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Site-Specific Traffic Load Assessment  
Recommendations 
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Traffic loading on bridges varies considerably between regions and between sites 

within regions. It has been found that the mean characteristic load effect from three 

sites in Slovenia are about 20% less that the corresponding values from three sites in 

the Netherlands. This difference is due to the numbers and weights of trucks at the 

sites. The variation in particular sites can be far greater. 

 

Traffic load can be assessed at a site in one of two ways: 

• Monte Carlo simulation 

• Calibrated notional load model 

 

In the Monte Carlo simulation approach, the procedure is quite elaborate. Truck 

weight data is collected at the site for an extended period (many weeks) representing 

seasonal fluctuations and periods when heavy loading might be expected. Statistical 

distributions are fitted to the histograms of weight data. It is common to use Bi-modal 

or Tri-modal Gaussian distributions for this but it has been shown that this is not al-

ways accurate. It is better to simulate directly from the histogram for trucks of up to 

about 40 tonnes and to fit a Gaussian distribution to the tail above this level.  

 

Monte Carlo simulation is used to "sample" the fitted weight distribution to generate 

trucks with "typical" weights. In this way, truck crossing and meeting events are si-

mulated on the bridge. It is of course possible to directly simulate the crossing of the 

recorded data. While this clearly has advantages, it is generally limited by the size of 

the database available. With simulation, it is possible to  

 

Abstract 

Traffic load is identified as one of the greatest sources of uncertainty in the assess-

ment of bridges. In recent years, simulation techniques, using measured traffic data, 

have been used to predict the characteristic traffic load effects on bridges. However, 

the techniques are complex, sensitive to the assumptions adopted and require special-

ist statistical expertise. This work presents a simplified site-specific traffic load model 

that generates comparable load effects to the corresponding results from a full simula-

tion. While the simplified model is still sensitive to the underlying assumptions, these 

can be carefully reviewed prior to the method being approved. Further, the simplified 

method can be employed by practicing engineers for bridge assessment. 
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1 INTRODUCTION 

The traffic load models given in codes of practice are intentionally made conservative 

in order to be valid for a wide range of bridge types and loading conditions and be-

cause the marginal cost of providing additional capacity is low. Load models for 

bridge assessment tend to be less conservative. However, in most countries the same 

bridge assessment principles are applied equally to bridges carrying dense traffic with 

heavily loaded trucks and those carrying sparse traffic with lighter trucks. In some 

cases bridges are judged to be structurally deficient according to these conservative 

load models. An approach which considers the traffic weight and volume statistics for 

a specific bridge site provides a more accurate representation of the actual loading 

conditions on the bridge considered and can save the costs associated with unneces-

sary bridge rehabilitation and replacement.  

Weigh-In-Motion (WIM) systems are widely available today to provide unbiased ve-

hicle data such as axle weight, axle spacing, gross vehicle weight, number of axles 

and velocity without interrupting the traffic flow. In recent years, increasingly sophis-

ticated probabilistic analyses have been performed using WIM data resulting in a 

more accurate knowledge of the actual traffic loading on bridges. Considerable atten-

tion has been given to the process of extrapolating the maximum traffic load effects, 

simulated using WIM data, which is valid provided that there is no change in the un-

derlying traffic weight or density profile. In the context of bridge assessment, ongoing 
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monitoring of WIM data can provide reassurance that no such change has occurred. 

The prediction of these maximum load effects can be performed utilizing a wide 

range of simulation and extrapolation techniques.  

Many authors (Gazis 1974, Haight 1963, Tung 1969, Larrabee 1978, Desrosiers & 

Grillo 1973, Goble et al. 1976, Harman & Davenport 1979) have considered the issue 

of truck arrivals on a bridge and the probability of multiple-truck presences. Eymard 

& Jacob (1989) describe software to simulate arrivals and calculate load effects. No-

wak and Hong (1991), Nowak (1993a) and Ghosn and Moses (1985) have considered 

two-truck meeting events in short- to medium-span bridges. Methods for the predic-

tion of characteristic traffic load effects using WIM data have been reported by Larra-

bee & Cornell (1979), Harman & Davenport (1979), Jacob (1991), O’Connor et al. 

(1997), O’Connor et al. (1998), Cremona (2001), O’Connor et al. (2001), and Geta-

chew (2003). Kim et al. (1997) have highlighted the site dependence of characteristic 

traffic load effects, even within a geographical region. This is counter to the principle 

that is applied in many regions today where the same bridge assessment rules are used 

for bridges carrying dense traffic with heavily loaded trucks and those carrying sparse 

traffic with lighter trucks. Many authors (e.g., Nowak (1993), Agarwal & Cheung 

(1986), Cooper (1997)) have proposed adjustments to notional code models as a sim-

plified method of allowing for site-specific variations. In particular, Moses (2001) 

proposes an adjustment of the HS20 model for bridge evaluation in the United States 

and a factored HL93 model is specified in the AASHTO (2003) specification. 

In this work, the site traffic dependence of extrapolated load effects is investigated. A 

simplified model is developed which aims to reproduce similar critical loading events 

from knowledge of the site-specific traffic characteristics without having to perform a 

full Monte Carlo simulation. It should be emphasized that the simplified model is site-

specific, that is, the parameters for the model are directly related to traffic data specif-

ic to the site considered. The objective was that the simplified model would be accu-

rate, robust and easily applied by practicing engineers. Full Monte Carlo simulations 

require specialist knowledge of Statistics and are sensitive to the assumptions 
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adopted. The simplified method on the other hand is calibrated against Monte Carlo 

simulations for which the assumptions have been carefully reviewed. 

The investigation has been limited to the case of mid-span moment and end shear in 

simply supported bridges with spans ranging from 15 to 35 meters. The bridges are 

assumed to have two traffic lanes, one in each direction. The new method is validated 

using WIM data from four different sites. From these, load effects corresponding to 

different return periods are calculated. The results of the Monte Carlo simulation are 

then compared to the results obtained from the simplified model. 

The recorded data used in this work gives the static weights of vehicles. The dynamic 

contribution of the vehicle load is filtered by the WIM calibration procedure. There-

fore, no allowance for the dynamic effect or the impact factors is made in the present 

work. 

2 WIM DATA 

The WIM data sets used in the present work were recorded at four different sites. The 

first three data sets were recorded on three different highways in the Netherlands 

while the fourth was recorded on a highway in France. The sites are referred to here 

as Site 1, Site 2, Site 3 and Site 4, respectively. In all cases, the highways are dual car-

riageway with three to four traffic lanes in each direction. The data was collected on 

the outermost (slower) lanes in each direction. Data from the slow lanes of multi-lane 

carriageways will have a significantly greater proportion of trucks than the same traf-

fic on a 2-lane road. It is therefore conservative to use such data for simulations of 

bridges with only two opposing lanes of traffic. However, where possible, more ap-

propriate WIM data should be used for simulations of 2-lane bridges. Only vehicles 

weighing at least 3.5 tonnes (i.e., only trucks) were registered. The measurement loca-

tions and periods are given in Table 1. The data were recorded continuously for dif-

ferent periods as can be seen in the table. 
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Figure 1 illustrates the distributions of trucks by number of axles in each site and di-

rection. While the dominant recorded truck type, in all cases, has six or less axles, 

there are a small but important number of trucks having more than that. The vast ma-

jority of the five-axle trucks from all sites are articulated trucks. Most of the vehicles 

recorded with more than five axles seem to be trucks with a tractor unit pulling a trai-

ler. Figure 2 provides a comparison of the Gross Vehicle Weight (GVW) distributions 

determined using the WIM data measured at the different sites. Clearly, the histo-

grams have two main peaks representing two different truck populations. It is general-

ly assumed that the first part of such histograms represents small trucks and unloaded 

large trucks while the second part represents fully loaded large trucks. As can be seen 

in the figure the measured GVW histograms for Site 1–Site 3 (from the Netherlands in 

2003) have heavier right tails than that for Site 4 (from France in 1996). 

2.1 SIMULATIONS 

Generally, the Monte Carlo simulation technique is utilized in order to determine the 

characteristic values of different traffic load effects such as bending moment and 

shear force using weigh-in-motion data. Histograms for traffic characteristics such as 

gross vehicle weight (GVW) are usually fitted with appropriate probability density 

functions which are then used for the simulations. The motivation for using the fitted 

distributions for the simulations is to reproduce the general trend in the data, taking 

into account other possible vehicle data, which are not obtained from the traffic 

records in the period of data collection. There are usually very few data points in the 

right hand tails of the GVW histograms. Parametric probability density functions 

which are obtained by fitting to the entire histograms of GVW, can give a poor de-

scription of the histogram tails. The right-hand tail of the histogram is particularly im-

portant as it represents the heaviest vehicles and describes their probabilities of occur-

rence. Getachew and O’Brien (2005) have shown that the calculated characteristic 

load effects are very sensitive to the model used to represent the tail for the GVW dis-

tributions. They propose a ‘semi-parametric’ model to fit the distribution of the GVW. 

This model effectively generalizes the trend in the tail region of the GVW distribution 

while reverting to a direct use of the histogram when there is sufficient data for a clear 

trend to be evident. As the simulated data sets are based on a fit to the data in the tail 
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region, they are more representative of the trend underlying the recorded data sets 

than applying the measured data directly. The semi-parametric distribution is used to 

represent the GVW histograms for the simulations in the present work.  

 

Earlier studies have shown that, for short and medium span bridges, free-flowing traf-

fic with two trucks present simultaneously on the bridge, gives the critical loading 

events, see, e.g., Nowak (1993). Ongoing research at University Collage Dublin (OB-

rien and Caprani, 2005) is investigating the effect of the presence of more than two 

trucks on the bridge simultaneously on the traditional design load effect extrapolation 

techniques. However, for this study, two trucks meeting on the bridge is assumed to 

represent the critical loading scenarios. Of course, the case where two heavily loaded 

trucks are driving beside each other on adjacent lanes of the bridge can be critical, es-

pecially for end shear. However, the probability of a very heavily loaded truck over-

taking another very heavily loaded truck, in a lane of opposing traffic, is believed to 

be very low. 

In order to determine the number of truck meeting events, artificial traffic streams, 

which represent four weeks of traffic flow, are first simulated. The meeting events are 

defined as events involving the presence of at least one axle of a truck in each direc-

tion on the bridge simultaneously. The number of truck meeting events for each site 

and bridge length is found from the arrival and departure times in the 4-week simula-

tion. Inter-truck distances are sampled directly from the measured histogram. Once 

the number of meeting events per day is known, meeting events are simulated that 

number of times.  

The mid-span moment and end shear for simply supported bridges of different 

lengths, are calculated by using the influence line to determine the effects of each axle 

of each truck and superposing to find the total effect. For each meeting event, the rela-

tive location of the two trucks on the bridge is found by generating a number from a 

Uniform distribution within the possible range. This is based on the principle that, 
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given that two trucks are known to be involved, then all possible relative locations are 

equally probable. Starting with the first truck to arrive, each truck is moved in incre-

ments of 0.1 m across the bridge. The load effects due to the two trucks are combined 

and the maximum load effects are noted. 

3 LOAD EFFECT EXTRAPOLATION 

As mentioned previously, the investigated load effects in this work are the mid-span 

moment and the end shear in simply supported bridges. Using the simulated data sets 

and the information on the number of truck meeting events for each site, the maxi-

mum-per-day load effects are calculated for bridge spans of 15, 20, 25, 30 and 35 me-

ters. The calculated maximum-per-day load effect data sets are fitted to a Generalized 

Extreme Value (GEV) distribution: see Castillo (1988); Coles (2001). As an example, 

Figure 3 illustrates the density functions of the GEV model fitted to the calculated 

load effects for a bridge span of 20 meters and for Site 2. As can be seen in the figure, 

the histograms of the load effects are well described by the GEV model. Good agree-

ments are also observed between the histograms of the load effects and the GEV 

models for the other studied bridge spans and sites.  

Quantile-quantile plotting (see, for example, Embrechts et al. 1997), a process where-

by data is plotted by rank against the rank corresponding to a trial statistical distribu-

tion, is a useful means of testing data for compliance with an assumed distribution. An 

investigation performed using these plots, has also confirmed that the GEV model de-

scribes the distribution for the daily maximum load effects reasonably well for all 

sites and for all studied bridge spans. The characteristic extreme load effect values for 

different return periods are calculated using the GEV model for each of the four sites 

and for each of the bridge spans considered. As an example, these values calculated 

for different return periods and for a bridge span of 20 meters, are illustrated in Figure 

4. As seen from the figure, the extrapolated values for both load effects, are in des-

cending order from Site 3 to Site 2, Site 1 and Site 4. 
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The parameters describing the GEV distribution can, according to Leadbetter et al. 

(1997) be shown to be dependent and Normally distributed. This and the covariance 

matrix (describing the dependency of the parameters) obtained from the parameter 

estimations of the fitted GEV model, allows the calculation of confidence intervals for 

the extrapolated characteristic load effects. Hence, the 5% and 95% confidence limits 

are calculated for all extrapolated characteristic load effects. These values are shown 

in a later section of this paper. 

The characteristics of the trucks that are involved in the critical loading cases which 

give the daily maximum load effects are investigated. Five-axle trucks were found to 

dominate these loading scenarios. An investigation of the WIM data reveals that most 

vehicles with more than five axles are trucks with a tractor unit pulling a trailer while, 

as mentioned previously, the five-axle trucks are mostly articulated lorries. The result 

is that, generally, the weight per unit length is greater for trucks with five axles than 

for those with more than five axles. Thus, the dominance of five-axle trucks in the 

present study is not so surprising considering the lengths and the weights as well as 

the proportion of this truck type. Table 2 shows the extrapolated 1000 year load ef-

fects determined when the entire measured data and only data for five-axle trucks are 

used as an input for the simulations, for Site 1 and Site 4. The very low relative dif-

ferences indicate that there is little loss of accuracy in most cases when only five-axle 

trucks are considered. The differences for Site 1 are generally somewhat higher than 

for Site 4. This appears to be because the five-axle trucks at Site 1 are not as dominant 

as at Site 4, as can be seen in Figure 1. For Site 4, it is observed that in some cases the 

extrapolated shear values from the simulations done when only five-axle trucks are 

considered are greater than the corresponding values obtained from the simulation 

performed when all trucks are considered. These cases can only be explained as a 

consequence of the fitted GEV models which considered the entire data set (i.e. the 

daily maximum shears). 
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4 SIMPLIFIED MODEL 

Applying the simulation technique described in the previous section requires not only 

a good knowledge of Extreme Value theory but is also time consuming and complex. 

A simplified model is described here that generates traffic load effects that can be 

used for bridge assessment without having to perform full simulations. As discussed 

in the previous section, the analysis of the daily maximum load effects obtained from 

the simulations reveals that five-axle trucks, because of their lengths and weights, are 

dominant in the critical loading scenarios. The simplified model is therefore formu-

lated with pairs of heavy five-axle trucks placed at critical locations on the bridge. 

The load effects induced by these trucks are assumed to give a good estimate of the 

characteristic load effect values obtained from a full simulation. The simplified model 

is site-specific, i.e., the parameters for the model are directly related to Gross Vehicle 

Weight data measured at or near the site considered. The model is also expected to be 

accurate, robust and easily applied by practicing engineers. The idea is similar to that 

of Turkstra’s Rule (Nowak 1993), which is based on predicting the weights of trucks 

for different return periods and locating them at critical locations on the bridge. Ac-

cording to Turkstra’s Rule, the resulting load effects correspond to the characteristic 

values obtained from a full simulation. 

Figure 5 shows the characteristic truck GVWs as a function of return period for both 

traffic directions and all sites. The 1000 year truck is that which is likely to occur only 

once in 1000 years. According to Turkstra’s Rule, the 1000 year loading event can be 

assumed to involve the 1000 year truck meeting a more common truck — the one 

month or one week truck. While this is simplistic, it has the advantage of ease of ap-

plication. It also implicitly allows for variations in volume between sites as a site with 

higher volume will tend to have a heavier 1000-year truck. With Turkstra’s Rule and 

other simplified approaches, the trucks are assumed to meet at the critical point of the 

influence line. This is just one example of an extreme loading event. The population 

of extreme loading events will consist of very heavy trucks meeting near to but gener-

ally not exactly at this critical point. Hence a model in which one of the trucks is not 

exactly at the critical point is intuitive. 
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In this study, many simplified models were considered. Many models, including 

Turkstra's Rule, gave inconsistent results for different sites, spans and load effects. 

While Turkstra's Rule is accurate in particular cases, it gave significant inaccuracies 

in others. The simplified model developed here was found to be the most effective 

and consistent. In this model, the second truck is assumed to be in a different location 

to the first, not quite at the most critical point.  

The situation is different for the two load effects. For bending moment, the 3rd axle of 

the 1000 year truck is placed at the center while the 3rd axle of the 1 week truck is 

placed αML from the end as illustrated in Figure 6. For shear, the most critical location 

for the 1000 year truck is when the 5th axle has just entered the bridge. At this mo-

ment in time, the third axle of the 1-week truck is placed αSL from the end. Values for 

αM and αS were chosen which gave a best fit between the simplified method and the 

full simulations, i.e., which minimized the sum of squares of differences for all spans, 

both load effects and all sites. They were found by trial and error and are therefore not 

fully optimal. 

Figure 7 illustrates the measured distribution of the axle spacing of the five-axle 

trucks from Site 1. The mean values and the standard deviations of the spacings, de-

noted as AS12 for the distance between the first and the second axle etc., are also 

shown in the figure. An investigation of the WIM data sets shows that, for five-axle 

trucks, there is insignificant correlation between axle spacing and GVW. As the stan-

dard deviations of axle spacing are low, it is reasonable to assume mean values for 

axle spacing of the five-axle truck in the simplified model. It should be mentioned 

that the difference between the mean values from different sites is insignificant. 

5 RESULT COMPARISONS 

In this section the results obtained from the full simulations and the simplified model 

are compared. According to the Eurocode, CEN (2002), the characteristic value for 

traffic load effects has been defined for a return period of 1000 years, i.e., the value 

with a probability of exceedance of 10% in 100 years. The 1000 year load effects are 
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determined from the distributions of the daily maximum load effects for each bridge 

length obtained from the full simulations. For the simplified model, single optimal 

values for αM and αS were sought that produced equivalent characteristic load effect 

values to the full simulations. According to this investigation, the optimal values for 

αM and αS are 0.63 and 0.42, respectively. Finally, the 5% and 95% confidence limits 

for the extrapolated values obtained from the full simulations are calculated (see sec-

tion 3). The 1000 year load effects obtained from the full simulations together with 

their 5% and 95% confidence limits and the corresponding values calculated from the 

simplified model are shown in Table 3 (for mid-span moment) and in Table 4 (for end 

shear). The relative differences between the results from the two approaches are also 

given in the tables. As can be seen, the absolute differences observed are between 

0.9% and 10.9% for the mid-span moment and between 0.3% and 13.6% for end 

shear. These differences are small relative to the differences between sites evident in 

the table. The simplified model gives reasonably good estimates of the characteristic 

values in all cases. It is clearly possible to get a low value of αM and αS for a particular 

site. However, it is highly significant to find values which are consistent across differ-

ent sites with completely different traffic and a wide range of spans. 

It should also be mentioned that when αM = 0.63, not all axles are on the bridge for 

spans of 25 meters and less. For αS = 0.42, all axles of the lighter truck are involved in 

the critical loading cases for all spans with the exception of the 15 meter span bridge 

where only the last four axles are involved. 

6 CONCLUSIONS 

This work presents a site-specific simplified traffic load model that generates charac-

teristic load effects which can otherwise only be determined utilizing a complex simu-

lation technique. The results show that it is mostly five-axle trucks, considering their 

weights and lengths, which are involved in the critical loading scenarios. For data at 

each of four sites, pairs of heavy trucks with weights derived from the measured data 

are placed at specified locations on the bridge. The same locations of the trucks are 
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valid for all sites considered. The simplified model gives reasonably comparable cha-

racteristic load effects to those obtained from full simulation. 

The authors believe that the results can be employed by practicing engineers for 

bridge assessment without having to perform full simulations. 
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Table 1: Measurement locations and periods. 

Denotation  Highway  Site location  Measurement period  

Site 1  R04  Amsterdam  Oct. 6–19, 2003  

Site 2  R12  Utrecht  Oct. 6–19, 2003  

Site 3  R16  Dordrecht  Oct. 6–19, 2003  

Site 4  A1  near Ressons  Sep. 9–14, 1996  

 

 

 

 

 

 

 

 

 

Table 2: Comparison of the 1000 year return period load effects obtained when data for all 

trucks and data for only five-axle trucks are used as an input for the full simula-

tions.  

 

Site L [m] 

Moment [kNm] Shear [kN] 

All 

trucks 

5-axle 

trucks 

Diff. 

[%] 

All 

trucks 

5-axle 

trucks 

Diff. 

[%] 

1 

15 

20 

25 

30 

35 

3573 

5242 

7021 

9347 

10592 

3249 

4769 

6588 

8559 

9975 

10.0 

9.9 

6.6 

9.2 

6.2 

1124 

1253 

1299 

1342 

1390 

1091 

1208 

1285 

1315 

1378 

3.1 

3.7 

1.1 

2.0 

0.9 

4 

15 

20 

25 

30 

35 

2162 

3598 

5194 

6311 

8330 

2026 

3551 

4752 

6235 

7718 

6.7 

1.3 

9.3 

1.2 

7.9 

652 

758 

824 

883 

926 

645 

774 

820 

897 

929 

1.1 

-2.1 

0.5 

-1.6 

-0.2 
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Table 3:

 

Comparison of the 1000 year mid-span moment (M ) in kNm obtained from the full 

simulations (FS) and the corresponding values obtained from the simplified model 

(SM) with αM=0.63. The 5 % (M0.05) and 95 %(M0.95) confidence limits of the extra-

polated values are also given in the table. 

 

Site 
L 

[m] 

FS SM Diff. 

[%] M0.05 M M0.95 M 

1 

15 

20 

25 

30 

35 

3554 

5217 

6992 

9302 

10549 

3573 

5242 

7021 

9347 

10592 

3591 

5266 

7051 

9388 

10633 

3787 

5601 

7578 

9592 

11649 

-5.7 

-6.4 

-7.3 

-2.5 

-9.1 

2 

15 

20 

25 

30 

35 

3852 

5685 

7647 

9829 

12457 

3874 

5714 

7681 

9873 

12523 

3895 

5741 

7717 

9916 

12583 

3959 

5796 

7875 

10035 

12163 

-2.1 

-1.4 

-2.5 

-1.6 

3.0 

3 

15 

20 

25 

30 

35 

4187 

6052 

8529 

10258 

12573 

4214 

6085 

8578 

10305 

12635 

4242 

6118 

8624 

10353 

12696 

3947 

5715 

7762 

9845 

11974 

6.8 

6.5 

10.5 

4.7 

5.5 

4 

15 

20 

25 

30 

35 

2154 

3581 

5167 

6289 

8281 

2162 

3598 

5194 

6311 

8330 

2169 

3616 

5222 

6333 

8382 

2420 

3567 

4871 

6177 

7511 

-10.7 

0.9 

6.6 

2.2 

10.9 

Max 

Min 
   

10.9 

0.9 
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Table 4: Comparison of the 1000 year end shear (S) in kN obtained from the full simulations 

(FS) and the corresponding values obtained from the simplified model (SM) with 

αS=0.42. The 5 % (S0.05) and 95 % (S0.95) confidence limits of the extrapolated val-

ues are also given in the table.  

 

Site 
L 

[m] 

FS SM Diff. 

[%] S0.05 S S0.95 S 

1 

15 

20 

25 

30 

35 

1117 

1245 

1293 

1336 

1382 

1124 

1253 

1299 

1342 

1390 

1131 

1259 

1306 

1348 

1397 

1137 

1192 

1222 

1402 

1416 

-1.1 

5.1 

6.3 

-4.3 

-1.8 

2 

15 

20 

25 

30 

35 

1247 

1326 

1392 

1432 

1496 

1255 

1333 

1400 

1439 

1504 

1263 

1339 

1407 

1446 

1511 

1191 

1247 

1269 

1473 

1479 

5.4 

6.9 

10.3 

-2.3 

1.6 

3 

15 

20 

25 

30 

35 

1226 

1389 

1411 

1485 

1496 

1233 

1397 

1417 

1491 

1505 

1240 

1405 

1423 

1498 

1513 

1172 

1234 

1248 

1447 

1453 

5.2 

13.3 

13.6 

3.1 

3.5 

4 

15 

20 

25 

30 

35 

650 

756 

821 

880 

924 

652 

758 

824 

883 

926 

654 

760 

826 

885 

929 

707 

738 

755 

917 

923 

-7.8 

2.8 

9.1 

-3.7 

0.3 

Max 

Min 
   

13.6 

0.3 
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Figure Captions 

 

Fig. 1. Comparison of measured distributions of truck types recorded in each direc-

tion. 

 

Fig. 2. Comparison of measured distributions of GVW of five-axle trucks, Direction 

1. 

 

Fig. 3. GEV density functions fitted to the daily maximum load effect histograms ob-

tained from the full simulation, span = 20m. The inserted figures show magnified sec-

tions of the tails. 

 

Fig. 4. Comparison of estimated return loads versus return periods obtained for differ-

ent sites, span = 20m. 

 

Fig. 5. GVW of five-axle trucks versus return period.  

 

Fig. 6. Description of the simplified model. 

 

Fig. 7. Measured distributions of axle spacing for 5-axle trucks obtained from Site 1. 

ASij indicate the axle spacing between the i
th

 and j
th

 axles.
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Figure 1 
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Figure 7 


