1/tan(0.3π) 1.1 Pc

Silicon < 110 > direction

Elastic moduli (109 N/m2)
C11 C12 C13 C33 C44 C66
194.5 35.7 64.1 165.7 79.6 50.9

5. Conclusions

In this paper, we presented a theoretical framework and numerical implementation of
a simplified phenomenological macroscopic model of a ferroelectric actuator. The key in-
gredient of the proposed model is based on the alignment of the strain with the orientation
of the polarization such that a simple one-to-one correspondence between the irreversible
strain and irreversible electric field is assumed, which facilitates not only both theoretical
derivation of internal variable evolution and consistent tangent moduli for the implemen-
tation aspect but also the number of fitting parameters. We have demonstrated several
numerical examples, including analytical expression in some cases, and one-dimensional
and three-dimensional problems, to evaluate and validate our proposed model with the
fully coupled model and experimental measurement. While our model is in good agree-
ment with the results for bulk piezoelectric material response as compared the previously
reported results, it suffers similar difficulties in capturing the mechanical depolarization at
large compressive stress. Additionally, the proposed model does not resolve ferroelastic
behavior under the assumption that mechanical stress only induces reversible polarization,
rather than dipole-switching. Therefore, the current model is suitable for hard piezoelectric
materials or soft compounds under moderate stress levels. Furthermore, as the main goal of
the paper is to demonstrate the feasibility of modeling a micro-actuator, the current model
can only produce symmetric hysteresis loops. However, the measured hysteresis loops can
be asymmetric due to the different underlying physical effects, such as the existence of
trapped charge or free-charge migration in asymmetric stack configurations. Thus, in future
research, we plan to extend our current work to incorporate such effects to devise a more
suitable numerical tool for the development of thin-film ferroelectric actuators.
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Appendix A. Partial Derivatives

With the simplified one-to-one relation (7), implementation of the proposed model
depends on the partial derivatives of the relevant variables w.r.t Ei. In this section, we will
present the partial derivatives that appeared in the return mapping step and the calculation
of tangent moduli. By using the chain rule in Equation (19), derivatives of Ẽ with respect to
Ei can be obtained as

∂Ẽ
∂Ei =

2
(Pc)2

Ç
∂‹D
∂Ei · e

P
å

eP, (A1)

which in turn requires the partial derivative of‹D. Moreover, as can be seen from Equation (27),
the computation of partial derivatives w.r.t ε and E are also necessary. Note that with the
summation in Equation (14), its partial derivatives can be written as

∂‹D
∂ε

=
∂D
∂ε

, (A2a)

∂‹D
∂E

=
∂D
∂E

, (A2b)

∂‹D
∂Ei =

∂D
∂Ei +

∂D̄
∂Ei , (A2c)

in which D can be written explicitly in vector form as follows

D =

4σ̂11Ei
1 + 6σ̂12Ei

2 + 6σ̂13Ei
3 − 2σ̂22Ei

1 − 2σ̂33Ei
1

4σ̂22Ei
2 + 6σ̂21Ei

1 + 6σ̂23Ei
3 − 2σ̂11Ei

2 − 2σ̂33Ei
2

4σ̂33Ei
1 + 6σ̂31Ei

1 + 6σ̂32Ei
2 − 2σ̂11Ei

3 − 2σ̂22Ei
3

 (A3)

We evaluate the partial derivatives of ‹D symbolically with Mathematica© and then
pass the results to the matrix forms in our in-house C++ code. We perform the same

calculation for
∂σ

∂Ei ,
∂D
∂Ei .

Appendix B. Matrix Forms

In this section, we will provide the matrix-form of all the relevant quantities for the
finite element implementation. Firstly, the material tensors that relate stress and electric
displacement to strain and electric field for transversely isotropic material are given in
Voigt notation as follows



Micromachines 2023, 14, 1355 20 of 22

C =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

, (A4a)

e =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e13 e13 e33 0 0 0

 (A4b)

κ =

κ11 0 0
0 κ11 0
0 0 κ33

 (A4c)

In this work, we utilize linear shape functions of hexahedral element to approximate
both displacement and electric potential. The approximation matrices Nu and Nϕ can be
written as

Nu =
[
N1 N2 · · · N8], (A5a)

Nϕ =
[
N1 N2 · · · N8

]
, (A5b)

with Ni =

Ni 0 0
0 Ni 0
0 0 Ni

, where Ni are the linear shape functions.

By using the kinematic relations Equations (3) and (4), the differential matrices Bu and
Bϕ are given as

Bu =
[
Bu,1 Bu,2 · · · Bu,8], (A6a)

Bϕ =
[
Bϕ,1 Bϕ,2 · · · Bϕ,8], (A6b)

with

Bu,i =



Ni,x 0 0
0 Ni,y 0
0 0 Ni,z
0 Ni,z Ni,y

Ni,z 0 Ni,x
Ni,y Ni,x 0

, Bϕ,i =

−Ni,x 0 0
0 −Ni,y 0
0 0 −Ni,z

, (A7)

where Ni,x, Ni,y, Ni,z are the spatial derivative of the shape functions with respect to x, y, z
directions, respectively.
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