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Simplifying the Kinematic Calibration of Parallel
Mechanisms Using Vision-Based Metrology

Pierre Renaud, Nicolas Andreff, Jean-Marc Lavest, and Michel Dhome

Abstract—In this paper, a vision-based measuring device is pro-
posed and experimentally demonstrated to be an accurate, flexible,
and low-cost tool for the kinematic calibration of parallel mecha-
nisms. The accuracy and ease of use of the proposed vision sensor
are outlined, with the suppression of the need for an accurate cali-
bration target, and adequacy to the kinematic calibration process
is investigated. In particular, identifiability conditions with the use
of such an exteroceptive sensor are derived, considering the cali-
bration with inverse or implicit models. Extensive results are given,
with the evaluation of the measuring device and the calibration of
an H4 robot. Using the full-pose measurement, an experimental
analysis of the optimal calibration model is achieved, with study
of the kinematic behavior of the mechanism. The efficiency of the
provided method is thus evaluated, and the applicability of vision-
based measuring devices to the context of kinematic calibration of
parallel mechanisms is discussed.

Index Terms—Camera calibration, computer vision, kinematic
calibration, metrology, parallel mechanisms.

I. INTRODUCTION

P
ARALLEL mechanisms are emerging in the industry (e.g.,

machine tools, high-speed pick-and-place robots, flight

simulators, medical robots). Indeed, these mechanisms have

the main property of having their end-effectors connected with

several kinematic chains to their base, rather than one for the

standard serial mechanisms. This allows parallel mechanisms

to bear higher loads, at higher speed and often with a higher

repeatability [1]. However, their large number of links and pas-

sive joints often limits their performance in terms of accuracy

[2]. A kinematic calibration is thus needed.

There exist several classes of methods to perform kinematic

calibration of parallel mechanisms. The first one relies on the

application of mechanical constraints on the end-effector or the

mechanism legs [3], [4]. This class of methods is interesting,

since it only needs joint measurements, but is hard to use in
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practice, since applying mechanical constraints accurately re-

quires an accurate extra mechanism. Such methods also have

the drawback of reducing the size of the workspace used for the

calibration drastically, which significantly lowers the calibration

sensitivity to the kinematic parameters, and therefore the cali-

bration efficiency [5]. A second class of methods is known as

self-calibration, and relies on the notion of redundant metrology.

The underlying idea of such methods is to add extra propriocep-

tive sensors at the usually uninstrumented joints of the mecha-

nism [6]–[9]. This allows for calibration in the whole available

workspace, and only requires joint measurements. However, it is

hard, in practice, to add these extra sensors on an existing mech-

anism, and sometimes almost impossible (think of a spherical

joint).

The two remaining classes of methods rely on the kine-

matic models of the parallel mechanism, giving a nonlinear

input–output relationship between the actuated joint values and

the end-effector pose. On the one hand, one can find methods

based on the forward kinematic model that come directly from

the serial mechanism calibration class of methods. They consist

of minimizing a nonlinear error between a measure of the

end-effector pose and their corresponding values, estimated

from the measured joint values through the forward kinematic

model [10]–[12]. Their main advantage is that they can use

whatever 3-D information is available, for instance, either

only the position of the end-effector, or both its position and

orientation. However, they suffer from a huge drawback, due

to the absence in the general case of an analytical forward

kinematic model. Hence, one must use a numerical estimation

of it in the minimization of the nonlinear error, which may lead

to numerical unstabilities [4].

On the other hand, for parallel mechanisms, the inverse kine-

matic model can usually be easily derived [1]. Therefore, the

most natural method to perform calibration of a parallel mech-

anism is to minimize an error between the measured joint vari-

ables and their corresponding values, estimated from the mea-

sured end-effector pose through the inverse kinematic model

[13], [14]. This method seems indeed to be the most numerically

efficient among the calibration algorithms for parallel structures

[5]. Nevertheless, it is constrained by the need for accurate mea-

surement of the full end-effector pose (i.e., both its position and

orientation). Some adapted measuring devices have been pro-

posed (e.g., laser tracking systems [15], [16] or mechanical de-

vices [17], [18]) that are either expensive or limitative as far as

workspace is concerned.

Vision has been proposed for the kinematic calibration of

serial mechanisms [19]–[21]. It enables one to achieve the

needed full-pose measurement, with a low-cost sensor. Vision
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Fig. 1. Typical setup for vision-based calibration of a parallel mechanism; the
H4 mechanism [25] and the vision-based measuring device.

has, hence, been considered as a potential tool for kinematic

calibration of parallel mechanisms [22], and evaluated with a

commercial system [23] which remains high cost, and needs

a three-camera system. In this paper, vision-based metrology

is demonstrated to be the key for a low-cost flexible kinematic

calibration method of parallel mechanisms. A monocular

high-accuracy vision-based measuring device is introduced

(Fig. 1), and classical calibration methods using the inverse

or implicit kinematic models [7], [24] are used, with special

attention given to the identifiability conditions due to the use of

the vision-based sensor. Measurement accuracy is experimen-

tally evaluated and calibration of an H4 robot [25] is achieved,

with the analysis of the model’s influence on the calibration

efficiency. The accuracy improvement is hence demonstrated,

and guidelines are provided on the applicability of the method.

The remainder of this paper is the following. In Section II,

we propose the use of a low-cost, easy to use vision-based

pose measurement, outlining the flexibility obtained by the

simultaneous calibration of the camera and calibration target

parameters. In Section III, we recall the calibration scheme,

with specific insight on the fact that vision is used. In particular,

we point out identifiability properties. Then, in Section IV, we

evaluate the vision-based metrology accuracy by comparison

with laser interferometry, and we apply the comprehensive cali-

bration method to the H4 robot [25] designed at the Montpellier

Laboratory of Computer Science, Robotics, and Microelec-

tronics (LIRMM), Montpellier, France. A specific insight on

the robot kinematic behavior is given with analysis of the

optimal calibration model. Some concluding remarks are given

in Section V on the efficiency of the proposed vision-based

calibration scheme.

II. VISION-BASED METROLOGY

A. Overview

Video cameras are becoming widely used for 3-D measure-

ments. The use of vision-based metrology allows calculating a

set of 3-D point coordinates (reconstruction) and/or to estimate

the pose (position/orientation) of a known object (localization).

Fig. 2. Pinhole camera model, image geometry, and coordinate systems.

Furthermore, a wide range of applications is concerned, as long

focal lengths (i.e., zooming applications [26], [27]) as well as

very short ones (3.5-mm fish-eye) may be used to obtain var-

ious inspection fields.

To obtain accurate results, the camera calibration problem

needs to be solved. Calibration is necessary in order to deter-

mine the intrinsic parameters modeling the camera system.

Well-known calibration techniques exist [28]–[30] that usually

require a 3-D known object, called the calibration target. This

object has to be well defined and accurately measured to ensure

a reliable estimation of the camera parameters. The calibration

technique used in this paper is based on former work [31] that

demonstrated that camera calibration no longer requires an

accurate calibration target, and hence, enables us to propose

vision-based metrology as a flexible tool for the calibration of

parallel mechanisms.

In this section, we outline the particularity of the developed

vision-based pose measurement. After introduction of the clas-

sical modeling of the camera, including optical distortions, we

derive the expressions of the multiview calibration approach that

allows simultaneously obtaining accurate camera intrinsic pa-

rameters, the calibration target geometry, and their relative lo-

calization. This approach is known in computer vision as the

bundle adjustment technique [32].

B. Definitions

A simplified camera model is used, i.e., the pinhole model, as

depicted in Fig. 2. Through the paper, the following notations

are used.

• is a right-handed 3-D coordinate

system defining the world reference coordinate system,

attached to the calibration target.

• is the 2-D image pixel system with its origin at

the top-left corner of the image.

• is the 3-D camera coordinate system

with its origin at the optical center , the axis coinci-

dent with the optical axis, and parallel to .

A transformation between two frames and is noted, .

It is composed of the translation vector and the rotation

matrix . The vector is defined by its three components
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, and the rotation matrix by the Bryant angles

.

The intrinsic parameters to be calibrated are the principal

point (Fig. 2), the focal length , the pixel size of the

charge-coupled device (CCD) array or its aspect ratio, and the

distortion parameters of the optical system.

The components of the pose of the target with respect to

the camera, the so-called extrinsic parameters, have to be esti-

mated simultaneously with the intrinsic parameters.

C. Classical Camera Calibration

We assume a perspective projection between a 3-D object

point and its 2-D image. The relationship between the th 3-D

point and its 2-D image is described by the following equations:

(1)

where are the image-point coordinates in the camera

frame as defined in Fig. 2, and , i.e., the focal length

of the camera, is a scale factor which maps a point in the

camera coordinate system to the image plane, are

the object-point coordinates in the world-coordinate system .

Using the notations introduced in Section II-B, the translation

vector is defined by its three components , and

the rotation matrix by the three angles

.

If we eliminate in (1), omit the subscript , and transform

the image-point coordinates into the pixel coordinate

system , we get the following so-called collinearity

equations in photogrammetry:

(2)

where are errors of the measurements and , i.e., cor-

rections to the measurements so that they fit the function values.

Two parameters define the pixel dimensions. The lens

distortion components consist of two parts, the radial

and tangential distortions, parametrized by polynomial models

with, respectively, the coefficients and [33].

Expression (2) can be reformulated as

(3)

that can also be rewritten as

(4)

As the perspective projection is always defined up to a scale

factor, parameter value is set to one. Defining

and , the calibration parameters to be estimated have

the following expression:

The calibration problem is now equivalent to estimating

the vector by minimizing for a total number of points

.

Fig. 3. View of a standard calibration target with 16 dots.

D. Suppressing the Need for Accurate Calibration Target

A major part of the calibration errors result from the mea-

surement errors. These errors may come from the knowledge

of the 3-D coordinates of the calibration target points, as well as

the target point coordinates estimation in the image plane. It has

been proved in [34] that subpixel accuracy measurements (2/100

pixel) can be obtained with special patterns like crosses or dots.

In that case, the major source of calibration errors comes from

the calibration pattern geometry knowledge. High-quality cali-

bration patterns are difficult to achieve. They have to be mechan-

ically stable in time (compared with the temperature change),

or be moved very accurately to ensure an Euclidean reference

frame without bias. Taking this point of view into considera-

tion, we have proved [31] that it is possible to simultaneously

estimate the intrinsic and extrinsic parameters, as well as the

3-D coordinates of the calibration target, using a multiple-im-

ages calibration approach. For a set of images, the calibration

task means computing the parameter vector

where represents the total number of target points.

The total number of parameters to identify is then equal to

intrinsic parameters calibration point coordinates

extrinsic parameters

while the number of equations is equal to . The re-

dundancy of the system to be solved, ,

can therefore be obtained easily: for a 16-point standard calibra-

tion pattern (Fig. 3) that is observed from 8 views, you get 256

measurements and 105 unknown parameters.

Notice that the numerical singularity when iterating over

Bryant angles occurs when the calibration target is perpendic-

ular to the image plane, i.e., in a physical configuration which

is never reached.
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Fig. 4. View of a typical eight-image calibration sequence of the vision-based
measuring device.

E. Vision for Calibration

The accuracy of camera calibration proposed above relies on

the use of several images and the relaxation of the known cali-

bration target constraint. This implies, in return, the need for an

extremely accurate point detection in the image. Thus, the algo-

rithm requires a very careful implementation; however, it allows

for high flexibility.

This flexibility is very useful for kinematic calibration, since

a calibration target can be tailored at low cost to respect the con-

straints imposed by the mechanism. Then, before kinematic cal-

ibration can be started, some images of this calibration target are

to be taken before its assembly to the end-effector for camera-

plus-target calibration purposes. Simple empirical rules have to

be respected: the calibration target has to be placed successively

in the image corners, to be rotated around the optical axis and

optionally around the other two axes (Fig. 4), so that the cal-

ibration target geometry, as well as the optical distortions, are

correctly identified. About eight images are typically sufficient

to get an accurate estimation of the parameters: the reprojec-

tion errors computed from (4) are then generally on the order of

2/100 pixel, which corresponds approximately to the estimation

errors of the calibration target-dot centers. Finally, once this step

is done, the pose of the target with respect to the camera can be

obtained by solving (1) in and (see, for instance, [35]).

A drawback of vision-based measurements is the large

amount of data from image collection that has to be treated.

Using the approximate displacement value of the end-effector

displacements determined from the a priori kinematic pa-

rameters, an automated image-detection procedure has been

developed [36]. The overall procedure to get the pose measure-

ment is hence accurate, and simultaneously simple and fast.

III. KINEMATIC CALIBRATION

In this section, we give two alternate methods for calibrating

a parallel mechanism using vision-based metrology. One is the

classical method based on the inverse kinematic model, and the

other is based on the implicit kinematic model. In both cases,

we show that one must introduce additional parameters owing

to the use of an exteroceptive measurement of the end-effector

pose, and we consider the identifiability conditions, taking into

account these parameters.

A. Calibration Using the Inverse Kinematic Model

Contrary to serial mechanisms, the inverse kinematic model

of parallel mechanisms can often be expressed analytically [1].

It computes the joint variables as a function of the end-ef-

fector pose with respect to the base frame

and the kinematic parameter vector . Zhuang et al. proposed

[14] to form, for any pose , the following error:

(5)

between the corresponding measured joint values and the

computed ones , then to determine the kinematic

parameters by measuring, with an exteroceptive sensor, dif-

ferent poses , , and finally estimate by the

nonlinear minimization of the following cost function with re-

spect to :

(6)

However, this suggests that the end-effector pose can be mea-

sured in the base frame. Due to the use of an exteroceptive mea-

suring device, this, in fact, can not be achieved, since one shall

take into account the pose of the measuring device with respect

to the base frame , and, which is not evident, the pose of the

target of the measuring device with respect to the end-effector

. Indeed, any measuring device needs a target, which can

be a reflective cube for a laser tracker system, reflective amers

for a theodolite, or a physical interface part for a mechanical

measuring machine. When using vision, the measuring device

is composed of a fixed CCD camera and a target attached to the

end-effector,1 and gives the pose of the target with respect to the

camera, as shown in Section II.

Formally, this implies that one measures poses of the target

with respect to the measuring device , which are related to

the end-effector poses with respect to the base by the unknown

1We could also think of using an on-board camera observing a fixed target,
which only has for influence in the following to swap c and t in the superscripts
and subscripts.
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above-mentioned constant rigid transformations and

through

(7)

Therefore, instead of the error in (5), one should use the fol-

lowing error:

(8)

Noting the external parameters [37], i.e., the set of parameters

describing and , the problem of parallel-mechanism

kinematic calibration based on the inverse kinematic model

can be formally stated as the following nonlinear minimization

problem:

(9)

One may notice that these external parameters appear in each

equation of the inverse kinematic model. Identification of all the

mechanism legs must, hence, be a priori achieved simultane-

ously rather than independently.

B. Calibration Using the Implicit Kinematic Model

An alternate model of a parallel mechanism is the implicit

kinematic model [7], [24], which expresses the closure of the

kinematic chains. We do not know of a parallel mechanism

which does not have an analytical formulation of these closure

equations. Notice that usually, the inverse kinematic model is

extracted by algebraic manipulation from the implicit kinematic

model.

Formally, the implicit kinematic model is an equation relating

the joint values, the end-effector pose, and the kinematic param-

eters. In the case we are dealing with, where the end-effector

pose is measured, the implicit kinematic model takes the fol-

lowing generic expression:

(10)

Then, the problem of parallel-mechanism kinematic calibration

based on the implicit kinematic model can be formally stated as

the following nonlinear minimization problem:

(11)

C. Identifiability

Calibrating a robot is an identification process, and hence,

one should take a careful look at the identifiability of the model

parameters, i.e., one should be able to answer the following

questions.

• Can we estimate all the parameters in the model?

• If not, is it due to the set of poses chosen for the identifi-

cation, or are there nonidentifiable parameters?

• If yes, are the poses selected for the identification optimal

for the determination of the parameters?

The answers to those questions are related to the nonlinear

minimization problem numerical solution. Most of the time,

people use iterative algorithms (such as Newton, Gauss, or

Levenberg–Marquardt) solving, at each iteration , a linear

least-square (LS) approximation of the cost function

(12)

where is the th estimation of the parameters ,

and is, in our case, given either by (9) or (11).

It is easy to understand that the estimation update step can

only be done on the components of that do not lie in the kernel

of the regressor . A parameter which is in the kernel

of the regressor at every iteration will not be identifiable, i.e., its

value will not be updated from the a priori estimate. Therefore,

much work was led on finding the so-called optimal excitation

[38], [39], that is, the experiment which leads to the optimal es-

timation of the parameters. In the case of kinematic calibration,

this boils down to the selection of an optimal set of robot con-

figurations [40]–[42].

However, there can be a so-called structural loss of rank [37].

Indeed, the model can be such that whatever the excitation is,

then the regressor is always rank-deficient. This means that there

exist linearly dependent combinations between the columns of

the regressor. Reminding that there is a one-to-one correspon-

dence between the columns of the regressor and the parameters,

one may define the set of base parameters, which is the largest

set of parameters (or combinations thereof), such that their asso-

ciated columns are linearly independent. In the context of serial

mechanisms, analytical methods have been developed to deter-

mine the base parameters [43], [44]. In the context of parallel

mechanisms, numerical estimation has been proposed [5]. We

propose here a formal derivation of the identifiability conditions,

to outline the consequences of the use of an exteroceptive sensor.

Omitting the iteration subscript, the regressor is thus of the

form

(13)

Loss of rank can occur in three cases.

1) Nonidentifiable Kinematic Parameters: The kinematic

parameters are identifiable if the model used for calibration is

minimally parameterized. This only depends on the mechanism

itself, and should have been checked already at the modeling

stage.

Formally, if there exist nonidentifiable kinematic parameters,

then there exists a full-rank matrix , a combination matrix

(possibly rank-deficient), and a permutation matrix (i.e.,

) such that

(14)

Hence, we can reorder the parameter vector with the permuta-

tion matrix and then split the result in two parts:

, where corresponds to the full-rank matrix and

corresponds to the dependent part . The vector

contains the nonidentifiable kinematic parameters. They do not

have any individual influence on the mechanism behavior, and

generate columns in the regressor that uselessly make the latter

singular. Therefore, can be thrown away (i.e., set to an ar-

bitrary value, which can be zero or an a priori value), and the

base parameters are to be found in .
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2) Nonidentifiable External Parameters: External parame-

ters only appear in (7). Therefore, nonidentifiable external pa-

rameters are such that the end-effector pose with respect to the

base is left unchanged if we modify them. Hence, they do not

have any influence on the mechanism behavior. However, it is

of importance to detect such nonidentifiable external parameters

to suppress the corresponding columns in the regressor that also

uselessly make the latter singular. This can be done similarly as

for the kinematic parameters by writing

(15)

and splitting the external parameters in the nonidentifiable ex-

ternal parameters and the remainder .

Notice that the loss of external parameters identifiability can

be related to the number of degrees of spatiality of the mecha-

nism [36].

3) Coupled Kinematic and External Parameters: From the

previous two cases, we can rewrite (13) as

(16)

associated with the reordered parameter set

.

Now, although and have full rank, their compound

may be rank-deficient. Similar to the above two cases,

we can split it in two parts: one full-rank matrix and one lin-

early dependent part. Thereby, we also reorder, then split, the

vector in two parts: the vector containing the base

parameters , and a second part , which contains the

remaining parameters that can not be identified.

Remark 1: Notice that both parts may contain kinematic

and external parameters. Therefore, may contain a

part defining the mechanism behavior and a part related to

the measure of the end-effector pose, while together, these

two parts do not appear in the error used for calibration. This

means that if one removes the exteroceptive measuring device

at control time, then there will be missing kinematic knowledge

in the model, and therefore, the control will be inaccurate.

Remark 2: is the partial derivative of the inverse (resp.

implicit) model with respect to (w.r.t.) the external parameters,

and each column can be expressed as

(17)

with the mechanism pose determined from , and the

mechanism inverse Jacobian matrix. The existence of coupled

kinematic and external parameters depends, therefore, on the

mechanism inverse Jacobian matrix. Consequently, it is a tough

problem to analytically determine such a coupling, since the

analytical expression of the inverse Jacobian matrix is complex,

and depends on the robot configurations. This differs from the

case of serial robots, where such a coupling appears directly in

the forward kinematic model and independently from the robot

configuration.

If inverse Jacobian matrix rank loss occurs because of cou-

pled kinematic and external parameters, a solution would be to

turn to calibration methods without exteroceptive sensing, or to

Fig. 5. Setup of the vision-based metrology evaluation. Left (fixed): an LCD
target, a laser interferometer station, and its beam splitter block. Right (in
motion): a CCD camera and the laser retroreflective block.

TABLE I
VISION-BASED METROLOGY AND LASER INTERFEROMETRY ACCURACIES

(R NONMEASURABLE WITH LASER INTERFEROMETRY)

keep the exteroceptive measure at control time (for instance, to

use visual-servoing techniques [45], [46]).

IV. EXPERIMENTS

A. Vision-Based Metrology Evaluation

To experimentally evaluate the accuracy of the vision-based

metrology, we compared it with laser interferometry (see [47]

for a detailed analysis of the experimental procedure). To do

so, we used a high-speed machine-tool axis to perform accurate

linear motions (Fig. 5).

Notice that while vision gives a full Cartesian pose (i.e., six

values), laser interferometry can only give one scalar measure at

a time, and one needs to change the optical blocks (beam splitter

and retroreflective) to pass from one measure to another. Hence,

one can not consider that the measures from laser interferometry

are obtained in the same frame. Moreover, the laser gives a dis-

placement, while vision gives an absolute position. For compar-

ison, a set of displacements is then imposed on the machine-tool

axis, and standard deviation of the errors between imposed dis-

placements and measurements, from vision or interferometry, is

computed.

We used a 1024 768 CCD camera with a 3.6-mm focal lens

and a Renishaw ML-10 interferometer. The estimated standard

deviations are given in Table I. The largest measurement errors

concern the translation along the optical axis and rotations in the

perpendicular directions, which is due to the use of a monocular

system. Nevertheless, vision-based metrology yields a compet-

itive accuracy, compared with interferometry.

B. Calibration of the H4 Robot

The comprehensive calibration method is now applied to the

H4 robot with the experimental setup displayed in Fig. 1. This

implies the modeling of the mechanism, its identifiability anal-

ysis, the identification of the parameters using the collected ex-

perimental data, and validation tests. We present here these four

steps.

The H4 robot has four degrees of mobility (three translations

plus one rotation around the vertical axis), provided that the
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Fig. 6. CAD model of the H4 robot. Top view for the joint parameter
definitions (left) and nacelle scheme (right).

four-bar mechanisms in the arms are articulated parallelograms.

This assumption is considered valid, and will be verified with

the experimental results.

1) Kinematic Models: Different models of the robot can be

obtained, depending on which hypotheses considered during

the mechanism design are used. Taking into account all these

hypotheses, the model of the H4 robot gives the following im-

plicit model (see [25] for a detailed expression), expressing the

closure of the kinematic chain around each leg, under the hy-

pothesis of the existence of some symmetries in the mechanism

(Fig. 6):

(18)

with the arm length, the forearm length (both the same for

each leg), the encoder offsets, and other notation given in

Fig. 6. Notice that the ’s depend on the end-effector pose,

denoted by , with the end-effector angle such that

when the nacelle has an “H” shape. The nacelle dimension

does not appear in this model.

This implicit kinematic model is parameterized by 12 scalars:

, and will be referred to as the im-

plicit 12-model in the following.

From this model, one can derive rather easily its inverse kine-

matic model (the so-called inverse 12-model)

(19)

with , ,

, and depending on the

assembly.

A more general kinematic model can be used. The base frame

is then attached to the first joint center and its axis par-

allel to the end-effector rotation axis. Like the 12-model, the

base-frame orientation is such that is the angle between the

“H-configuration” of the nacelle and its current configuration.

The other joints can be placed at any point ,

. Each joint may have any orientation , ,

and the legs have independent arm and forearm lengths ,

. Thus, this implicit 31-model involves a total of 31

parameters ,

and becomes rather complicated

(20)

with

The inverse model can be expressed in a similar way to the

12-model. Its expression is derived in [36].

2) Identifiability: The three sources of identification of

Jacobian loss of rank are investigated for the two models. First,

it can be noticed that the nacelle rotation axis is equal to the

base-frame vector for 12 and 31 models. The full-pose measure-

ment enables us to then determine experimentally in a first step

this vector in the camera frame. Using the notations introduced

in Section II-B, only four parameters of the

transformation have then to be identified. The experimental

setup is also designed in such a way that only the four external

parameters are needed to define .

Kinematic Parameters: Computation of the condition

number of the identification Jacobian matrix for the kinematic

parameters shows that the 12-model and 31-model parameter

sets are identifiable.

External Parameters: Analyzing the models shows that

for both cases, the parameters and defining, respectively,

the position along the camera optical axis of the calibration

target w.r.t. the end-effector, and the position of the base-frame

center w.r.t. the camera can only be identified simultaneously.

This is due to the fact that the end-effector only has one degree

of freedom in rotation and can be related to results on hand–eye

calibration [48].

External and Kinematic Parameters: Numerical estima-

tion of the identification Jacobian matrix shows that no rank loss

occurs when considering the complete set of parameters for the

12-model.

On the contrary, for the 31-model, the kinematic parameter

is coupled with the external parameter , a translation com-

ponent of . Thus, only the a priori value of can be used

when needed. The consequence of this coupling between ex-

ternal and kinematic parameters is here a constant offset on the

zero-reference point of the end-effector. This means that the dis-

placements of the end-effector can be controlled, but a constant

gap between the end-effector position in the base frame and its

real position can remain in the direction. Since a robot task

is generally defined between a world frame and a tool frame,

distinct from the base and end-effector frames, the problem of

the determination of the zero-reference point of the end-effector

is included in the calibration of the world/base and tool/end-ef-

fector transformations. The nonidentifiability of the parameter

can then be taken into account when estimating these transfor-

mations, at the task-planning stage (workpiece localization). In

the same way, one can show [36] that a constant error remains



RENAUD et al.: SIMPLIFYING THE KINEMATIC CALIBRATION OF PARALLEL MECHANISMS 19

Fig. 7. Validation setup. Linearity check (left) and control validation (right).

in the nacelle configuration defined by the angle , due to a cou-

pling between the kinematic and external parameters. Such an

error can also be compensated for.

3) Identification From Collected Experimental Data: We

collected in a first step eight images of the calibration target

shown in Fig. 3, and used them for calibrating the measuring

device, following the empirical rules given in Section II-E.

Then, we moved the robot in 27 uniformly distributed positions

in the workspace, and in each position, we rotated the nacelle

in three different orientations ( , , ), thus gathering

81 poses. In each pose, we recorded an image and the corre-

sponding joint values. Finally, 71 out of these 81 poses were

randomly chosen for the kinematic calibration.2 The condition

number of the kinematic parameters Jacobian is on the order

of 150, which is quite satisfactory [49], but could have been

improved by a pose-optimization procedure [41].

The kinematic parameters are then identified from the error

function (9) and (11), using a Levenberg–Marquardt method

with computed Jacobian matrices.

4) Validation: Three validation procedures have been used

to validate the calibration efficiency. First, with the 10 unused

poses, we computed the mean and root mean square (RMS) error

between the measured joint variables and their estimated value

obtained with the identified inverse kinematic model. Since the

vision-based measuring device is used to obtain the validation

data, this test is not completely independent from the calibration

procedure. It allows one, however, to evaluate the absolute ac-

curacy obtained after calibration, i.e., the errors between a con-

trolled pose defined between the base frame and the end-effector

frame and the corresponding measured location. One must no-

tice that the base frame can not physically be used for valida-

tion tests due to its definition. The other two tests are, therefore,

based on the evaluation of the relative accuracy, i.e., accuracy

of the end-effector displacements, and provide independent val-

idation data.

The second validation test is based on a kinematic constraint

applied to the end-effector (Fig. 7). A linearity check has been

achieved in three steps:

1) the end-effector was manually moved along a straight

ruler while recording the joint values in several stations;

2) we applied a numerical estimation of the forward kine-

matic model to the joint values in each position with the

estimated kinematic parameters. This gave us an estima-

tion of each of the end-effector poses, from which we

2The experimental results turned out to be insensitive to the selection of the
71-pose set.

TABLE II
A PRIORI AND IDENTIFIED KINEMATIC PARAMETERS FOR THE 12-MODEL

TABLE III
RESIDUAL TEST (IN DEGREES)

TABLE IV
LINEARITY CHECK (IN MILLIMETERS)

computed an LS estimate of the straight line they are con-

strained to lie on;

3) we computed the standard deviation with respect to the

mean straight line.

The accuracy of this second test is on the order of 0.05 mm.

The third validation test is based on a control validation, using

the inverse 12-model. Indeed, using the Cartesian control mode

of the robot, we required the end-effector to move to the 4 cor-

ners of a 100-mm square, twice with the a priori values of

the parameters obtained from the mechanism design to check

the robot repeatability, and once with the estimated parameters

(Fig. 7). The distances between the four corners is graphically

measured with an accuracy on the order of 0.5 mm.

5) Results: In Table II, we give the a priori and identified

values of the kinematic parameters for the 12-model.3 The

residual validation tests are given in Table III, and the lin-

earity check along two approximately orthogonal directions in

Table IV. For the inverse 12-model, Fig. 8 shows the results of

the validation by control. One can see two parallel trajectories

obtained with a priori kinematic parameters for two different

positions of the pen that validate the repeatability of the robot.

One can, more interestingly, see a third trajectory obtained

after calibration. The error is reduced from about 1 cm down to

1 mm, which is on the order of the validation test uncertainties.

3Exhaustive results, not given for sake of clarity, can be found in [36].
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Fig. 8. Comparison of graphically recorded end-effector trajectories.

Notice also that using the a priori parameters rather than the

identified ones yields a noticeable approximate positioning

error of the nacelle of 26 mm and 1.3 .

The influence of the calibration method is presented before

discussing the optimal calibration model.

Implicit/Inverse Model: For the two models, the kinematic

parameter variations are significant w.r.t. the a priori values with

length modification of several millimeters, and variation of the

angles defining the joint positions and joint offsets on the order

of two degrees (Table II). The residual errors are sharply reduced

in both cases, and the linearity check improved. Since the two

models contain the same information about the kinematics of

the end-effector, the influence of the model is only due to its

numerical properties. In this case, no significant difference is

observed. The linearity check is only slightly improved by the

use of the implicit model (Table IV). The latter, which can be

derived for any parallel mechanism, seems therefore the more

adequate for the calibration.

Calibration Model Influence: The linearity check shows

a lower efficiency of the 31-model by comparison with the in-

verse or implicit 12-model (Table IV). For further analysis of

this efficiency decrease, other identifications have been achieved

with the 12- and 31-models, taking into account a priori infor-

mation on the kinematic parameters. Eight variants have been

finally evaluated, with 10–31 kinematic parameters to identify

(Table V).

For each case, the condition number of the identification Jaco-

bian matrix and mean linearity check are indicated in Table VI.

Mean and RMS errors, not indicated for sake of clarity, are

constantly decreasing with the model complexity increase. They

do not seem to be significant indicators of the calibration effi-

ciency, since linearity check variation (Table VI) is not consis-

tent with the latter.

According to the linearity check indicator, the models based

on the 31-model seem to be less efficient than those built from

the 12-model. For the vision-based measuring device, models

based on the 12-model are the most efficient, and one can here

observe the existence of the optimal calibration model, as stated

in [49].

In Table II, one may notice that the most important length

variation for the 12-model (variant ) is the forearm length

TABLE V
IDENTIFIED MODELS WITH A PRIORI INFORMATION

ADDED TO REFERENCE MODEL

TABLE VI
CONDITION NUMBER OF IDENTIFICATION JACOBIAN MATRIX, MEAN

LINEARITY CHECK FOR MODELS DEFINED INTABLE V

, with a modification of about 7 mm. This 7-mm modifica-

tion seems rather huge, compared with the a priori knowledge

on this dimension. Introducing this a priori knowledge, how-

ever, reduces the calibration efficiency, with better results using

models B, D, H, than with A, C, G (Table VI). Furthermore, in-

troduction of the forearm length as a parameter to identify sig-

nificantly increases the condition number.

These results seem to be justified by further analysis of the

mechanism kinematic behavior. The variation of the nacelle ori-

entation axis has been measured in the order of 0.1 . This vari-

ation is due to the nonrespect of the assumption concerning

the forearm geometry. Identifying their equivalent length prob-

ably enables us to compensate for the model error. A complete

modeling of the parallelograms could be achieved, according

to Visher [11]. However, the associated parameters seem rather

difficult to identify, and we did not include such a modeling.

Finally, the optimal calibration model using the proposed vi-

sion-based calibration method seems to be the model issued

from the CAD hypotheses. An efficient compromise is probably

then obtained between the number of parameters to identify, and

their influence on the kinematic model, as measured with the

proposed vision-based measuring device. Such an observation

has also been obtained for the Orthoglide mechanism [41] with

an approximately equal workspace (300 300 300 mm ).

V. CONCLUSION – DISCUSSION

In this paper, we proposed a comprehensive method for

parallel mechanism kinematic calibration using vision-based

metrology. To do so, we introduced a novel camera-plus-target

calibration method. Making explicit the relative positions of

the camera and the target with respect to the mechanism in the
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kinematic calibration algorithm (either based on the inverse or

the implicit kinematic model), we exhibited three classes of po-

tentially nonidentifiable parameters: nonidentifiable kinematic

parameters, nonidentifiable external parameters, and coupled

kinematic and external parameters.

Extensive experimental results have shown the efficiency of

vision-based kinematic calibration procedures. The accuracy of

the introduced vision-based measuring device has been evalu-

ated on the order of 10 m in position, and in orienta-

tion. The accuracy of an existing robot has then been improved

by a factor of 10 according to three different validation pro-

cedures. Using the full-pose measurement provided by the vi-

sion-based measuring device, analysis of the kinematic behavior

of the mechanism has also been achieved, with selection of the

optimal calibration model.

The presented results show that our simple and automated

calibration procedure, achievable in less than one hour on the

mechanism, enables us to calibrate a parallel robot, with final

accuracy less than 1 mm when using a standard video camera.

The implicit model calibration and the use of the design model

are sufficient to get such an accuracy, which tends to indicate

that the proposed procedure can be applied to many parallel

structures. This experimental result has been confirmed by cal-

ibrating another parallel mechanism with a workspace of same

size.

The proposed vision-based measuring device enables us

to get a displacement accuracy on the order of 1/100 000 of

the measuring volume with now-available cameras. The pre-

sented vision-based method therefore fulfills the calibration

requirements of parallel robots dedicated to manipulation,

with workspace on the order of 1 m and accuracy of 1 mm.

Other robots with higher accuracy in a smaller workspace can

also be handled, since vision is only sensitive to their ratio.

In this context, our method is flexible and enables a full-pose

estimation, which has been shown as essential for the selection

of the calibration model. Such a method therefore has strong

advantages over calibration algorithms based on mechanical

constraints or mechanical measuring devices. Vision can also be

preferred to laser-based measuring devices for the calibration

of parallel manipulators, since our measuring device is of low

cost and sufficient accuracy for these mechanisms.

Vision-based calibration is, therefore, a widely applicable so-

lution, dedicated to parallel manipulators, which is complemen-

tary to laser-based sensors, more adequate for the calibration of

high-accuracy parallel mechanisms such as machine tools.
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