
Simplifying Scalable Graph Processing with a
Domain-Specific Language

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Semih Salihoglu
Stanford University

semih@stanford.edu
Jennifer Widom
Stanford University

widom@stanford.edu

Kunle Olukotun
Stanford University

kunle@stanford.edu

ABSTRACT
Large-scale graph processing, with its massive data sets, requires
distributed processing. However, conventional frameworks for dis-
tributed graph processing, such as Pregel, use non-traditional pro-
gramming models that are well-suited for parallelism and scalabil-
ity but inconvenient for implementing non-trivial graph algorithms.
In this paper, we use Green-Marl, a Domain-Specific Language for
graph analysis, to intuitively describe graph algorithms and extend
its compiler to generate equivalent Pregel implementations. Us-
ing the semantic information captured by Green-Marl, the com-
piler applies a set of transformation rules that convert imperative
graph algorithms into Pregel’s programming model. Our experi-
ments show that the Pregel programs generated by the Green-Marl
compiler perform similarly to manually coded Pregel implementa-
tions of the same algorithms. The compiler is even able to gener-
ate a Pregel implementation of a complicated graph algorithm for
which a manual Pregel implementation is very challenging.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Code
generation

1. INTRODUCTION
Large-scale graph processing often involves data sets that ex-

ceed the memory capacity of a single machine. Examples of such
data sets include the web-graph, social networks and genomics
data. Working with these large graph data sets requires a distributed
graph processing framework, such as Google’s Pregel [16] or its
open source implementations [2, 18]. Pregel is a scalable dis-
tributed graph processing framework, in which the vertices of a
graph are distributed across multiple machines in a cluster. Ver-
tices, in synchronized timesteps, communicate with each other via
messages to perform a graph computation.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CGO ’14 February 15 - 19 2014, Orlando, FL, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2670-4/14/02$15.00.
http://dx.doi.org/10.1145/2544137.2544162

Pregel adopts a non-traditional programming model, for the sake
of maximizing parallelism and scalability. A graph algorithm is
implemented as a single computation function written in a vertex-
centric, message-passing and bulk-synchronous way. This function
is invoked by the framework at every timestep (Section 2.1).

However, implementing sophisticated graph algorithms in Pregel
is challenging, especially when the algorithm is composed of multi-
ple computation kernels connected by non-trivial control flows, e.g.
the Betweenness Centrality computation algorithm [6]. We sum-
marize the challenges for implementing multi-kernel algorithms in
Pregel as follows:

1. In Pregel’s programming model, programmers must explic-
itly keep track of the global execution state inside the single
computation function.

2. Pregel API allows only a sinlge message types. Therefore
the programmer has to encode and decode different types
of messages explicitly, if multiple types of messages are re-
quired by the algorithm.

3. Pregel’s bulk-synchronous computation (BSP) model [21] only
allows messages to be pushed. However, many conventional
graph algorithms relies on data reading or pulling.

4. In Pregel, the graph algorithms should be mapped into vertex-
centric functions explicitly, while many conventional graph
algorithms are not designed in this model.

In addition, optimizing the performance of Pregel programs be-
comes more challenging as the vertex-centric computations, local
vertex values, and message-types get more complex. Consequently,
developing complicated algorithms using Pregel is a daunting task
(Section 2.2).

In this paper, we show how one can express graph algorithms in-
tuitively using Green-Marl [11], a high-level domain-specific lan-
guage (DSL), and then automatically generate equivalent Pregel
implementations. Using our approach, graph algorithms can be in-
tuitively implemented in Green-Marl without addressing the chal-
lenges above. Specifically:

1. Green-Marl adopts an imperative programming style, allow-
ing global control flows.

2. Green-Marl assumes random memory access, and thus there
is no need to reason about messages at all.

3. In Green-Marl, data access is not bulk-synchronous but im-
mediate; programmers need not speculate about which data
will be required in the next timestep.

Parsing &

Checking

Transformation

Translation

Optimization

Code Generation

Green-Marl

Program

Error
Pregel-

Canonical? N

IR

(AST)

IR

(FSM + AST)

Pregel

Program

Figure 1: Compilation steps: Initially, the compiler uses annotated
abstract syntax tree (AST) as internal representation (IR). After trans-
formation step, the compiler uses another IR that is composed of both
a finite state machine (FSM) and AST.

4. Green-Marl programs need not be vertex-centric, but are com-
posed of high-level graph operations.

Given a Green-Marl program, our compiler first examines if the
program is composed of certain frequent patterns that can be mapped
into Pregel’s programming model. If a Green-Marl program is
composed solely of such patterns, we call such a program Pregel-
canonical, the compiler translates it into an equivalent Pregel im-
plementation that combines each pattern with proper state and mes-
sage management code (Section 3). If the Green-Marl program is
not Pregel-canonical, the compiler attempts to apply a set of trans-
formations to turn the original Green-Marl program into its equiva-
lent Pregel-canonical form. In addition, the compiler automatically
applies a few performance optimization techniques that are typi-
cally applied to simple algorithms by Pregel programmers (Sec-
tion 4). Our compilation steps are summarized in Fig 1.

Our experiments show that the performance of the compiler gen-
erated programs is as good as manual Pregel implementations of
the same algorithms. Our compiler is even able to compile a Green-
Marl implementation of Approximate Betweenness Centrality, whose
manual Pregel implementation is prohibitively difficult (Section 5).
Although this paper focuses on generating Pregel programs, our
approach can be applied to other distributed graph analysis frame-
works that have similar programming model characteristics and
challenges (Section 6).

Our specific contributions are as follows:
• We identify common patterns in graph algorithms designed

in an imperative, shared memory style that have a direct trans-
lation into Pregel’s vertex-centric, message-passing program-
ming model. We show how these translations are imple-
mented in the Green-Marl compiler.

• We devise several transformation rules that can convert a
subset of the Green-Marl programs that are not composed of
the above common patterns (i.e. not Pregel-canonical) into
equivalent Green-Marl programs consisting only of those pat-
terns (i.e. Pregel-canonical). We show how these transforma-
tions are implemented in the compiler.

• We show two compiler optimizations which decrease the num-
ber of timesteps that the compiler generated Pregel programs
take.

• We show experimentally that the performance of Green-Marl
programs that are compiled into Pregel is similar to the man-
ual Pregel implementations of the same algorithms. We also
show that our compiler is able to compile a Green-Marl im-
plementation of Approximate Betweenness Centrality, a com-
plicated graph algorithm, into Pregel.

2. BACKGROUND

2.1 The Pregel Programming Model
We give a brief overview of Pregel [16] here. Broadly, the in-

put is a directed graph, and each vertex of the graph maintains
a local user-defined state. The computation is broken down into
timesteps and terminates when all vertices are inactive in a partic-
ular timestep. Within a timestep i, each active vertex u in parallel:
(a) looks at the messages that were sent to u in timestep i − 1; (b)
modifies its state; (c) sends messages to other vertices and option-
ally becomes inactive. A message sent in timestep i from vertex u to
vertex v becomes available for v to use in timestep i+1. The behav-
ior of each vertex is encapsulated in a function vertex.compute(),
which is executed exactly once in each timestep. Computation as-
sumes bulk-synchronous parallel model (BSP) [21], where global
barrier synchronization is enforced at the end of each timestep.
The framework buffers the messages sent during the execution of
vertex.compute(), and as a result: (1) utilizes the underlying net-
work bandwidth efficiently with large network packets; (2) overlaps
computation with communication.

In this paper, we used GPS [18], an open-source implemen-
tation of Pregel. Noticeably, GPS introduces a second function
master.compute(), in addition to vertex.compute(), which al-
lows expressing of sequential parts of graph algorithms. Note that,
however, this might make the Pregel programming even more chal-
lenging since the algorithm now has to be implemented in two sin-
gle functions. We refer to GPS publication for details [18].1

2.2 Comparison of Programming Models
Pregel’s programming model differs from the imperative style,

shared-memory programming model in which many graph algo-
rithms are typically expressed. In this paper, we use a high-level
DSL, namely Green-Marl [11] to describe the same algorithm in a
more intuitive or conventional way.

As an illustrative example, consider a graph algorithm for com-
puting two statistical facts on a Twitter-like social network: (1) the
number of teenage followers of every user, and (2) the average
number of teenage followers of users over K years old. Figure 2
and Figure 3 show the Green-Marl and Pregel implementations of
this algorithm respectively.

The Green-Marl implementation in Figure 2 is a more intuitive
translation of the proposed graph algorithm. The program is written
in an imperative style; it describes a sequence of statements to be
executed in order without any notion of timesteps. The program is
composed of a vertex-parallel computation (Lines 6–7) and a glob-
ally scoped computation (lines 10–11). The implementation as-
sumes a shared-memory environment and performs random mem-
ory accesses (e.g. t.age in line 7).

The Pregel implementation of the same algorithm is shown in
Figure 3. First, the Pregel implementation has to consider the no-
tion of timestep In particular, the program has to manage the ex-
ecution state based on the current timestep (lines 15, 21, and 27).
Second, shared-memory data access is replaced with explicit mes-
sage passing. Note that, due to BSP model, messages are received
only in the next timestep (Line 19 and 24). Moreover, the direction
of information flow is different. For example, instead of reading
the incoming neighbors’ age and counting the number of teenagers,
each teenage node sends a message (containing the value 1) to its
outgoing neighbors (lines 15 – 26). This is because Pregel only
1There also exists a variant [13] of this work where Green-Marl
programs are compiled into Giraph, another Pregel implementation
that adopts master.compute() API.

1 Procedure teenCnt (G: Graph,
2 K: Int, age: Node_Prop<Int>; // int-type node property
3 teenCnt: Node_Prop<Int>) : Float {

// returns a float value
4 // For each node n in graph G, count the number
5 // of followers whose age is between 13 and 19
6 Foreach(n: G.Nodes)
7 n.teenCnt = Count(t:n.InNbrs)(t.age>=13 && t.age<=19);
8 // Compute the average of teenCnt,
9 // among node n whose is age larger K

10 Float avg = Avg(n:G.Nodes)(n.age>K){n.teenCnt};
11 Return avg;
12 }

Figure 2: Green-Marl Implementation of Calculating the Aver-
age Teenage Followers

13 public class TeenCnt extends ... {
14 public void compute(int timestepNo, ...) {
15 if (timestepNo == 1) {
16 // check my age, send 1 to nbrs
17 if (getValue().age>=13 && getValue().age<=19) {
18 message M = new message(1);
19 sendToNbrs(M);
20 }}
21 else if (timestepNo == 2) {
22 // add up ones from received messages
23 this.cnt = 0;
24 for(message M : rcvdMsgs())
25 this.cnt += M.intValue;
26 }
27 else if (timestepNo == 3) {
28 // check my age, send this.cnt
29 int k = getGlobalObject("k").intValue();
30 if (this.age > k) {
31 // increment sum by this.cnt, and num by 1. master
32 // will divide total sum by num to compute the avg
33 Global.put("sum", new intSum(this.cnt));
34 Global.put("num", new intSum(1));
35 ...
36 }}}} ...

Figure 3: Pregel Implementation of Calculating the Average
Teenage Followers

allows messages to be pushed but not to be pulled. Third, com-
putation of globally scoped data is implemented by defining and
using special global objects (lines 29, 33, and 34). Finally, the
Pregel implementation requires more boilerplate code not shown in
the figure, such as the definition of master and message classes.

Although implementing algorithms in Pregel’s programming model
is manageable for simple algorithms as in Figure 2, it becomes very
challenging for more complicated algorithms Consider for instance
the Betweenness Centrality (BC) algorithm [6], which measures
the relative importance of nodes in a graph. Note that even the
multi-threaded implementations of this algorithm were considered
worthy of publication [4, 15].

Figure 4 is the Green-Marl implementation of the Approximate
Betweenness Centrality algorithm as described in the SNAP graph
library [5]. The algorithm picks a random node s in the graph,
and assigns a sigma value of 1 to s and a sigma value of 0 to
other nodes. The algorithm then traverses the graph in breadth-first
search (BFS) order from s, updating the sigma value of each visited
node u by aggregating the sigma values of u’s BFS parents. The
algorithm then traverses the graph in reverse BFS order, computing
two other values for each node u (delta and bc) by aggregating
values from u’s BFS children. These steps are repeated K times. In
order to compute the exact BC value, one can replace the iteration
over K random starting nodes with an iteration over all nodes in the
graph. Note that this approximation is fast to compute – O(Km)
instead of O(nm), where n is number of nodes and m is the number
of edges – but only accurate enough to rank the vertices in large

37 Procedure bc_approx(G:Graph, K: Int ;
38 BC:Node_Prop<Float>) {
39 G.BC = 0; // Initialize BC as 0 per each node
40 Int i = 0;
41 Do {
42 Node_Prop<Float> sigma;
43 Node_Prop<Float> delta;
44 Node s = G.PickRandom();
45 G.sigma = 0;
46 s.sigma = 1;
47 InBFS(v: G.Nodes From s) { // BFS-order traversal
48 // Summing over BFS parents
49 v.sigma = Sum(w:v.UpNbrs) { w.sigma }; }
50 }
51 InReverse { // Reverse-BFS order traversal
52 v.delta = // Summing over BFS children
53 Sum (w:v.DownNbrs) {
54 v.sigma / w.sigma * (1+ w.delta) };
55 v.BC += v.delta; // accumulate delta into BC
56 }
57 i++;
58 } While (i < K); }

Figure 4: Green-Marl Implementation of Approximating Be-
tweenness Centrality
social graphs and identify highly central nodes.

There are several challenges in implementing Approximate Be-
tweenness Centrality with Pregel’s API. First, it is not obvious how
the control structures (e.g. while and graph traversal operations
(e.g. BFS) can be expressed in a vertex-centric way. Second, it is
also not obvious how the algorithm should be split into multiple
timesteps and what messages should be exchanged at each step.
Third, even after resolving the previous issues, implementing the
algorithm in Pregel would require significant amount of code com-
plexity to explicitly manage execution state and message types.

As we describe in Section 5, the Green-Marl compiler can suc-
cessfully compile the program in Figure 4 into an equivalent Pregel
implementation. Our compiler analyzes the program and applies
several transformation and translation rules until an equivalent Pregel
program is generated. The next two sections explain the details of
these transformation and translation rules.

3. DIRECT COMPILER TRANSLATIONS

3.1 Translation of Pregel-Canonical Patterns
In this section, we explain how certain patterns that emerge in

graph algorithms can be directly translated into Pregel’s program-
ming model. We also show how these translations are implemented
in the Green-Marl compiler.

State Machine Construction
Pregel-compatible graph algorithms are decomposed into two al-

ternating phases of computation: sequential computation and vertex-
parallel computation. For instance, the following Green-Marl code
consists of a sequential, a vertex-parallel, and finally another se-
quential computation phase.

59 // sequential computation
60 Int S = 0;
61 Int C = 0;
62 // vertex-parallel computation
63 Foreach(n: G.Nodes) {
64 if (n.age > K) { // K,S,C: global variables
65 S += n.cnt;
66 C += 1;
67 } }
68 // sequential computation
69 Float val = (C == 0) ? 0 : S / (float) C;

Using the extended Pregel API of GPS, sequential and vertex-
parallel computation can be naturally mapped into master.compute()

and vertex.compute() methods, respectively. However, the two
sequential phases in the example above do different computations
and need to be executed inside the same compute() method. As a
result, explicit state management code is required in the master.

compute() method to ensure that the correct computation is exe-
cuted at the appropriate timestep.

The compiler recognizes these phases in a given input program
by using control-flow analysis and creates a state machine. For in-
stance, the compiler generates the following code from the example
above:

70 class master extends ... {
71 int _state, _next_state;
72 public void compute(..) {
73 ...
74 switch(_state){ // state machine managed by master
75 case 0: do_state_0(..);break; // S=0,C=0;
76 case 1: do_state_1(..);break; // vertex parallel
77 case 2: do_state_2(..);break; // val=(C==0)?...
78 }
79 ...
80 // broadcast current state to the vertex objects
81 Global.put("_state", new IntValue(_state));
82 }
83 ...
84 private void do_state_1(..) { ...
85 _next_state = 2; // sets the next state
86 } ...
87 }
88 class vertex extends ... {
89 public void compute(..) {
90 // receive current state from master
91 int _state = Global.get("_state").intVal();
92 switch(_state){
93 case 1: do_state_1(..);break;
94 } } ...
95 private void do_state_1(..) {
96 // actual vertex-parallel computation
97 ... }
98 }

Essentially, each parallel Foreach loop that iterates over the ver-
tices in the graph is treated as a vertex-parallel state. The compiler-
generated state machine is managed entirely by the master. The
master broadcasts the current state number to the vertices via the
global objects map (line 81), and vertices read the same state num-
ber from the map inside vertex.compute() (line 91).

Vertex and Global Object Construction
Variables in Pregel-compatible graph algorithms are grouped into

global and vertex-local variables. Global variables are defined in
the sequential phases and are visible to every vertex. On the other
hand, unless explicitly communicated via messages, vertex-local
variables are only visible to a single vertex.

The compiler analyzes the variables in the input program and
implements global and vertex-local variables as field members in
the generated master and vertex class, respectively. The compiler
also ensures visibility of global variables using the global objects
map. For instance, the compiler generates the following code from
the Green-Marl code shown between lines 59 and 69:

99 class master extends ... { ...
100 int K, C, S; // global variables
101 private void do_state_1(..) {
102 Global.put("K", intValue(K)); // broadcast K
103 ...
104 }
105 private void do_state_2(...) { ...
106 // finalize reduction for state 1
107 S = S + Global.get("S").intVal();
108 C = C + Global.get("C").intVal();
109 // original code for state 2
110 float val = (C == 0) ? 0 : S / (float) C;
111 }
112 }
113 class vertex extends ... { ...
114 int age; // vertex-local variable
115 private void do_state_1(..) {
116 // receive broadcast from K
117 int K = Global.get("K").intValue();
118 if (this.age > K) {
119 // write to a global variable with sum reduction
120 Global.put("S", new intSum(this.count));
121 Global.put("C", new intSum(1));
122 } } }

Neighborhood Communication

Pregel provides an API for sending messages from a vertex to its
neighboring vertices. This API naturally corresponds to a nested
loop in Green-Marl programs where each vertex iterates over its
neighbors. Consider the following example, where every vertex
adds its bar variable into all of its neighbors’ foo variables.

123 Foreach(n:G.Nodes)
124 Foreach(t:n.Nbrs)
125 t.foo += n.bar;

When this example is implemented using the Pregel API each
vertex u sends its bar value to its neighbors as a message at a
timestep. At the next timestep, each neighbor of u receives this
message and accumulates it into its foo variable. As a result, in
Pregel’s BSP model, this computation takes two timesteps.

The compiler recognizes these nested-loop patterns and gener-
ates the corresponding message-passing Pregel code. The example
code between lines 123 and 125 is translated as below:

126 class vertex extends ... { ...
127 private void do_state_1(..) {
128 Message m = new Message();
129 m.intValue = this.bar;
130 sendToNbrs(m);
131 }
132 private void do_state_2(..) {
133 for(Message m : rcvdMsgs()) {
134 int bar = m.intValue;
135 this.foo += bar;
136 } } }

The compiler determines the payload of the messages, via dataflow
analysis of the nested loops. We define the following kinds of vari-
ables as outer-loop scoped variables: (1) a scalar variable defined
in the outer-loop and (2) a vertex property accessed via an outer-
loop iterator (e.g. n.bar in line 125). When an outer-loop scoped
variable is accessed on the right-hand side (RHS) of a statement
inside the inner-loop, the compiler adds it to the message payload.
The compiler does not put the same variable multiple times in a
message. In contrast, if an outer-loop scoped variable is accessed
on a left-hand side (LHS) inside the inner-loop (i.e. modified inside
the inner-loop), the compiler reports an error since the program re-
quires messages to be pulled instead of pushed. We discuss how the
compiler automatically transforms message pulling programs into
message pushing ones by the Edge-Flipping rule in Section 4.1.

Multiple Communication
It is possible that an outer-loop contains multiple inner-loops.

Since the inner-loops perform different computations, the Pregel
translation of each inner-loop requires different message types. In
such cases, the compiler attaches a tag to the message to identify
the computation the message is used for. For example, the example
between lines 137 and 144 will be compiled as the Pregel code
shown between lines 145 and 162.

137 Foreach(n:G.Nodes){
138 if ((n.foo%2)==0) {
139 Foreach(t:n.Nbrs) // type1
140 t.even_cnt += 1;
141 } else {
142 Foreach(t:n.Nbrs) // type2
143 t.odd_cnt += 1;
144 } }

145 class vertex extends ... { ...
146 private void do_state_1(..) {
147 if ((this.foo%2)==0) {
148 Message m = new Message();
149 m.type = 1;
150 sendToNbrs(m);
151 } else {
152 Message m = new Message();
153 m.type = 2;
154 sendToNbrs(m);
155 } }
156 private void do_state_2(..) {
157 for(Message m : rcvdMsgs()) {
158 if (m.type == 1)

159 this.even_cnt += 1;
160 else if (m.type == 2)
161 this.odd_cnt += 1;
162 } } }

Random Writing
The Pregel API allows a vertex to send messages to any ver-

tex with a known ID. In graph algorithms, this API corresponds
to modifying properties of possibly non-neighboring vertices. The
Green-Marl compiler distinguishes such random writes from pre-
vious Neighborhood Communication by checking whether a vertex
is referenced by a random variable or a neighborhood iterator. In
the following code, for example, line 167 is a random write but
line 170 is neighborhood communication.

163 Foreach(n:G.Nodes)
164 If (n.Degree()==0||Uniform()<0.2) {
165 // pick any random node in the graph G
166 Node s = G.PickRandom();
167 s.foo += n.bar; // random write
168 } Else {
169 Foreach(s2:n.Nbrs)
170 s2.foo += 1; // neighborhood communication
171 }
172 }

The message payload for random writes is determined by the
same dataflow analysis as in the neighborhood communication pat-
tern. Therefore, The compiler generates the following code from
the example above:

173 class vertex extends ... { ...
174 private void do_state_1(..) {
175 if(getNumNbrs()==0||Random.nextDouble()<0.2){
176 node s = Ramdom.netxInt(getGraphSize());
177 Message m = new Message();
178 m.type = 1;
179 m.intVal = this.bar;
180 sentToNode(s, m);
181 } else {
182 Message m = new Message();
183 m.type = 2;
184 sentToNbrs(m);
185 } }
186 private void do_state_2(..) {
187 for(Message m : rcvdMsgs()) {
188 if (m.type == 1)
189 this.foo += m.intVal;
190 else if (m.type == 2)
191 this.foo += 1;
192 } } }

Edge Properties
The Green-Marl language specification allows edges to have prop-

erties. Pregel makes the property of an edge (u, v) accessible only
from the source vertex u. As a result, the compiler allows edge
properties to be accessed only when u is iterating over its neigh-
bors as in line 196 below.

193 Foreach(n:G.Nodes){
194 Foreach(t:n.Nbrs){
195 Edge e = t.ToEdge(); // e is the edge from n to t
196 n.dist min= t.dist + e.len; // min-reduction
197 }}

The compiler generates the following code from the example above:
198 class vertex extends ... { ...
199 private void do_state_1(..) {
200 for (Edge e: getEdges()) {
201 Message m = new Message();
202 m.intVal = this.dist + e.len;
203 sentToNode(e.getDest(), m)
204 } }
205 private void do_state_2(..) {
206 for(Message m : rcvdMsgs()) {
207 int i0 = m.intVal;
208 if (this.dist < i0) this.dist = i0;
209 } } }

3.2 Pregel-canonical Programs
A Green-Marl program is Pregel-canonical if it only consists of

patterns of Section 3.1. Specific conditions for Pregel-canonical
programs are as follows:

• Finite State Management: The program is non-recursive and
has at most one directed graph as an argument in the en-
try function. It can have any number of If-Then-Else and
While constructs.

• Parallel Vertex and Neighborhood Iteration: Parallel Foreach
can be doubly nested (not any deeper) in which case the
outer-loop iterates over all the vertices in the graph and the
inner-loop iterates over the neighboring vertices of the outer-
loop iterator. Return is not allowed in such loops.

• Message Pushing: Inside a Foreach loop that iterates over a
vertex u’s outgoing neighbors, u’s neighbors do not modify
u’s value.

• Random Writing: Writing a property of a random vertex oc-
curs only in a vertex-parallel phase of the program. Random
reading of a vertex property is not allowed.

• Edge Property: The property of an edge (u, v) is accessed
only through the source vertex u.

The compiler recognizes Pregel-canonical Green-Marl programs
and translates them into equivalent Pregel (GPS) programs by ap-
plying the rules discussed in this section. The next section dis-
cusses how the compiler attempts to transform programs that are
not Pregel-canonical into equivalent Pregel-canonical forms.

4. OTHER COMPILATION STEPS

4.1 Transformation for Non-Pregel-Canonical
Programs

In case where a given input Green-Marl program is not Pregel-
canonical, the compiler applies various program transformations
to try to convert it into Pregel-canonical form. If successful, the
transformed program can then be directly translated into a Pregel
implementation using the translation rules explained in the previous
section. Otherwise, the compiler reports an error.

Flipping Edges: Converting Message Pulling into Message Pushing
Pregel-canonical Green-Marl programs satisfy the message push-

ing condition from Section 3.2. However, there are some graph
algorithms that are naturally described using message pulling, in-
stead of pushing. Consider the following example where each node
finds the maximum value of bar across its incoming neighbors:

210 Foreach(n:G.Nodes)
211 Foreach(t:G.InNbrs) // maximum of in-nbrs
212 n.foo max= t.bar; // this requires message pulling

Note that the above program requires message pulling as each n

reads the bar value of its incoming neighbors. In such cases, the
compiler transforms the program into a functionally equivalent Pregel-
canonical program:

213 // loop iterators are exchanged with each other.
214 Foreach(t:G.Nodes)
215 Foreach(n:G.Nbrs) // (Out)Nbr instead of InNbr
216 n.foo max= t.bar; // this requires message pushing

Note that, in the above example, the complier has swapped the two
Foreach loop and flipped the direction of information flow. Each t

now writes its bar value to each of its outgoing neighbor n.
The exact mechanism of the above transformation is as follows:
1. The compiler identifies nested Foreach loops (i.e. neighbor-

hood iterating pattern) where the outer-loop does not have
any statements other than the inner-loop and the inner-loop
only updates outer-loop scoped variables.

2. The compiler switches the iterators of the two loops and flips
the edge direction of the inner loop iteration (e.g. (Out)Nbrs
instead of InNbrs).

Dissecting Nested Loops: Preprocessing for Edge Flipping
Note that condition (1) of the Flipping Edges transformation is

rather restrictive. Thus, the compiler applies following pre-processing
transformations to make it easier applying Flipping Edges. Consider
the following example:

217 Foreach(n: G.Nodes){
218 Int _C = 0;
219 Foreach(t: n.InNbrs)(t.age>=13&&t.age<=19)
220 _C += 1;
221 n.cnt = _C;

The above example is not Pregel-canonical, since an outer-loop
scoped scalar variable _C is modified inside the inner-loop (line 220).
Whenever the compiler recognizes this pattern, it introduces a tem-
porary vertex property to replace the scalar variable. Therefore the
above code becomes:

222 Node_Prop<Int> _tmp;
223 Foreach(n: G.Nodes){
224 n._tmp = 0;
225 Foreach(t: n.InNbrs)(t.age>=13&&t.age<=19)
226 n._tmp += 1;
227 n.cnt = n._tmp;

Next, the compiler sees that an outer-loop scoped vertex prop-
erty (n._tmp) is modified in the inner-loop; however the outer-loop
still contains statements other than the inner-loop. In this case, the
compiler splits the outer loop into multiple loops so that the inner-
loop becomes the sole member of a newly created outer-loop. For
instance, the nested loop in the above example is split into three
loops.

228 Node_Prop<Int> _tmp;
229 Foreach(n: G.Nodes)
230 n._tmp = 0;
231 Foreach(n: G.Nodes)
232 Foreach(t: n.InNbrs)(t.age>=13&&t.age<=19)
233 n._tmp += 1;
234 Foreach(n: G.Nodes)
235 n.cnt = n._tmp;

Note that the compiler can now apply the edge-flipping trans-
formation to the second loop between lines 231 and 233), which
makes the entire program Pregel-canonical.

Random Access in Sequential Phase
While Pregel has no native support for the reading and writing

of an random node’s properties, the compiler allows such patterns
by transforming the random access into an extra parallel loop as in
the following example:

236 s.dist = 0; // a random write in sequential phase

237 Foreach(n:G.Nodes) {
238 if (n==s) n.dist = 0;
239 }

BFS-order Graph Traversal
Green-Marl provides a language construct for a BFS-order traver-

sal of the graph with the users supplying their own custom com-
putation to occur during the traversal. The compiler transforms a
BFS traversal statement into a set of Pregel-canonical statements.
Specifically, the BFS traversal is transformed into iterative frontier
expansions. For example, consider the following Green-Marl code:

240 InBFS(n: G.Nodes From s) { // BFS-order traversal
241 ... // user code
242 }

This above code is transformed into the following Pregel-canonical
code:

243 {
244 Node_Prop<Int> _lev; // hop-distance from root
245 Bool _fin=False;
246 Int _curr = -1;
247
248 G._lev=+INF; // initialize distance as INF
249 s._lev=0; // root node has zero-distance
250 While(!_fin){ // level-wise frontiner expansion
251 _fin=True; _curr++;
252 Foreach(n:G.Nodes)(n._lev==_curr){
253 Foreach(t:n.Nbrs)(t._lev==+INF){
254 // expand unreached nbrs
255 t._lev=_curr+1; _fin=False;
256 }
257 ... // user code
258 } } }

In the transformed code _lev is a compiler-inserted node prop-
erty which stores the depth of BFS tree. Also note that the user-
provided custom computation in the original program (line 241)
is fused with the expanded BFS code (line 257). However, if the
user code iterates over the BFS-parents or the BFS-children, the
compiler generates an extra loop to implement the user code. For
instance, lines 259–262 is transformed into lines 263–272.

259 InBFS(n: G.Nodes From s) { // BFS-order traversal
260 Foreach(t:n.DownNbrs) // iterate over BFS children
261 ... // more user code
262 }

263 // after transformation
264 Foreach(n:G.Nodes)(n._lev==curr){
265 Foreach(t:n.Nbrs)(t._lev==+INF){
266 // expand unreached nbrs
267 t._lev=_curr+1; _fin=False;
268 } }
269 Foreach(n:G.Nodes)(n._lev==curr){ // a separate loop
270 Foreach(t:n.Nbrs)(t._lev==_curr+1){ // BFS children
271 ... // more user-code
272 } }

A reverse BFS traversal, or a traversal of connected vertices in
a graph in reverse topological order from the root vertex, is im-
plemented in a similar fashion. Since a reverse BFS traversal is
always preceded by a forward BFS traversal, it is converted into an
additional While loop after the forward BFS traversal which checks
_lev in decreasing order, as in the following example:

273 InBFS(n: G.Nodes From s) {...} // Forward BFS
274 InReverse {
275 ... // user code
276 }

The above code is tranformed into the following Pregel-canonical
code.

277 {
278 ... // Forward BFS
279 While (_curr >= 0) { // Reverse BFS
280 Foreach(n:G.Nodes)(n._lev==_curr){
281 ... // user code
282 }
283 _curr--;
284 } }

4.2 Performance Optimizations
State Merging

Whenever it is safe to do so, the compiler merges two consecu-
tive states of vertex computation into one. Consider the following
example.

285 Foreach(n: G.Nodes)(n.age>=13&&n.age<20){
286 Foreach(t: n.Nbrs) // nbr iteration -> state 1,2
287 t.cnt += 1;
288 }
289 Foreach(n: G.Nodes)(n.age>K){ // loop --> state 3
290 _sum += n.cnt;
291 }

According to the translation rules in Section 3.1, the compiler gen-
erates a state machine consisting of three states: 1) nodes with age

values between 13 and 20 send an integer value of 1 to their out-
going neighbors; 2) each node aggregates received messages from
state 1 into their cnt variables; 3) nodes with age values over K add
their cnt values to a global _sum variable. The first two states come
from the first nested loop, and the third state comes from the last
loop in line 289. However, states two and three can be executed in a
single timestep because there is no data dependency between them.
After observing data dependencies, the compiler merges states two
and three into a single state (state 4 in line 297) below.

292 private void do_state_1(..) { // sending messages
293 if (this.age>=10 && this.age<20){
294 Message m = new Message();
295 sendToNbrs(m);
296 } }
297 private void do_state_4(..) { // state 2, 3 merged
298 // (merged) state2: receiving messges
299 for(Message m : rcvdMsgs()) {
300 this.cnt += 1;
301 }
302 // (merged) state3: updating global sum
303 if (this.age > K) {
304 Global.put("_sum", new intSum(this.cnt));
305 } }

Note that the Pregel framework incurs a certain amount of overhead
at the end of each timestep due to global barrier synchronization
across the cluster. This optimization reduces this overhead.

Intra-Loop State Merging
This optimization merges the first and the last vertex-parallel

states inside a while-loop. The simple case is when there is only
one neighborhood communication pattern inside the while-loop.
Consider the following example:

306 While(condition) {
307 Foreach(n: G.Nodes) {
308 Foreach(t: n.Nbrs) {
309 t.foo += n.bar;
310 } }
311 ... // update condition
312 }

The neighborhood communication pattern inside the while loop is
translated into two states: (1) for sending bar values and (2) re-
ceiving those values and summing them up into foo. Normally,
these two states cannot be merged together because message deliv-
ery takes two timesteps under BSP. However, leveraging the fact
that the nested-loop is inside a while-loop, the compiler merges the
two states in the following way:

313 private void do_state_1(..) {
314 if (!_is_first) { // (merged): receiving messages
315 for(Message m : rcvdMsgs())
316 this.foo += m.intVal;
317 }
318 { // (merged): sending messges
319 Message m = new Message();
320 m.intVal = this.bar;
321 } }

In the above code, _is_first is a compiler-inserted flag that is set
during the first entry into the while-loop and unset after the first
iteration. Essentially, the compiler has merged the receiving state
for the current iteration of the while-loop, with the sending state for
the next iteration of the while-loop.

The generalized mechanism of this intra-loop state merging is
illustrated in Figure 5. There are N vertex-parallel states and (N+1)
sequential states inside a while-loop. Any of these sequential states
can be empty. The compiler merges the last states (PAR N and SEQ
N) of the current while-iteration with the first states (SEQ 0, PAR
1 and SEQ 1) of the next while-iteration. The compiler also inserts
additional control structures in the state machine (e.g. is_first)
so that the states are executed in the correct order.

However, the merged state machine (Fig 5.(b)) differs from the
original (Fig 5.(a)) in two ways: (1) PAR 1 state and SEQ N state
are executed out-of-order. (2) SEQ 0, PAR 1, and SEQ 1 states are

While
HEAD
(Seq)

SEQ

0

PAR

1

SEQ

1

PAR

N

SEQ

N

While
TAIL
(Seq)

…

While
HEAD
(Seq)

SEQ

0

PAR

2

SEQ

N-1

PAR

N*

PAR

1

SEQ

N*

SEQ

1

While
TAIL
(Seq)

…1

exit_condition?

Is_first?

2

Is_first?

exit_condition?

(a)

(b)

Figure 5: Intra-loop State Merging: (a) is the state machine before
merging, (b) is the one after merging. The merged states PAR N* and
SEQ N* are not executed when is_first is true. is_first is set
during the first entry into the while-loop and cleared after state 2 (in
the figure) is first executed.

executed one more time than in the original program. Also dangling
messages are sent at the last-stage of the loop but are safely dropped
by the system as they have no side effect. The compiler checks
whether these differences do not alter the semantics of the original
program via data flow analysis before applying this optimization.

4.3 Pregel Code Generation
Incoming Neighbors

The Pregel API only allows sending messages to outgoing neigh-
bors. However, there are graph algorithms that iterate over incom-
ing neighbors as well. The compiler automatically resolves this is-
sue with the following compiler steps. First, the compiler analyzes
the Green-Marl program to see if incoming neighbor iteration is
used. If so, the compiler inserts two extra steps at the beginning of
the generated Pregel program to create a list of incoming neighbors
for each vertex. These two extra steps are as follows:

322 private void do_state_0(..) { // send ID to nbrs
323 Message m = new Message();
324 m.intValue = this.getID();
325 sendToNbrs(m);
326 }
327 private void do_state_1(..) { int i=0;
328 // create list of incoming neigbors
329 this.in_nbrs = new int[rcvdMsgs().length];
330 for(Message m : rcvdMsgs()) {
331 this.in_nbrs[i++] = m.intValue;
332 } }

After these two steps, the incoming neighbors of each vertex are
stored as a local vertex value, inside an integer array, called in_nbrs.
Then, the compiler uses this array to generate code that sends mes-
sages from a vertex to its incoming neighbors as demonstrated in
the following example:

333 private void do_state_2(..) {
334 for (int n: this.in_nbrs) {
335 Message m = new Message();
336 ... // fill in massage payload
337 sendToNode(n, m)
338 } }

Message Class and Input/Output (I/O) Methods
The compiler generates all the boilerplate code required for Pregel

applications. One example is the serializable message class which
every Pregel application must declare. The compiler automatically
generates the definition of this class, including serialization and de-
serialization methods. The compiler uses the same semantic infor-
mation it uses when determining the payload of messages (Sec-
tion 3.1). For example, here is a generated message class in which
the payload can either be an int or a double:

Name Nodes Edges Description
Sk-2005 51M 1.9B Web graph of .sk domain
Twitter 42M 1.5B Twitter follower network

Bipartite 75M 1.5B Synthetic (Uniform Random)

Table 1: Input graphs: Twitter and Sk-2005 graphs were provided
by The Laboratory for Web Algorithmics [3].

339 class Message extends ... {
340 byte type; // can be short or long
341 int intValue;
342 double doubleValue;
343 public void serialize(Buffer B) {
344 B.putByte(type);
345 if (type==0)
346 B.putInt(intValue);
347 else if (type==1)
348 B.putFloat(intValue);
349 } ...
350 public void deserialize(Buffer B) {
351 type = B.getByte();
352 if (type==0) {
353 intValue = B.getInt();
354 } else if (type==1) {
355 floatValue = B.getFloat();
356 } } }

Notice that the compiler has inserted a tag field called type to dis-
tinguish different message payloads used in the program. This is
because a Pregel application can declare only one message class.
This tag field can be optimized out if the following conditions are
met: (1) if every message uses the same payload type and (2) there
is no Multiple Communication (Section 3.1) in the program.

The compiler automatically generates I/O methods in the Pregel
program as well. These I/O methods are generated from the pa-
rameter declaration of the entry procedure of the Green-Marl pro-
gram. Scalar input variables are mapped to command-line argu-
ments while scalar output variables are printed to standard output.
Input properties are read from the input file at initialization, and
output properties are dumped into the output file at finalization.

5. EXPERIMENTS
In this section, we compare the Green-Marl and manual Pregel

implementations of six algorithms. We first demonstrate the pro-
ductivity benefits of programming in Green-Marl by comparing the
lines of code each implementation of our algorithms took. Then,
we present experiments comparing the performance of the compiler-
generated and manual implementations of our algorithms on GPS.

The input graphs and the algorithms we used in our experiments
are listed in Table 1 and Table 2. The algorithms were selected
from the original Pregel [16] and Green-Marl [11] papers in order
to exercise various aspects of each programming model. We ran
all of our experiments on the Amazon EC2 cluster using 20 large
instances (4 virtual cores and 7.5GB of RAM) running Red Hat
Linux OS. We repeated each experiment five times. The results
are the averages across all runs ignoring the initial data loading
stage. Measured performance varied by only small amounts across
multiple runs.

5.1 Productivity Benefits
Table 2 shows the lines of code (LOC) required for implementing

each algorithm in Green-Marl and manually with the Pregel API.
As shown, Green-Marl programs are between 4x and 12x shorter
than their manual Pregel implementations. Manually coded Pregel
programs are significantly longer because they require extra code
for state management and message sending/receiving, which are
avoided in Green-Marl. Manually coded Pregel programs also re-
quire lengthy boilerplate code, such as defining vertex and message
types, global objects, and serialization/deserialization functions for
the vertex and message types.

Algorithm Origin Green-Marl Native GPS

Average Teenage Follower (AvgTeen) - 13 130
PageRank [16] 19 110
Conductance (Conduct) [11] 12 149
Single Source Shortest Paths (SSSP) [16] 29 105
Random Bipartite Matching (Bipartite) [16] 47 225
Approximate Betweenness Centrality(BC) [11] 25 N/A

Table 2: Comparisons of line of codes for implementing Graph
algorithms: Green-Marl and native GPS implementation

Transformation

Av
gT

ee
n

Pa
ge

Ra
nk

C
on

du
ct

SS
SP

Bi
pa

rt
ite

BC

State Machine Const. X X X X X X
Global Object X X X X X X
Multiple Comm. X
Random Writing X
Edge Property X
Flipping Edge X X X
Dissecting Loops X X X
Random Access(Seq.) X
BFS Traversal X
State Merging X X X X X X
Intra-Loop Merge X X X X
Incoming Nbrs X X
Message Class Gen X X X X X X

Table 3: List of Compiler Transformations Applied for Each
Algorithm

The Green-Marl programs are not only shorter but also more in-
tuitive. Our main argument is that, as a DSL, Green-Marl provides
a higher-level of abstraction for designing and implementing graph
algorithms. We provide the Green-Marl and implementations in
the Appendix. The manual Pregel implementation of the same al-
gorithms (other than Betweenness Centrality) can be found in our
tech report [12] for reader’s comparison.

Table 3 summarizes the list of transformation steps applied when
compiling each algorithm. Basic steps such as State Machine Con-
struction, Global Object, and Message Class Generation are com-
monly applied to all of the algorithms. State Merging transforma-
tion is also common; all the algorithms contain consecutive parallel
loops to which the transformation can be applied. Other transfor-
mation steps are, however, applied only when certain patterns exist
in the algorithm. For instance Edge Properties or Incoming Neigh-
bors are maintained only when they are used by the algorithm.

The most challenging algorithm to implement manually in Pregel
was Approximate Betweenness Centrality, for which we did not
have an existing Pregel implementation. The compiler transformed
the program (Figure 4) into Pregel-canonical by applying multiple
transformation rules in Table 3. The complexity of the compiler-
generated Pregel program substantiate our claim that implement-
ing this algorithm in Green-Marl is much more convenient than
manually implementing with Pregel’s API. The generated Pregel
program consists of nine vertex-centric kernels and four different
message types. Code for state management and message passing
is accordingly non-trivial. Each kernel performs a different com-
putation and communication. The BFS traversal kernels are fused
with the user-provided computation. Programmers can manually
implement this algorithm in Pregel’s programming model, essen-
tially by repeating the same steps our compiler applies. However,
such a task would require a lot more effort than writing the short
Green-Marl code in Figure 4.

Figure 6: Run-time Comparison of Compiler-Generated and
Manually Coded Pregel Programs.

5.2 Performance Comparison
In this section we evaluate the performance of Pregel programs

generated by the Green-Marl compiler. For five of our algorithms,
we executed both the manually coded Pregel implementation and
the compiler-generated Pregel program on the same input graphs.
In each experiment, we measured the run-time, the network I/O due
to sending/receiving messages, and the number of timesteps of the
entire execution.

The run-time results of our experiments are shown in Figure 6.
Each bar in the figure represents the result of a single experiment on
a particular algorithm and an input graph. The height of each bar is
the run-time of the compiler-generated Pregel program normalized
against its manual Pregel implementation. As shown, the run-time
performances of the compiler-generated Pregel programs are com-
parable to the manual implementations across all our algorithms.
The run-time performances of the compiler-generated implementa-
tions varied between 8% speedups to 35% slowdown. We note that
the 35% slowdown was observed for the experiment of finding the
shortest paths from a single source on the Twitter graph.

Surprisingly, there were some cases when the compiler-generated
programs even outperformed hand-tuned Pregel implementation.
To our understanding, this was due to the effect of garbage collec-
tion behavior of the JVM. However, we did not find enough gener-
alization to make an optimization step out of this phenomenon.

On the other hand, the run-time overhead of the compiler-generated
programs can be explained from two reasons. First, the compiler-
generated programs manage their state machines via broadcasting
global objects. However, for simple algorithms it is possible to
manage states using the timestep number, which is made available
to the vertices by the Pregel framework without any overhead. Sec-
ond, the compiler does not yet utilize Pregel’s voteToHalt() API
to inactivate converged vertices. Inactivating vertices speeds up the
execution time because the framework skips calling the compute()
function on inactive vertices. The compiler currently does not use
this API because in the general case, when an algorithm has multi-
ple vertex-parallel phases, inactive vertices in one phase may be-
come active again in another phase. The overhead due to lack
of support of voteToHalt() is more visible in single-kernel al-
gorithms that have many timesteps with few active vertices. For
example, when running SSSP on the Twitter graph, less than 1.5%
of the vertices were active in the last 30 timesteps.

The compiler-generated programs took the exact same number
of timesteps and incurred the exact same network I/O as the man-
ually coded Pregel programs. This exact match is explained by

our observation that all the translation and transformation rules that
our compiler applies to Green-Marl programs are what program-
mers typically do when implementing algorithms manually using
the Pregel API. Consequently, the compiler-generated implementa-
tions run in virtually the same way as the manual implementations
do and exhibit similar performance behavior.

Finally, we leave some comments about the completeness issue
of our approach. There are inherently sequential algorithms (e.g.
Tarjan’s SCC algorithm) that can be described in Green-Marl but
not with Pregel. To the contrary, since the Pregel-canonical syntax
is a direct mapping to Pregel API, it is straightforward to write
Pregel programs with Green-Marl. See the related discussion in
Appendix for details.

6. RELATED WORK
This paper shows how we can translate Green-Marl programs

into the Pregel API [16]. Pregel is not the only large-scale dis-
tributed graph analysis framework. Other frameworks include Ac-
tivePebbles [22] and GraphLab [14] which also have a vertex-centric
computation model. Trinity [20] is a proprietary graph computation
system at Microsoft which is built on top of a distributed RAM-
based key-value store. There are also general distributed computa-
tion framework which can be used for graph analysis. For exam-
ple, SPARK [23] is a general in-memory cluster computing frame-
work that can also handle iterative computation. HaLoop [7] and
Surfer [8] are systems built on top of Hadoop [10] which can do it-
erative MapReduce [9] computations. All of the above frameworks
introduce different programming models and APIs and demand the
programmers to re-implement their graph algorithms accordingly.
Large-scale graph processing on these systems can also be simpli-
fied by our approach of compiling Green-Marl programs into their
respective APIs.

This work uses Green-Marl [11], an existing DSL for graph pro-
cessing. Many DSLs have been used to provide high-level abstrac-
tions for different application domains. For instance, Pig Latin [17]
and Hive [19] provide a higher level programming interface for cre-
ating MapReduce jobs. However, these languages do not provide
graph-specific semantic information which is essential to our ap-
proach. In contrast, Gremlin [1] is a graph traversal language that
is designed for querying on-line graph databases. However, we
think that Green-Marl provides a more intuitive and convenient ab-
straction for describing graph analysis algorithms. Nevertheless,
our approach is not specific to Green-Marl and can be used with
any DSL that has enough semantic information about a given graph
algorithm.

7. CONCLUSION AND FUTURE WORK
We presented a solution to the programmability problem asso-

ciated with Pregel. We use Green-Marl, a graph DSL, to describe
graph algorithms intuitively and then let our compiler automati-
cally generate an equivalent and optimized Pregel implementation.
This automatic translation is enabled by the semantic information
captured by the Green-Marl language. We expect that our compiler
based approach will be most useful for complicated graph algo-
rithms whose manual Pregel implementation is very challenging.

As for future work, we are adding more static analyses, which
can improve the performance of our compiler-generated programs
as well as more transformation rules that allows compilation of
more non-Pregel-canonical Green-Marl programs.

Acknowlegement
This work was funded by DARPA Contract, Xgraphs; Language
and Algorithms for Heterogeneous Graph Streams, FA8750-12-2-

Set D = {p: p is a Green-Marl
program}

Set C = {p: p is a Pregel-
compatible Green-Marl program}

Set A = {p: p is a
Pregel program}

Set B = {p: p is a Pregel-
canonical Green-Marl

program}

(1)

(2)

Figure 7: Relationships between different set of possible pro-
grams

0335; Army contract AHPCRC W911NF-07-2-0027-1; the Na-
tional Science Foundation (IIS-0904497) and a KAUST research
grant; Stanford PPL affiliates program, Pervasive Parallelism Lab:
Oracle, AMD, Intel, NVIDIA, and Huawei. Authors also acknowl-
edge additional support from Oracle.

8. REFERENCES
[1] http://github.com/tinkerpop/gremlin/wiki.
[2] Apache Giraph Project. http://giraph.apache.org.
[3] The laboratory for web algorithmics.

http://law.dsi.unimi.it/datasets.php.
[4] D. Bader and K. Madduri. Parallel algorithms for evaluating

centrality indices in real-world networks. In IEEE ICPP
2006.

[5] D. A. Bader and K. Madduri. SNAP: Small-world Network
Analysis and Partitioning. http://snap-graph.sourceforge.net.

[6] U. Brandes. A Faster Algorithm for Betweenness Centrality.
The Journal of Mathematical Sociology, 25(2):163–177,
2001.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient Iterative Data Processing on Large Clusters. VLDB,
pages 285–296, 2010.

[8] R. Chen, X. Weng, B. He, and M. Yang. Large Graph
Processing in the Cloud. In SIGMOD, 2010.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[10] Apache Hadoop. http://hadoop.apache.org/.
[11] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:

A DSL for Easy and Ffficient Graph Analysis. In ASPLOS.
ACM, 2012.

[12] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Tech
Report: Compiling Green-Marl into GPS .
http://ppl.stanford.edu/papers/tr_gm_gps.pdf.

[13] S. Hong, J. Van Der Lugt, A. Welc, R. Raman, and H. Chafi.
Early experiences in using a domain-specific language for
large-scale graph analysis. In First International Workshop
on Graph Data Management Experiences and Systems,
GRADES ’13. ACM.

[14] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. VLDB,
5(8), 2012.

[15] K. Madduri, D. Ediger, K. Jiang, D. Bader, and
D. Chavarria-Miranda. A faster parallel algorithm and
efficient multithreaded implementations for evaluating
betweenness centrality on massive datasets. In IPDPS, 2009.

[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-scale Graph Processing. In SIGMOD ’10. ACM.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig Latin: A Not-so-foreign Language for Data
Processing. In SIGMOD. ACM, 2008.

[18] S. Salihoglu and J. Widom. GPS: Graph Processing System.
http://infolab.stanford.edu/gps.

[19] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A
Warehousing Solution Over a Map-Reduce Framework.
VLDB, 2(2), 2009.

[20] Trinity. http://research.microsoft.com/en-
us/projects/trinity/default.aspx.

[21] L. Valiant. A Bridging Model for Parallel Computation.
Communications of the ACM, 33(8):103–111, 1990.

[22] J. Willcock, T. Hoefler, N. Edmonds, and A. Lumsdaine.
Active Pebbles: A Programming Model for Highly Parallel
Fine-grained Data-driven Computations. In PPoPP, pages
305–306. ACM, 2011.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets.
HotCloud’10, 2010.

APPENDIX
A. DISCUSSIONS ON COMPLETENESS

In this section, we discuss the completeness of our approach.
Currently, we focused on graph algorithms that deal with only one
graph and do not modify the graph, this is the typical case in graph
analysis. To illustrate our points, Figure 7 shows the relationship
between different sets of possible programs: Set A is the set of valid
Pregel Programs, Set B is the set of valid Pregel-canonical Green-
Marl programs, Set C is the set of Pregel-compatible Green-Marl
programs, and Set D represents all valid Green-Marl programs (a
Green-Marl program is Pregel-compatible if there exists an equiv-
alent Pregel-canonical program for it).

First, is there an equivalence between the set of Pregel programs
and the set of Pregel-canonical Green-Marl programs (i.e. Set A
vs. Set B)? Since the forward direction (i.e. arrow (1)) has been
shown in Section 3.1, the remaining thing to show is the converse
direction (i.e. arrow (2)): can any Pregel program be described
as a functionally equivalent Pregel-canonical Green-Marl program?
Without formal proof, we claim yes because every Pregel API has a
direct mapping to a Pregel-canonical pattern. Java-specific expres-
sions (e.g. library call) can be embedded in Green-Marl programs
with a foreign syntax [11] extension.

Second, is every Green-Marl program Pregel-compatible (i.e.
Set D = Set C)? Theoretically, the answer is yes, but only because
we can simulate the Green-Marl program sequentially – if there is
a pattern for which no translation rule is known, the compiler can
generate a Pregel program that does computation only on the mas-
ter. During simulation, every vertex data access is replaced with
an extra vertex-parallel step (Random Access in Sequential Phase in
Section 4.1). Excluding simulation, the answer would be no, but
we are still discovering what is the exact boundary of Set C.

Third, can the compiler transform every Pregel-compatible pro-
gram into Pregel-canonical one? Currently, the compiler simply
fails when the input program contains a pattern for which no trans-
formation rule is known. Since we do not know if a program is
fundamentally compatible with Pregel (without simulation), the an-
swer to this question would be not yet. On the other hand, once a
manual Pregel implementation of such a program is developed, new
transformation rules based on the implementation could be added
to the compiler.

Finally, our compiler currently does not cover algorithms in which
the underlying graph is modified or which involve multiple graphs.

The former is not supported by Green-Marl, the latter is not well-
supported by Pregel. However, since both the Green-Marl language
and the Pregel framework are being improved with regard to these
issues, one can expect upcomming support.

To summarize, we claim that a program implemented in Pregel-
canonical Green-Marl is functionally equivalent to the same pro-
gram implemented in Pregel, but is more succinct and easier to un-
derstand. By adding more transformation rules, the compiler will
expands its coverage until it can translate every Pregel-compatible
Green-Marl program.

B. GREEN-MARL PROGRAMS OF THE AL-
GORITHMS

Single-Source Shortest Path (SSSP)
The Green-Marl program below computes the shortest distance

from a single source vertex (root) to every other vertex in the
graph. Note that the original Pregel paper [16] used the exact same
algorithm as an example.

357 Procedure sssp(G:Graph, root:Node,
358 len:Edge_Prop<Int>; dist:Node_Prop<Int>)
359 {
360 Node_Prop<Bool> updated;
361 Node_Prop<Bool> updated_nxt;
362 Node_Prop<Int> dist_nxt;
363 Bool fin = False;
364 // Initialize
365 G.dist = (G == root)? 0 : +INF;
366 G.updated = (G == root)? True: False;
367 G.dist_nxt = G.dist;
368 G.updated_nxt = G.updated;
369 // Main loop
370 While(!fin) {
371 fin = True;
372 // Propagate changes of updated node
373 Foreach(n: G.Nodes)(n.updated) {
374 Foreach(s: n.Nbrs) {
375 Edge e = s.ToEdge(); // the edge to s
376 // updated_nxt becomes true
377 // only if dist_nxt is actually updated
378 <s.dist_nxt; s.updated_nxt> min=
379 <n.dist + e.len; True>;
380 } }
381 G.dist = G.dist_nxt;
382 G.updated = G.updated_nxt;
383 G.updated_nxt = False;
384 fin = ! Exist(n: G.Nodes){n.updated};
385 } }

The program above first initalizes the vertex-private variables (lines 365
– 368), before entering the main while-loop (line 370). Inside
the while-loop, every vertex for which distance has been updated
(line 373) tries to update its neighbors’ distance via a min reduction
(lines 374 – 379). Deterministic results are guaranteed via two-
phase updates (line 381 – 384). The while-loop terminates when
no vertex is updated (line 384).

Random Bipartite Matching
The following is a Green-Marl program that finds a match in a

bipartite graph. Note that the original Pregel paper used the exactly
same algorithm as an example [16].

386 Procedure bipartite_matching(
387 G: Graph, isBoy : Node_Prop<Bool>; // bipartite graph
388 Match: N_P<Node(G)>): Int { // match and count of match
389 Int count = 0;
390 Bool finished = False;
391 N_P<Node> Suitor;
392 G.Match = NIL;
393 G.Suitor = NIL;
394 While (!finished) {
395 finished = True;
396 // boys propose to every unmatched girl nearby
397 Foreach(b: G.Nodes)(b.isBoy && b.Match==NIL) {
398 Foreach(g: b.Nbrs)(g.Match == NIL) {
399 g.Suitor = b; // intended write-write conflict.
400 // Only one will be make effect.
401 finished &= False;
402 }}
403 // girls accept only one and reply
404 Foreach(g: G.Nodes)(!g.isBoy && g.Match==NIL) {
405 If (g.Suitor != NIL) {

406 Node b = g.Suitor; // the lucky chosen one
407 b.Suitor = g; // Reply: "I’m available"
408 g.Suitor = NIL; // clear suitor
409 } }
410 // boy accept only one reply
411 Foreach(b: G.Nodes)(b.isBoy && b.Match == NIL) {
412 If (b.Suitor != NIL) {
413 Node g = b.Suitor; // the lucky chosen one
414 b.Match = g;
415 g.Match = b;
416 count++; // increase match count
417 } } }
418 Return count; }

The program above takes a bipartite graph as an input, where edges
exist only from boy vertices to girl vertices (line 387). Match and
Suitor are initialized as NIL (line 392 – 393) before the main
while-loop begins at line 394. The main loop implements a three-
phase handshaking protocol. In the first phase, every unmatched
boy vertex writes its ID to the Suitor field of all the unmatched
neighboring girl vertices. (lines 397– 402) Note that in this phase
multiple boy vertices write their ID in parallel to the same girl ver-
tex, but only one of those writes becomes effective at the end. In the
second phase (lines 404 – 409), every girl vertex replies to the ef-
fective Suitor vertex, by writing back her ID to the Suitor vertex.
However, these writes also happen in parallel and thus only one of
them becomes effective. In the third phase (lines 411 – 417), the
boy vertices finalize the matching by checking their Suitor field.
This three-phase protocol is repeated until no further matches are
available.

PageRank
The following is a Green-Marl program that computes PageRank

of a given graph. Note that the original Pregel paper used the exact
same algorithm as an example.

419 Procedure PageRank(G: Graph, e,d: Double,
420 max_iter: Int; PR: Node_Prop<Double>(G)) {
421 Double diff =0;
422 Int cnt = 0;
423 Double N = G.NumNodes();
424 G.PR = 1 / N; // Init PageRank
425 Do { // Main iteration
426 diff = 0.0;
427 Foreach (t: G.Nodes) {
428 Double val = (1-d) / N + d* Sum(w: t.InNbrs){
429 w.PR / w.OutDegree()};
430 t.PR <= val @ t;
431 diff += | val - t.PR |; }
432 cnt++;
433 } While ((diff > e) && (cnt < max_iter)); }

line 424 initializes PageRank before the main iteration begins at
line 425. During the main iteration, the PageRank of each node
is computed by the PageRank of neighboring nodes (lines 427–
429), while the new value is updated synchronously at the end of
the t-loop (line 430). The iteration is repeated until convergence
conditions are met or a given number of iterations has passed.

Conductance
The following Green-Marl program computes the conductance

of a subset of a graph.
434 Procedure conductance(G: Graph,
435 member: N_P<Int>(G), num: Int) : Double {
436 Int Din, Dout, Cross;
437 // compute degree sum of inside/outside nodes
438 // and number of crossing edges
439 Din= Sum(u:G.Nodes)(u.member==num){u.Degree()};
440 Dout= Sum(u:G.Nodes)(u.member!=num){u.Degree()};
441 Cross=Sum(u:G.Nodes)(u.member==num){
442 Count(j:u.Nbrs)(j.member!=num)};
443 Double m = (Din < Dout) ? Din : Dout;
444 If (m ==0) Return (Cross == 0) ? 0.0 : +INF;
445 Else Return (Cross / m); }

The algorithm computes the degree sum among nodes that belong
to the subset and those that do not (lines 439–440), and counts the
number of edges that cross the boundary of the subset. (lines 441–
442). The final conductance value is computed from these values
(lines 443–444).

