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Simplified Soft-Output Detection of CPM Signals
Over Coherent and Phase Noise Channels

Alan Barbieri and Giulio Colavolpe, Member, IEEE

Abstract— We consider continuous phase modulations (CPMs)
in iteratively decoded serially concatenated schemes. Although
the overall receiver complexity mainly depends on that of the
CPM detector, almost all papers in the literature consider the
optimal maximum a posteriori (MAP) symbol detection algorithm
and only a few attempts have been made to design low-complexity
suboptimal schemes. This problem is faced in this paper by
first considering the case of an ideal coherent detection, then
extending it to the more interesting case of a transmission over
a typical satellite channel affected by phase noise. In both cases,
we adopt a simplified representation of an M -ary CPM signal
based on the principal pulses of its Laurent decomposition.
Since it is not possible to derive the exact detection rule by
means of a probabilistic reasoning, the framework of factor
graphs (FGs) and the sum-product algorithm (SPA) is used.
In the case of channels affected by phase noise, continuous
random variables representing the phase samples are explicitly
introduced in the FG. By pursuing the principal approach to
manage continuous random variables in a FG, i.e., the canonical
distribution approach, two algorithms are derived which do not
require the presence of known (pilot) symbols, thanks to the
intrinsic differential encoder embedded in the CPM modulator.

Index Terms— Factor graphs, sum-product algorithm, continu-
ous phase modulation, iterative detection and decoding, detection
and decoding in the presence of phase noise.

I. INTRODUCTION

CONTINUOUS phase modulations (CPMs) form a class
of constant envelope signaling formats that are efficient

in power and bandwidth [1]. Moreover, the recursive nature
of the modulator makes the CPM signaling formats attractive
in serially concatenated schemes to be iteratively decoded [2],
[3].

Several decomposition approaches for CPM signals, applied
to the design of detection algorithms, were presented in the
literature. For serially concatenated CPM signals with iterative
decoding, the Rimoldi decomposition approach [4] is usually
adopted to derive the optimal maximum a posteriori (MAP)
symbol detection algorithm (e.g., see [3], [5]). However, for
this approach an explicit technique for state reduction, such as
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that in [6], must be employed to limit the receiver complex-
ity [7]. A similar observation can be made for other approaches
based on alternative representations of a CPM signal, such as
those in [8]–[10].

On the contrary, the Laurent representation, originally de-
vised in [11] for binary modulation formats and extended
to the general case of M -ary CPM signals in [12], is more
attractive from the point of view of the receiver complexity
reduction. This representation allows to decompose a CPM
signal as a superposition of linearly modulated signals. The
observation that most of the signal power is contained in a
limited number of linearly modulated components (the so-
called M−1 principal components) allows to design a receiver
based on these components only, simplifying the receiver
front-end and automatically reducing the number of trellis
states, at least if MAP sequence detection and the Ungerboeck
observation model are adopted, as in [13].1 In fact, for the
Forney observation model, a more complex multidimensional
whitened matched filter (WMF) must be adopted [15], and it
can be also shown that the “automatic” state reduction does
not happen, due to the memory introduced by the WMF.

The generalization of the approach in [13] to MAP symbol
detection of CPM signals, although in a perfectly coherent
setting, is not trivial. All the well known materializations of the
MAP symbol detection strategy in the literature (e.g., see [17])
have been obtained by using a probabilistic derivation based
on the chain rule and the properties of a Markov source
observed through a discrete memoryless channel. Hence, this
derivation cannot be directly extended to the Ungerboeck
observation model. For linear modulations in the presence
of intersymbol interference, this problem has been recently
solved in [18] by using a properly defined factor graph (FG)
and the sum-product algorithm (SPA) [19]. In this paper, this
solution will be extended to CPM signals by first considering
the case of ideal coherent detection. It will be shown that
the designed reduced-complexity detection algorithms entail
only a minor performance degradation with respect to the
optimal MAP symbol detectors when employed in serially
concatenated schemes with iterative detection/decoding.

We will then consider the more interesting case of a
transmission over a typical satellite channel affected by phase
noise. Although several soft-input soft-output (SISO) detection
algorithms suitable for iterative detection/decoding have been

1In analogy with the problem of detection in the presence of intersymbol
interference, for CPM signals a set of sufficient statistics obtained through a
bank of filters matched to the pulses of the Laurent representation, as in [13],
is said to form the Ungerboeck observation model [14]. On the contrary, when
the multidimensional whitened matched filter front-end described in [15] is
used, we say that the Forney observation model is employed for detection [16].
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recently designed for linear modulations transmitted over
channels affected by a time-varying phase (see for example
[20]–[22] and references therein), less attention has been
devoted to CPM signals. An exception is represented by [23],
[24] where, based on the approach in [21], [25], joint detection
and phase synchronization is performed by working on the
trellis of the CPM signal or on an expanded trellis and using
multiple phase estimators in a per-survivor fashion.2 In this
paper, we adopt a Bayesian approach, i.e., the channel phase
is modeled as a stochastic process with known statistics. In
particular, we model the phase noise as a Wiener process. By
still using the FG/SPA framework, we derive the exact MAP
symbol detection strategy under the above mentioned simpli-
fied representation of a CPM signal as sum of the principal
pulses of its Laurent decomposition. We analyze the properties
of this detection strategy finding that it can be implemented
by using a single forward-backward estimator of the phase
probability density function, followed by a symbol-by-symbol
completion to produce the a posteriori probabilities (APPs)
of the information symbols. Then, by using the canonical
distribution approach [26], we develop a couple of practical
schemes with different complexity to implement the forward-
backward estimator. The resulting algorithms obviously work
in a joint demodulation/phase tracking fashion, do not require
the insertion of pilot symbols, and may be used as SISO blocks
for iterative detection/decoding in concatenated schemes.

The remainder of this paper is organized as follows. In
Section II, we provide the signal model and briefly review the
Laurent decomposition. By means of the FG/SPA framework,
a low-complexity MAP symbol detection algorithm is derived
in Section III for the coherent channel, and extended to the
phase noise channel in Section IV. The performance of the
proposed receivers is assessed in Section V. Finally, some
conclusions are drawn in Section VI.

II. SIGNAL MODEL AND LAURENT DECOMPOSITION

The complex envelope of a CPM signal has the form [1]

s(t,α) =

√
2ES

T
exp{j2πh

N−1∑
n=0

αnq(t− nT )} (1)

in which ES is the energy per information symbol, T is
the symbol interval, h = r/p is the modulation index (r
and p are relatively prime integers), the information symbols
{αn} are assumed independent and take on values in the M -
ary alphabet {±1,±3, . . . , ±(M − 1)}, α = {αn} denotes
the information sequence, and finally N is the number of
transmitted information symbols. The function q(t) is the
phase-smoothing response and its derivative is the frequency
pulse, assumed of duration LT .

Based on Laurent representation, the complex envelope of
a CPM signal may be exactly expressed as [12]

s(t,α) =
Qlog2 M (M−1)−1∑

k=0

∑
n

ak,npk(t− nT ) (2)

2As a particular case of this general approach, the use of a single phase
estimator is also considered in [24] to trade performance for complexity.

in which M is assumed to be a power of two to simplify
the notation, Q

Δ= 2L−1, and the expressions of pulses
{pk(t)} and those of symbols {ak,n} as a function of the
information symbol sequence {αn} may be found in [12] (see
this reference for the general case of M non-power of two).
By truncating the summation in (3) considering only the first
K < Qlog2 M (M − 1) terms, we obtain an approximation of
s(t,α):

s(t,α) �
K−1∑
k=0

∑
n

ak,npk(t− nT ) . (3)

Most of the signal power is concentrated in the first M − 1
components, i.e., those associated with the pulses {pk(t)} with
0 ≤ k ≤ M − 2, which are denoted as principal components
[12]. As a consequence, a value of K = M − 1 may be used
in (3) to attain a very good tradeoff between approximation
quality and number of signal components and in fact, it was
shown in [13] that MAP sequence detection receivers only
based on principal pulses practically attain the performance
of the corresponding optimal detector. A nice feature of the
principal components is that their symbols {ak,n}M−2

k=0 can be
expressed as a function of the information symbol αn and of
symbol a0,n−1, only [12]. As an example, symbol a0,n can
be computed as [12]

a0,n = a0,n−1e
jπhαn . (4)

In Section III, the case of an ideal coherent channel will
be analyzed. Hence, in that section a0,−1 will be assumed
known to the receiver. On the contrary, since in Section IV
the transmission over a channel affected by phase noise will
be considered, we will assume that the initial symbol a0,−1

is unknown to the receiver due to the initial channel phase
uncertainty. Symbols {a0,n} take on p values [12]. They
belong to the alphabet Ao = {ej2πhm,m = 0, 1, . . . , p − 1}
when n is odd, or to the alphabet Ae = {ejπhej2πhm,m =
0, 1, . . . , p− 1} when n is even.3

We employ the following equivalent representation for
symbols αn and a0,n [4]:

αn = 2ᾱn − (M − 1) (5)

a0,n = e−jπh(M−1)(n+1)ej2πhφn (6)

where ᾱn ∈ {0, 1, . . . ,M − 1}, φn ∈ {0, 1, . . . , p − 1}. The
integer φn can be recursively updated as

φn = [φn−1 + ᾱn]p (7)

where [·]p denotes the “modulo p” operator. In this way we
have defined a one-to-one correspondence between sequences
{a0,n} and {φn}.

III. MAP SYMBOL DETECTION ON A

COHERENT CHANNEL

In [13], simplified MAP sequence detectors based on the
Viterbi algorithm have been designed for the ideal coherent
channel. In this case, the approximate representation of an M -
ary CPM signal based on the principal pulses of its Laurent

3When r is even, Ao and Ae coincide.
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decomposition plays a major role. In fact, starting from the
complex envelope of the received signal

r(t) = s(t,α) + w(t) (8)

where w(t) is a complex-valued additive white Gaussian noise
(AWGN) process with independent components, each with
two-sided power spectral density N0, representing the received
signal onto an orthonormal basis and denoting by r its vector
representation, exploiting the constant envelope property of a
CPM signal, it is found that [13]4

p(r|α) = p(r|α,φ)
∼∝
∏
n

Gn(αn, φn−1) (9)

where φ = {φn} and

Gn(αn, φn−1) = exp

{
1
N0

Re

[
M−2∑
k=0

xk,na
∗
k,n

]}
(10)

and xk,n = r(t)⊗ pk(−t)|t=nT is the output, at discrete-time
nT of a filter matched to the pulse pk(t). Symbol

∼∝ has been
used to denote an approximate proportionality relationship.
The approximation here is related to the fact that we are
considering the principal components only. Notice that the
functions Gn(αn, φn−1) are not probability density functions
(pdfs) nor they are proportional to pdfs. In the arguments
of Gn, we omitted the explicit dependence on the received
signal since this latter is known to the receiver, and exploited
the above mentioned property that all symbols {ak,n}M−2

k=0 in
(10) depend on αn and φn−1 only. In order to implement
the MAP sequence detection strategy, the maximization of
the pdf p(r|α) can be performed by using the Viterbi al-
gorithm with branch metrics given by lnGn(αn, φn−1) ∝
Re[
∑M−2

k=0 xk,na
∗
k,n]. Hence, the resulting receiver works on

a trellis whose state is defined by φn−1, and thus the number
of trellis states is p [13].

We now extend this technique for complexity reduction to
MAP symbol detection. The joint a posteriori probability mass
function (pmf) P (α,φ|r) can be expressed as

P (α,φ|r) ∝ P (φ|α)P (α)p(r|α,φ) . (11)

By using (9) and observing that we can further factor the terms
P (α) and P (φ|α) in (11) as

P (α) =
N−1∏
n=0

P (αn) (12)

P (φ|α) = P (φ−1)
N−1∏
n=0

In(φn, φn−1, αn) (13)

where In(φn, φn−1, αn) is an indicator function, equal to 1 if
αn and states φn−1 and φn respect the constraint (7), and to
zero otherwise, we obtain

P (α,φ|r) ∼∝ P (φ−1)
N−1∏
n=0

In(φn, φn−1, αn)

· P (αn)Gn(αn, φn−1) . (14)

4In [13] the reader will not find the expression of p(r|α) but of the
likelihood function which is proportional to ln p(r|α).

The corresponding FG is depicted in Fig. 1 and we can observe
that it is cycle-free. Hence, the application to it of the SPA with
a non-iterative forward-backward schedule, produces the exact
marginal APPs of symbols {αn} (except for the approximation
related to the use of the principal components only). In the
figure, we defined Pe(αn) as the extrinsic APP of αn, i.e.,
Pe(αn) = P (αn|r)/P (αn). With reference to the messages in
the figure, by applying the updating rules of the SPA, messages
μf,n(φn) and μb,n(φn) can be recursively computed by means
of the following forward and backward recursions:

μf,n(φn) =
∑
φn−1

∑
αn

μf,n−1(φn−1)Gn(αn, φn−1)

· In(φn, φn−1, αn)P (αn) (15)

=
∑
αn

μf,n−1(φ̌n−1)Gn(αn, φ̌n−1)P (αn)

μb,n−1(φn−1) =
∑
φn

∑
αn

μb,n(φn)Gn(αn, φn−1)

· In(φn, φn−1, αn)P (αn) (16)

=
∑
αn

μb,n( ˇ̌φn)Gn(αn, φn−1)P (αn)

where in (15) φ̌n−1 = [φn − ᾱn]p (i.e., given φn and αn,
φ̌n−1 is such that In(φn, φ̌n−1, αn) = 1), whereas in (16)
ˇ̌φn = [φn−1 + ᾱn]p (i.e., given φn−1 and αn, ˇ̌φn is such
that In( ˇ̌φn, φn−1, αn) = 1), and with the following initial
conditions:

μf,−1(φ−1) = P (φ−1) (17)

μb,N−1(φN−1) = 1/p . (18)

Finally, the extrinsic APPs of symbols {αn} can be computed
by means of the following completion

Pe(αn) =
∑
φn−1

∑
φn

μf,n−1(φn−1)μb,n(φn)

· In(φn, φn−1, αn)Gn(αn, φn−1) (19)

=
∑
φn

μf,n−1(φ̌n−1)μb,n(φn)Gn(αn, φ̌n−1) .

Roughly speaking, the complexity is reduced by a factor given
by p/(pML−1), that is the ratio between the receiver states
of the reduced-complexity and optimal schemes.

IV. MAP SYMBOL DETECTION ON A

PHASE NOISE CHANNEL

We now consider the transmission of a CPM signal over a
typical satellite channel affected by phase noise. In this case,
the complex envelope of the received signal can be modeled
as

r(t) = s(t,α)ejθ(t) + w(t) (20)

where θ(t) is the phase noise introduced by the channel.
We model the phase noise θ(t) as a time-continuous Wiener
process [27], [28] with incremental variance over a signaling
interval equal to σ2

Δ. The assumption on the phase noise model
will be relaxed in the numerical results. We also assume that
the channel phase θ(t) is slowly varying such that it can be
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αn

P (αn)

InGn

μf,n−1(φn−1)

μb,n(φn)

μf,n(φn)

φn
μb,n−1(φn−1)

φn−1

α0

P (α0)

P (φ−1)

I0G0 IN−1GN−1

αN−1

P (αN−1)

φN−1φ−1

Pe(αn)

Fig. 1. Factor graph corresponding to eqn. (14).

considered constant over the duration of the pulses {pk(t)}.
In other words we assume that∫ +∞

−∞
r(t)pk(t− nT )e−jθ(t) dt

= e−jθn

∫ +∞

−∞
r(t)pk(t− nT )ej[θn−θ(t)] dt

� e−jθn

∫ +∞

−∞
r(t)pk(t− nT ) dt = e−jθnxk,n (21)

having defined θn = θ(nT ) and assumed θn−θ(t) � 0 where
pk(t − nT ) �= 0, for the slowly varying assumption. Hence,
under this hypothesis, the output, sampled at the symbol rate,
of a bank of filters matched to the pulses {pk(t)} is still a
set of sufficient statistics for this detection problem. As in
the previous section, we use a simplified set represented by
the output of a bank of filters matched to the principal pulses
{pk(t)}M−2

k=0 . From (21), only the samples of θ(t) at discrete-
time nT are significant. These samples satisfy the discrete-
time Wiener model:

θn+1 = θn + Δn (22)

where {Δn} are real independent and identically distributed
Gaussian random variables with zero mean and standard
deviation σΔ,5 and θ0 is assumed uniformly distributed in
[0, 2π).

We now derive the MAP symbol detection strategy for this
case. To this purpose, we first compute the joint distribution6

p(α,φ,θ|r), where θ = {θn}. Its expression is

p(α,φ,θ|r) ∝ P (φ|α)P (α)p(θ)p(r|α,θ,φ) . (23)

We can now express [13]

p(r|α,θ,φ)
∼∝
∏
n

Hn(αn, φn−1, θn) (24)

having defined, in this case,

Hn(αn, φn−1, θn) = exp

{
1
N0

Re

[
e−jθn

M−2∑
k=0

xk,na
∗
k,n

]}
.

(25)

5Note that, since the channel phase is defined modulo 2π, the probability
density function (pdf) p(θn+1|θn) can be approximated as Gaussian only if
σΔ � 2π.

6We still use the symbol p(.) to denote a continuous pdf with some discrete
probability masses.
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αn

P (αn)

σn σn+1

Pe(αn)

νb,n+1(σn+1)

InHnp(θn+1|θn)

νb,n(σn) νf,n(σn) νf,n+1(σn+1)

Fig. 2. Factor graph corresponding to eqn. (27).

By using (12) and (13) and observing that we can further
factor p(θ) in (23) as

p(θ) = p(θ0)
N−1∏
n=1

p(θn|θn−1) (26)

where p(θn|θn−1) is a Gaussian pdf in θn with mean θn−1

and variance σ2
Δ, we obtain

p(α,φ,θ|r) ∼∝ P (φ−1)p(θ0)
N−1∏
n=0

In(φn, φn−1, αn)

· P (αn)Hn(αn, φn−1, θn)
N−1∏
n=1

p(θn|θn−1) (27)

which is exact except for the approximation (21) and that
related to the use of the principal components only. In the
following, we will denote a Gaussian pdf in the variable
x, with mean η and variance ρ2, as g(η, ρ2;x). Hence,
p(θn|θn−1) = g(θn−1, σ

2
Δ; θn).

The FG corresponding to (27) has cycles. However, by
clustering [19] the variables θn and φn−1, i.e., defining σn =
(φn−1, θn), we obtain the FG in Fig. 2. Since this new FG
does not contain cycles, by applying to it the SPA with a non-
iterative forward-backward schedule, we obtain, except for the
above mentioned approximations, the exact a posteriori prob-
abilities P (αn|r) necessary to implement the MAP symbol
detection strategy. With reference to the messages in the figure,
the resulting forward–backward algorithm is characterized by
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the following recursions and completion:

νf,n+1(φn, θn+1) =
∑
αn

P (αn)
∫
νf,n(φ̌n−1, θn)

·Hn(αn, φ̌n−1, θn)g(θn, σ
2
Δ; θn+1)dθn

(28)

νb,n(φn−1, θn) =
∑
αn

P (αn)Hn(αn, φn−1, θn)

·
∫
νb,n+1(

ˇ̌φn, θn+1)g(θn, σ
2
Δ; θn+1)dθn+1

(29)

Pe(αn) =
∑
φn

∫∫
νf,n(φ̌n−1, θn)νb,n+1(φn, θn+1)

·Hn(αn, φ̌n−1, θn)g(θn, σ
2
Δ; θn+1)dθndθn+1

(30)

with the following initial conditions: νf,0(φ−1, θ0) = 1/(p2π)
and νb,N (φN−1, θN) = 1/(p2π).

A proof of the following properties is given in the Appen-
dix:
Property 1: for each 
 = 0, . . . , p− 1,

νf,n([φn−1 + 
]p, θn) = νf,n(φn−1, θn + 2πh
) (31)

νb,n([φn−1 + 
]p, θn) = νb,n(φn−1, θn + 2πh
) . (32)

Property 2: The extrinsic information in (30) is given by the
sum of p terms (one for each value of φn). All these terms
assume the same value, i.e., they do not depend on φn, for
each given αn.

From the first property it follows that it is not necessary to
evaluate and store all pdfs νf,n(φn−1, θn) and νb,n(φn−1, θn)
for different values of φn−1. It is for instance sufficient to
evaluate ν̄f,n(θn) = νf,n(φn−1 = 0, θn) and ν̄b,n(θn) =
νb,n(φn−1 = 0, θn). From the second property, it follows that
only one term in (30) needs to be evaluated. The MAP symbol
detection strategy can therefore be simplified as follows:

ν̄f,n+1(θn+1) =
∑
αn

P (αn)
∫
ν̄f,n(θn − 2πhᾱn)

·Hn(αn, φn−1 = [−ᾱn]p, θn)g(θn, σ
2
Δ; θn+1)dθn

(33)

ν̄b,n(θn) =
∑
αn

P (αn)Hn(αn, φn−1 = 0, θn)

·
∫
ν̄b,n+1(θn+1 + 2πhᾱn)g(θn, σ

2
Δ; θn+1)dθn+1

(34)

Pe(αn) ∝
∫∫

ν̄f,n(θn)ν̄b,n+1(θn+1 + 2πhᾱn)

·Hn(αn, φn−1 = 0, θn)g(θn, σ
2
Δ; θn+1)dθndθn+1

(35)

with the following initial conditions: ν̄f,0(θ0) = 1/2π and
ν̄b,N (θN ) = 1/2π. Hence, we have a single forward-backward
estimator of the phase probability density function and a final
completion.

This exact MAP symbol detection strategy involves inte-
gration and computation of continuous pdfs, and it is not
suited for direct implementation. A solution for this problem
is suggested in [26] and consists of the use of canonical
distributions, i.e., the pdfs ν̄f,n(θn) and ν̄b,n(θn) computed by
the algorithm are constrained to be in a certain “canonical”
family, characterized by some parameterization. Hence, the
forward and backward recursions reduce to propagating and
updating the parameters of the pdf rather than the pdf itself.
Two algorithms based on this approach will be now described.

A. Proposed Algorithms

1) First Algorithm: A very straightforward solution to
implement (33) and (34) is obtained by discretizing the
channel phase [20], [22]. In this way, the pdfs ν̄f,n(θn) and
ν̄b,n(θn) become probability mass functions (pmfs) and the
integrals in (33), (34), and (35) become summations. When the
numberD of discretization levels is large enough, the resulting
algorithm becomes optimal (in the sense that its performance
approaches that of the exact algorithm).7 Hence, it may be
used to obtain a performance benchmark and will be denoted
to as “discretized-phase algorithm” (dp-algorithm).

2) Second Algorithm: By observing that the Tikhonov
distribution ensures a very good performance with a low
complexity when used as a canonical distribution in detection
algorithms for phase noise channels [22], pdfs ν̄f,n(θn) and
ν̄b,n(θn) are constrained to have the following expressions

ν̄f,n(θn) =
p−1∑
m=0

q
(m)
f,n t (zf,n; θn − 2πhm) (36)

ν̄b,n(θn) =
p−1∑
m=0

q
(m)
b,n t (zb,n; θn − 2πhm) (37)

where, for each time index n, {q(m)
f,n ,m = 0, 1, . . . , p − 1}

({q(m)
b,n ,m = 0, 1, . . . , p−1}) and zf,n (zb,n) are, respectively,

p real coefficients and one complex coefficient, and t (z; θ) is
a Tikhonov distribution with complex parameter z defined as

t (z; θ) =
eRe[ze−jθ ]

2πI0(|z|) (38)

I0(x) being the zero-th order modified Bessel function of the
first kind. Note that

∑p−1
m=0 q

(m)
f/b,n = 1 in order to obtain pdfs.

Three approximations are now introduced in order to derive
the proposed detection algorithm:8

i. the convolution of a Tikhonov and a Gaussian pdf is still a
Tikhonov pdf, with a modified complex parameter [22], i.e.,∫

t(z;x)g(x, ρ2; y)dx � t

(
z

1 + ρ2|z| ; y
)

(39)

ii. since, for large arguments, I0(x) � ex, we approximate

eRe[ze−jθ ] � 2πe|z|t(z; θ) (40)

iii. let z be a complex number, {um,m = 0, 1, . . . , p − 1}
a set of complex numbers, and {qm,m = 0, 1, . . . , p − 1} a
set of real numbers such that

∑
m qm = 1, then the following

approximation holds, especially when |z| is sufficiently larger
than each |um| or when there is a m such that qm �
qm, ∀m �= m:∑

m

qmt
(
zej2πhm + um; θ

) �∑
m

qmt
(
wej2πhm; θ

)
(41)

where w = z +
∑

� q�u�e
−j2πh�.

In order to illustrate the derivation of the proposed al-
gorithm, we consider the case of a binary modulation, i.e.,

7As a rule of thumb (confirmed by the results in [20]), the number
of discretization levels must be at least D = 8p in order to avoid any
performance loss.

8A justification of these approximations is represented by the excellent
performance of the resulting algorithm.
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M = 2, and hence K = 1, although the generalization
to the non-binary case is straightforward from a conceptual
viewpoint.9 In this case

1
N0

K−1∑
k=0

xk,na
∗
k,n =

1
N0

x0,na
∗
0,n = yne

−j2πhφn (42)

where we define yn = 1
N0
x0,ne

jπh(n+1)(M−1). We now derive
the reduced-complexity forward recursion. Substituting (25)
in (33) and assuming that ν̄f,n−1(θn−1) has the canonical
expression (36), we obtain

ν̄f,n+1(θn+1) =
∑
αn

P (αn)
p−1∑
m=0

q
(m)
f,n

∫
g(θn, σ

2
Δ; θn+1)

· t (zf,n; θn − 2πh(ᾱn +m)) eRe[yne−jθn ]dθn . (43)

By now changing the first summation index in 
 = m +
ᾱn, using (39) and (40), discarding irrelevant multiplicative
factors, and neglecting |yn| with respect to |zf,n|, we have

ν̄f,n+1(θn+1) =
∑

�

[∑
αn

P (αn)q([�−ᾱn]p)
f,n

]

· e|zf,n+yne−j2πh�|t
(
zf,ne

j2πh� + yn

1 + σ2
Δ|zf,n| ; θn

)
(44)

This resulting ν̄f,n+1(θn+1) is not in the constrained
form (36). However, by applying the approximation (41), we
obtain the following updating equations for the parameters of
the canonical distribution (36)

q
(�)
f,n+1 ∝

[∑
αn

P (αn)q([�−ᾱn]p)
f,n

]
e|zf,n+yne−j2πh�| (45)

zf,n+1 =
zf,n + yn

∑
m q

(m)
f,n+1e

−j2πhm

1 + σ2
Δ|zf,n| . (46)

It is worth noticing that, before the evaluation of the coefficient
zf,n+1, the p real coefficients q(�)f,n+1, evaluated through (45),
have to be normalized so that their sum is 1. Since there is no
a priori knowledge of the initial phase or of the initial symbol
a0,−1, the following initial values of the recursive coefficients
result

q
(�)
f,0 = 1/p
zf,0 = 0 .

In addition, since at the first step of the forward recursion the
approximation (41) does not hold, we use the following values
for the recursive coefficients at time n = 1:

q
(�)
f,1 = δ�

zf,1 =
y0

1 + σ2
Δ|y0|

where δ� represents the Kronecker delta.

9Some non-binary examples will be considered in the numerical results.

Similarly, it is also possible to find the backward recursive
equations. We report the final expressions only:

u(αn;m) =
P (αn)q([m]p)

b,n+1 e
|z′

b,n+1+yne−j2πhm|∑
�

∑
α P (α)q(�)b,n+1e

|z′
b,n+1+yne−j2πh�|

q
(�)
b,n =

∑
αn

u(αn; 
+ ᾱn) (47)

zb,n = z′b,n+1 + yn

∑
m

(∑
αn

u(αn;m)

)
e−j2πhm

(48)

where z′b,n+1 = zb,n+1

1+σ2
Δ|zb,n+1| and coefficients u(·; ·) have been

introduced to simplify the notation (they do not need to be
stored, since they are not involved in the completion stage).
The initial values of the backward coefficients are

q
(�)
b,N = 1/p q

(�)
b,N−1 =

⎧⎪⎨
⎪⎩
P (αN−1 = −1) 
 = 0
P (αN−1 = +1) 
 = p− 1
0 else

zb,N = 0 zb,N−1 = yN−1

Finally, substituting (36) and (37) into (35) and discarding
irrelevant constants, the extrinsic information is evaluated as

Pe(αn) ∝
∑

�

∑
m

q
(�)
f,nq

(m)
b,n+1

· exp
(∣∣∣zf,ne

j2πh(�+ᾱn) + z′b,n+1e
j2πhm + yn

∣∣∣) . (49)

In summary, this detection algorithm is based on three steps:
a forward recursion in which, for each time epoch n, one
complex and p real coefficients are evaluated based on (45)
and (46), a backward recursion, based on (47) and (48),
which proceeds similarly, and finally a completion (49), which
consists of the sum of p2 terms (although only a small amount
of them can be numerically significant). This algorithm will be
denoted to as “algorithm based on Tikhonov parameterization”
(Tikh-algorithm).

B. Complexity Considerations

We address the computational complexity of the proposed
algorithms. We assume that the computation of a non linear
function is performed by using a look-up table (LUT). Table I
presents the computational complexity in terms of number
of operations (additions and multiplications) between two
real arguments, accesses to LUT, and memory requirements
to store the computed coefficients, per CPM symbol. The
computational complexity of the front-end processing is not
considered, being the same for both algorithms. From the
table, it is clear that the Tikh-algorithm has a much lower
complexity with respect to the dp-algorithm and, in fact, this
latter algorithm must be considered only as a performance
benchmark.

V. NUMERICAL RESULTS

In this section, the performance of the proposed detection
schemes is assessed by computer simulations in terms of bit
error rate (BER) versus Eb/N0, Eb being the received signal
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TABLE I

COMPUTATIONAL LOAD PER CPM SYMBOL OF THE PROPOSED

ALGORITHMS.

Tikhonov dp-BCJR

Operations p(13pM + 6M + 12) 52MD
LUT accesses p(3pM + 2) 9MD

Memory requirement p + 2 pD

interl.
outer

encoder
mapper

CPM

modulat.

SISO

deinterl.

CPM
interl.

front-end

processor SISO decoder decisions

channel

r(t)

Fig. 3. Transmitter and receiver structure for the considered SCCPM
schemes.

energy per information bit. To evaluate the quality of the soft-
outputs produced by the MAP symbol detection algorithms
with reduced complexity, we consider serially concatenated
CPM (SCCPM) schemes with iterative decoding. The rel-
evant system model is depicted in Fig. 3. The considered
concatenated schemes are completely defined by the outer
code description, the codeword length, the type of interleaver
(bit or symbol), the type of mapping, the CPM parameters, and
finally the total number of iterations for the iterative decoding
process. No pilot symbols or a known preamble have been
inserted.

In our computer simulations, five different SCCPM
schemes, whose details are summarized in Table II, are con-
sidered. The outer codes of the first four schemes have been
chosen following the guidelines in [29], while the nonsys-
tematic irregular repeat-accumulate code of the fifth scheme
has been designed by means of the extrinsic information
transfer (EXIT) charts following the method in [30] (see
also [31]). Note that, in this latter case, the outer code is
indeed a low-density generator matrix (LDGM) composed by
the serial concatenation of a repetition stage, an interleaver
and a parity generator. It is not necessary to explicitly insert
the accumulator after the LDGM, since it is embedded in the
CPM modulation.

In Fig. 4 we consider the concatenation of a non-recursive
rate-1/2 convolutional code (CC) with generators G1 = 7
and G2 = 5 (octal notation) and a quaternary raised-cosine
(RC) modulation [1] with frequency pulse of duration L = 2
symbol intervals (2RC) and modulation index h = 1/4. The
phase is considered known to the receiver. Two coded bits
are mapped into one CPM symbol by using Gray mapping.
In the case of the considered 2RC modulation, we have
M − 1 = 3 principal components but, observing that two
principal pulses are almost identical, a front-end composed
of only two filters is sufficient. The reduced-complexity soft-
output detector, based on the algorithm described in Section
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Fig. 4. Concatenated 2RC modulation with h = 1/4 and M = 4.

III, has only p = 4 states whereas the optimal detector
has pML−1 = 16 states. A symbol interleaver of length
1024 symbols and a bit interleaver of length 2048 bits are
considered and 20 iterations are performed.10 In [5] some
considerations have been carried out about the advantages and
disadvantages, in terms of convergence threshold and error
floor, of symbol interleavers with respect to bit interleavers in
SCCPM schemes. In particular, it has been shown that systems
with symbol interleaving usually have a lower convergence
threshold and a higher error floor. In our simulation, due to
the use of the DRP interleaver, the error floor does not appear,
but the result on the convergence threshold is confirmed. In
any case, it can be observed that, independently of the used
interleaver, the proposed reduced-complexity coherent receiver
exhibits a negligible performance loss with respect to the
optimal MAP symbol detection algorithm.

Similar considerations hold for Fig. 5 which refers to a
different SCCPM scheme, i.e., the concatenation of a non-
recursive rate-2/3 convolutional code (CC) with generators
G1 = 32, G2 = 21, and G3 = 31, and a 2RC modulation
with h = 1/6 and M = 8. Hence, in this case the spectral
efficiency is of 2 bits per channel use. For this modulation
format, we have M −1 = 7 principal components but a front-
end composed of only 3 filters is sufficient. The number of
states of the proposed detector is p = 6, whereas the optimal
receiver has pML−1 = 48 states. A length-2048 symbol
interleaver and a length-6144 bit interleaver are considered
and 20 iterations are performed.

In Fig. 6 and Fig. 7 the effect of a time-varying phase,
unknown to the receiver and modeled as a Wiener process
with standard deviation σΔ equal to 5 and 15 degrees, is
considered. Fig. 6 refers to the serial concatenation of a 4-
state rate-1/2 CC, with generators G1 = 7 and G2 = 5, and
the minimum shift keying (MSK) modulation, i.e., a binary
modulation with h = 1/2 and a rectangular frequency pulse
of duration T (1REC). Hence, in this case a single linearly
modulated component perfectly describes the CPM signal and

10A dithered relative prime (DRP) interleaver [32] is used in both cases.



BARBIERI and COLAVOLPE: SIMPLIFIED SOFT-OUTPUT DETECTION OF CPM SIGNALS OVER COHERENT AND PHASE NOISE CHANNELS 2493

TABLE II

DETAILS OF THE CONSIDERED SCCPM SCHEMES.

Fig. Pulse M h Mapping Outer code Codeword length Interleaver Iterations

4 2RC 4 1/4 Gray CC (7,5) R = 1/2 2048 Bit or Symbol 20

5 2RC 8 1/6 Gray CC (32,21,31) R = 2/3 6144 Bit or Symbol 20

6 1REC 2 1/2 - CC (7,5) R = 1/2 2048 Bit 10

7 2RC 4 2/3 Natural CC (7,5) R = 1/2 2048 Bit 15

8 2RC 2 1/4 - Repeat-Accumulate R = 2/3 8100 Bita 50

aIn this case, the bit interleaver is embedded in the Repeat-Accumulate encoder.
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Fig. 5. Concatenated 2RC modulation with h = 1/6 and M = 8.

hence the optimal and reduced-complexity receivers coincide.
An interleaver of length 2048 bits is used and a maximum of
10 iterations is allowed. The performance of the proposed dp-
algorithm and Tikh-algorithm is shown and compared with
that of the adaptive soft-input soft-output forward-only (A-
SISO-FO) algorithm described in [24]. D = 16 discretization
levels have been used for the dp-algorithm and no performance
improvement has been observed for larger values of D. The
ideal curve related to the perfect knowledge of the channel
phase is also shown for comparison. It can be observed that,
at a BER of 10−5 and for σΔ = 5 degrees, the loss of the
optimal dp-algorithm with respect to the known-phase case is
approximately 0.25 dB, while the loss of the low-complexity
Tikh-algorithm is about 0.5 dB. More than 0.5 dB is gained by
the Tikh-algorithm with respect to the algorithm in [24]. For
σΔ = 15 degrees, the performance loss of all the algorithms
is obviously larger but, even in this case, the advantage of the
Tikh-algorithm with respect to the A-SISO-FO algorithm is
evident.

Among the algorithms described in [24], we consider here
only the A-SISO-FO algorithm for which the phase is esti-
mated during the forward recursion only. The reason is that
it exhibits a better performance with respect to the algorithms
based on independent forward and backward estimates since
the latter are difficult to combine due to phase slips [24].
This is not surprising since the A-SISO algorithms proposed
in [24] are derived based on a “reasonable approximation”
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Fig. 6. Concatenated MSK modulation.

commonly used when the unknown parameters are modeled
as deterministic (see [24, eqn. (4)]). Hence, in this case an
“optimal” algorithm, in the sense of the symbol error rate
minimization, is not defined, and only heuristic approaches
(such as those proposed in [24]) can be adopted. On the
contrary, we consider a Bayesian model of the phase noise.
Hence, in this case the optimal detection strategy is defined
and, as demonstrated, this strategy is based on forward and
backward Bayesian estimators which are properly combined.
The proposed algorithms derive from it through (minor)
approximations and for them there is no benefit in using a
forward-only estimator.

Fig. 7 refers to the concatenation of the same CC used in
the previous figure with a quaternary 2RC modulation with
h = 2/3. Hence, M − 1 = 3 principal pulses need to be
considered and the number of states of the reduced-complexity
receivers is p = 3. A bit interleaver of length 2048 bits is
used, the natural mapping is adopted to map a couple of bits
into a CPM symbol, and, at the receiver, a maximum of 15
iterations is allowed. For a Wiener phase noise with σΔ = 5
degrees, the performance of the dp-algorithm (with D = 24)
and that of the Tikh-algorithm is shown and compared with
that of the A-SISO-FO algorithm and that of the ideal case of
perfectly known phase, for both the reduced-complexity and
optimal MAP symbol detection. Even in this case, the loss
exhibited by the proposed detection schemes is limited and
they outperform the A-SISO-FO algorithm.
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Fig. 7. Concatenated 2RC modulation with h = 2/3 and M = 4.
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Fig. 8. Concatenated 2RC modulation with h = 1/4 and M = 2.

For a complete picture, with reference to the CPM schemes
in Fig. 6 and Fig. 7 we compare the computational complexity
of the proposed schemes with that of A-SISO-FO algorithm.
The computational load is computed per CPM symbol per
iteration and the contribution of the front-end processing is not
considered (although for the proposed algorithms it is lower).
From Table III it can be observed that the Tikh-algorithm has
a complexity comparable to that of the A-SISO-FO algorithm
for the case of the MSK modulation, but it is simpler for the
quaternary 2RC modulation case and its complexity advantage
increases for higher values of M and/or L.

Finally, in Fig. 8 we consider, as outer code, a properly
designed irregular nonsystematic repeat-accumulate of rate
R = 2/3 and codewords of 8100 bits, concatenated with
a binary 2RC CPM with h = 1/4. The optimized degree
distributions of the considered RA code are reported in Ta-
ble IV. Its convergence threshold, obtained by means of EXIT
charts analysis, is 3.47 dB. A different phase noise model
is adopted in this case, namely a model recently proposed
for consumer grade equipments to be employed in the next

TABLE IV

DEGREE DISTRIBUTIONS OF THE CONSIDERED RA CODE.

Repetition Parity

degree rate degree rate

3 0.8477 1 0.8000

13 0.1056 4 0.2000

25 0.0467

generation digital video broadcasting satellite systems (DVB-
S2), assuming a baud rate of 10 Mbaud [22]. Although the
Wiener model does not apply to this case, for the proposed
detectors a properly optimized value of σΔ = 0.5 degrees
has been used. For comparison purposes we also added the
simulation results for the ideal case of perfectly known phase.
In all cases a maximum of 50 iterations is performed. Despite
the model mismatch, both the proposed dp-algorithm (with
D = 32 discretization levels) and Tikh-algorithm exhibit a loss
of less than 0.05 dB at a BER of 10−5 even if, for increasing
L and decreasing h, the resulting CPM modulation has a much
higher sensitivity to phase noise.

VI. CONCLUSIONS

In this paper, the problem of MAP symbol detection for
CPM signals transmitted over coherent and phase noise chan-
nels has been faced. The proposed algorithms have been
derived based on factor graphs and the sum-product algorithm
and using the Laurent representation of a CPM signal as
sum of linearly modulated components. In particular, only
the principal components have been considered, since neglect-
ing the other components only a minor degradation results.
The derived low-complexity algorithms are fundamental to
implement iterative decoding receivers for high-order partial
response CPM formats.

For the phase noise channel, it has been shown that simpli-
fied MAP symbol detection can be implemented based on a
forward-backward single estimation of the phase probability
density function and a final completion. For the practical
implementation of the forward-backward estimator, two al-
gorithms have been proposed. The first one is based on the
phase discretization and becomes optimal for a large enough
number of discretization levels. To reduce the computational
complexity, some approximations have been introduced in
order to derive a new algorithm which exhibits a very good
performance and a much lower complexity.

APPENDIX I
PROOF OF THE PROPERTIES

In this appendix, we prove the properties introduced in Sec-
tion IV. For the first property, we concentrate on the forward
recursion, since the extension to the backward recursion is
trivial. This property can be demonstrated by induction. First
of all, property (31) holds for n = 0, since νf,0(φ−1, θ0) =
P (φ−1)p(θ0) = 1/(p2π). Hence, it satisfies the property. We
now suppose that the property is true for a given n and we
prove that it is true also for n + 1. By evaluating (28) for
φ̇n = [φn + 
]p, observing that if (φn, φ̌n−1, αn) satisfy (7),
then ([φn + 
]p, [φ̌n−1 + 
]p, αn) satisfy as well (see (7)),
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TABLE III

COMPUTATIONAL LOAD PER CPM SYMBOL PER ITERATION, FOR THE CPM SIGNALS CONSIDERED IN FIG. 6 AND FIG. 7.

Fig. 6 Fig. 7
Tikhonov dp-BCJR A-SISO-FO Tikhonov dp-BCJR A-SISO-FO

Operations 152 1664 112 576 4992 1344
LUT accesses 28 288 48 114 864 576

Memory requirement 4 32 4 5 72 24

and that Hn(αn, φn−1 + 
, θn) = Hn(αn, φn−1, θn + 2πh
)
(see (7), (25), and the expression of ak,n as a function of
a0,n−1 and αn in [12]), and finally using the Property 1 for
νf,n(φn−1, θn), we obtain

νf,n+1(φ̇n, θn+1) =
∑
αn

P (αn)
∫
νf,n(φ̌n−1, θn + 2πh
)

·Hn(αn, φ̌n−1, θn + 2πh
)g(θn, σ
2
Δ; θn+1)dθn . (A1)

Now, by applying to the integral the change of variable
ψn = θn + 2πh
 and noting that, for each angle ε, g(θn −
ε, σ2

Δ; θn+1) = g(θn, σ
2
Δ; θn+1 + ε), the Property 1 for

νf,n+1(φn, θn+1) easily follows.
We now take into account the second property. The com-

pletion (30) is of the form

Pe(αn) =
∑
φn

Φ(φn;αn) (A2)

where the expressions of the terms Φ(φn;αn) can be easily
obtained by comparing (A2) with (30). We now prove that,
for any given αn, Φ(φn;αn) does not depend on φn. By
computing Φ(φn;αn) for φ̇n = [φn + 
]p and using (31)
and (32), we have

Φ(φ̇n;αn) =
∫∫

νf,n(φ̌n−1, θn + 2πh
)

· νb,n+1(φn, θn+1 + 2πh
)Hn(αn, φ̌n−1, θn + 2πh
)

· g(θn, σ
2
Δ; θn+1)dθndθn+1 (A3)

from which, after a change of variable in the integrals, it
follows that

Φ(φ̇n;αn) = Φ(φn;αn) . (A4)

REFERENCES

[1] J. Anderson, T. Aulin, and C.-E. Sundberg, Digital Phase Modulation.
New York: Plenum Press, 1986.

[2] K. R. Narayanan and G. L. Stüber, “Performance of trellis-coded CPM
with iterative demodulation and decoding,” IEEE Trans. Commun.,
vol. 49, pp. 676–687, Apr. 2001.

[3] P. Moqvist and T. M. Aulin, “Serially concatenated continuous phase
modulation with iterative decoding,” IEEE Trans. Commun., vol. 49,
pp. 1901–1915, Nov. 2001.

[4] B. E. Rimoldi, “A decomposition approach to CPM,” IEEE
Trans. Inf. Theory, vol. 34, pp. 260–270, Mar. 1988.

[5] M. Xiao and T. M. Aulin, “Serially concatenated continuous phase mod-
ulation with symbol interleavers: performance, properties and design
principles,” in Proc. IEEE Global Telecommun. Conf., pp. 179–183,
Nov.-Dec. 2004.

[6] G. Colavolpe, G. Ferrari, and R. Raheli, “Reduced-state BCJR-type
algorithms,” IEEE J. Sel. Areas Commun., vol. 19, pp. 848–859, May
2001.

[7] R. Balasubramanian, M. P. Fitz, and J. K. Krogmeier, “Optimal and
suboptimal symbol-by-symbol demodulation of continuous phase mod-
ulated signals,” IEEE Trans. Commun., vol. 46, pp. 1662–1668, Dec.
1998.

[8] J. Huber and W. Liu, “An alternative approach to reduced-complexity
CPM-receivers,” IEEE J. Sel. Areas Commun., vol. 7, pp. 1437–1449,
Dec. 1989.

[9] W. Tang and E. Shwedyk, “ML estimation of symbol timing and carrier
phase for CPM in Walsh signal space,” IEEE Trans. Commun., vol. 49,
pp. 969–974, June 2001.

[10] P. Moqvist and T. Aulin, “Orthogonalization by principal components
applied to CPM,” IEEE Trans. Commun., vol. 51, pp. 1838–1845, Nov.
2003.

[11] P. A. Laurent, “Exact and approximate construction of digital phase
modulations by superposition of amplitude modulated pulses (AMP),”
IEEE Trans. Commun., vol. 34, pp. 150–160, Feb. 1986.

[12] U. Mengali and M. Morelli, “Decomposition of M -ary CPM signals
into PAM waveforms,” IEEE Trans. Inf. Theory, vol. 41, pp. 1265–1275,
Sept. 1995.

[13] G. Colavolpe and R. Raheli, “Reduced-complexity detection and phase
synchronization of CPM signals,” IEEE Trans. Commun., vol. 45,
pp. 1070–1079, Sept. 1997.

[14] G. Ungerboeck, “Adaptive maximum likelihood receiver for carrier-
modulated data-transmission systems,” IEEE Trans. Commun., vol. com-
22, pp. 624–636, May 1974.

[15] G. Colavolpe and R. Raheli, “Noncoherent sequence detection of con-
tinuous phase modulations,” IEEE Trans. Commun., vol. 47, pp. 1303–
1307, Sept. 1999.

[16] G. D. Forney, Jr., “Lower bounds on error probability in the presence of
large intersymbol interference,” IEEE Trans. Commun., vol. 20, pp. 76–
77, Feb. 1972.

[17] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[18] G. Colavolpe and A. Barbieri, “On MAP symbol detection for ISI
channels using the Ungerboeck observation model,” IEEE Commun.
Lett., vol. 9, pp. 720–722, Aug. 2005.

[19] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519,
Feb. 2001.

[20] M. Peleg, S. Shamai (Shitz), and S. Galán, “Iterative decoding for coded
noncoherent MPSK communications over phase-noisy AWGN channel,”
IEE Proc. Commun., vol. 147, pp. 87–95, Apr. 2000.

[21] A. Anastasopoulos and K. M. Chugg, “Adaptive iterative detection for
phase tracking in turbo coded systems,” IEEE Trans. Commun., vol. 49,
pp. 2135–2144, Dec. 2001.

[22] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,” IEEE J. Sel. Areas
Commun., vol. 23, pp. 1748–1757, Sept. 2005.

[23] Q. Zhao, H. Kim, and G. L. Stüber, “Adaptive iterative phase syn-
chronization for serially concatenated continuous phase modulation,”
in Proc. IEEE Military Comm. Conf. (MILCOM), pp. 78–83, Oct. 2003.

[24] Q. Zhao, H. Kim, and G. L. Stüber, “Innovation-based MAP estimation
with application to phase synchronization for serially concatenated
CPM,” IEEE Trans. Wireless Commun., vol. 5, pp. 1033–1043, May
2006.

[25] A. Anastasopoulos and K. M. Chugg, “Adaptive soft-input soft-output
algorithms for iterative detection with parametric uncertainty,” IEEE
Trans. Commun., vol. 48, pp. 1638–1649, Oct. 2000.

[26] A. P. Worthen and W. E. Stark, “Unified design of iterative receivers
using factor graphs,” IEEE Trans. Inf. Theory, vol. 47, pp. 843–849,
Feb. 2001.

[27] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital
Receivers (Applications of Communications Theory). Plenum Press,
1997.

[28] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication
Receivers. John Wiley & Sons, 1998.

[29] P. Moqvist and T. Aulin, “Power and bandwidth efficient serially
concatenated CPM with iterative decoding,” in Proc. IEEE Global
Telecommun. Conf. (San Francisco, CA), Dec. 2000.



2496 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY 2007

[30] S. ten Brink and G. Kramer, “Design of repeat–accumulate codes
for iterative detection and decoding,” IEEE Trans. Signal Processing,
vol. 51, pp. 2764–2772, Nov. 2003.

[31] M. Xiao and T. Aulin, “Irregular repeat continuous phase modulation,”
IEEE Commun. Lett., vol. 9, pp. 723–725, Aug. 2005.

[32] S. Crozier and P. Guinand, “High-performance low-memory interleaver
banks for turbo-codes,” in Proc. IEEE Vehicular Tech. Conf., VTC Fall
2001, pp. 2394–2398, Oct. 2001.

Alan Barbieri was born in Parma, Italy, in 1979. He
received the Dr. Ing. degree in Telecommunications
Engineering (cum laude) and the Ph. D. degree in In-
formation Technology from the University of Parma,
Parma, Italy, in 2003 and 2007, respectively. Cur-
rently, he is a Research Associate at Dipartimento
di Ingegneria dell’Informazione (DII), University of
Parma.

His main research interests include digital trans-
mission theory and information theory, with par-
ticular emphasis on channel coding, iterative joint

detection and decoding algorithms, estimation of unknown parameters and
algorithms for synchronization. He participates in several research projects
funded by the European Space Agency (ESA-ESTEC) and important telecom-
munications companies.

Mr. Barbieri was the recipient of the Premio Conti for the year 2003, as
the best graduate in Information Engineering at the University of Parma in
the academic year 2003.

Giulio Colavolpe (S’96-M’00) was born in
Cosenza, Italy, in 1969. He received the Dr. Ing.
degree in Telecommunications Engineering (cum
laude) from the University of Pisa, Italy, in 1994 and
the Ph.D. degree in Information Technology from
the University of Parma, Italy, in 1998. Since 1997,
he has been at the University of Parma, Italy, where
he is now an Associate Professor of Telecommu-
nications. In 2000, he was Visiting Scientist at the
Institut Eurécom, Valbonne, France.

His main research interests include digital trans-
mission theory, adaptive signal processing, channel coding and information
theory. His research activity has led to numerous scientific publications in
leading international journals and conference proceedings and a few industrial
patents. He is also co-author of the book Detection Algorithms for Wireless
Communications, with Applications to Wired and Storage Systems (New York:
John Wiley & Sons, 2004). In 2005, he received the best paper award
at the 13th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM’05).


