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Abstract

Graph Convolutional Networks (GCNs) and their

variants have experienced significant attention and

have become the de facto methods for learning

graph representations. GCNs derive inspiration

primarily from recent deep learning approaches,

and as a result, may inherit unnecessary complex-

ity and redundant computation. In this paper,

we reduce this excess complexity through suc-

cessively removing nonlinearities and collapsing

weight matrices between consecutive layers. We

theoretically analyze the resulting linear model

and show that it corresponds to a fixed low-pass

filter followed by a linear classifier. Notably, our

experimental evaluation demonstrates that these

simplifications do not negatively impact accuracy

in many downstream applications. Moreover, the

resulting model scales to larger datasets, is natu-

rally interpretable, and yields up to two orders of

magnitude speedup over FastGCN.

1. Introduction

Graph Convolutional Networks (GCNs) (Kipf & Welling,

2017) are an efficient variant of Convolutional Neural Net-

works (CNNs) on graphs. GCNs stack layers of learned

first-order spectral filters followed by a nonlinear activation

function to learn graph representations. Recently, GCNs and

subsequent variants have achieved state-of-the-art results

in various application areas, including but not limited to

citation networks (Kipf & Welling, 2017), social networks

(Chen et al., 2018), applied chemistry (Liao et al., 2019),

natural language processing (Yao et al., 2019; Han et al.,

2012; Zhang et al., 2018c), and computer vision (Wang

et al., 2018; Kampffmeyer et al., 2018).

Historically, the development of machine learning algo-
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rithms has followed a clear trend from initial simplicity to

need-driven complexity. For instance, limitations of the

linear Perceptron (Rosenblatt, 1958) motivated the develop-

ment of the more complex but also more expressive neural

network (or multi-layer Perceptrons, MLPs) (Rosenblatt,

1961). Similarly, simple pre-defined linear image filters (So-

bel & Feldman, 1968; Harris & Stephens, 1988) eventually

gave rise to nonlinear CNNs with learned convolutional

kernels (Waibel et al., 1989; LeCun et al., 1989). As ad-

ditional algorithmic complexity tends to complicate theo-

retical analysis and obfuscates understanding, it is typically

only introduced for applications where simpler methods are

insufficient. Arguably, most classifiers in real world appli-

cations are still linear (typically logistic regression), which

are straight-forward to optimize and easy to interpret.

However, possibly because GCNs were proposed after the

recent “renaissance” of neural networks, they tend to be a

rare exception to this trend. GCNs are built upon multi-layer

neural networks, and were never an extension of a simpler

(insufficient) linear counterpart.

In this paper, we observe that GCNs inherit considerable

complexity from their deep learning lineage, which can

be burdensome and unnecessary for less demanding appli-

cations. Motivated by the glaring historic omission of a

simpler predecessor, we aim to derive the simplest linear

model that “could have” preceded the GCN, had a more

“traditional” path been taken. We reduce the excess com-

plexity of GCNs by repeatedly removing the nonlinearities

between GCN layers and collapsing the resulting function

into a single linear transformation. We empirically show

that the final linear model exhibits comparable or even su-

perior performance to GCNs on a variety of tasks while be-

ing computationally more efficient and fitting significantly

fewer parameters. We refer to this simplified linear model

as Simple Graph Convolution (SGC).

In contrast to its nonlinear counterparts, the SGC is intu-

itively interpretable and we provide a theoretical analysis

from the graph convolution perspective. Notably, feature

extraction in SGC corresponds to a single fixed filter applied

to each feature dimension. Kipf & Welling (2017) empiri-

cally observe that the “renormalization trick”, i.e. adding

self-loops to the graph, improves accuracy, and we demon-
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Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers

and then applies a linear classifier on the final representation. Bottom row: the SGC reduces the entire procedure to a simple feature

propagation step followed by standard logistic regression.

strate that this method effectively shrinks the graph spectral

domain, resulting in a low-pass-type filter when applied to

SGC. Crucially, this filtering operation gives rise to locally

smooth features across the graph (Bruna et al., 2014).

Through an empirical assessment on node classification

benchmark datasets for citation and social networks, we

show that the SGC achieves comparable performance to

GCN and other state-of-the-art graph neural networks. How-

ever, it is significantly faster, and even outperforms Fast-

GCN (Chen et al., 2018) by up to two orders of magnitude

on the largest dataset (Reddit) in our evaluation. Finally,

we demonstrate that SGC extrapolates its effectiveness to a

wide-range of downstream tasks. In particular, SGC rivals,

if not surpasses, GCN-based approaches on text classifi-

cation, user geolocation, relation extraction, and zero-shot

image classification tasks. The code is available on Github1.

2. Simple Graph Convolution

We follow Kipf & Welling (2017) to introduce GCNs (and

subsequently SGC) in the context of node classification.

Here, GCNs take a graph with some labeled nodes as input

and generate label predictions for all graph nodes. Let

us formally define such a graph as G = (V,A), where V
represents the vertex set consisting of nodes {v1, . . . , vn},
and A ∈ R

n×n is a symmetric (typically sparse) adjacency

matrix where aij denotes the edge weight between nodes

1https://github.com/Tiiiger/SGC

vi and vj . A missing edge is represented through aij = 0.

We define the degree matrix D = diag(d1, . . . , dn) as a

diagonal matrix where each entry on the diagonal is equal

to the row-sum of the adjacency matrix di =
∑

j aij .

Each node vi in the graph has a corresponding d-

dimensional feature vector xi ∈ R
d. The entire feature

matrix X ∈ R
n×d stacks n feature vectors on top of one

another, X = [x1, . . . ,xn]
⊤

. Each node belongs to one

out of C classes and can be labeled with a C-dimensional

one-hot vector yi ∈ {0, 1}
C . We only know the labels of a

subset of the nodes and want to predict the unknown labels.

2.1. Graph Convolutional Networks

Similar to CNNs or MLPs, GCNs learn a new feature repre-

sentation for the feature xi of each node over multiple layers,

which is subsequently used as input into a linear classifier.

For the k-th graph convolution layer, we denote the input

node representations of all nodes by the matrix H(k−1) and

the output node representations H(k). Naturally, the initial

node representations are just the original input features:

H(0) = X, (1)

which serve as input to the first GCN layer.

A K-layer GCN is identical to applying a K-layer MLP

to the feature vector xi of each node in the graph, except

that the hidden representation of each node is averaged with

its neighbors at the beginning of each layer. In each graph

convolution layer, node representations are updated in three

https://github.com/Tiiiger/SGC
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stages: feature propagation, linear transformation, and a

pointwise nonlinear activation (see Figure 1). For the sake

of clarity, we describe each step in detail.

Feature propagation is what distinguishes a GCN from

an MLP. At the beginning of each layer the features hi of

each node vi are averaged with the feature vectors in its

local neighborhood,

h̄
(k)
i ←

1

di + 1
h
(k−1)
i +

n
∑

j=1

aij
√

(di + 1)(dj + 1)
h
(k−1)
j .

(2)

More compactly, we can express this update over the en-

tire graph as a simple matrix operation. Let S denote the

“normalized” adjacency matrix with added self-loops,

S = D̃−
1

2 ÃD̃−
1

2 , (3)

where Ã = A + I and D̃ is the degree matrix of Ã. The

simultaneous update in Equation 2 for all nodes becomes a

simple sparse matrix multiplication

H̄(k) ← SH(k−1). (4)

Intuitively, this step smoothes the hidden representations lo-

cally along the edges of the graph and ultimately encourages

similar predictions among locally connected nodes.

Feature transformation and nonlinear transition. Af-

ter the local smoothing, a GCN layer is identical to a stan-

dard MLP. Each layer is associated with a learned weight

matrix Θ(k), and the smoothed hidden feature representa-

tions are transformed linearly. Finally, a nonlinear activa-

tion function such as ReLU is applied pointwise before

outputting feature representation H(k). In summary, the

representation updating rule of the k-th layer is:

H(k) ← ReLU
(

H̄(k)Θ(k)
)

. (5)

The pointwise nonlinear transformation of the k-th layer is

followed by the feature propagation of the (k + 1)-th layer.

Classifier. For node classification, and similar to a stan-

dard MLP, the last layer of a GCN predicts the labels using a

softmax classifier. Denote the class predictions for n nodes

as Ŷ ∈ R
n×C where ŷic denotes the probability of node

i belongs to class c. The class prediction Ŷ of a K-layer

GCN can be written as:

ŶGCN = softmax
(

SH(K−1)Θ(K)
)

, (6)

where softmax(x) = exp(x)/
∑C

c=1 exp(xc) acts as a nor-

malizer across all classes.

2.2. Simple Graph Convolution

In a traditional MLP, deeper layers increase the expressivity

because it allows the creation of feature hierarchies, e.g.

features in the second layer build on top of the features of

the first layer. In GCNs, the layers have a second important

function: in each layer the hidden representations are aver-

aged among neighbors that are one hop away. This implies

that after k layers a node obtains feature information from

all nodes that are k−hops away in the graph. This effect

is similar to convolutional neural networks, where depth

increases the receptive field of internal features (Hariharan

et al., 2015). Although convolutional networks can bene-

fit substantially from increased depth (Huang et al., 2016),

typically MLPs obtain little benefit beyond 3 or 4 layers.

Linearization. We hypothesize that the nonlinearity be-

tween GCN layers is not critical - but that the majority of the

benefit arises from the local averaging. We therefore remove

the nonlinear transition functions between each layer and

only keep the final softmax (in order to obtain probabilistic

outputs). The resulting model is linear, but still has the same

increased “receptive field” of a K-layer GCN,

Ŷ = softmax
(

S . . .SSXΘ(1)Θ(2) . . .Θ(K)
)

. (7)

To simplify notation we can collapse the repeated multi-

plication with the normalized adjacency matrix S into a

single matrix by raising S to the K-th power, SK . Fur-

ther, we can reparameterize our weights into a single matrix

Θ = Θ(1)Θ(2) . . .Θ(K). The resulting classifier becomes

ŶSGC = softmax
(

SKXΘ
)

, (8)

which we refer to as Simple Graph Convolution (SGC).

Logistic regression. Equation 8 gives rise to a natural and

intuitive interpretation of SGC: by distinguishing between

feature extraction and classifier, SGC consists of a fixed

(i.e., parameter-free) feature extraction/smoothing compo-

nent X̄ = SKX followed by a linear logistic regression

classifier Ŷ = softmax(X̄Θ). Since the computation of X̄

requires no weight it is essentially equivalent to a feature

pre-processing step and the entire training of the model re-

duces to straight-forward multi-class logistic regression on

the pre-processed features X̄.

Optimization details. The training of logistic regression

is a well studied convex optimization problem and can

be performed with any efficient second order method or

stochastic gradient descent (Bottou, 2010). Provided the

graph connectivity pattern is sufficiently sparse, SGD nat-

urally scales to very large graph sizes and the training of

SGC is drastically faster than that of GCNs.
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3. Spectral Analysis

We now study SGC from a graph convolution perspective.

We demonstrate that SGC corresponds to a fixed filter on

the graph spectral domain. In addition, we show that adding

self-loops to the original graph, i.e. the renormalization trick

(Kipf & Welling, 2017), effectively shrinks the underlying

graph spectrum. On this scaled domain, SGC acts as a low-

pass filter that produces smooth features over the graph. As

a result, nearby nodes tend to share similar representations

and consequently predictions.

3.1. Preliminaries on Graph Convolutions

Analogous to the Euclidean domain, graph Fourier analysis

relies on the spectral decomposition of graph Laplacians.

The graph Laplacian ∆ = D−A (as well as its normalized

version ∆sym = D−1/2∆D−1/2) is a symmetric positive

semidefinite matrix with eigendecomposition ∆ = UΛU⊤,

where U ∈ R
n×n comprises orthonormal eigenvectors and

Λ = diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues.

The eigendecomposition of the Laplacian allows us to define

the Fourier transform equivalent on the graph domain, where

eigenvectors denote Fourier modes and eigenvalues denote

frequencies of the graph. In this regard, let x ∈ R
n be a

signal defined on the vertices of the graph. We define the

graph Fourier transform of x as x̂ = U⊤x, with inverse

operation given by x = Ux̂. Thus, the graph convolution

operation between signal x and filter g is

g ∗ x = U
(

(U⊤g)⊙ (U⊤x)
)

= UĜU⊤x, (9)

where Ĝ = diag (ĝ1, . . . , ĝn) denotes a diagonal matrix in

which the diagonal corresponds to spectral filter coefficients.

Graph convolutions can be approximated by k-th order poly-

nomials of Laplacians

UĜU⊤x ≈

k
∑

i=0

θi∆
ix = U

(

k
∑

i=0

θiΛ
i

)

U⊤x, (10)

where θi denotes coefficients. In this case, filter coefficients

correspond to polynomials of the Laplacian eigenvalues, i.e.,

Ĝ =
∑

i θiΛ
i or equivalently ĝ(λj) =

∑

i θiλ
i
j .

Graph Convolutional Networks (GCNs) (Kipf & Welling,

2017) employ an affine approximation (k = 1) of Equa-

tion 10 with coefficients θ0 = 2θ and θ1 = −θ from which

we attain the basic GCN convolution operation

g ∗ x = θ(I+D−1/2AD−1/2)x. (11)

In their final design, Kipf & Welling (2017) replace

the matrix I + D−1/2AD−1/2 by a normalized version

D̃−1/2ÃD̃−1/2 where Ã = A + I and consequently

D̃ = D + I, dubbed the renormalization trick. Finally,

by generalizing the convolution to work with multiple filters

in a d-channel input and layering the model with nonlinear

activation functions between each layer, we have the GCN

propagation rule as defined in Equation 5.

3.2. SGC and Low-Pass Filtering

The initial first-order Chebyshev filter derived in GCNs

corresponds to the propagation matrix S1-order = I +
D−1/2AD−1/2 (see Equation 11). Since the normalized

Laplacian is ∆sym = I −D−1/2AD−1/2, then S1-order =
2I−∆sym. Therefore, feature propagation with SK

1-order im-

plies filter coefficients ĝi = ĝ(λi) = (2− λi)
K , where λi

denotes the eigenvalues of ∆sym. Figure 2 illustrates the

filtering operation related to S1-order for a varying number

of propagation steps K ∈ {1, . . . , 6}. As one may observe,

high powers of S1-order lead to exploding filter coefficients

and undesirably over-amplify signals at frequencies λi < 1.

To tackle potential numerical issues associated with the

first-order Chebyshev filter, Kipf & Welling (2017) pro-

pose the renormalization trick. Basically, it consists of

replacing S1-order by the normalized adjacency matrix af-

ter adding self-loops for all nodes. We call the resulting

propagation matrix the augmented normalized adjacency

matrix S̃adj = D̃−1/2ÃD̃−1/2, where Ã = A + I and

D̃ = D + I. Correspondingly, we define the augmented

normalized Laplacian ∆̃sym = I− D̃−1/2ÃD̃−1/2. Thus,

we can describe the spectral filters associated with S̃adj as a

polynomial of the eigenvalues of the underlying Laplacian,

i.e., ĝ(λ̃i) = (1− λ̃i)
K , where λ̃i are eigenvalues of ∆̃sym.

We now analyze the spectrum of ∆̃sym and show that adding

self-loops to graphs shrinks the spectrum (eigenvalues) of

the corresponding normalized Laplacian.

Theorem 1. Let A be the adjacency matrix of an undirected,

weighted, simple graph G without isolated nodes and with

corresponding degree matrix D. Let Ã = A+γI, such that

γ > 0, be the augmented adjacency matrix with correspond-

ing degree matrix D̃. Also, let λ1 and λn denote the smallest

and largest eigenvalues of ∆sym = I−D−1/2AD−1/2; sim-

ilarly, let λ̃1 and λ̃n be the smallest and largest eigenvalues

of ∆̃sym = I− D̃−1/2ÃD̃−1/2. We have that

0 = λ1 = λ̃1 < λ̃n < λn. (12)

Theorem 1 shows that the largest eigenvalue of the normal-

ized graph Laplacian becomes smaller after adding self-

loops γ > 0 (see supplementary materials for the proof).

Figure 2 depicts the filtering operations associated with

the normalized adjacency Sadj = D−1/2AD−1/2 and its

augmented variant S̃adj = D̃−1/2ÃD̃−1/2 on the Cora

dataset (Sen et al., 2008). Feature propagation with Sadj cor-

responds to filters g(λi) = (1− λi)
K in the spectral range
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Figure 2. Feature (red) and filters (blue) spectral coefficients for different propagation matrices on Cora dataset (3rd feature).

[0, 2]; therefore odd powers of Sadj yield negative filter coef-

ficients at frequencies λi > 1. By adding self-loops (S̃adj),

the largest eigenvalue shrinks from 2 to approximately 1.5
and then eliminates the effect of negative coefficients. More-

over, this scaled spectrum allows the filter defined by taking

powers K > 1 of S̃adj to act as a low-pass-type filters. In

supplementary material, we empirically evaluate different

choices for the propagation matrix.

4. Related Works

4.1. Graph Neural Networks

Bruna et al. (2014) first propose a spectral graph-based

extension of convolutional networks to graphs. In a follow-

up work, ChebyNets (Defferrard et al., 2016) define graph

convolutions using Chebyshev polynomials to remove the

computationally expensive Laplacian eigendecomposition.

GCNs (Kipf & Welling, 2017) further simplify graph con-

volutions by stacking layers of first-order Chebyshev poly-

nomial filters with a redefined propagation matrix S. Chen

et al. (2018) propose an efficient variant of GCN based on

importance sampling, and Hamilton et al. (2017) propose

a framework based on sampling and aggregation. Atwood

& Towsley (2016), Abu-El-Haija et al. (2018), and Liao

et al. (2019) exploit multi-scale information by raising S to

higher order. Xu et al. (2019) study the expressiveness of

graph neural networks in terms of their ability to distinguish

any two graphs and introduce Graph Isomorphism Network,

which is proved to be as powerful as the Weisfeiler-Lehman

test for graph isomorphism. Klicpera et al. (2019) separate

the non-linear transformation from propagation by using a

neural network followed by a personalized random walk.

There are many other graph neural models (Monti et al.,

2017; Duran & Niepert, 2017; Li et al., 2018); we refer to

Zhou et al. (2018); Battaglia et al. (2018); Wu et al. (2019)

for a more comprehensive review.

Previous publications have pointed out that simpler, some-

times linear models can be effective for node/graph classi-

fication tasks. Thekumparampil et al. (2018) empirically

show that a linear version of GCN can perform competitively

and propose an attention-based GCN variant. Cai & Wang

(2018) propose an effective linear baseline for graph classi-

fication using node degree statistics. Eliav & Cohen (2018)

show that models which use linear feature/label propaga-

tion steps can benefit from self-training strategies. Li et al.

(2019) propose a generalized version of label propagation

and provide a similar spectral analysis of the renormaliza-

tion trick.

Graph Attentional Models learn to assign different edge

weights at each layer based on node features and have

achieved state-of-the-art results on several graph learning

tasks (Velickovic et al., 2018; Thekumparampil et al., 2018;

Zhang et al., 2018a; Kampffmeyer et al., 2018). However,

the attention mechanism usually adds significant overhead

to computation and memory usage. We refer the readers to

Lee et al. (2018) for further comparison.

4.2. Other Works on Graphs

Graph methodologies can roughly be categorized into two

approaches: graph embedding methods and graph laplacian

regularization methods. Graph embedding methods (Weston

et al., 2008; Perozzi et al., 2014; Yang et al., 2016; Velikovi

et al., 2019) represent nodes as high-dimensional feature

vectors. Among them, DeepWalk (Perozzi et al., 2014) and

Deep Graph Infomax (DGI) (Velikovi et al., 2019) use un-

supervised strategies to learn graph embeddings. DeepWalk

relies on truncated random walk and uses a skip-gram model

to generate embeddings, whereas DGI trains a graph convo-

lutional encoder through maximizing mutual information.

Graph Laplacian regularization (Zhu et al., 2003; Zhou et al.,

2004; Belkin & Niyogi, 2004; Belkin et al., 2006) introduce

a regularization term based on graph structure which forces

nodes to have similar labels to their neighbors. Label Prop-

agation (Zhu et al., 2003) makes predictions by spreading

label information from labeled nodes to their neighbors until

convergence.
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Figure 3. Performance over training time on Pubmed and Reddit. SGC is the fastest while achieving competitive performance. We are not

able to benchmark the training time of GaAN and DGI on Reddit because the implementations are not released.

Table 1. Dataset statistics of the citation networks and Reddit.

Dataset # Nodes # Edges Train/Dev/Test Nodes

Cora 2, 708 5, 429 140/500/1, 000
Citeseer 3, 327 4, 732 120/500/1, 000
Pubmed 19, 717 44, 338 60/500/1, 000

Reddit 233K 11.6M 152K/24K/55K

5. Experiments and Discussion

We first evaluate SGC on citation networks and social net-

works and then extend our empirical analysis to a wide

range of downstream tasks.

5.1. Citation Networks & Social Networks

We evaluate the semi-supervised node classification perfor-

mance of SGC on the Cora, Citeseer, and Pubmed citation

network datasets (Table 2) (Sen et al., 2008). We supplement

our citation network analysis by using SGC to inductively

predict community structure on Reddit (Table 3), which

consists of a much larger graph. Dataset statistics are sum-

marized in Table 1.

Datasets and experimental setup. On the citation net-

works, we train SGC for 100 epochs using Adam (Kingma

& Ba, 2015) with learning rate 0.2. In addition, we use

weight decay and tune this hyperparameter on each dataset

using hyperopt (Bergstra et al., 2015) for 60 iterations on

the public split validation set. Experiments on citation net-

works are conducted transductively. On the Reddit dataset,

we train SGC with L-BFGS (Liu & Nocedal, 1989) using

no regularization, and remarkably, training converges in 2

steps. We evaluate SGC inductively by following Chen et al.

(2018): we train SGC on a subgraph comprising only train-

ing nodes and test with the original graph. On all datasets,

we tune the number of epochs based on both convergence

behavior and validation accuracy.

Table 2. Test accuracy (%) averaged over 10 runs on citation net-

works. †We remove the outliers (accuracy < 75/65/75%) when

calculating their statistics due to high variance.

Cora Citeseer Pubmed

Numbers from literature:
GCN 81.5 70.3 79.0
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3
GLN 81.2± 0.1 70.9± 0.1 78.9± 0.1
AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1
LNet 79.5± 1.8 66.2± 1.9 78.3± 0.3
AdaLNet 80.4± 1.1 68.7± 1.0 78.1± 0.4
DeepWalk 70.7± 0.6 51.4± 0.5 76.8± 0.6
DGI 82.3± 0.6 71.8± 0.7 76.8± 0.6

Our experiments:
GCN 81.4± 0.4 70.9± 0.5 79.0± 0.4
GAT 83.3± 0.7 72.6± 0.6 78.5± 0.3
FastGCN 79.8± 0.3 68.8± 0.6 77.4± 0.3
GIN 77.6± 1.1 66.1± 0.9 77.0± 1.2
LNet 80.2± 3.0† 67.3± 0.5 78.3± 0.6†

AdaLNet 81.9± 1.9† 70.6± 0.8† 77.8± 0.7†

DGI 82.5± 0.7 71.6± 0.7 78.4± 0.7
SGC 81.0± 0.0 71.9± 0.1 78.9± 0.0

Table 3. Test Micro F1 Score (%) averaged over 10 runs on Red-

dit. Performances of models are cited from their original papers.

OOM: Out of memory.

Setting Model Test F1

Supervised

GaAN 96.4
SAGE-mean 95.0
SAGE-LSTM 95.4
SAGE-GCN 93.0
FastGCN 93.7
GCN OOM

Unsupervised
SAGE-mean 89.7
SAGE-LSTM 90.7
SAGE-GCN 90.8
DGI 94.0

No Learning
Random-Init DGI 93.3
SGC 94.9
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Baselines. For citation networks, we compare against

GCN (Kipf & Welling, 2017) GAT (Velickovic et al., 2018)

FastGCN (Chen et al., 2018) LNet, AdaLNet (Liao et al.,

2019) and DGI (Velikovi et al., 2019) using the publicly

released implementations. Since GIN is not initially eval-

uated on citation networks, we implement GIN following

Xu et al. (2019) and use hyperopt to tune weight decay and

learning rate for 60 iterations. Moreover, we tune the hidden

dimension by hand.

For Reddit, we compare SGC to the reported performance of

GaAN (Zhang et al., 2018a), supervised and unsupervised

variants of GraphSAGE (Hamilton et al., 2017), FastGCN,

and DGI. Table 3 also highlights the setting of the feature

extraction step for each method. We note that SGC involves

no learning because the feature extraction step, SKX, has no

parameter. Both unsupervised and no-learning approaches

train logistic regression models with labels afterward.

Performance. Based on results in Table 2 and Table 3, we

conclude that SGC is very competitive. Table 2 shows the

performance of SGC can match the performance of GCN

and state-of-the-art graph networks on citation networks. In

particular on Citeseer, SGC is about 1% better than GCN,

and we reason this performance boost is caused by SGC

having fewer parameters and therefore suffering less from

overfitting. Remarkably, GIN performs slight worse because

of overfitting. Also, both LNet and AdaLNet are unstable

on citation networks. On Reddit, Table 3 shows that SGC

outperforms the previous sampling-based GCN variants,

SAGE-GCN and FastGCN by more than 1%.

Notably, Velikovi et al. (2019) report that the performance of

a randomly initialized DGI encoder nearly matches that of a

trained encoder; however, both models underperform SGC

on Reddit. This result may suggest that the extra weights

and nonlinearities in the DGI encoder are superfluous, if not

outright detrimental.

Efficiency. In Figure 3, we plot the performance of the

state-of-the-arts graph networks over their training time rel-

ative to that of SGC on the Pubmed and Reddit datasets. In

particular, we precompute SKX and the training time of

SGC takes into account this precomputation time. We mea-

sure the training time on a NVIDIA GTX 1080 Ti GPU and

present the benchmark details in supplementary materials.

On large graphs (e.g. Reddit), GCN cannot be trained due

to excessive memory requirements. Previous approaches

tackle this limitation by either sampling to reduce neigh-

borhood size (Chen et al., 2018; Hamilton et al., 2017) or

limiting their model sizes (Velikovi et al., 2019). By apply-

ing a fixed filter and precomputing SKX, SGC minimizes

memory usage and only learns a single weight matrix during

training. Since S is typically sparse and K is usually small,

Table 4. Test Accuracy (%) on text classification datasets. The

numbers are averaged over 10 runs.

Dataset Model Test Acc. ↑ Time (seconds) ↓

20NG
GCN 87.9± 0.2 1205.1± 144.5
SGC 88.5± 0.1 19.06± 0.15

R8
GCN 97.0± 0.2 129.6± 9.9
SGC 97.2± 0.1 1.90± 0.03

R52
GCN 93.8± 0.2 245.0± 13.0
SGC 94.0± 0.2 3.01± 0.01

Ohsumed
GCN 68.2± 0.4 252.4± 14.7
SGC 68.5± 0.3 3.02± 0.02

MR
GCN 76.3± 0.3 16.1± 0.4
SGC 75.9± 0.3 4.00± 0.04

Table 5. Test accuracy (%) within 161 miles on semi-supervised

user geolocation. The numbers are averaged over 5 runs.

Dataset Model Acc.@161↑ Time ↓

GEOTEXT
GCN+H 60.6± 0.2 153.0s
SGC 61.1± 0.1 5.6s

TWITTER-US
GCN+H 61.9± 0.2 9h 54m
SGC 62.5± 0.1 4h 33m

TWITTER-WORLD
GCN+H 53.6± 0.2 2d 05h 17m
SGC 54.1± 0.2 22h 53m

we can exploit fast sparse-dense matrix multiplication to

compute SKX. Figure 3 shows that SGC can be trained up

to two orders of magnitude faster than fast sampling-based

methods while having little or no drop in performance.

5.2. Downstream Tasks

We extend our empirical evaluation to 5 downstream appli-

cations — text classification, semi-supervised user geoloca-

tion, relation extraction, zero-shot image classification, and

graph classification — to study the applicability of SGC.

We describe experimental setup in supplementary materials.

Text classification assigns labels to documents. Yao et al.

(2019) use a 2-layer GCN to achieve state-of-the-art results

by creating a corpus-level graph which treats both docu-

ments and words as nodes in a graph. Word-word edge

weights are pointwise mutual information (PMI) and word-

document edge weights are normalized TF-IDF scores. Ta-

ble 4 shows that an SGC (K = 2) rivals their model on 5

benchmark datasets, while being up to 83.6× faster.

Semi-supervised user geolocation locates the “home”

position of users on social media given users’ posts, con-

nections among users, and a small number of labelled users.

Rahimi et al. (2018) apply GCNs with highway connections

on this task and achieve close to state-of-the-art results. Ta-
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Table 6. Test Accuracy (%) on Relation Extraction. The numbers

are averaged over 10 runs.

TACRED Test Accuracy ↑

C-GCN (Zhang et al., 2018c) 66.4
C-GCN 66.4± 0.4
C-SGC 67.0± 0.4

Table 7. Top-1 accuracy (%) averaged over 10 runs in the 2-

hop and 3-hop setting of the zero-shot image task on ImageNet.

ADGPM (Kampffmeyer et al., 2018) and EXEM 1-nns (Chang-

pinyo et al., 2018) use more powerful visual features.

Model # Param. ↓ 2-hop Acc. ↑ 3-hop Acc. ↑

Unseen categories only:
EXEM 1-nns - 27.0 7.1
ADGPM - 26.6 6.3
GCNZ - 19.8 4.1
GCNZ (ours) 9.5M 20.9± 0.2 4.3± 0.0
MLP-SGCZ (ours) 4.3M 21.2± 0.2 4.4± 0.1

Unseen categories & seen categories:
ADGPM - 10.3 2.9
GCNZ - 9.7 2.2
GCNZ (ours) 9.5M 10.0± 0.2 2.4± 0.0
MLP-SGCZ (ours) 4.3M 10.5± 0.1 2.5± 0.0

ble 5 shows that SGC outperforms GCN with highway con-

nections on GEOTEXT (Eisenstein et al., 2010), TWITTER-

US (Roller et al., 2012), and TWITTER-WORLD (Han

et al., 2012) under Rahimi et al. (2018)’s framework, while

saving 30+ hours on TWITTER-WORLD.

Relation extraction involves predicting the relation be-

tween subject and object in a sentence. Zhang et al.

(2018c) propose C-GCN which uses an LSTM (Hochre-

iter & Schmidhuber, 1997) followed by a GCN and an MLP.

We replace GCN with SGC (K = 2) and call the resulting

model C-SGC. Table 6 shows that C-SGR sets new state-of-

the-art on TACRED (Zhang et al., 2017).

Zero-shot image classification consists of learning an

image classifier without access to any images or labels from

the test categories. GCNZ (Wang et al., 2018) uses a GCN

to map the category names — based on their relations in

WordNet (Miller, 1995) — to image feature domain, and

find the most similar category to a query image feature

vector. Table 7 shows that replacing GCN with an MLP

followed by SGC can improve performance while reducing

the number of parameters by 55%. We find that an MLP

feature extractor is necessary in order to map the pretrained

GloVe vectors to the space of visual features extracted by

a ResNet-50. Again, this downstream application demon-

strates that learned graph convolution filters are superfluous;

similar to Changpinyo et al. (2018)’s observation that GCNs

may not be necessary.

Graph classification requires models to use graph struc-

ture to categorize graphs. Xu et al. (2019) theoretically

show that GCNs are not sufficient to distinguish certain

graph structures and show that their GIN is more expressive

and achieves state-of-the-art results on various graph classi-

fication datasets. We replace the GCN in DCGCN (Zhang

et al., 2018b) with an SGC and get 71.0% and 76.2% on

NCI1 and COLLAB datasets (Yanardag & Vishwanathan,

2015) respectively, which is on par with an GCN counterpart,

but far behind GIN. Similarly, on QM8 quantum chemistry

dataset (Ramakrishnan et al., 2015), more advanced AdaL-

Net and LNet (Liao et al., 2019) get 0.01 MAE on QM8,

outperforming SGC’s 0.03 MAE by a large margin.

6. Conclusion

In order to better understand and explain the mechanisms

of GCNs, we explore the simplest possible formulation of a

graph convolutional model, SGC. The algorithm is almost

trivial, a graph based pre-processing step followed by stan-

dard multi-class logistic regression. However, the perfor-

mance of SGC rivals — if not surpasses — the performance

of GCNs and state-of-the-art graph neural network mod-

els across a wide range of graph learning tasks. Moreover

by precomputing the fixed feature extractor SK , training

time is reduced to a record low. For example on the Reddit

dataset, SGC can be trained up to two orders of magnitude

faster than sampling-based GCN variants.

In addition to our empirical analysis, we analyze SGC from

a convolution perspective and manifest this method as a

low-pass-type filter on the spectral domain. Low-pass-type

filters capture low-frequency signals, which corresponds

with smoothing features across a graph in this setting. Our

analysis also provides insight into the empirical boost of

the “renormalization trick” and demonstrates how shrinking

the spectral domain leads to a low-pass-type filter which

underpins SGC.

Ultimately, the strong performance of SGC sheds light onto

GCNs. It is likely that the expressive power of GCNs origi-

nates primarily from the repeated graph propagation (which

SGC preserves) rather than the nonlinear feature extraction

(which it doesn’t.)

Given its empirical performance, efficiency, and inter-

pretability, we argue that the SGC should be highly ben-

eficial to the community in at least three ways: (1) as a

first model to try, especially for node classification tasks;

(2) as a simple baseline for comparison with future graph

learning models; (3) as a starting point for future research in

graph learning — returning to the historic machine learning

practice to develop complex from simple models.
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