Simplifying Network Administration

Policy-Based Management

Dinesh C. Verma,
IBM Thomas J Watson Research Center

Abstract

The management of network infrastructure in an enterprise is a complex and daunt-
ing affair. In an era of increasing technical complexity, it is becoming difficult to find
trained personnel who can manage the new features introduced into the various
servers, routers, and switches. Policy-based network management provides a means
by which the administration process can be simplified and largely automated. In this
article we look at a general policy-based architecture that can be used to simplify
several new technologies emerging in the context of IP networks. We explain how
network administration can be simplified by defining two levels of policies, a busi-
ness level and a technology level. We discuss how business-level policies are vali-
dated and transformed into technology-level policies, and present some algorithms
that can be used to check for policy conflicts and unreachable policies. We then
show how to apply this architecture to two areas: managing performance service
level agreements, and supporting enterprise extranets using IPSec communication.

Using

resent-day IP networks are large complex systems

consisting of many different devices. Ensuring that

all these devices interoperate smoothly is not a trivial

task. New technologies that have emerged to address
some of the limitations of the traditional IP protocols have
added to the complexity of the network infrastructure. There
is an acute shortage of experts who understand the new tech-
nologies and are able to manage and deploy them on a large
network. For many emerging technologies, the management
costs associated with deploying the technology outweighs the
advantage conferred by that technology. As an example, many
pragmatic network operators choose to overengineer their
networks to address any performance concerns rather than
deploy bandwidth-saving quality of service techniques. This is
because the manpower cost associated with learning the new
technologies and managing them is much higher than the sav-
ings in bandwidth-related costs that would result from deploy-
ing these technologies.

In this environment there is a clear need to make new and
emerging technologies easier to manage. The policy frame-
work being standardized within the Internet Engineering Task
Force (IETF) [1] holds the promise to deliver this ease of
management. The simplification and automation of the net-
work management process is one of the key applications of
the policy framework. This article explains how the policy
management framework can help network administrators
attain this simplification, and demonstrates its applicability in
three different disciplines.

The following section provides an overview of the general
policy-based administration architecture. The next section dis-
cusses structure of a management tool that can apply to many
policy disciplines, and the algorithms needed within the man-
agement tool, as well as some policy validation algorithms that
can be used to check for consistency and usability of network

policies. After that is shown how the generic framework can
be applied to the areas of service level agreement enforce-
ment and secure IP communications. Finally, summaries and
conclusions are presented.

General Policy-Based Administration
Architecture

The general policy-based administration framework we pre-
sent can be considered an adaptation of the IETF policy
framework to apply to the area of network provisioning and
configuration. The IETF/Distributed Management Task Force
(DMTF) policy framework is shown in Fig. 1, and consists of
four elements: the policy management tool, policy repository,
policy decision point, and policy enforcement point.

An administrator uses the policy management tool to define
the policies to be enforced within the network. A device that
can apply and execute the different policies is known as the
policy enforcement point (PEP). The policy repository is used
to store the policies generated by the management tool. In
order to ensure interoperability across products from differ-
ent vendors, information stored in the repository must corre-
spond to an information model specified by the Policy
Framework Working Group. A policy enforcement point uses
an intermediary known as the policy decision point (PDP) to
communicate with the repository. The PDP is responsible for
interpreting the policies stored in the repository and commu-
nicating them to the PEP. The PEP or PDP may be in a sin-
gle device or different physical devices. Different protocols
are to be used for various parts of the architecture (e.g.,
COPS or SNMP can be used for PDP-PEP communication).
A repository could be a network directory server accessed
using LDAP.

20 0890-8044/02/$17.00 © 2002 IEEE

IEEE Network ¢ March/April 2002

Policy management
tool

Policy
repository

A\

Policy decision point |«

»| Policy enforcement point

M Figure 1. The IETF/DMTF policy framework.

The structure of the management tool is not defined by the
IETF standards since a standard format is not needed for
interoperability between different machines. In this article we
focus on the policy management tool and how it can leverage
the power of policies to simplify the provisioning and configu-
ration of the different devices within the network. This simpli-
fication of the management functions is obtained via two
elements of the policy management tool and the policy archi-
tecture: centralization and business-level abstractions.

Centralization refers to the process of defining all the device
provisioning and configuration at a single point (the manage-
ment tool) rather than provisioning and configuring each
device itself. In a system with a large number of machines, the
centralization of configuration at a single node reduces the
manual effort required of an administrator. The administrator
inputs the policies needed for network operation into the
management tool that populates the repository. The informa-
tion in the repository is specified in terms of the technology
being deployed within the network, for example, using terms
and concepts available for managing performance using differ-
entiated services (DiffServ) technology. The PDPs retrieve the
policy defined in the technology-specific notation, and convert
it into the appropriate configuration of the PEP that can
enforce the desired policies.

The benefits of centralization in reducing manual tedium
can easily be seen. In a network of 1000 machines needing 10
min of configuration per machine, an administrator would
need to work over a week to configure the machines manually.
With a policy-based solution, the administrator needs to spend
about 15 min populating the repository with the appropriate
policies, and the PEPs/PDPs would take care of the rest.

Business-level abstractions make the job of policy adminis-
trator simpler by defining the policies in terms of a language
closer to the business needs of an organization rather than in
terms of the specific technology needed to deploy it. The
administrator need not be very conversant with the details of
the technology that supports the desired business need.

As an example, let us consider the case of a network opera-
tor that needs to define two levels (premium and normal) of
customers. It is fairly simple for an administrator to identify
each customer and to define which level they may map to.
One way to support the business need for bilevel customer
support is to use IP DiffServ technology within the network. If
the administrator wants to define policies using DiffServ con-
cepts, he needs to be familiar with the technical details, for
example, be aware that differentiation is obtained by assigning
traffic to different per-hop behaviors (PHBs) and that the
premium customer is mapped to a specific PHB (e.g., EF-
PHB, expedited forwarding), and then define some parame-
ters for this PHB. The jargon of the technology (PHB,
EF-PHB, configuration parameter details) requires special

Graphical user interface Resource discovery

Business level policies

Policy transformation logic

l

Technology level policies

l

Policy distributor

M Figure 2. A generic policy management tool.

knowledge that is harder to find than familiarity with the busi-
ness needs of the organization.

The business-level abstractions depend on the business needs
and the technology that the policies are being defined for. The
business needs of an organization may be satisfied by many dif-
ferent technologies. A policy discipline is a two-tuple consisting
of a business need and the technology that supports it. A busi-
ness need, such as supporting performance SLAs on a network,
may be satisfied by technologies such as capacity planning [2],
integrated services (IntServ), DiffServ, or content distribution.
A business need such as establishing a secure virtual private
network may be satisfied using IP Security (IPSec) [3] or TLS
protocol [4]. While each discipline would have some aspects of
policies that are specific to it, many operations related to poli-
cies can be performed in a generic manner.

The Policy Management Tool

As discussed above, the policy management tool needs to sup-
port the notion of policies specified as business level abstrac-
tions as opposed to the policies specified as technology-level
abstractions. A generic policy management tool that will sup-
port these two levels of policies can be constructed out of the
four basic components, as shown in Fig. 2.

The user interface is the means by which an administrator
can input the business-level policies within the network. The
interface may consist of command lines or a graphical tool
that can be used by the administrator. Command lines permit
programmatic manipulation of the policy management tools.

The resource discovery component determines the topology
of the network, the users, and applications operational in the
network. In order to generate the configuration for the vari-
ous devices in the network, the capabilities and topology of
the network must be known.

The policy transformation logic component is responsible
for ensuring that the high-level policies specified by the net-
work administrator are mutually consistent, correct, and fea-
sible with the existing capacity and topology of the network.
It also translates the business-level policies into technology-
level policies that can be distributed to the different devices
in the network.

The policy distributor is responsible for ensuring that the
technology-level policies are distributed to the various devices
in the network. If the network devices support the IETF policy
architecture, policy distribution consists simply of writing the
technology-level policies (low-level policies) to the repository. If
some devices do not conform to the IETF architecture, the dis-
tributor has to use alternatives, for example, convert the low-
level policies into the appropriate device configuration, and
configure the device over a command line interface.

IEEE Network ¢ March/April 2002

21

The user interface, resource discovery, and policy distribu-
tor are components that have a relatively straightforward
design. This is not to discount their importance; a good user
interface can make the difference between an unusable tool
and a great one. However, the heart of policy management
lies in the policy translation logic: how the policies will be rep-
resented and managed.

The Policy Translation Logic

The policy transformation logic module validates the informa-
tion provided in the high-level policies and transforms them
into the configuration of devices in the network. The valida-
tion process must incorporate syntactical checks as well as
semantic checks. The semantic validation of high-level policies
consists of various types of checks:

* Bounds checks: validate that values taken by an attribute in
the policy specification are within specific limits determined
by the network administrator

* Relation checks: validate that the value taken by any two
parameters in the policy specification satisfy a relationship
determined by the specific technology

* Consistency checks: validate that any two policies defined by
the administrator do not conflict with each other

* Dominance checks: check for “unreachable policies”: poli-
cies defined by an administrator that will never become
active in the network because they are rendered ineffective
by the definition of other policies

e Feasibility checks: ensure that the set of policies desired by
an administrator for a network are feasible in the operating
environment provided by the network
Some of these checks can be made generically independent

of the policy discipline. The translation process and feasibility
checks depend on the policy discipline being supported. How-
ever, given a suitable policy representation, it is possible to
perform the bounds, relations, consistency, and dominance
checks in a discipline-independent manner.

Policy Representation

The high-level and low-level policies required for network
management can be specified in many different ways. Among
the researchers who are involved in specifying policies, multi-
ple approaches for policy specification have been proposed.
These approaches range from an interpretation of policies as
programs to an interpretation of policies as simple entries in a
directory or database.

From a human input standpoint, the best way to specify a
high-level policy would be in terms of a natural-language
input. Although these policies are very easy to specify, the
current state of natural-language processing, a special area
within the field of artificial intelligence, needs to improve
significantly before such policies can be expressed in this
manner.

The next approach is to specify policies in a special lan-
guage that can be processed and interpreted by a computer [5,
6]. This maps a policy to a piece of software that can be exe-
cuted by a computer under certain conditions. Another
approach is to specify the policy using a formal specification
language [7, 8]. When policies are specified as a computer-
interpretable program, it is possible to execute them. Howev-
er, in general it is quite difficult to determine if the policies
specified by two different programs are mutually consistent.

A simpler approach is to interpret the policy as a sequence
of rules, in which each rule is in the form of a simple condi-
tion-action pair (in an if-then-else format). The rules are eval-
uated on specific triggers, such as the passage of time or the
arrival of a new packet within the network. If a rule’s condi-
tion is true, the action is executed. A sample specification of

the policy in this format would be “If the packet’s source or
destination IP address belongs to the research or engineering
subnet, encrypt the packet.” Policies specified in this fashion
are easier to analyze than policies specified as full-blown com-
puter programs or by a formal specification language.

Representing policies using if-then-else semantics may lead
to the conclusion that policy representations should be evalu-
ated using an expert system or theorem-proving approach.
Although such an approach toward network policies is feasi-
ble, this may not be the appropriate approach for the prob-
lem. For the most important problems that are of relevance in
an application of policies within the network, expert-systems-
based approaches have several limitations. As an example,
checking the mutual consistency of a set of policies using the
theorem-proving approach requires exponential running time
in many instances.

An alternative specification of policies is to represent them
simply as entries in a table. The table consists of multiple
attributes. Some of these attributes constitute the condition
part, and others constitute the action part. Different types of
tables need to be specified if the condition components or
action components of different rules vary. Such a tabular rep-
resentation is rich enough to express most of the policies that
can be specified with a rule-based notation. Furthermore, it is
easier to analyze for dominance and consistency.

The IETF [1] has chosen a rule-based policy representation
in its specification. However, due to the need to store this
representation in an LDAP directory or database, this repre-
sentation essentially follows the tabular specification just
described. For a variety of policy disciplines that arise in the
field of TCP/IP networks, we have been able to use such a
tabular specification of policies to capture most of the practi-
cal scenarios one may encounter.

Policy Validation Algorithms

When we use a tabular representation for the policies, each
policy discipline can be characterized by a description of the
set of tables in the policy definition for the discipline, and the
set of columns that make up each table. We refer to this
description as a policy schema. A column of a schema defines
an attribute of the policy that could be a simple (textual or
numerical) attribute, a structured attribute consisting of multi-
ple attributes (e.g., an IP Subnet attribute consists of the sim-
ple attributes of SubnetAddress and Prefix Length), or a
nested table (e.g., the table of interfaces at a computer). Dif-
ferent types of validation criteria can be associated with each
table and column of the attribute.

The validation criteria enable some of the checks to be per-
formed in a very simple way. By associating a limit checking
criteria with each column, the bounds checks can be per-
formed rather trivially. Similarly, the relations checks can be
performed by defining a relationship criteria associated with a
table. Each row in the table is validated against the relation-
ship criteria.

The checking for policy conflicts and dominance needs to
be performed across all rows of a table. The consistency crite-
rion is that if two rules can both apply under some conditions,
the actions to be performed must be uniquely identified and
doable simultaneously.

Conflict Resolution — As an example of conflicts among dif-
ferent policies, consider a simple example where two classes
of service (Gold and Silver) are defined within the network.
An application called WebServer is defined to operate on
TCP protocol and the port number of 80. A set of users with
IP addresses in subnet 9.2.34/24 is defined as High-
PowerUsers. Two policies are defined as follows:

22

IEEE Network ¢ March/April 2002

P1: Any access to WebServer gets Silver service.

P2: Any use of the network by HighPowerUsers gets Gold ser-
vice.

Both of these rules are perfectly okay by themselves, but
there’s a conflict when the two are taken together. In the case
of a HighPowerUser who is trying to access WebServer, it is
unclear whether the Gold or Silver service should be provided.

One approach to detecting conflicts among the different
rules is to look on each policy rule as consisting of multiple
independent terms and one or more derived terms. A policy
rule consists of the generic form if-condition-then-action. Let
us impose the restriction that the terms defining the condition
be distinct from the terms defining the action portion of the
rule. Business SLA policies as well as security policies are
often defined in terms of classes of service (dealing with per-
formance or security). Each class of service combines several
actions that can be taken together.

Consider the different terms that make up the condition
part of a policy expressed in the format if-condition-then-
action. Each independent term can be looked on as an inde-
pendent axis in a hyperdimensional space. Each rule defines a
region in the hyperdimensional space. Each such region can
be associated with a dependent term (e.g., the service class)
identified by the rule. If any point in space has multiple
dependent terms that conflict with each other, you have a
potential conflict. For example, consider the case of policy
definitions that have two independent terms. Each of the poli-
cy definitions would carve out a two-dimensional space. If the
regions defined by two policies do not overlap, they do not
conflict. If two regions overlap, the corresponding policies
have a potential conflict if the dependent terms in the policy
definition can’t be done together.

For a more specific example, consider the simple example
previously mentioned about HighPowerUsers and Webserver.
The two independent axes in this case are the applications
(identified by their port numbers) and the users, identified by
their IP address. These two rules define regions in a two-
dimensional space, with the first dimension being IP address
and the second the port numbers. The first rule carves out a
region defined by the line obtained by keeping the port
dimension fixed at 80. The second rule is the square region
carved out by subnet 9.2.34/24 (with a lower of range 9.2.34.0
and upper range of 9.2.34.255). The line intersects with the
region, and the common region contains a conflict with two
different classes of service.

More realistic cases of policy definition would tend to
have more independent terms and corresponding dimensions
defining the policies. However, if one defines the dependent
and independent terms for each policy table, along with a
function for each independent term that checks whether
there is an overlap between two values of that term, the
algorithm can be implemented in a very simple fashion with
a running time of O(n2) where n is the number of policies.
The use of computational geometry algorithms [9] may
enable algorithms with better runtime complexity. If a con-
flict is found, one way to resolve it is to assign them different
priorities. Since the priority can be considered an indepen-
dent term for conflict resolution, policies with different pri-
orities will not result in overlapping regions in the
hyperdimensional space.

Dominance Checks — The dominance criterion checks
whether a policy is actually applicable in some condition that
can arise during operation. Dominance checks are also
designed around the concept of the hyperdimensional space.
To check for this, we map each policy into the independent
and dependent terms as before. We also assume there is a

function that takes two policies and determines which will
dominate in a region of the overlap. With this information,
the dominance check for a single rule consists of comparing
it against all the other policies that overlap with it and domi-
nate it.

We start with a list of hyperdimensional regions initially
consisting of only one hyperdimensional region defined by
the policy rule we are checking for dominance. Then we
remove the region described by each dominating and over-
lapping policy from all the regions in the list successively.
After all the policies have been compared, we examine the
resulting list. If the list of hyperdimensional regions is
empty, the policy is unreachable and can be removed with-
out any penalties. Otherwise, the final regions represent the
combination of independent terms where the policy would
remain applicable.

The worst case running time of this algorithm is O(nk+1)
where n is the number of policies to be compared, and & is
the types of independent terms that are used to define the
hyperdimensional space. While this may appear rather inef-
ficient algorithm, practical management systems are not
likely to find it a problem. The number of independent
terms is usually in single digits, and the algorithm is thus
polynomial. In the context of QoS networking policies, k is
usually 5 (corresponding to the 5-tuple in the network head-
er). The number of policies in the system would be approxi-
mately 50 on the average, and the resulting comparisons can
be completed in a few minutes by current processors.
Another factor that helps considerably is the fact that the
running time for a single policy dominance is O(ny +nX)
where n; is the number of policies that overlap with the
given policy and n; is the number of policies that do not
overlap with the given policy. Since the number of overlap-
ping policies is only a small fraction of the total number of
policies, the expected time for checking the dominance of
all policies is O(n?).

Discipline-Specific Procedures — The translation of busi-
ness-level policies to a technology-level policy and the feasibil-
ity checks are discipline-specific procedures. The exact
method to translate the business-level abstractions to a specif-
ic technology has to be defined on a per-discipline basis. How-
ever, the policy management tool provides a common
framework within which the translation procedure can be per-
formed. The common framework consists of defining the rules
that provide the mapping from the tables defined as business-
level policies to the tables that define the technology-level
policies. Once these rules are defined for a discipline, the pol-
icy management tool can use them to perform the translation
in a generic fashion.

As an example, let us assume that the business-level tables as
well as technology-level translation are represented in XML. A
representation of the table-driven policies is straightforward to
do in XML. A different XML rule specification is needed for
the business-level and technology-level abstractions. The trans-
lation rules consist of XSLT mappings that can be applied by
the policy management tool. While the XSLT rules have to be
defined on a discipline-specific basis, the management tool per-
forms the translation in a generic fashion.

The feasibility checks also need to be performed in a disci-
pline-specific manner. For the case of performance-related
SLAs, the feasibility check require ensuring that the current
network topology and the features of the technology being used
can meet the desired performance goals. This may require the
use of performance evaluation schemes. For the case of secure
communications, the feasibility checks would require checking
the compatibility of IPSec capabilities at two devices.

IEEE Network ¢ March/April 2002

23

Client SLA

ClientName

subnets

SLAName

(-]
Client in objective Objec%es in SLA

accessing an application called SAP running on a
server called business server. A performance objec-
tive may state that accounting’s access to SAP run-
ning on business server be given Gold class of

[
Performance objective

Class of service

service.

B SLOName CoSName

TimeOfDay

ResponseTime
IIl EvaluationPeriod

In Fig. 3, a client represents users within the net-
work. Each client has two properties: a name (client-
Name) that identifies it uniquely, and the subnet

Application

App in objective 1..°
pp— pr{in obj]

port-range
protocol

Servers

Server in objective

ServerName

IP addresses

address, identifying the location of the machines
used by these users. A server is a machine where
applications run, and its properties include a name
and IP address(es) of its interfaces. We assume that
applications run on well-known port numbers or a
range of port numbers on each of the servers. Thus,
an application has the properties of name, port
range, and protocol. A class of service defines a level

M Figure 3. An object model of business-level SLAs in an enterprise envi-

ronment.

Some Example Policy Disciplines

Having provided an overview of the generic policy manage-
ment, we will now consider the policy management tool for a
couple of disciplines. The two policy disciplines we will con-
sider are:
* The support of performance-based SLAs using the IP Diff-
Serv technology
* The support of enterprise extranets using IPSec protocol
suite
For each of the policy disciplines we want to apply to the
generic management architecture, we need to do the following
tasks:
¢ Define the policy schema for the business-level policies
* Define the policy schema for the technology-level policies
* Define the discipline-specific translation rules
* Define the nature of any discipline-specific feasibility tests
For demonstrating the examples with policy discipline, we
would consider the environment that of an enterprise network
consisting of several campus networks connected together by
means of wide-area links. We would use some simple policy
schemas for both the business- and technology-level policies,
illustrating them in UML.
The policy management architecture can be used for many
other disciplines and in business environments such as a net-
work services provider or an application services provider [10].

Service level Agreement Using Differentiated Services

Within an enterprise environment, one of the components of
the business SLAs enforced on the IT department specifies
desired objectives for application performance, for example,
“Mail messages less than 100 kbytes should be retrieved in
less than a second.” Figure 3 shows a very simple object
model of the business-level performance SLA policies in an
enterprise environment.

As shown in Fig. 3, an SLA! is an aggregation of several
performance objectives. Each objective defines a association
between a client, an application, a server, and a class of ser-
vice. Semantically, a performance objective states that traffic
flows used by a client to access an application running on a
specific server be mapped to one of many classes of service.
As an example, consider a client called Accounting, which is

1 Some authors refer to the aggregation of performance objectives as ser-
vice level specifications (SLS), and use the term SLA for business con-
tracts incorporating SLS.

of performance. Its properties include a name, a
response time, and an evaluation period. The
response time is the expected application response
time for any traffic flows that map into this class of
service. The evaluation period states how long measurements
must be taken in order to determine the response time. As an
example, the Gold class of service may have a response time
of 500 ms for an evaluation period of 1 h. Any traffic flow
that maps into the Gold class of service is required to have a
response time of 500 ms or less when averaged over intervals
of an hour or more.

The performance objective provides an association between
a client, an application, a server, and a class of service. An
objective has an association with exactly one class of service,
but the association could be with more than one client, appli-
cation, or server. An objective could only be valid at specific
times of day, which is one of the attributes shown for the per-
formance objective in Fig. 3.

The low-level policies for the mapping would consist of the
policy schemas defined for the DiffServ technology. An
example of such a specification for DiffServ is shown in Fig.
4. Multiple devices with the same set of policies are mapped
into a device role. For a device role, multiple network levels
are defined, each network level corresponding to one of the
many DiffServ PHBs that can be used within the network.
The DiffServ policies map the traditional IP 5-tuple (consist-
ing of the source and destination addresses, ports, and proto-
col) to one at the network level. While this set of DiffServ
policies is very different than the framework defined by the
IETF, the set of policies conformant to the object model
shown in Fig. 4 can easily be mapped into the notation of the
IETF workgroup [11].

Let us assume an expert user has defined the rules that
specify the mapping of the classes of services defined as per
Fig. 3 into the network levels defined as per Fig. 4. The expert
user determines the PHB and the amount of bandwidth to be
allocated to each class. Thus, an expert user may define that
one should use the class selector PHBs within the network,
with the Gold class of service to correspond to the highest pri-
ority service, the Silver class of service to correspond to the
medium priority service, and the Bronze class of service to
correspond to the default service, with a maximum bandwidth
limit of 80 percent of a link’s capacity to be used by applica-
tions in the default class of service.

The policy tool uses the network topology to determine the
set of access routers and servers that are relevant for each
business-level policy. For each device, the relevant rules are
collected together. Devices with the same set of policies are
collected together in a common device role. The management
tool then uses the translation tables provided by the expert
user to determine the correct marking behavior for all the

24

IEEE Network ¢ March/April 2002

Device

Name El

servers and access routers. For the core routers them-
selves, the policy management tool must generate a
consistent mapping of the ToS encoding to the right

priority level along the forwarding paths of the routers. Device rule Network level
Supporting Enterprise Extranets using IP- Name it
1..¢| ToS encoding

security Policy

Source address
Destination address

Source port IEl
Destination port
Protocol

Enterprises establish extranets in order to automate
their business processes with other enterprises(e.g.,
with their contractors and suppliers). An extranet

allows a business partner to access part of the enter-
prise infrastructure. We assume that the following
entities are involved in establishing the extranets we

0

are examining here:

* An extranet client application: This client application
runs in the demilitarized zone (DMZ) of a business
partner, which is a supplier to the enterprise in this
example. It runs on a machine that has support for IPSec.
These types of machines are the only entities in the supplier’s
environment that are allowed to communicate to a set of
servers within the enterprise.

* An extranet server application: This application runs in the
DMZ of the enterprise, and communicates with the extranet
client applications that are operational in the supplier’s
DMZ. The extranet server application runs on extranet
server machines.

Furthermore, a policy management tool and a policy repos-
itory are required in compliance with the IETF policy archi-
tecture. It is assumed that the machines running the extranet
client application and the extranet server application imple-
ment the IETF PEP and PDP functionality.

The UML diagram illustrating the business-level policy
schema for enterprise extranets is shown in Fig. 5. An extranet
definition allows a set of business partners to access a set of
applications that are running on some servers within the enter-
prise. A business partner may have more than one machine at
its site where the extranet client application is operational.
Thus, the business partner contains an association to multiple
extranet client machines. Each extranet client houses the
extranet client application, and is identified by its name and IP
address. The extranet definition allows some machines to
become accessible to external business partners. These
machines (the extranet servers) have a name and an IP address
as their attributes. Only some applications running on the
servers may be made accessible to external busi-
ness partners. These applications are identified by

M Figure 4. A DiffServ policy schema.

Figure 6 shows an object model to represent the tech-
nology-level (low-level) policies for IPSec. An instance of
security policy rule maps an instance of communication tun-
nel to an instance of security class. Using the “if condition
then action” representation of the policy rule, the security
policy rule uses the associated communication tunnel as
the condition part, and the associated security class as the
action part.

Each instance of a security class is associated with one
instance of phase one parameters, and one or more instances
of phase one transform. Similarly, it is associated with one
instance of phase two parameters and one or more
instances of phase two transform. Each instance of a phase
one transform defines a set of acceptable encryption/
authentication algorithms that can be used for phase one
communication within IPSec. Each instance of phase one
parameters contains values of various parameters such as
the duration after which keys for phase one communication
must be renegotiated. An analogous explanation holds for
the phase two counterpart of the transforms and parame-
ters. Depending on the IPSec phase [3] of communication
with a remote party, the associated instances of transforms
and parameters dictate the operation of the IPSec protocol
engine.

Each security policy rule is associated with only one secu-
rity class, and each communication tunnel is associated with
only one security policy rule. However, a security class may

their name, and their other attributes include the
ports they run on and the protocol these applica-
tions use for communication. An extranet is
access associated with one or more business part-

Machines in business partner | MachineName

El ﬁ IP address

m Extranet client

ners, one or more extranet servers, and one or

more applications. Each extranet definition allows Business partner | o, nars permitted in extranet
extranet clients belonging to associated business T E
. . Contact xtranet

partners to access associated applications execut- E Security level for extranet
ing on associated extranet servers. — Name]

Each extranet is associated with exactly one Application IE'
security class. The security class defines the type AppName
of security that needs to be provided to the traf- HOLUN. Applications accessible in extranet
fic flows that form part of the extranet definition. Security class
The 'detalls of the security class are prov1c.le§1 T —— Name
within the low-level technology-specific defini-
tions, and are described in more detail in the fol- peveiame Servers accessible in extranet

lowing subsection.

All the extranet definitions taken together
constitute the high-level policy in this environ-
ment.

B Figure 5. A UML diagram of the business-level policy schema for enterprise
extranets.

IEEE Network ¢ March/April 2002 25

Phase one transform

Security policy rule

one secure tunnel between each participating

Name

Phase two transform

extranet client application machine and the
named participating extranet server application

Security class

Name

[

Phase one parameters

[

[l

machine. It then determines the appropriate
mode in which the security transformation must
take place. If the point where IPSec transforma-
tions happen is the same machine as the end-
points of the communication, one can use the
transport mode. Otherwise, tunnel mode needs to
be used.

Once the set of secure communication tunnels to

Phase two parameters

Communication tunnels

be established has been determined, we can pro-

EEHE_IEE

Source subnets
Source ports
Destination subnets
Destination port
Protocol

ceed with determining the relevant set of tunnels
for each firewall/machine involved in the extranet.
From the set of relevant tunnels at each device, one
could determine the right set of phase one and

phase two tunnel descriptions to be used for IPSec

M Figure 6. An object model representing the technology-level policies for IPSec.

be associated with more than one security policy. Similarly,
instances of phase one transforms, phase one parameters,
phase two transforms, and phase two parameters can be
shared across multiple instances of security classes. Please
note that the IPSec object model shown in Fig. 6 is a simple
model intended for illustrative use within this article, and
can be mapped to the standard representation used by the
IETF [11], but does not follow the standard definitions ver-
batim.

In order to translate the high-level policies shown in Fig. 5
to the low-level policies shown in Fig. 6, we need to map the
definitions of the extranets to a set of secure communication
tunnels, and then generate the right associations between the
communication tunnels, and the phase one and phase two
parameters and transforms.

As in the case of the enterprise SLA, we presume that
an expert user (e.g., the chief security officer of an enter-
prise) would determine an appropriate definition for a
security class. As an example, a security class named secure
might be defined as using the IPSec Authentication header
protocol without encryption of packets, while a security
class named ultrasecure might be defined as using IPSec
Encapsulating Security Payload protocol with both authen-
tication and encryption. These definitions have to be based
on an object model as well. This description will essentially
map a security class to a set of policies used for the low-
level policy definition.

In order to translate the definition of extranets into secure
communication tunnels, the policy translation tool creates

policies that will then be populated into the policy
repository. The different firewalls involved in the
process can then reconfigure themselves.

References

[1] The IETF Policy Framework Working Group: Charter available at
http:/ /www.ietf.org/html.charters/policy-charter.html

[2] R. S. Cahn, Wide Area Network Design, Morgan Kaufmann, 1998.

[3] D. Maughan et al., “Internet Security Association and Key Management Pro-
tocol (ISAKMP),” Internet RFC 2408, Nov. 1998.

[4] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” Internet RFC 2246,
Jan. 1999.

[5] J. Fritz Barnes and R. Pandey. “Cachel: Language Support for Customizable
Caching Policies,” Proc. 4th Int’l. Web Caching Wksp., San Diego, CA,
Mar. 1999.

[6] J. Hoagland, “Specifying and Implementing Security Policies Using LaSCO,
the Language for Security Constraints on Objects.” Ph.D. dissertation, UC
Davis, Mar. 2000.

[7] R. Darimont et al., “GRAIL/KAOS: An Environment for Goal Driven Require-
ments Engineering,” Proc. 20th Int'l. Conf. Soft. Eng., Kyoto, Japan, Apr.
1998, pp. 58-62.

[8] N. Damianou et al., “Ponder: A Language for Specifying Security and Man-
agement Policies for Distributed Systems,” Imperial College, UK, res. rep.
DoC 2001, Jan. 2000.

[9] F. Preparata and M. |. Shamos, Computational Geometry: An Introduction,
Springer Verlag, 1998.

[10] D. Verma, Poﬁcy Enabled Networking, New Riders Publications, 2000.

[11] B. Moore et al., “Policy Core Information Model — Version 1 Specifica-
tion,” RFC 3060, Feb. 2001.

Biographies

DINESH C. VERMA [M '92] (dverma@us.ibm.com) received a B.Tech. degree in
computer science from the Indian Institute of Technology, Kanpur, in 1987, and
a Ph.D. degree in computer science from the University of California, Berkeley in
1992. Since then, he has worked at the IBM Watson Research Center and
Philips Research Laboratories. He is currently a research manager at the IBM
Watson Research Center, and oversees research in the area of edge networking.
His current research interests include content distribution networks, policy-based
networking, and performance management in networked systems.

26

IEEE Network ¢ March/April 2002

