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SimpliFly: A Methodology for Simplification and Thematic

Enhancement of Trajectories

Katerina Vrotsou∗, Halldor Janetzko†, Carlo Navarra∗, Georg Fuchs‡, David Spretke†,

Florian Mansmann†, Natalia Andrienko‡, and Gennady Andrienko‡

Abstract

Movement datasets collected using today’s advanced tracking devices consist of complex trajectories in

terms of length, shape, and number of recorded positions. Multiple additional attributes characterizing the

movement and its environment are often also included making the level of complexity even higher. Simplifi-

cation of trajectories can improve the visibility of relevant information by reducing less relevant details while

maintaining important movement patterns. We propose a systematic stepwise methodology for simplifying

and thematically enhancing trajectories in order to support their visual analysis. The methodology is applied

iteratively and is composed of: (a) a simplification step applied to reduce the morphological complexity of

the trajectories, (b) a thematic enhancement step which aims at accentuating patterns of movement, and

(c) the representation and interactive exploration of the results in order to make interpretations of the find-

ings and further refinement to the simplification and enhancement process. We illustrate our methodology

through an analysis example of two different types of tracks, aircraft and pedestrian movement.

Keywords: Visual analysis, trajectories, simplification, thematic enhancement, clustering.

1 Introduction

Technological advances in storage capacity and data collection methods are leading to huge, multivariate move-

ment datasets that are challenging to analyse. In such datasets a trajectory represents the movement of an object,

and is defined by a sequence of recorded positions each comprised of at least its geographic coordinates and a

time-stamp. Trajectories collected through GPS and advanced tracking devices typically sample the movement

with very high frequency. Apart from position and time, additional information may be collected or computed

concerning the characteristics of the movement (speed, acceleration, course, turn rate, etc.), the characteristics

of the moving objects (e.g. physical conditions), and the environment of the movement (e.g. weather).

As a result, trajectories become large in terms of the number of points defining them, and in addition the

information available at each such point is multivariate and may be measured at a very high level of detail. Often

the information load becomes overwhelming. Visually analysing such datasets is difficult due to: (a) perceptual

limitations – tiny elements or small differences are hard to distinguish; (b) cognitive limitations – the user cannot

keep the full information in mind and needs to focus on relevant items, which may be hard to find amongst all

the details; and possibly even (c) performance issues – rendering times for many, complex trajectory elements

may impede interactivity. Hence, simplification is needed to improve the visibility of relevant information by

omitting unnecessary details while maintaining the overall context and letting the user focus on the important

data features.

A primary focus in the analysis of movement data is the identification and exploration of movement pat-

terns. Movement patterns, in this context, are representations of behaviour [5] of single or groups of moving

objects, or relations [3] within and between the objects themselves and/or the characteristics of their movement.
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As such, movement patterns are elusive to define and highly context dependent [29]. There has been increas-

ing research work concerned with defining and categorizing movement patterns and appropriate methods for

revealing such [5, 3, 29, 12, 41]. In this work we wish to achieve a flexible definition of movement patterns

by allowing analysts to select characteristics of movement that are interesting to them in the context of their

analysis. A pattern is then identified through similarity of these characteristics. We are using a visual analytics

approach for revealing such patterns by combining data mining and visualization techniques.

The core contribution of this paper is the establishment of a systematic methodology for visually analysing

trajectories based on simplification and thematic enhancement. Within this methodology we propose two new

trajectory simplification methods. Our approach consists of three interconnected steps:

1. Trajectory simplification is applied to reduce the complexity of the trajectory structure. We consider three

different task-dependent simplification types and introduce new methods for two of them (Section 3).

2. Thematic enhancement is applied to the simplified trajectories to accentuate patterns with respect to

attributes characterizing the trajectory segments (Section 4).

3. Representation and exploration techniques are used to display and interact with the processed trajectories

in two and three dimensions (2D and 3D resp.) facilitating their analysis and providing feedback for

further refinement of the simplification and enhancement (Section 5).

We aim to achieve a more flexible exploratory analysis situation in which the analyst has the opportunity

to interact with complex information in a simplified way. In order to preserve relevant movement patterns, we

want to simplify the trajectories not only based on their shapes and other geometric properties, but with respect

to various attributes characterizing the movement; both structural and thematic.

Our paper presents a generic methodology, which can be implemented in various ways, rather than a par-

ticular system or toolkit. To keep to the focus of the paper, we avoid presenting the user interface specifics,

performance metrics, and other implementation-specific details.

2 Related work

Research in the domain of movement data analysis is extensive and continuously increasing, summarizing

examples include [3, 18, 22]. In the scope of this paper, we limit our discussion to research directly related to the

three steps of our presented methodology: trajectory simplification, thematic enhancement and representation

and exploration approaches.

2.1 Trajectory simplification

am not sure that this reference is relevant. I would omit it.

Research in the geographic community suggests a number of approaches to geometric simplification (e.g.,

[13, 50, 36]) and smoothing (e.g., [9]) of lines for generalizing angular lines (e.g., for canals or buildings),

sinuous lines (e.g., for hydrography) and contour lines (e.g., for reliefs) in maps, especially when drawing these

maps on different scales. Laube and Purves [31] studied the effects of point sampling for various scales based on

high-resolution animal movement trajectories. While these methods only simplify the lines without distorting

the space, there is a group of methods involving space distortion. LineDrive [1], for example, displays route

maps in such a way that the areas with complex driving directions are enlarged whereas long highway sections

are shrunk. Most of the remaining road network is not displayed. Line schematization uses predefined sets of

angles for representing paths (cf. [17]).

Our research focuses on line simplification without space distortion. A very well known approach among

geometry-based simplification is the Douglas-Peucker algorithm [13]. Despite it’s limitations [49] the ap-

proach is widely used and we, therefore, choose it a representative of this group of simplification methods.

As an addition to such conventional geometric simplification, we suggest two new approaches, density-based

and property-based simplification, so that the most suitable approach can be chosen depending on the data

characteristics and analysis tasks.
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2.2 Thematic enhancement

Thematic enhancement of trajectories is based on dividing trajectories into episodes. Dykes and Mountain

[14] define movement episodes as fragments of trajectories where movement characteristics (speed, direction,

sinuosity, etc.) are relatively constant whereas a significant change indicates the beginning of a new episode.

Partitioning of trajectories into episodes is conventionally called trajectory segmentation. Buchin et al. [8]

discuss different spatio-temporal criteria for segmenting trajectories. A wide variety of segmentation methods

have been developed to address such criteria while giving substantial attention to performance (e.g., [2, 39]).

Trajectory segmentation is commonly done based solely on movement characteristics and does not consider

other kinds of position-related attributes. There has been, however, an increasing amount of research con-

centrating on the importance of considering surrounding, contextual, and application dependent information

in mobility analysis, thus promoting the analysis of semantically enriched trajectories instead of simply raw

movement. This work is summarized in Parent et al. [41]. In our work, we approach such semantic enrichment

by supporting the segmentation of trajectories with regard to attributes that are deemed relevant to the analysis

goals. Hence, the notion of episodes is generalized to arbitrary position-related attributes.

The results of trajectory segmentation are used for further analysis of movement data. Laube et al. [30]

search for similar episodes in trajectories of several moving objects for detecting particular patterns of relative

movements. Dodge et al. [11] analyse characteristics of trajectory episodes to classify the movement modes.

Sester et al. [44] segment trajectories into a graph reflecting typical behaviour and identify unusual behaviour

based on it.

Our thematic enhancement approach uses clustering of episodes based on multiple attributes characterizing

them in order to reveal movement patterns. Clustering of trajectory fragments has previously been done for

different purposes. Lee et. al. [33] introduce a partition-and-group clustering framework to enable the dis-

covery of common sub-trajectories in multiple trajectories. A similar approach using incremental clustering is

provided in [35]. For the classification of trajectories according to their properties, Lee et al. [32] propose a

framework that generates a hierarchy of discriminative features. Our clustering differs from these methods in

that it is applied to arbitrary attributes chosen according to the analysis goals and is used for supporting visual

exploration of movement patterns.

Movement patterns can be extracted from trajectories using purely automatic methods, visual exploration

approaches or combinations of both [3, 29, 41]. Among these, an advantage of visual exploration is that it

does not require each kind of potentially interesting pattern to be formally and precisely defined and the search

algorithm to be developed and implemented. Instead, interesting attributes characterising the movement can

be selected and the behaviour of the data with respect to these ad-hoc queries can be observed. Thus, visual

exploration can allow the analyst to discover new, previously unknown or unexpected kinds of movement

patterns.

2.3 Representation and exploration

The most common techniques for visual representation of discrete objects’ movement in a spatial context are

static and animated maps [47] and interactive space-time cubes [27, 28] with linear symbols representing tra-

jectories. Movement in three-dimensional space, e.g., in the air or under water, are harder to visualize than

movements in 2D. Ware et al. [52] represent a trajectory of a whale by a 3D ribbon in a perspective view with

glyphs on its surface showing the direction of the movement. Hurter et al. [25] represent multiple trajectories

of aircraft in horizontal or vertical 2D projections with animated transitions from one projection to another.

Since these techniques are not scalable to a large number of trajectories nor to complex trajectories, various

aggregation-based methods are intensively used: temporal histograms, traffic density surfaces, accessibility

surfaces [14, 16, 54], flow maps [20, 42, 46, 7], and spatially ordered treemaps [55]. A comprehensive review

of the existing ways to aggregate movement data and techniques for visually displaying the results is provided

in [3]. However, aggregation across multiple trajectories is not a suitable approach when the task is to explore

movement patterns occurring within trajectories. We perform aggregation individually within each trajectory

by uniting consecutive trajectory segments into episodes and deriving aggregate characteristics of the episodes

from the original data.
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(a) Geometry-Based Simplification (GBS) (b) Density-Based Simplification (DBS) (c) Property-Based Simplification (PBS)

Figure 1: Galapagos albatross trajectory simplified by three simplification approaches and represented using tapered

segments [24]. (a) Geometry-Based Simplification (using the Douglas-Peucker algorithm with ε = 0.05◦) achieves a

good overall fit to the original trajectory. (b) Density-Based Simplification (with ε = 0.01◦) precisely models the long

migration segments and simplifies dense regions so that the path of the albatross can be nicely followed after entering the

marked dense region on the right. (c) Property-Based Simplification (with upper bound k(N) = 50%) merges segments

having similar attribute properties while preserves detail where segments display change in properties.

There are relatively few methods for analysing relations between moving objects and elements of the spatio-

temporal context of the movement. The dynamics of the distances of moving objects to selected locations is

computed and visualized in [10]. Lundblad et al. [37] attach data about weather conditions to positions of ships

and display the data on interactive linked views. Fedak et. al. [15] represent movement of sea animals together

with the context information such as sea surface temperature, shoreline, and ocean depth.

Our methodology allows the use of any visualization techniques suitable for representing individual tra-

jectories, i.e., not involving aggregation across multiple trajectories. The geometries of trajectories can be

represented by lines, ribbons, tubes, or sequences of glyphs in a two- or three-dimensional display. Thematic

characteristics of trajectory episodes can be encoded by colours of the corresponding parts of these geometric

representations or by superimposed symbols (glyphs).

3 Trajectory simplification

The initial step of our approach involves the morphological simplification of trajectories. Each trajectory is

simplified separately and the result of such simplification is a trajectory that is comprised of fewer segments

than the original one by aggregating consecutive data points defining these segments. The primary reason

for this is to reduce the number of segments constituting the trajectories so as to bring forward their salient

characteristics without unnecessary, potentially distracting detail; secondarily, these simplifications, in princi-

ple, reduce rendering and interaction response times, allowing an analyst to fluently interact with even larger

datasets. Depending on the goals of analysis, we distinguish three types of simplification tasks:

3.1 Geometry-based simplification (GBS). The main goal is to convey the overall shape of a trajectory. GBS

only considers (geographic) vertex coordinates and disregards thematic attributes associated with trajec-

tory segments.

3.2 Density-based simplification (DBS). The goal is to show segment-related information with as much detail

as possible while meeting limitations of screen resolution and perception. This means areas of high data

point density (in view space) are simplified to yield fewer aggregate segments, whereas in less dense

areas the original trajectory data points are represented directly. Generally, the higher the on-screen data

point density the more simplification is needed. This type of simplification focuses on where a moving

object has been - general locations visited, predominant movement direction, etc. - and results in an

aggregated trajectory showing the overall route followed.
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3.3 Property-based simplification (PBS). The goal is to enable detection and exploration of relevant move-

ment patterns in terms of spatial and thematic attributes. A trajectory is simplified by dividing it into

homogeneous parts in terms of attributes of interest. The approach includes a trade-off between degree

of simplification and degree of internal homogeneity. This type of simplification focuses on the how

a moving object has moved, and aims at simplifying without losing relevant multi-attribute semantic

movement patterns.

The following Sections 3.1-3.3 describe approaches corresponding to each of the defined simplification

tasks. Examples of these can be seen in Figure 1 where Galapagos albatross flight trajectories have been

simplified.

3.1 Geometry-based simplification approach

Geometry-based simplification approaches aim at detecting the most significant points of a shape and preserving

them while omitting less important points. A popular representative of this group of methods is the Douglas-

Peucker algorithm [13] for line simplification. The algorithm first finds the farthest point from the straight line

connecting the first and last point of the line that needs to be simplified. This point is used to split the line into

two parts. Then the Douglas-Peucker algorithm is recursively applied to each part until there is no point whose

distance to the straight connecting line is higher than a given threshold. There are variants of the Douglas-

Peucker algorithm that take into account additional information and give more weight to some points than to

others, e.g., time spent in a location. Points with low weights can be discarded by applying a user-defined

threshold.

3.2 Density-based simplification approach

The purpose of density-based simplification (DBS) is to remove detail from trajectory portions that exceed

screen resolution and/or perceptual limits: dense clusters of data points can, in principle, be replaced by a single

cluster representative. This kind of simplification is, hence, an inherently viewpoint-dependent operation based

on screen resolution and the current zoom level (in 2D) or virtual camera position (in 3D). Smooth interaction

with the representation requires its application at interactive frame rates. The naı̈ve approach of density-based

clustering directly in screen space is thus hardly feasible as it implies re-calculating clusters for all visible

trajectories based on changed node densities for every update of the viewpoint. We therefore propose a more

efficient technique using real world/object coordinate-based densities.

The key idea here is to capture the relative densities of trajectory points in object space once in a clustering

preprocess, and as the viewpoint changes these cluster results are transformed into screen space to obtain

absolute (pixel-based) densities, which is computationally far less demanding. Figure 2 shows a schematic

overview of this approach. Its individual steps are detailed in the following subsections.

3.2.1 Clustering in data space

The primary notion of density-based clustering is that of so-called core objects that have at least MinPoints

neighbouring points within a maximum neighbourhood distance threshold ε according to a defined distance

metric. Points that are in the neighbourhood of at least one core point are called density-reachable. Core points

and density-reachable points constitute dense regions or clusters, whereas other points are considered noise not

belonging to any cluster. Both MinPoints and ε are user-selected input parameters to the clustering process [23].

OPTICS [6] is an extension to this general density-based approach that applies a specific sorting method

to the input points prior to clustering. Beginning with an arbitrary core point, it first builds a core-reachability

distance plot for a given value of MinPoints and a maximum distance value, dmax. From this plot cluster

partitions of the point set can be extracted for different neighbourhood distance thresholds, ε ≤ dmax.

We apply OPTICS sorting, as a one-time preprocessing step, to generate a core-reachability distance plot

for a trajectory’s data points (Figure 2A). The plot is built for a neighbourhood size MinPoints = 2. This allows

extraction of clusters of only two trajectory points as the smallest possible simplification step. dmax is chosen

as the length of the trajectory’s bounding box diagonal. Density clustering the set of trajectory data points
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Figure 2: Schematic depiction of the density-based simplification approach. The input trajectory points are ordered into

a core-reachability distance plot using OPTICS (A). From this plot a cluster partition is extracted depending on current

on-screen size (B). Finally the clustered data points are processed sequentially to generate a simplified trajectory from

cluster representatives (C).

with this neighbourhood distance threshold guarantees that for any one point all other points are within its

neighbourhood and thus, all belong to a single cluster. Therefore, the highest degree of simplification reached

by our DBS approach is to collapse the entire trajectory into a single point.

3.2.2 Clustering result transformation

To arrive at an actual, screen resolution-dependent clustering of a trajectory’s data points, the core-reachability

distance plot of that trajectory is evaluated for a specific distance value, ε , according to the OPTICS algo-

rithm [6]. This allows selection of an overall simplification level for the trajectory: higher values of ε result in

larger and fewer clusters being extracted from the plot (and thus, a more simplified trajectory representation),

whereas smaller values of ε generate smaller and more clusters retaining more of the original trajectory’s de-

tails. Note that the evaluation of the core-reachability distance plot has linear complexity with respect to the

number of trajectory points.

In our approach, ε is determined based on the width in pixels of the primitive used to represent trajectory

segments (e.g. simple lines or triangles, cf. top-left Figure 2). For this, an inverse projection of the pixel

diagonal length at the current zoom level into data coordinate space is performed. For 2D maps, ε is determined

by finding the geographic distance covered by the diagonal of a pixel in the map representation multiplied by

the primitive width in pixels, thus yielding ε as the primitives’ width in data coordinate space. This results in

segments of the simplified trajectory that are at least as long as they are wide in screen space. Shorter segments

would only add variations in the trajectory’s path which are hard or even impossible to perceive, since the

corresponding bends between segments would be masked by the resulting overplot.

3.2.3 Simplification

The final step is to derive a simplified trajectory representation from the view- and resolution-dependent data

point clusters by replacing each cluster by its representative point, thus reducing the number of trajectory line

segments (Figure 2C). In our approach we use the arithmetic mean point of a cluster.

However, a trajectory is a temporally ordered sequence of points, whereas data points are clustered only

with respect to their spatial positions. This creates the risk of the temporal aspect being lost as points from

temporally disjoint trajectory segments may be assigned to the same cluster (cf. cluster C1 in the lower-right

of Figure 2). In order to avoid losing the temporality of the trajectories we address this risk explicitly by se-

quentially processing the trajectory data points from beginning to end. Consecutive points assigned to the same

cluster ID are aggregated to obtain their mean representative, and as the next ID in sequence is encountered,

the current simplified trajectory segment is finalized. Thus, if a cluster ID is re-encountered later in a trajectory

6



the corresponding points from the cluster are associated with a different segment. Figure 2C shows an example

for this: points from cluster C1 are aggregated into two distinct vertices for the simplified trajectory.

Also note that singleton data points, or ’noise’ in the selected cluster partition, are never merged with any

other trajectory points, because they are sufficiently far from any other location at the current simplification

level. On the one hand, there is no need in merging since these points do not contribute to clutter and over-

plotting; on the other hand, these points may convey important trajectory shape and object location information

that should be preserved.

3.3 Property-based simplification approach

The property-based simplification approach (PBS) makes use of the regionalization method proposed in [19, 21]

to perform structural simplification of trajectories.

Regionalization aims to aggregate a large set of spatial objects into a smaller set of spatially contiguous

regions that share similar attributes by optimizing an objective function. Guo [19] proposed a set of six methods

for performing regionalization under the name ‘REDCAP’ which stands for ‘REgionalization with Dynamically

Constrained Agglomerative Clustering and Partitioning’. Each of the methods is applied, in a similar manner, in

two steps: first, a spatially contiguous hierarchy of the set of spatial objects is retrieved by means of hierarchical

clustering, and second, the hierarchy is partitioned in order to retrieve a set of aggregate regions. The six

methods included in REDCAP are made up of three clustering methods: (1) single-, (2) average-, and (3)

complete-linkage clustering (SLK, ALK, and CLK respectively), and two strategies for spatially constraining

the clustering process: (1) first-order and (2) full-order constraining (see [19] for details on the methods).

Regionalization, hence, is a process of simplifying a set of connected spatial regions with respect to both

the regions’ structural/geographical properties as well as additional attributes characterizing them. Reasons for

choosing this method are that: (1) an aggregation hierarchy instead of an absolute segmentation is produced

which allows switching between simplification levels, (2) the spatial contiguity of the trajectory segments is

inherently considered in the computation of the aggregation hierarchy, thus preserving the temporal aspect of

movement, and (3) the user has the flexibility to choose the attributes and clustering method to be used.

3.3.1 REDCAP adaptation for trajectory regionalization

Our property-based simplification approach uses the four best performing methods included in REDCAP: Full-

Order ALK, SLK, CLK, First-Order SLK, and also Ward’s hierarchical clustering method [51].

Each trajectory is considered as a unique set of spatial objects – the trajectory positions – and regionaliza-

tion is applied to each trajectory separately. The process of simplifying a trajectory works as follows: The user

interactively selects the attributes that should be considered in the regionalization as well as the type of clus-

tering to be used, and then initializes the process. First, a contiguity matrix is created which sets connectivity

constraints on the trajectory positions. Then, clustering is applied with respect to the selected attributes and

contiguity constraints, creating a hierarchy of connections in the form of a trajectory node dendrogram (Fig-

ure 3A). Note that contiguity constraints in particular enforce only adjacent trajectory points are ever merged

into clusters, which ensures that the temporality of the trajectories is preserved.

A partitioning process is performed next that iteratively divides this hierarchy, from the top down, into a

pre-set maximum number k of regions (movement episodes). At each iteration one hierarchy node is split into

two sub-trees corresponding to spatially contiguous movement episodes, until k is reached (Figure 3A). This

step therefore results in k aggregation levels for trajectory simplification. The partitioning is performed in such

a manner that the heterogeneity of each region is minimized. This heterogeneity depends on (1) the values

of the user-selected attributes characterizing the region, (2) the region size, (3) the standard deviation of each

region, and (4) the preservation of the original data distribution [19].

3.3.2 Selection of k

Regionalization in REDCAP requires the user to set the maximum number of regions, k, to be retrieved for the

set of spatial objects. Since we consider each trajectory as a separate set, each trajectory requires an individual
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Figure 3: Schematic depiction of the property-based simplification approach. Contiguity constrained hierarchical clus-

tering is applied to the input trajectory (A) in order to retrieve a hierarchy of regionalization results. An optimal level is

selected depending on segmentation quality (B). Finally, the trajectory is simplified by merging segments that are clustered

together at the chosen level.

k depending on its length (number of contained points, N) and character. Therefore, allowing a user to set a

single global value for k is not possible. We handle this requirement by allowing the user to instead specify

a global upper bound of desired simplification. This bound is expressed as a percentage value relative to the

trajectory’s length that determines the maximum number of episodes (regions) generated for each. The default

value is k(N) = 50%, or k = N/2 regions. This can optionally be combined with a global absolute upper bound,

kmax, so that for each trajectory, k = min(k(N),kmax).
The result of the entire process is a hierarchy of k aggregation levels each of which contains a unique

regionalization – in our case this corresponds to a trajectory segmentation into movement episodes. Each

level consists of i = 1 . . .k regions that correspond to clusters of position records of the original trajectory.

The computation of this hierarchy is a one-time preprocessing step and needs to be recomputed only if a new

simplification with respect to a different set of thematic attributes is to be obtained.

3.3.3 Quality and aggregation level selection

After the k aggregation levels have been retrieved, a quality measure is computed for each level (k), analogous

to the heterogeneity measure used in the partitioning step. The level with the best quality is chosen as our

simplification result (Figure 3B).

We suggest the optimal aggregation level as the one that minimizes the function:

arg min
i∈K

(

1

|Ki|
∑
j∈Ci

n j

N
∑
a∈A

var(a)

)

(1)

where K = {Ki} the set of retrieved regionalizations with |Ki| = i regions at each level i ∈ K; Ci is the set

of clusters that compose each level i, having n j points in each cluster j ∈ Ci; A is the set of attribute values

characterizing each cluster of points with var(a) the variance of each attribute; and N the length of the trajectory

(total number of points).

By using this function, the resulting quality value of each aggregation level is a trade-off between different

characteristics of the regionalization; since the value takes into account not only the attribute variation within

each region but also the number of regions composing the level, the size of each region, and the total size of the

trajectory. We thus avoid minimally simplified trajectories with many small regions achieving unnecessarily

high quality scores.
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Figure 4: Results of our two proposed simplification methods applied to the same trajectory and displayed in the same

image using tapered segments: DBS (blue) and PBS (red). Differences between the methods are highlighted in yellow.

Left: a single PBS trajectory segment of constant descend corresponds to many DBS segments of slightly varying course.

Right: a single blue DBS segment corresponds to many PBS segments of an upwards spiral.

3.3.4 Simplification

After selecting the appropriate aggregation level, the original trajectory is simplified by merging points belong-

ing to the same region. The fact that spatial contiguity of the points is considered in the regionalization ensures

that it is not possible to merge points located far apart in neither space nor time. As in DBS, each region’s

representative point is set to the arithmetic mean of the merged point positions and is assigned the average

value of their thematic attributes.

3.4 Method comparison and discussion

The three simplification approaches considered produce trajectories of different structure revealing different

movement properties. These differences are illustrated in Figure 1 using a dataset of Galapagos albatross flight

trajectories.

Geometry-based simplification represents strictly structural properties of movement without accounting for

any additional attributes. We have, in this work, chosen the Douglas-Peucker algorithm as a popular repre-

sentative of point-based algorithms for line simplification. Such algorithms, however, have been disputed by

several authors (see e.g., [49, 48]) as being suitable only for minimal simplification and not for generaliza-

tion of complex lines. In particular, as can be seen in Figure 1(a), the Douglas-Peucker algorithm (like other

line simplification methods) does not give sufficient geometric simplification in the case of self-intersecting

trajectories, for which the density-based simplification method can give better results. Since we are aiming

for simplification that goes beyond a trajectory’s raw geometry, in the following we will concentrate on our

proposed density-based and property-based simplification.

Density-based simplification (Figure 1(b)) is most appropriate for revealing where a moving object has

been with the highest possible detail with respect to resolution, zoom level and information density. Hence, the

approach addresses primarily screen and perceptual limitations in terms of how much detail is actually visible

and needed. Property-based simplification (Figure 1(c)) focuses instead on how a moving object behaves with

respect to both structural and thematic attributes. The approach primarily addresses cognitive limitations. To

some extent, perceptual limitations are also addressed since irrelevant differences (w.r.t. selected attributes) are

hidden within the aggregated segments. Display resolution limitations are not of immediate concern, but can

of course be addressed through property filtering to detect the positions of relevant patterns and zooming to see

them in more detail.

Figure 4 shows results of the two new simplification methods proposed in this work (DBS and PBS) applied

to the same 3D trajectory of a flight track, juxtaposed in the same image. The two simplification results look
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dissimilar due to differences between the methods in merging of segments and averaging of their attribute

values. The trajectory is displayed using a tapered segment representation [24] in which the size of each

triangle reflects the size of each segment in order to reveal the most characteristic difference between the two

methods. Using DBS, points that are closely located with respect to a specified threshold are replaced by a

representative point, whereas using PBS merging of points instead depends on the characterizing attributes

being considered in the simplification. Contrariwise, several segments having similar properties are merged by

PBS while these are preserved during DBS. These characteristics can be seen in Figure 4 highlighted in yellow,

to the left a single segment of the PBS simplified red trajectory corresponds to several of the blue one, while to

the right of the figure a single segment of the DBS simplified blue trajectory corresponds to several of the red

one. Such differences are also highlighted in Figure 1. Since movement patterns are defined by the segments’

characteristics of movement (see Section 1), by merging or preserving segments depending on the similarity of

their attributes ensures the preservation of such patterns during the simplification process.

Both proposed methods (DBS and PBS) allow a user to interactively steer the simplification process by ap-

propriately setting parameters depending on task and interest. In DBS a user decides the simplification level by

setting MinPoints and ε as described in Section 3.2. In PBS a user interactively selects the trajectory attributes

that should influence the simplification and the type of clustering to be used as described in Section 3.3.

Simplification of trajectories, by default, implies a trade off between the number of data points and the

accuracy of the simplified representation. Moreover, while actual movement is continuous, data describing

movement are discrete. In the proposed simplification methods we use the mean point of a cluster (in DBS) or

adjacent segments (in PBS) as a suitable representative that considers all merged points in the merging process.

This may change the actual location of the trajectory points and result in irregularly sampled data even if the

original data were regularly sampled. As a consequence, artefacts can be introduced in the representation, such

as the insertion of intersections of trajectories or the displacement of existing intersections’ positions. Even

though this can imply a spatial and temporal distortion between trajectories, their overall movement direction is

retained and the character of the trajectories’ thematic attributes is adequately preserved and represented. There-

fore, since the goal of our methodology is to enable the visual analysis and exploration of movement patterns

in the data and not to study their exact geographical displacement, we accept this compromise. Furthermore,

if intersection (or, more generally, the neighbourhood of trajectories) is an important movement characteristic

for the performed analysis, it is possible to compute and then use attribute(s) reflecting those relations within

our proposed PBS method, as described in Section 3.3. Examples of such attributes may be the distance to the

Nth nearest trajectory or the number of neighbours in a given space-time window; a full taxonomy is available

in [4].

Finally, despite the loss of detail during the simplification, we are preserving the temporal aspect of the

trajectories. When a cluster (i.e., an uninterrupted sequence) of trajectory segments is replaced by a single

representative segment, the latter receives the time reference of the whole cluster. More specifically, the start

and end time of the representative segment correspond to the start time of the first segment and the end time of

the last segment of the cluster respectively. Hence, the time span and the duration of the representative segment

coincide with the time span and duration of the cluster it represents. This means that the temporal information

of each trajectory is coarsened but not distorted.

4 Thematic Enhancement

Understanding and analysing movement requires more than simply studying the geographic displacement of

a moving object. Attributes giving additional information about the trajectory itself and/or the conditions at

the visited positions are important complements in the analysis process [41]. Multiple such attributes may be

available for a trajectory and each of them, separately or in concert, can offer insight into different aspects of the

movement. Enabling the analyst to identify and accentuate these aspects in a flexible manner depending on task

and available data is, therefore, crucial for understanding the behaviour of a moving object. We define thematic

enhancement as this accentuation of movement attributes aiming to reveal movement behaviour. Thematic

enhancement is applied to all trajectories in order to bring forward similarities in movement behaviour which

correspond to movement patterns [5, 29, 12, 41]. We thus use this enhancement to highlight multi-attribute

10



Figure 5: Paragliding trajectories in Chelan Butte, WA, USA displayed using a tube representation with colour signifying

altitude and thickness – speed.

movement patterns existing in the trajectory data. Depending on which movement attributes are chosen to be

accentuated, different types of patterns are revealed. The basic types of such patterns being, according to [5],

similarity, dissimilarity, and arrangement patterns such as trend, concentration and alignment. We achieve the-

matic enhancement by allowing the user to choose and combine visual and computational methods as discussed

below.

Directly mapping attribute values to the colour and/or shape parameters of the trajectory representation

makes it possible to observe continuous changes in movement behaviour and can reveal this way simple, or

primitive, patterns in the data [5, 12]. In Figure 5, for example, changing patterns with regard to altitude and

velocity are revealed by mapping these attributes onto colour and tube diameter respectively. The number of

attributes that can be represented in this way, however, is limited and additional attributes need to be encoded

in extra visual cues such as glyphs attached to the trajectory representation. In Figure 7, for example, triangle

glyphs are overlaid on the segments. Colour and shape of these can be used to encode extra attributes. In our

case the glyph’s aspect ratio is proportional to segment size and its colour indicates the slope of the segment.

In order to avoid confusion of multiple attributes being displayed simultaneously and to be able to com-

municate complex movement patterns to the analyst we apply subsequent thematic clustering to the simplified

trajectories. A feature vector comprising a user-selected subset of attributes allows the analyst to designate

movement properties deemed relevant for analysis. The simplified trajectory segments are clustered into ho-

mogeneous movement episodes with respect to the attribute dimensions defined by this vector. For example, if

the analyst is interested in exploring flock patterns then direction and number of neighbours may be appropriate

segment attributes to explore, while if the interest is in finding similar angular patterns sinuosity and direction

could be chosen instead. Qualitative colouring is then applied to the trajectory representation according to each

segment’s episode classification. Groups of segments with similar properties are distinguished, thus revealing

multi-attribute movement patterns present in the data (Figures 6(e), 7). For this thematic enhancement step,

any combination of a partitioning clustering algorithm with a feature vector-based similarity measure may be

chosen by the analyst. In particular, this allows integration of domain-specific similarity measures suitable for a

particular analysis goal. For the purposes of this paper we have made experiments using K-means, K-medoids,

Expectation Maximization (EM) [23], and Self Organizing Map (SOM) [26]. We have also used Sammon’s

projection [43] to classify trajectory segments into movement episodes. This is done by projecting all trajectory

points onto 2D colour space and then applying tessellation to divide the space into regions reflecting the spatial

density of the data points. The points contained in each obtained region constitute a cluster (episode class) [3].

This thematic enhancement process can be regarded as a further (cognitive) simplification of the trajecto-

ries, since focus is brought to episodes of similar movement patterns with respect to analysis of task-specific

movement properties.

Thematic enhancement is interactively applied by the user to the simplified trajectories who selects arbitrary
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(a) DBS trajectory: 614 segments (b) DBS trajectory: 322 segments (c) DBS trajectory: 9 segments

(d) PCP of PBS trajectory values (e) Enhanced PBS trajectory

Figure 6: Paragliding in Lake Chelan. (a-c) A glider’s trajectory simplified using DBS at various levels of detail resulting

in: (a) 614, (b) 322, and (c) 9 segments. (d-e) The same trajectory simplified with PBS and thematically enhanced. (d)

Parallel coordinates plot (PCP) displaying the attribute values of the PBS trajectory segments coloured by cluster. (e)

Representation of the thematically enhanced PBS trajectory using tapered segments coloured by cluster membership.

combinations of relevant attributes, similarity measure, and clustering algorithm. This makes the methodology

appropriate for visual analysis of a wide range of datasets and analysis goals.

5 Representation & Exploration

We have implemented our methodology in Java and have used the NASA World Wind API [38] for our 3D

visualization environment. The methodology is implemented within a larger visual analytics framework which

includes both two- and three-dimensional representations for visually exploring trajectories. Suitability of one

presentation form or the other is largely determined by the analysis task. If movement patterns are signifi-

cantly influenced by the third dimension (e.g., paraglider flight tracks) a 3D representation is more appropriate,

whereas a focus on visited places (e.g., migrative behaviour) benefits from a projective distortion-free, easier to

navigate 2D representation. In both representation types several primitives are available to represent trajectory

segments: tapered segments (Figure 1), tubes (Figure 5), ribbons (Figure 7), or lines (Figure 8). Each of these

primitives is used to convey different aspects of trajectories.

Lines and ribbons offer a clean representation of the path covered and can be colour-coded according

to attribute or classification values. Ribbons can, moreover, be overlaid by complementing glyphs encoding
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(a) 205 flights (b) Landing and taking off patterns (c) Low altitude flights

Figure 7: Representations of flights over France simplified using PBS and thematically enhanced. (a) 205 flights are

represented using ribbons. (b) Landing and take-off patterns characterize by turning movement displayed in yellow. (c)

Low altitude trajectory segments are represented in red.

additional thematic attributes. We have overlaid the segments of our ribbon representations with triangle glyphs

having an aspect ratio relative to the size of the segment and coloured according to the slope of the segment.

Doing this, apart from allowing extra information to be displayed, also makes it possible to distinguish between

the separate segments and gives indications of their size which provides valuable information regarding the

results of the simplification process. In 3D representations, tubes can be used to encode one (continuous)

attribute directly in the diameter, e.g. velocity in Figure 5. They also help to emphasise curved paths in 3D views

better than flat ribbons or tapered segments. This becomes especially apparent when using such representations

for displaying tracks with tightly curved movement as in Figures 4, 6(e). The tracks in these figures display

an upward spiral movement which when simplified (described with fewer points) tends to appear as a zigzag

pattern. This is an artefact resulting from the chosen representation in combination with the simplification.

However, since we are interested in distinguishing between the segments and accentuating the simplification

results, we choose to accept these artefacts in this work for illustration purposes. Finally, using triangles

or cones for representing each segment also accentuates the structural composition of a trajectory by clearly

demarcating individual segments, and eases keeping track of movement direction within groups of trajectories.

In our method, such visual demarcation helps to visually analyse the results of the simplification step. With

all types of segment primitives, thematic enhancement of trajectories is provided through colour-coding the

segments themselves, as well as by attached or embedded glyphs.

We have chosen to apply colouring of the trajectory segments in two ways. A continuous colour scale

is used to encode a single thematic attribute (e.g., altitude in Figure 5); or qualitative colouring is employed

to associate segments with clusters of attribute values. The latter therefore encodes multi-attribute movement

patterns depending on the user-selected parameter settings for the enhancement step. Assignment of cluster

colours is handled differently depending on whether the generating algorithm produces cluster representatives.

If it does not, such as the EM algorithm, unique random colours are assigned. In methods that do produce

representative objects, such as K-means, K-medoids and SOM, colours are assigned by projecting the cluster

representatives onto a 2D colour space using Sammon’s projection [43], as discussed in Section 4; it is well-

suited for this purpose since similarity of colours corresponds to similarity of cluster representatives.

The framework within which our methodology is implemented provides supplemental views to represent

detailed information about clusters and context. Such coordinated views are not explicitly coupled to our pro-

posed methodology, but they provide an important complement to the visual analysis process that our method-

ology aims to achieve. For example, a parallel coordinates plot (PCP) is used in Figure 6(d) to explore at-

tribute value distributions of the clustered objects; PCP and trajectory views are linked through a common

colour scale. This can help the analyst to decide if the current thematic enhancement clustering is concise or

requires further refinement. Other complementary view examples include histograms for showing point dis-

tributions within clusters, curves showing intra-cluster value frequency distributions, and space-time cubes to

show spatio-temporal relations.

Visual representation and interactive exploration of the results produced at all steps of our methodology
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(a) PCP of PBS values (b) Enhanced PBS trajectories (c) Space-time cube representation of PBS trajectories

Figure 8: Results of property-based simplification (PBS) and thematic enhancement of trajectories of a group of travelling

scientists on a field trip in Estonia. a) Segment attribute values are displayed in a parallel coordinates plot. b) Simplified

trajectories are displayed as lines on a 2D map. c) Simplified trajectories are displayed in a space-time cube representation.

In all representations the trajectory segments are coloured according to their cluster membership.

are of paramount importance. They offer feedback and facilitate progressive refinement of intermediate results

by creating a mutually reinforcing cycle of user-steered trajectory simplification, thematic enhancement, and

subsequent visual inspection of the results. The need for refinement can arise at different steps of the proposed

visual analytics loop.

Simplification of trajectories is performed as a one-time preprocessing step for a chosen selection of param-

eters, as described in Section 3. Visual inspection of the enhanced results may give indications to the analyst

of an inadequate choice of simplification parameters leading to a second iteration of the simplification. Fur-

thermore, inspection of the identified movement patterns may give rise to several iterations of enhancement

followed by visual inspection in order to explore different aspects of the underlying movement behaviour. This

iterative process is performed by the analyst within our framework using standard widget interfaces that allow

them to steer all steps of the methodology.

6 Visual Analysis Examples

We illustrate the functionality and potential of our methodology for visually analysing movement patterns using

three example datasets.

6.1 Paragliding in Lake Chelan

We have considered a small paragliding dataset collected on 3rd June 2011 in Chelan Butte, WA, USA. The

data consists of three flight trajectories composed of 12,786 recorded positions and having average length of

163 km. Figure 5 shows the trajectories represented as tubes with colour depicting altitude and diameter of the

tube depicting speed. The trajectories are long and the movement displays complex sinusoidal patterns which

are repetitive. These patterns represent the paragliders’ climbing motion which occurs when they find thermal

uplifts. For the purpose of illustrating the methodology we will concentrate on a single trajectory composed of

4,950 points.

We first want to study where the paraglider has been in order to get an overview of the traversed path

and surrounding area. We therefore apply density-based simplification with varying parameters and view the

resulting trajectory on a map using a 2D tapered segment representation. Figures 6(a-c) show the trajectory

simplified with three levels of detail; composed of 614, 322, and 9 segments respectively. These views reveal
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the large size of the territory covered and information about the route followed, such as direction (north-east)

and length.

In order to observe how the glider has moved and explore the movement patterns in terms of multiple at-

tributes we apply property-based simplification to the trajectory. We have used Full-Order CLK with respect to

two attributes: course in degrees and slope, which resulted in a simplified trajectory consisting of 1047 points.

We then enhance the simplified trajectory by clustering and colouring trajectory segments with respect to the-

matic attributes: speed, change in speed, and slope. We first use Sammon’s method, as described in Section 4,

to inspect the distribution of the segments’ attribute values and retrieve 3 clusters. Since in paragliding there

are 3 basic movement states: glide, climb at thermals, and dives, retrieving 3 clusters seems well justified so

we then go ahead and cluster our data into three clusters using the EM algorithm.

The results of the thematically enhanced PBS trajectory can be seen in Figures 6(d-e). To the right (Fig-

ure 6(e)) the simplified trajectory is displayed using the tapered segment representation with its segments

coloured with respect to their respective cluster membership. To the left (Figure 6(d)) the segment attribute

values are shown using parallel coordinates and coloured by cluster in order to closer inspect the distribution

of the values and character of the clusters. The PBS trajectory reveals three distinctive movement patterns of

the paragliding flight. The yellow cluster represents glides, purple upward spiral movement (climbs) reflect-

ing thermal lifts, and green downward spiral movement (dives) appearing primarily at the end of the flight

(Figure 6(d-e)).

The simplification and enhancement results reflect and confirm the distinctions made about the goals of the

two simplification methods. Being concerned with the overall whereabouts of a moving object density-based

simplification conveys good overviews of the followed path and does not preserve the details of the movement.

Property-based simplification instead merges homogeneous parts of the trajectory and retains detail where there

is change in movement characteristics, which makes it better suited for identification of movement patterns.

6.2 Flights over France

In a second example we consider two larger datasets composed of flights over France collected using radar. The

smaller dataset includes 205 trajectories consisting of 44,281 recorded positions, and the larger one includes

2,025 trajectories consisting of 214,083 recorded positions. Being collected through radar the data include

trajectories of various aircraft ranging from large commercial airliners to light aircraft and helicopters.

We simplify the data with PBS using WARD hierarchical clustering with respect to speed, acceleration, and

vertical speed. The resulting simplified datasets are composed of 8,939 and 56,475 trajectory points respec-

tively. We then enhance the trajectories by clustering the simplified segments into four clusters using EM with

respect to speed, acceleration, difference in relative speed, and turn in degrees; colouring them accordingly. The

enhancement results of the smaller dataset can be seen in Figure 7. We observe that high altitude movement is

clustered together and represented in blue, and similarly low altitude segments are grouped and shown in red.

The attribute ’altitude’ has not been used for clustering. The fact that movements on high and low altitudes

have been separated by the clustering means that the movement properties at these altitudes are different. Purple

segments are characterized by upward or downward slope and yellow ones reflect turns and curved movement.

These four clusters make it possible to separate between commercial/charter flights (Figure 7(a)) flying across

the country, and low flying aircraft such as the ones in Figure 7(c). Furthermore, landing and take-off patterns

are revealed by tracing the purple segments as in figure 7(b). Also holding patterns (i.e. aircraft orbiting the

airport waiting for their time to land) can be identified as (yellow) curved movement before proceeding with

the actual landing, as can be seen to the left of Figure 7(b).

6.3 Travelling scientists in Estonia

Our third example is concerned with pedestrian movement of scientists attending a field trip. The dataset used

consists of 13 trajectories including a total of 13,141 recorded positions.

We simplify the trajectories with PBS using Full-Order CLK with respect to attributes direction, speed, and

bounding rectangle diagonal in 30 seconds, which is a value showing whether a person is standing or moving

within a confined area or moving forward covering a larger distance. The simplification results in a dataset
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of 3,324 trajectory points (25.3% compression ratio). We then enhance the simplified trajectories by applying

K-means clustering to the trajectory segments with respect to attributes: bounding rectangle diagonal in 30

seconds, sinuosity in 30 seconds, count of neighbours within 5 meters and 10 seconds, distance to nearest

neighbour within a 10 second time window. We retrieve 5 clusters.

The results of the thematically enhanced PBS trajectories can be seen in Figure 8. In Figure 8(b) the PBS

simplified trajectories are displayed as lines on a 2D map with line segments coloured with respect to their

cluster membership, while in Figure 8(c) they are shown within a space-time cube (STC) representation. The

trajectory segment attribute values are displayed in Figure 8(a) using a parallel coordinates representation,

coloured according to cluster membership. This way the distribution of the segment values and the characteris-

tics of the movement in each of the clusters are revealed.

Each of the clusters corresponds well to a characteristic movement pattern. Blue represents forward (large

bounding rectangle diagonal), straight (low sinuosity) movement of small (low count of neighbours), dense

(small distance to nearest neighbour) groups. Yellow represents similar movement but in larger groups. Green

represents groups hovering around probably to observe something in the scenery or take pictures etc. Red

represents stops in the group and pink appears to be straight movement away from the group, this in fact

corresponds to an individual having forgotten their camera in the car and going back to get it.

7 Qualitative User Survey

In order to assess the functionality and results of the proposed methodology we performed a small qualitative

user survey. We conducted a questionnaire survey with the help of the “travelling scientists” of the Estonian

field trip example described in Section 6.3. The goal of the user survey was not to make a formal evaluation but

rather to examine whether the participants of the field trip could recognize and label their movement behaviour

during the field trip. Thus, our aim was to investigate whether applying our methodology would preserve the

movement patterns of the travellers. We have used the results of the PBS approach in the user survey since it is

the most appropriate when analysing ‘how’ people have moved.

Nine field trip participants took part in the survey, one woman and eight men, all of which were geoinfor-

matics experts. Each participant received 4 images via email and was asked to answer two questions concerning

their movement using these images and their memories of the field trip. The images they received were: (1)

a 2D line representation of the original and (2) PBS simplified trajectories, (3) a thematically enhanced 2D

line representation of the simplified trajectories (Figure 8(b)), and (4) a space-time cube representation of the

thematically enhanced simplified trajectories (Figure 8(c)). The two latter thematically enhanced images con-

sisted of trajectory segments clustered according to several group movement attributes reflecting compactness

of group movement, sinuosity and speed, as described in Section 6.3. The participants were asked to:

1. estimate what the compression ratio of the simplified trajectories was, choosing between: (a) less than

15%, (b) 15% to 30%, (c) 30% to 60%, or (d) more than 60%,

2. study the thematically enhanced representations and provide their interpretation of the five highlighted

clusters, i.e. the movement characteristics of each cluster.

Concerning the assessment of the compression ratio, participants either answered correctly or they esti-

mated that the reduction was less than it actually was. This is positive since it indicates that the simplified

trajectories representations adequately resemble the original ones.

The interpretations of the clusters varied between the participants in terms of response content. Three par-

ticipants did not adequately respond to the survey. From the remaining 6 participants, all of them characterized

green cluster segments as having low speed, looking around, or being stops at points of interest. This interpre-

tation follows closely our definition of the cluster in Section 6.3 as ‘representing groups hovering around’. The

movement properties of the clusters can be seen in Figure 8. The red cluster was also described as stationary

behaviour, stops or as having high compactness and low movement. In fact several commented on the similarity

of the red and green segments. The interpretations of this cluster also are close to our definition of red segments

as ‘stops’. The blue cluster segments were identified as being the main group, with high speed, and constant

movement which agrees with our interpretation of them. Also, participants commented on the yellow and blue
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segments being similar which they in fact are. Their difference is mostly in the count of neighbours, as seen in

Figure 8(a), which is of course not visible in the static images (Figures 8(b),(c)) presented to the participants.

Finally, all participants labelled the pink cluster segments as outliers which we also identified as such in our

classification.

Overall, the results we received involved meaningful interpretations of the segments’ cluster membership.

This indicates that the simplification process did not distort the underlying movement characteristics of the data,

since these were identifiable when highlighted on static image captions of the representations. Furthermore,

even though we did not make a similar survey concerning our other examples, we had experts, two experienced

paragliders and an air traffic controller, inspect our enhanced visualizations and confirmed that they reflect the

important stages of flights and produce an accurate overall image of flight activities.

8 Discussion and Conclusions

We have proposed a systematic visual analytics methodology that aims to support the visual analysis of move-

ment by the simplification and thematic enhancement of trajectories.

Simplification is achieved by reducing the number of trajectory segments that need to be presented to the

user. Such simplification improves the perception and cognition of the presented information in the following

ways. First, it reduces the perceptual and cognitive load on the user (the user needs to process fewer visual

items representing the segments) [45]. Second, it reduces the display clutter and, hence, its negative impact on

perception [34, 53]. Third, it removes task-irrelevant details and thereby helps the user to focus on task-relevant

information, which facilitates cognition [45, 53].

We have proposed two new simplification methods: density-based and property-based simplification (DBS

and PBS respectively). We have, furthermore, discussed how simplified trajectories can be enhanced by cluster-

ing segments with respect to thematic attributes and representing them accordingly. Finally, we have illustrated

by example how our methodology can be applied in order to explore movement datasets of different character

and identify patterns within them. Using our approach we have detected expected patterns, such as paraglider

climbs at thermals, landings and take-offs of aircraft, and discovered less obvious ones, such as holding pat-

terns before landing, and characteristic and irregular group movement behaviour. The methodology has been

primarily developed for three dimensional trajectories, such as flights (hence SimpliFly), but is not limited to

them, as demonstrated by the human pedestrian movement example.

The two simplification methods that form the basis of our methodology result in trajectories with diverging

properties and distinctive differences. These become apparent at all steps of the process. DBS is better suited

for revealing where a moving object has been while PBS is better suited for revealing how an object has

behaved during its movement. These differences continue to be apparent in the thematic enhancement resulting

from clustering segments with respect to a selection of characteristic attributes. In PBS thematic attributes are

considered already in the simplification itself. This leads to better preservation of the movement characteristics

of interest and thus patterns of movement, as defined in sec 1, since only similar/dissimilar segments are merged

during the proposed simplification methodology. DBS instead mainly focuses on the structural simplification

and optimal use of screen space at the cost of accompanying characteristics of movement being toned down.

DBS is therefore more appropriate for extracting and displaying the overall, rough pattern of movement while

PBS is better for a more detailed study of movement patterns.

The combination of computations and representation techniques we propose facilitates flexible exploration

during which all contributing factors are steered and tailored by the analyst who decides the simplification

method and level of simplification, and the attributes that should be considered in both the property-based

simplification and the thematic enhancement.
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