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SIMPLY-CONNECTED 4-MANIFOLDS 
WITH A GIVEN BOUNDARY 

STEVEN BOYER 

ABSTRACT. Let M be a closed, oriented, connected 3-manifold. For each 
bilinear, symmetric pairing (zn, L), our goal is to calculate the set VdM) 
of all oriented homeomorphism types of compact, 1-connected, oriented 4-
manifolds with boundary M and intersection pairing isomorphic to (zn, L). 

For each pair (zn,L) which presents H.(M), we construct a double coset 
space Bi(M) and a function ci: VdM) -+ Bi(M). The set Bi(M) is the 
quotient of the group of all link-pairing preserving isomorphisms of the torsion 
subgroup of HI(M) by two naturally occuring subgroups. 

When (zn, L) is an even pairing, we construct another double coset space 
theM), a function CL: VdM) -+ theM) and a projection P2: ih(M) -+ 
B},(M) such that P2 . CL = ci· 

Our main result states that when (zn, L) is even the function CL is injective, 
as is the function ci x.6: VL(M) -+ Bi(M) x Z/2 when (zn,L) is odd. Here 
.6 is a Kirby-Siebenmann obstruction to smoothing. It follows that the sets 
VdM) are finite and of an order bounded above by a constant depending 
only on HI(M). We also show that when HI(MiQ) ~ 0 and (zn,L) is even, 
ci = P2 . C L is injective. 

It seems likely that via the functions ci x.6 and CL, the sets BUM) x Z/2 
and theM) calculate VdM) when (zn,L) is respectively odd and even. We 
verify this in several cases, most notably when HI (M) is free abelian. 

The results above are based on a theorem which gives necessary and 
sufficient conditions for the existence of a homeomorphism between two 1-
connected 4-manifolds extending a given homeomorphism of their boundaries. 

The theory developed is then applied to show that there is an m > 0, 
depending only on HI(M), such that for any self-homeomorphism I of M, 
1m extends to a self-homeomorphism of any 1-connected, compact 4-manifold 
with boundary M. 

Introduction. In M. Freedman's fundamental paper [FrJ, he· classified closed, 
simply-connected, oriented 4-manifolds up to orientation preserving homeomor-
phism. He showed that modulo the Kirby-Siebenmann invariant, these manifolds 
are in bijective correspondence through their intersection pairings with the set of 
unimodular, bilinear, symmetric pairings over Z (see Theorem (1.5) of [Fr] and 
Corollary (2.2.3) of [Q]). In this paper we begin a classification of simply connected 
4-manifolds with connected boundary. Our results with regard to this problem 
are based on a theorem which gives necessary and sufficient conditions for the ex-
istence of a homeomorphism between I-connected 4-manifolds extending a given 
homeomorphism of their boundaries. 
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Throughout this paper, M will denote a fixed closed, oriented, connected 3-
manifold. For each symmetric bilinear form L: zn X zn -+ Z, consider the set 
VdM) of all oriented homeomorphism types of compact, I-connected, oriented 4-
manifolds with (oriented) boundary M and whose intersection pairing is isomorphic 
to (zn, L). 

In generallh(M) will be empty unless (zn, L) presents H .. (M) (§1). When M 
is a homology 3-sphere, this occurs if and only if L is unimodular and in the case 
L is unimodular, one may combine Theorems (1.4') and (1.5) of [FrJ to show that 

L is even, 
L is odd. 

FUrther, when L is odd the two m!illifolds are distinguished by their Kirby-Sieben-
mann invariants. 

To describe our results, let At(M) denote the group of link pairing preserving 
isomorphisms ofT1(M), the torsion subgroup of Hl(M). We let }/+(M) denote the 
group of orientation preserving homeomorphisms of M and H~ (M) the subgroup 
of At(M) induced by elements of }/+(M). When (zn,L) presents H .. (M), there 
is another naturally occurring subgroup A1(M) ~ At(M) and we form the set 
Bi( M) of double cosets 

Bt(M) = H~(M)\At(M)/At(M). 

Let V be a 4-manifold with boundary and Ll(V) E Z/2 the Kirby-Siebenmann 
obstruction to extending the product smooth structure on av x R across V X R. 

(0.1) THEOREM. Suppose (zn, L) presents H*(M) and V is a 4-manifold rep-
resenting a class in VdM) with A: (zn, L) -+ (H2(V), .) an isometry. Then there 
is a function ct: VdM) -+ Bi(M) which associates to the class of V the double 
coset H~(M)a(AnA1(M). 

When L is an odd pairing, the function ct = ct x Ll: VdM) -+ Bi(M) x Z/2 
is injective. 0 

When L is an even form presenting H*(M), the function ct may not be a 
monomorphism. To deal with this situation, we shall consider the quadratic en-
hancements of the link pairing on M and use these to define a group A( M) ~ 
A(M) x S(Spin(M)), A(M) being a certain group of equivalences of H .. (M) and 
S(Spin(M)) the symmetric group on the set of spin structures of M. 

As before there are subgroups H+(M) and AdM) of A(M) and we shall consider 
the double coset space 

ih(M) = H+(M)\A(M)/AdM). 

There is a natural projection P2: ih(M) -+ Bi(M). 
Now the presentation (zn,L) of H*(M) determines a set of spin structures, 

SpinL(M), which turns out to be an orbit of the action of 

[l(M) = image(Hl(M) -+ Hl(M; Z/2)) 

on Spin(M). 
For (a,7r) E A(M), let (a,7r) denotes its equivalence class in ih(M). 
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(0.2) THEOREM. Suppose (zn, L) is an even pairing presenting H*(M). Then 
there is an injective function C L: lJ L (M) ---+ B L (M) such that P2 0 C L = c1. Further, 
for each (o:,7r) E A(M), there is a subgroup }i+(M, 0:) c }i+(M) which acts on the 
left of 7r(SpindM)) and for which there is a bijection 

~(a,7r): 7r(SpindM))/}i+(M, 0:) ---+ (P2)-I(P2((O:, 7r) )). 0 
Now that when HI(M;Q) ~ 0, II(M) ~ O. Thus if (zn,L) is an even presen-

tation of H.(M), ISpindM)1 = l. From Theorems (0.1) and (0.2) we immediately 
deduce, 

(0.3) COROLLARY. If HI (M; Q) ~ 0, the functions c1 and ct are injective 
when L is respectively even and odd. 0 

More generally, the two theorems show, 

(0.4) COROLLARY. For each symmetric, bilinear form (zn, L), the set lJL(M) 
is finite. 0 

It is natural to ask whether or not the functions CL and ct are bijections. The 
work of Freedman alluded to earlier shows that this is indeed the case when M is 
a homology 3-sphere. It seems reasonable to expect this to hold in general and in 
§5 we verify it in several cases, most notably when TI (M) = O. 

(0.5) PROPOSITION. Suppose (zn,L) presents H.(M) where H*(M) is free 
abelian. Then ct (respectively CL) is a bijection when L is odd (respectively even). 

More precisely, if L is odd, the correspondence ~: lJL(M) ---+ Z/2 is bijective. If L 
is even, the correspondence ~(1~1) 0 CL: lJL(M) ---+ Spin(M)/}i+(M) is bijective. 0 

Next we ask under what general conditions on M can we be assured that modulo 
the Kirby-Siebenmann invariant, a compact, 1-connected, oriented 4-manifold with 
boundary M is determined by its bilinear form. Clearly this is just asking when 
IBUM)I = 1 (respectively IBL(M)I = 1) when L is odd (respectively even). It 
is possible to construct many specific examples of such manifolds. The following 
result presents a general criterion for when it will occur. 

(0.6) PROPOSITION. Suppose TI (M) ~ Z/r where r = 1,2,4, pn or 2pn, 
p an odd prime. Then if (zn, L) presents H.(M), IBUM)I = 1. When L is 
even BL(M) = SpinL(M)/}i+(M). In particular, if }i+(M) acts transitively on 
SpindM), IBL(M)I = 1. 0 

Our main technical result is a theorem which gives necessary and sufficient con-
ditions for extending certain elements of }i+ (M) to homeomorphisms between 1-
connected 4-manifolds bounded by M. 

More precisely let VI and V2 be compact, 1-connected, oriented 4-manifolds with 
boundary M and suppose f E }i+(M). 

There are two obstructions to extending f to a homeomorphism F: VI ---+ V2. 
The first is to find an isometry A: (H2(Vt},·) ---+ (H2 (V2),·) for which the following 
diagram commutes. 

0---+ H 2 (M) ---+ 

J.t 
0---+ H2 (M) ---+ 

H 2 (Vt} ---+ 

At 
H 2 (V2 ) ---+ 

H 2 (VI , M) ---+ HI(M) ---+ 0 
1f. 

---+ HI(M) ---+ 0 
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Here A· is the adjoint of A with respect to the identification of H2 (Vi , M) with 
Hom(H2(Vi), Z) (i = 1,2) arising from Lefschetz duality. 

We shall call such a pair (f, A) a morphism and denote it symbolically as (f, A): VI 
~V2· 

The second obstruction encountered is to realize a given morphism (f, A) geomet-
rically. That is, to find a homeomorphism F: VI ~ V2 such that (f, A) = (FIM, F.). 
In this paper we shall concentrate on the second obstruction, though we do make 
some analysis and comments on the first (see Proposition (1.6) and Remark (1.13)). 

(0.7) THEOREM. If (f,A):V1 ~ V2 is a morphism, there is an obstruction 
class (}(f, A) E 11 (M) such that for (f, A) to be realized geometrically, it is necessary 
and sufficient that ~(vd == ~(V2) (mod 2) and (}(f, A) = o. 

If (H2(Vl),·) is even, then (}(f, A) = 0 implies ~(Vl) == ~(V2). 0 

The next result lists more information concerning the obstructions (}(f, A). 

(0.8) PROPOSITION. Let (f, A): V1 ~ V2 be a given morphism. Then 
(i) if H1(M; Q) ~ 0, (}(f, A) = 0; 
(ii) if L is odd and y E I1(M) is arbitrary, there is another morphism (f, A'): V1 

~ V2 for which (}(f, A') = y. In particular, there is a A' with (}(f, A') = 0; 
(iii) if L is even, then (}(f, A) depends only upon f. Indeed (}(f, A) = 0 if and 

only if the manifold V = V1 U f (-V2) is spin. 0 

(0.9) COROLLARY. Given a morphism (f,A):V1 ~ V2, where ~(vd == ~(V2)' 
then f extends to a homeomorphism F:V1 ~ V2 as long as H1(M) is finite or the 
intersection pairing on V1 is odd. If this pairing is even, f may not extend. 0 

An example of a nongeometrically realizable morphism is given in the discussion 
following Proposition (4.1). 

The following theorem is an application of all the theory developed above. 

(0.10) THEOREM. Let M be a closed, connected, oriented 3-manifold. Then 
there is an integer m > 0 depending only on H 1 (M) such that given any f E J.f+ (M) 
and any compact, I-connected 4-manifold V with boundary M, fm extends to a self-
homeomorphism of V. 0 

Note that if the mapping class group of M is finite then Theorem (0.10) is 
obvious. Examples such as M = 8 1 X 8 1 X 8 1 show that this is not always the 
case. 

Several words of acknowledgment are due at this point. 
A special case of Theorem (0.7) was proved and used in the author's doctoral 

dissertation (Theorem (4.3) of [BJ) written under the supervision of Professor P. J. 
Kahn at Cornell University. The approach used there and in this paper is based on 
a method of C. T. C. Wall for constructing h-cobordisms between I-connected 4-
manifolds [WI]. He works with the case M = 8 3 , though his analysis goes through 
verbatim when M is a homology 3-sphere. Our contribution is in dealing with a 
general (oriented) 3-manifold. 

Another approach to Theorem (0.7) is through the use of surgery theory. The 
idea would be to first attempt to extend a given f E J.f+(M) to a homotopy equiv-
alence f: V1 ~ V2 and then to try and replace j by a homeomorphism (see the 
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proof of Theorem (1.5) of [Fr] for instance). In unpublished work [Mo], John Mor-
gan studied the problem of extending homotopy equivalences across 1-connected 
4-manifolds and proved, amongst other things, a homotopy version of Theorem 
(0.7). Part (ii) of Proposition (0.8) is based on ideas from this work. The author 
would like to thank R. Kirby who informed him of Morgan's results upon receipt 
of an earlier version of this paper. 

We would also like to point out that in independent work [V], Pierre Vogel has 
announced certain classification and realization results for bounded 1-connected, 
4-dimensional Poincare complexes and manifolds. 

We thank Andrew Nicas for pointing out and discussing the relevance of qua-
dratic enhancements of the link pairing when (zn, L) is even. 

Finally we would like to acknowledge the hospitality of both Cambridge Univer-
sity and the University of Toronto during the preparation of this work. 

The paper is organized in the following fashion. §1 provides the algebraic back-
ground necessary for the analysis of VdM) when L is odd. In §§2 and 3, spin 
structures on manifolds and the quadratic enhancements of the link pairing on 
Tl (M) are introduced and used to provide the algebraic structure needed when L 
is even. §4 contains the proof of Theorem (0.7) and in §5 the theory previously 
developed is applied to prove Theorems (0.1) and (0.2). 

1. We shall assume throughout that all manifolds are compact, oriented and that 
the symbol "~" implies the existence of an orientation preserving homeomorphism. 
Boundaries of manifolds will have the orientation corresponding to the boundary 
of the fundamental class of the manifold they bound. 

As in the introduction, M will denote a closed, connected 3-manifold and Tl (M) 
the torsion subgroup of Hl(M). Any endomorphism of Hl(M), 4J say, induces 
an endomorphism of Tl (M) by restriction, which we shall write as 4Jt : Tl (M) -+ 
Tl(M). The link pairing on T1(M) will be denoted lM:T1(M) X T1(M) -+ Q/Z. 

A bilinear form space is a pair (zn, L) where L: zn x zn -+ Z is a symmetric bi-
linear pairing. For instance, if V is a 4-manifold, the intersection pairing (H2 (V), .) 
is such a pairing and we shall call these forms geometric. 

A form (zn, L) is said to be even if L(~,~) == 0 (mod 2) for each ~ E zn and odd 
otherwise. 

An isometry of bilinear form spaces is an isomorphism of the underlying groups 
which preserves the pairings. 

If A is an abelian group, A* will denote the dual group Hom(A, Z). 
(1.1) DEFINITION. A bilinear form space (zn,L) presents H.(M) if there is 

an exact sequence 

0-+ H2(M) ~ zn a~) [zn]* ~ H1(M) -+ 0 

such that 
(i) if ad(L)(~i) = mi'fli (i = 1,2) where mlm2 -1= 0, then 

1 
lM(81J!' 81J2) == ---L(6, 6); 

mlm2 

(ii) if /3 E H2(M) and 1J E [zn]*, then 8(1J)' /3 = 1J(h(/3)). 
For instance if M is the boundary of a 4-manifold V, then it is well known that 

(H2(V),') presents H.(M) (see §3 of [G,L]). 
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(1.2) DEFINITION. An automorphism of H.(M) is a pair of isomorphisms 
0: = (O:t, 0:2), O:i: Hi(M) - Hi(M) (i = 1,2), such that 

(i) if Vt, 1.12 E T1(M), then lM(O:l(Vt), 0:1(1.12)) == lM(V1, 1.12); 
(ii) if v E H1(M) and f3 E H2(M), then 0:1 (v) . 0:2(f3) = v· f3. A(M) will denote 

the group of all automorphisms. 
Clearly any homeomorphism f E R'+(M) induces an element f. E A(M) and 

we let H + (M) be the subgroup of A( M) consisting of all such automorphisms of 
H.(M). 

By an algebraic morphism between two presentations (zn, Li) (i = 1,2) of 
H.(M), we shall mean a commutative diagram 

0- H2 (M) ~ zn a~) [znj. ~ H1(M) - 0 
a2L AL i A' 1a 1 

0- H2 (M) ~ zn a~) [znj. ~ H1(M) - 0 

where A is an isometry. If both (zn, Lt) and (zn, L2 ) are geometric and (0:1,0:2) E 
H + (M) we shall call the algebraic morphism simply a morphism. Such a diagram 
will be called a geometric morphism if A is induced by a homeomorphism of the 
two manifolds. 

Note that the isometry A determines completely the algebraic morphism and so 
in particular we shall write (O:t, 0:2) = 8(A). As A preserves the pairings one may 
check that 8(A) E A(M). 

(1.3) DEFINITION. Given a presentation (zn,L) of H.(M), let AdM) be the 
subgroup of A( M) given by 

AL(M) = {8(A)IA a (self) isometry of (zn, Ln. 
In general, AdM) is not a normal subgroup of A(M). 
Define 

BL(M) = H+(M)\A(M)jAdM). 
The goal of the rest of this section is to better understand the quotients 
A(M)jAdM) and BdM). It turns out that they are determined by torsion infor-
mation associated to (zn,L) in a way which we describe now. 

Given a presentation (zn,L) of H.(M), there is an induced presentation of 
(T1 (M), lM) (in the sense of §7 of [W2]) as follows. 

Set K(L) = ker(ad(L)) and let 71": zn _ zn j K(L) be the projection. L induces 
a nonsingular pairing Lt on znjK(L) by the formula 

Lt(7I"(6)' 71"(6)) = L(6, 6). 
It can be shown that there is a commutative diagram 

0- znjK(L) a~) [znjK(L)j· ~ 
... T 1 ... ' 

T1(M) - 0 
1i 

zn adeLl 
----+ ~ H1(M) -0 

where both rows are exact. The link pairing lM may be calculated from the top 
row by a formula similar to that in Definition (1.1)(i). 
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(1.4) DEFINITION. Let At(M) be the set of lM-preserving isomorphism of 
T1 (M), At the subgroup consisting of those elements induced by isometries of 
(znjK(L),V) and Ht(M) = U!lf E )/+(M)} ~ At(M). 

There is a restriction homomorphism t: A(M) ~ At(M) given by t(a) = al. It 
may be verified that t(A1(M)) ~ At{M) and clearly t(H+(M)) = Ht(M). Thus 
t induces functions 

(i) t1: A(M)jAdM) ~ At(M)jAt(M); 
(ii) t2: BdM) ~ Bi(M) = Ht(M)\At(M)jAt{M). 

We shall show that both t1 and t2 are bijective. 

(1. 5) LEMMA. The functions t, t1 and t2 are epimorphisms. 
PROOF. It suffices to show t is surjective. To that end let al E At(M) and 

extend al arbitrarily to an isomorphism a1: H1(M) ~ H1(M). There is an induced 
isomorphism H1 (M)jT1 (M) ~ H1(M)jT1(M) and we take a2 to be the inverse of 
its adjoint under the identification of H1(M) with [H1(M)jT1(M)J* resulting from 
Poincare duality. It is not hard to check that (ab (2) E A(M) and t(a1, (2) = 
al. 0 

(1.6) PROPOSITION. Let a E A(M). Then a E AdM) ~ al E At(M). 
The proof of Proposition (1.6) will take up the rest of this section. Before 

proceeding to it we list various consequences. 

(1. 7) COROLLARY. The function t1: A(M)jAdM) ~ At(M)jAt{M) is bi-
jective. 

PROOF. Simply combine Lemmas (1.5) and (1.6). 0 

( 1 .8) COROLLARY. There is an integer m > 0 depending only on T1 (M) such 
that am E AdM) for each a E A(M). 

PROOF. Let m be an exponent for the group of isomorphisms of T1 (M). Then for 
any a E A(M), t(am ) = (aU m = 1 E At{M). Thus am E AdM) by Proposition 
(1.6). 0 

(1.9) COROLLARY. Suppose T1(M) ~ Zjr where r = 1,2,4,pn or 2pn, p an 
odd prime. Then AdM) = A(M). 

PROOF. When T1(M) is cyclic of order r, At(M) = {ulu2 == I} ~ Zjr. But for 
the values of r listed in the hypotheses, u2 == 1 (mod r) implies u == ± 1 (mod r). 
Thus At(M) = {±1}. Now multiplication by ±1 is an isometry of (zn j K(L), Lt), 
from which we see that Ai(M) = At(M). Corollary (1.7) now shows AdM) = 
A(M). 0 

(1.10) COROLLARY. The function t2: BdM) ~ Bi(M) is bijective. 
PROOF. As t2 is surjective (Lemma (1.5)), we need only prove it is 1-1. 
Let a, (3 E A(M) be such that t2( (a)) = t2( ({3)) (here ( ) denotes equivalence 

class in BdM)). Then there is a homeomorphism f E )/+(M) such that 
(a-1 0 f;l 0 {3n = (at)-l 0 U!)-l 0 (3~ E Al(M). 

By Proposition (1.6), a- 1 0 f;1 0 (3 E AdM). Thus (a) = ({3) and so t2 is injective. 
We are therefore done. 0 
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Now to the proof of Proposition (1.6). We need only show that 0:1 E A1(M) 
implies 0: E AdM). Assume then that we are given a commutative diagram 

O~ znjK(L) 

where At is an isometry of Lt. 
Let ¢: zn j K (L) ~ zn be an arbitrary splitting of 1r and note that we may define 

an isometry A of (zn, L) as in the diagram: 

H2(M)(J)znjK(L) ~ zn 
Q2EBAt! LA 

H2(M) (J) znjK(L) ~ zn 

(1.11) LEMMA. a(A) = (0:1+"p,0:2) where"p:(H1(M),T1(M)) ~ (T1(M),0). 
PROOF. That a(Ah = 0:2 follows readily from the definition of A. 
To show"p: H1(M) ~ T1(M) ("p = a(Ah - o:d, let v E H1(M) and {3 E H2(M) 

be arbitrary. Now 
"p(v) . 0:2({3) = 8(Ah(v)· 0:2({3) - 0:1(V) ·0:2({3) 

= a(Ah(v)· a(Ah({3) - 0:1 (v) ·0:2({3) 
= V· {3 - V· {3 since a(A), 0: E A(M) 
=0. 

But as {3 E H2(M) was arbitrary, we are forced to conclude "p(v) E T1(M). Thus 
image("p) ~ T1(M) as claimed. 

Finally we show "p vanishes on T1(M). Now the identity 1r 0 A = At 01r implies 
that A * 0 1r* = 1r* 0 A to. Hence, if i; T1 (M) ~ H 1 (M) is the inclusion, 

0:10 i 0 at = i 0 0:10 at = i 0 at 0 (Ato)-1 = a 0 1r* 0 (A to)-1 
= a 0 A .-1 01r* = a(Ah 0 a 0 1r* = a(Ah 0 i 0 at. 

As at is surjective, we conclude 0:1 0 i = a(Ah 0 i. Thus "p(T1(M)) = {O}. 
This completes the proof of the lemma. 0 
The next lemma will show us how to alter A to construct an isometry A' of 

(zn, L) with q(A') = 0:. 

(1.12) LEMMA. Let "I:znjK(L) ~ H2(M) be an arbitrary homomorphism 
and set A' = A + h 0 "I 0 1r. Then 

(i) A' is an isometry o/(Z'n,L); 
(ii) a(A'h = 0:2; 
(iii) a(A,)!1 = a(A)!1 + a 0 1r* 0 "1* 0 J.I" where J.I,: H1(M) ~ H1(M)jT1(M) is 

the projection. 
PROOF. We prove only (iii), the other two conclusions being straightforward. 
Poincare duality allows us to identify H1(M)jT1(M) with H2(M)* and under 

this identification, h* = J.I, 0 a. Thus A'* = A * + 1r* 0 "1* 0 J.I, 0 a. Then 
a(A,)!1 0 a = a 0 A'* = a 0 A * + a 0 1r* 0 "1* 0 J.I, 0 a = (a(A)!1 + a 0 1r* 0 "1* 0 J.I,) 0 a. 
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The identity (iii) follows by noting that 8 is surjective. 0 
To choose the appropriate ,,/, use Lemma (1.11) to see that all - 8(A)11: 

(Hl(M), Tl(M)) ....... (Tl(M), 0). Thus we may construct a commutative diagram 

The numbers adjacent to several of the arrows refer to the order in which the 
corresponding homomorphisms are constructed. 

Let ,,/:zn/K(L) ....... H2(M) be the adjoint of 3. If A' is the associated isometry 
of (zn,L), as in Lemma (1.12), then 

8(A')11 = 8(A)11 + 8 0 7r* 0 "/* 0 J.-l by Lemma (1.12)(iii) 
= 8(A)11 + (all - 8(A)11) = all. 

Hence 8(A'h = al and so a = 8(A') E AL(M) as claimed. The proof of Proposition 
(1.6) is complete. 

(1.13) REMARK. A more complete analysis of the quotient A(M)/AdM) would 
involve p-Iocal information. That is, the pairing (zn / K(L), Lt) would be tensored 
with Zp, the p-adic integers, and then the p-Iocal analogues of At(M), At(M) 
and their quotient determined. Presumably there is some sort of local to global 
correspondence which provides a complete set of invariants for A(M)/AdM). 

2. In this section we review some material on spin structures and the quadratic 
enhancements of the link pairing, 1M. 

Let ~ be a principal STop(n)-bundle (n ~ 3) over a connected complex X, 
~: STop(n) ~ E(~) ~ X. 

(2.1) DEFINITION. A spin structure on ~ is a class U E Hi (E( ~); Z/2) which 
restricts to a generator of Hi (STop(n); Z/2) ~ Z/2. The set of all spin structures 
on ~ will be denoted Spin(~). 

It follows from the Serre spectral sequence that ~ admits a spin structure if and 
only if the sequence 

0 ....... Hl(X; Z/2) ~ Hl(E(~); Z/2) ~ Hi (STop(n); Z/2) ....... ° 
is exact. Notice that a spin structure on ~ is just a splitting of this sequence from 
the right-hand side, that is a splitting of i*. 

Let U E Spin(~) and x E Hl(X; Z/2). The formula 

x . U = U + 7r* (x) 

defines an effective, transitive action of Hl(X; Z/2) on Spin(~). For Ul,U2 E 
Spin(~), let 
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(2.2) REMARK. There is an analogous theory of spin structures on principal 
SO(n)-bundles [Mi). If ~ is such a bundle, with ~o the associated principal STop(n)-
bundle, the inclusion E(~) ~ E(~o) induces an equivalence of the H1(X; Z/2)-sets 
Spin(~) and Spin(~o). Thus these two notions of spin structures on ~ coincide and 
may be identified. 

Now suppose that X is a manifold with Tx the principal STop(n)-bundle associ-
ated to the stable topological tangent bundle of X. 

(2.3) DEFINITION. By a spin structure on X, we shall mean a spin structure 
on Tx. The set Spin(Tx) will be denoted simply by Spin(X). 

There is a left-action of R'+(X) on Spin(X). Each f E R'+(X) determines a 
bundle map (up to bundle isotopy) 

and so we may define 

E(Tx) E.L E(Tx) 
".! 1". 
X L X 

f# = (Df*)-1: Spin(X) ~ Spin(X). 
(2.4) PROPOSITION. For any f E R'+(X), a E Spin(X) and x E H1(X; Z/2), 

X· f#(a) = f#(f*(x) . a). 0 

It is worth mentioning that isotopic homeomorphisms induce the same permuta-
tion of Spin(X). This observation allows one to calculate the action of f E R'+(M) 
on Spin(M) from the action of some diffeomorphism isotopic to f on the stable 
SO(n) spin structures of M. 

Through the use of Wu's formula (see [Wu) for the absolute case and §7 of [K) 
for the relative version) it can be shown that a (I-connected) 4-manifold V admits a 
spin structure if and only if (H2 (V), .) is an even pairing. If there is a spin structure 
on V, it is necessarily unique. 

(2.5) DEFINITION. Let V be a I-connected 4-manifold with boundary M and 
even intersection pairing. The spin structure av E Spin(M) is defined to be the 
restriction to M of the unique spin structure on V. 

Thrning things around, we can ask what the obstruction to extending a given 
spin structure a E Spin(M) across a I-connected 4-manifold V with boundary M 
is. There is a commutative diagram 

H 1(E(TM);Z/2) ~ H2(E(rv),E(TM);Z/2) 

6 --
( 2 .6) DEFINITION. The relative Stiefel- Whitney class W2 (V, M; a), is the ele-

ment (11"*)-1 0 c5E (a) E H2(V, M; Z/2). 

Our terminology is justified because, through the identification of Spin(M) with 
vertical homotopy classes of sections of TM., M* = M\ {*}, (see alternate Defini-
tion 2 in [Mi)) , W2(V, M; a) is precisely the second relative Stiefel-Whitney class 
associated to a (see [K)). 
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It can be shown that if j: (V, ¢) -t (V, M) is the inclusion, then j*W2(V, M; 0") = 
W2(V) for each 0" E Spin(M). 

(2.7) LEMMA. The function W2(V, M): Spin(M) -t H2(V, M; Z/2) satisfies 
the following: 

(i) image(w2(V, M)) = (j*)-1(W2(V)); 
(ii) a class wE H2(V, M; Z/2) lies in image(w2(V, M)) if and only if (w,j*(~)) == 

~. ~ (mod 2) for each ~ E H2(V); 
(iii) if x E H1(M; Z/2) and 0" E Spin(M), then 

W2(V, M; X· 0") = W2(V, M; 0") + Ox. 

Thus W2 (V, M) is injective; 
(iv) W2(V, M; 0") = 0 if and only if (H2(V),·) is even and 0" = O"v. 0 

We omit the proof of this lemma as most of it follows in a straightforward fashion 
from what has been done previously. We do mention though that to prove (ii) one 
needs (i) together with Wu's formula. 

It will be convenient for us to deal with the function ,: Spin(M) -t H2 (V; Z/2) 
dual to W2(V, M). That is, 

(ILl) 

Dv: H2(V, M; Z/2) -t H2(V; Z/2) being the Lefschetz duality isomorphism. 
The function, has a more elegant formulation as the composition 

Spin(M) -t O~pintoP(V) ~ H2(V) ® O~pintop = H2(V; Z/2), 

where the function Spin(M) -t O~pintoP(V) associates the singular spin manifold 
"Mt7 -t V" to 0" E Spin(M). 

Let DM: H1(Mj Z/2) -t H2(Mj Z/2) be the Poincare isomorphism and h: M -t 

V the inclusion. The next lemma is an easy consequence of Lemma (2.7). 

(2.8) LEMMA. The function ,: Spin(M) -t H2(Vj Z/2) satisfies: 
(i) a class ~ E H2(V j Z/2) lies in image( ,) if and only if ~ . 6 == 6 ·6 (mod 2) 

for each 6 E H2(V)j 
(ii) for x E H1(Mj Z/2) and 0" E Spin(M), 

,(x· 0") = ,(0") + h*DM(x). 

In particular, , is injective. 0 

(2.9) LEMMA. Let V1 and V2 be two 1-connected 4-manifolds with boundary 
M and A an isometry of their intersection pairings. Then there is a permutation 
7rA of Spin(M) such that 

(i) '2(7rA(O")) = A(T1(0")), 0" E Spin(M)j 
(ii) 7rA(8(A)i(x) . 0") = X· 7rA(O") for each x E H1(Mj Z/2) and 0" E Spin(M). 

PROOF. As A is an isometry, we can use Lemma (2.8)(i) to see that A(image(Td) 
= image(T2). As ,2 is injective (Lemma (2.8)(ii)), we may define 7rA = '2 1 OAO,l' 
Evidently (i) holds. 

To prove (ii), we first note that the composition DM 0 8(A)i 0 D"i.l defines 
an isomorphism of H2(Mj Z/2) which we denote (through abuse of notation) as 
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8(A)2"1. It can be checked that Aohh = h2*o8(Ah. Then for any x E H1(M; Z/2) 
and a E Spin(M), 

12(7rA(8(A)i(x) . a)) = A(rl(U) + hh ° DM(8(A)i(x))) 
= 12 (7rA (U)) + h2* ° 8(Ah ° DM ° 8(A)i(x) 
= 12(7rA(U)) + h2* ° DM(X) = 12(X' 7rA(U)). 

As 12 is injective, identity (ii) follows. 0 
We close this section with a short discussion of the quadratic functions related 

to lM. 
To each U E Spin(M), there is an associated quadratic enhancement of lM (see 

§4 of [Tal), that is a function qu: Tl (M) ---+ Q/Z satisfying 
(i) qu(Zl + Z2) == qu(zt} + qu(Z2) + lM(Zl. Z2), Zl. Z2 E T1(M); 
(ii) qu(mz) == m2qu(z), z E T1(M) and mE Z. 

Moreover, any function q: Tl (M) ---+ Q/ Z satisfying these two equations is of the 
form q = qu for some spin structure U (see Corollary (4.3) of [Tal). 

Now for any x E H1(M; Z/2), U E Spin(M) and z E T1(M), 
(11.2) qx-u{z) = qu(z) + ! (x, z) 
where! (x, z) is defined to be ! when (x, z) == 1 (mod 2) and zero otherwise. Thus, 
if [l(M) is the image of Hl(M) in Hl(M; Z/2) under (mod 2) reduction, we have 

(2.10) LEMMA. qUl =qu 2 if and only if d(ul. (2) E[l(M). 0 

(2.11) PROPOSITION. An even bilinear form space (zn, L) presenting H* (M) 
determines a subset SpinL(M) of Spin(M) of the form SpinL(M) = [l(M) . U for 
some spin structure u on M. 

PROOF. Let e E zn and mfJ = ad(L)(e) for some fJ E [zn]* and m # O. As 
(zn, L) presents H* (M), it can be verified that the formula 

q(8fJ) == -L(e, e)/2m2 
determines a quadratic enhancement of 1M. Set 

SpindM) = {ulqu = q} ~ Spin(M). 
According to Lemma (2.10), SpinL(M) is precisely an orbit of the J1(M)-action on 
Spin( M). This completes the proof. 0 

(2.12) REMARK. (i) Let M = 8V where V is a I-connected 4-manifold. If e E H2(V) with j.(e) = mfJ, fJ E H2(V, M) and m # 0, then it can be argued using 
the geometric description of qu that 

1 1 
(II.3) qu(8fJ) == - 2m2 (e· e) + 2(w2(V,M;u),fJ). 

If V is actually a spin manifold, then Lemma (2.7)(iv) shows that SpinL(M) = 
J1(M). uv. 

(ii) The identity 
(W2(V2, M; 7rA (u)) , fJ) == (W2 (Vl , M; u), A • (fJ)), 

fJ E H2 (V, M), together with (II.3) imply that for any u E Spin(M) and z E Tl (M), 
(II.4) q1l"A(u)(8(Ah(z)) == qu(z). 
(Compare Lemma (3.1)(iv).) 
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3. This section provides the more detailed structure necessary to the under-
standing of VdM) when L is even. We shall assume then that all forms (zn, L) 
are even, present H*(M) and that we have fixed some aL E SpindM) such that 
aL = av whenever (zn, L) = (H2 (V), .), Val-connected 4-manifold with bound-
ary M. 

Define IL: Spin(M) -+ zn ® Z/2 by the formulua Idx· aL) = h(DM(x)). Here 
h: H2 (M; Z/2) -+ zn ® Z/2 is the homomorphism adjoint to (8® 1): [zn]* ® Z/2 -+ 
H1(M; Z/2). 

When (zn,L) is geometric, IL coincides with the function I defined in §2. In 
general, it satisfies the appropriate analogue of Lemma (2.8). 

( 3. 1) LEMMA. Let A: (zn, Ld -+ (zn, L 2 ) be an isometry of even bilinear form 
spaces presenting H*(M). Then there is a permutation 7rA: Spin(M) -+ Spin(M) 
such that 

(i) IL2 (7rA(a)) = AhLl (a)). In particular 7rA agrees with the permutation of 
Lemma (2.9) when (zn, Ld and (zn, L2 ) are geometric; 

(ii) 7rA(aLl) = aL2; 
(iii) 7rA(8(A)i(x) . a) = X· 7rA(a) , where x E H1(M; Z/2) and a E Spin(M); 
(iv) q7rA(u)(8(Ah(z)) = qu(z) for z E T1(M), a E Spin(M). 

PROOF. Proceed as in Lemma (2.9) to construct a 7rA satisfying (i) and (iii). It 
is easily checked that 7rA(aLJ = aL 2 so (ii) holds. 

Finally for (iv), use the fact that A is an isometry together with (ii) and the 
definitions of qULl and qUL2 (Proposition (2.11)) to see that the equation holds for 
a = aLl. The general case follows from this, part (iii) and equation (11.2). 0 

We use the material above to enhance the group A(M). Fix a presentation 
(zn,L) of H*(M) and let S(Spin(M)) denote the symmetric group on Spin(M). 

(3.2) DEFINITION. The group A(M) is the set of all pairs (a,7r) E A(M) x 
S (Spin(M)) such that 

(i) 7r(ai(x) . a) = X· 7r(a) for each x E H1(M; Z/2), a E Spin(M); 
(ii) q7r(u)(a1(z)) = qu(z) for each z E T1(M) and a E Spin(M). 

For any (1, 7r) E A(M), it follows from Lemma (2.10) that 7r(a) = y. a for some 
y E I 1(M). Conversely, any such pair (l,y) E A(M). Thus we have an embedding 
I1(M) -+ A(M) whose image is easily verified to be normal. 

Let p: A(M) -+ A(M) be the projection. 

( 3 . 3) LEMMA. There is an exact sequence 

1 -+ I1(M) -+ A(M) !!.. A(M) -+ 1. 

PROOF. The only thing left to prove is that p is surjective. But for a E A(M), 
the function qUL . all is a quadratic enhancement of lM. Thus there is some 
a E Spin(M) with qu = qUL . all. Define 7r E S(Spin(M)) by the formula 

7r(ai(x) . ad = X· a, 
It is readily checked that (a,7r) E A(M). Thus p is surjective. 0 
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Define subgroups AdM) and H+(M) of A(M) by setting 

AdM) = {(8(A), 7I"A)IA an isometry of (zn, L)}j 

H+(M) = {(f., 1#)11 E .li+(M)}. 

That AdM) ~ A(M) is Lemma (3.1). That H+(M) ~ A(M) is a consequence of 
Proposition (2.4) and the geometric description of qu (see §4 of [Tal). 

Clearly P(AL(M)) = AdM) and p(H+(M)) = H+(M). Thus if ih(M) = 
H+(M)\A(M)IAdM), the projection p:A(M) - A(M) induces a function PI: 
ih(M) - BdM). It is possible to identify precisely the fibers of Pl. To that end, 
let a E A(M) and define a subgroup .li+(M, a) of .li+(M) by 

.li+(M,a) = UI/. E aAdM)a- l }. 

The symbol "( )" will denote equivalence class in both BdM) and ih(M). 

(3.4) PROPOSITION. For any (a,7I") E A(M), the action 01 .li+(M,a) on 
Spin(M) preserves 7I"(SpindM)). Further, there is a bijection 

tP(Q,1T):7I"(SpindM))/.li+(M,a) - Pll((a)). 
Before proving this proposition we derive a few of its consequences. The first we 

look at gives a bound on the size of the fibers of Pl. 
Consider IE .li+(M) with I. = ±1. As PI (f., 1#) = Pl(±I, 1), we may apply 

Lemma (3.3) to see that 1# = y for some y E Il(M). Thus we may consider 
J = U#I/. = ±1} as a subset of J1(M). It is not hard to verify that J is actually 
a subgroup of Il(M). 

(3.5) COROLLARY. For any a E A(M), Ipl 1((a))1 ~ 2b1 (M)/IJI. 
PROOF. Choose 71" E S(Spin(M)) such that (a, 71") E A(M). Now clearly UI/. = 

±1} ~ k+(M, a) so that 

Ipll((a))1 = 17I"(SpinL(M))lk+(M,a)1 ~ 17I"(SpindM))IJI = 2b1 (M) IIJI. 0 

(3.6) COROLLARY. II Hl(Mj Q) ~ 0, then PI: ih(M) - BdM) is a bijec-
tion. 0 

(3.7) COROLLARY. II Tl(M) = 0, then ih(M) ~ Spin(M)lk+(M). 

PROOF. If Tl(M) = ° then 
(i) SpinL(M) = Spin(M)j 
(ii) AdM) = A(M) (by Corollary (1.7)). 
Thus IBL(M)I = 1 and k+(M, a) = k+(M) for each a E A(M). In particular, 

ih(M) = Pl l ((I)) ~ Spin(M)lk+(M). 0 

PROOF OF PROPOSITION (3.4). First we show .li+(M, a) acts on 71" (SpinL (M)). 
For IE .li+(M,a), there is an isometry A of (zn,L) such that I. = a8(A)a- l . 

According to Lemma (3.3), there is ayE J1(M) such that 1# = y. 71" 0 7I"A 071"-1. 

As 7I"A(SpinL(M)) = SpinL(M) (Lemma (3.1)), it is evident that 1# preserves 
7I"(SpinL(M)). 

Tentatively define 

tP(Q,1T): 7I"(SpindM))/.li+(M, a) - Pl l ( (a)) 
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by the formula 
'l/J(a,7r)(Y' 7T(aL)) = (0., Y '7T), 

where the bar denotes the equivalence class of Y . 7T(aL)' 

345 

To see this is well defined, let f E )i+(M,o.) and suppose Y2 . 7T(aL) 
f#(Y1 . 7T(aL))' Choose an isometry A such that f. = 0. 0 8(A -1) 0 0.-1. Then 
0. = f. 00.0 8(A) and so there is some Y E I1(M) with 

(III. 1) 

From Lemma (3.1)(ii), 7TA(ad = aL, hence evaluating (III.1) at aL shows Y = o. 
Then (0., Y1 . 7T) = (0., Y2 . 7T) which implies 'l/J(a,7r) is well defined. 

That 'l/J(a,7r) is onto is a straightforward consequence of Lemma (3.3). 
Finally, 'l/J(a,7r) is 1-1 essentially by the definition of ih(M). 
The proof is now complete. 0 
We close this section by remarking that as in the analysis of BdM), ih(M) 

may be calculated from certain torsion information. Indeed let 

At(M) = {(o.i, 7T)1 there is some (0.,7T) E A(M) restricting to (o.t, 7T)}; 
AUM) = {(8(A)i, 7TA)IA is an isometry of (zn, L)}; 

iI~ = {(f!, f#)lf E )i+(M)}; 
BUM) = iI~(M)\At(M)/AUM). 

As in §1, it can be shown that A(M)/AdM) ~ At(M)/At(M) and BdM) ~ 
BUM). 

4. Throughout this section V1 and V2 will be two I-connected 4-manifolds with 
boundary M and (f, A): V1 -+ V2 a fixed morphism. As f. = 8(A), (2.9)(ii), (2.10) 
and (2.12)(ii) show there is a class B(f, A) E I1(M) such that f# = B(f, A) . 7TA· 
(Compare Lemma (3.3).) 

( 4.1) PROPOSITION. The class B(f, A) satisfies the following conditions. 
(i) Let a E Spin(M) and 62 : H1(M; Z/2) -+ H2(V2, M; Z/2) be the coboundary. 

Then 
62B(f, A) = W2(V2, M; f#(a)) - W2(V2, M; 7TA(a)): 

(ii) If (g, 1If): V2 -+ V3 is another morphism, then 
B(g 0 f, 1If 0 A) = B(g, 1If) + (g-l )*B(f, A). 

(iii) B(f-1, A -1) = f*B(f, A). 
(iv) If V1 = V2, there is an m > 0 depending only on b1(M) = dimz/2(I1(M)) 

such that B(fm , Am) = O. 
(v) If (H2(Vi),·) is even (i = 1,2), then 

B(f,A) = d(f#(avJ,av2)' 
Hence B(f, A) depends only on f. 
(vi) If (H2(Vi),·) is even (i = 1,2) and B(f, A) = 0, then ~(V1) == ~(V2)' 
PROOF. For any a E Spin(M), B(f,A) = d(f#(a),7TA(a)). The identity (i) now 

follows from Lemma (2.7)(iii). 
Conclusions (ii) and (iii) are ready consequences of Proposition (2.4). 
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To deduce (iv), choose m = 2m1, m1 = IGI(b1(M), Z/2)1. Then [f*II1(M)]ml = 
1 and therefore by (ii), 

(J(fm, Am) = (J(fml , Ami) + (f*)-ml(J(fml, Ami) = O. 

For the identity in (v), use Lemma (3.1)(ii) to see lI'A(OV1 ) = ov,. The result is 
then obvious. 

Finally we prove (vi). Now according to (v), (J(f, A) = 0 implies f#(uvJ = uv,. 
Then for any smoothable spin, 4-manifold V with boundary M and Uv = UV2' 
consideration of the mapping cylinder of the composition M 1. M ---+ V shows that 

Jl(M;UVI) ==Jl(M;uv,) (mod 16). 

Here Jl(M): Spin(M) ---+ Z/16 is the Rohlin function [Ka]. But using Theorem 
(13.1) of [S], it can be shown that 

Ll(Vi) == k[signature Vi - Jl(M;uvJ] (mod 2). 

Thus Ll(Vt} == Ll(V2) as claimed. 
This completes the proof of Proposition (4.1). 0 
Our goal in this section is to prove that (J(f, A) is precisely the obstruction 

to realizing (f, A) geometrically by a homeomorphism F: V1 ---+ V2 • That there 
is an obstruction is readily seen by taking V1 = V2 = B2 X 8 2 and choosing 
f E )/+(81 X 82) to be the clutching diffeomorphism giving the twisted 82-bundle 
over 8 2 , 82 x82 • Evidently f* E AL(81 X 8 2) so that f extends to some morphism 
(f, A): B2 X 82 ---+ B2 X 82 • If f were to extend to a homeomorphism of B2 x 82 , 
then it is not hard to argue that 82 X 8 2 = 82 X 82 • As this is certainly false, there 
is no such extension. 

Define V = V1 Uf (-V2) and note that V is a closed, I-connected 4-manifold 
which, by Novikov additivity (Proposition (7.1) of [A,S]), has signature zero. fur-
ther, if Ll(V) E H4(V; Z/2) ~ Z/2 is the Kirby-Siebenmann obstruction to smooth-
ing V, then 

(IV.l) 
where Ll(Vt} are Ll(V2) are defined as in the introduction. 

The commutative diagram, Diagram (IV.2) below, names most of the homomor-
phisms used in this section. It is based on the following diagram of inclusions: 

f 
M--~-~)M 

. h·t t h, . 
(V" M)."-. V, ./ V, -". (V" M) 

02 
V 
Lk 

(V,M) 

The central column and both rows of (IV.2) are exact. 
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Finally, for any homomorphism \lI: A -+ B of abelian groups, G(\lI) will be the 
subgroup of A $ B corresponding to the graph of \lI: 

G(\lI) = {(a, \lI(a))la E A}. 

( 4.2) PROPOSITION. The morphism (I, A) is realized geometrically by a home-
omorphism F: Vl -+ V2 if and only if ~(Vt) = ~(V2) and there is a maximal 
isotropic subgroup J ~ H2(V) such that 

(i) i.(G(-A)) ~ J; 
(ii) a(J) = Hl(M). 

PROOF. If f extends to a homeomorphism F: Vl -+ V2 realizing A, then clearly 
~(vd = ~(V2). 

For the rest let J = image(H2 (Vl' M) -+ H2 (V)) under the "doubling" home-
omorphism given by F. This homeomorphism sends the class of a relative cycle 
z E Z2(Vt, M) to the class in H2(V) represented by the absolute cycle z - F#(z). 
One readily verifies that J has the desired properties. 

On the other hand, assume that ~(Vl) = ~(V2) and that th~re is a subgroup 
J ~ H2(V) as in the hypotheses. Now from equation (IV.1) we have ~(V) = 0, 
and therefore V is a stably smoothable, 1-connected 4-manifold with signature 
zero. Using Freedman's classification theorem (Theorem (1.5) of [Fr] and Corollary 
(2.2.3) of [Q]), we conclude there is an n ~ 0 such that 

V =:! i~l 82 X 82 or V = C~: 82 x 82) # (82):(82). 

In either instance, V bounds a 5-manifold W which is the boundary connected sum 
of n D3-bundles over 82. Note that W ~ V7=l 82. As in Theorem (2) of [Wi], 
we may replace W by another 5-manifold Wl with aWl = V, Wl ~ V7=l82 and 
J = ker(H2(V) -+ H2(Wt)). We shall show that the triple (Wl ; Vt, V2) is a relative 
h-cobordism. Thus by the 5-dimensional relative h-cobordism theorem (Theorem 
(2.1.1) of [Q]), f extends to a homeomorphism F: Vl -+ V2. 

Now Vl ~ V2 ~ Wl ~ V7=l82 so to prove that the inclusion Yi -+ W is a 
homotopy equivalence it suffices to show that H2(Yi) - H2(Wtl (i = 1,2). To that 
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end consider the commutative diagram 

Both row and column are exact. 
Now by assumption, alJ is surjective and a quick diagram chase shows that ¢ 

is also. Thus if e E H2(Wd, there are elements ei E H2(Vi) (i = 1,2) such that 
e = ¢(6, 6)· But as i.(G( -A)) ~ J = Ker(j.), 

Thus 

¢( -6, A(6)) = ¢(A -1(6), -6) = 0. 

e=¢(6,6) 
= {¢(6, 6) + ¢( -6, A(6)) 

¢(6, 6) + ¢(A-l(6), -6) 
_ {¢(o, 6 + A(6)) 
- ¢(el+ A- 1(6),0). 

Clearly this implies that e E image(H2 (Vi) - H2 (Wd) (i = 1,2), and as e was 
chosen arbitrarily, both homomorphisms H2(Vi) - H2(Wtl are surjective. As 
noted above, this means that f extends to a homeomorphism F: Vi - V2. 

Finally, to see that F. = A, let ¢i = ¢IH2 (Vi) (i = 1,2). Evidently F. = ¢"21o¢1, 
which, as G(-A) ~ ker(¢), is precisely A. 

The proof is now complete. 0 
OUf goal now is to translate the conditions of Proposition (4.2) into the ones 

occurring in the statement of Theorem (0.7). Before doing this, we need a refor-
mulation of the invariant B(f, A) in the terms of homology data from the manifold 
V. 

(4.3) LEMMA. LetJ..LEH2 (V) be such thatk.(J..L) EG(-A·). Then 

(B(f, A), f. 0 a(J..L)) == J..L . J..L (mod 2). 

PROOF. Let k·: H2(V1, M; Z/2) ED H2(V2' M; Z/2) - H2(V; Z/2) be adjoint to 
k •. Then as V is formed by gluing Vi to V2 by f, if q E Spin(M), 
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Hence if 1] E H2(V2, M) is chosen so that k*(f..l) = (-A*(1]), 1]), 

f..l . f..l == (W2(V), f..l) by Wu's formula 
== (k*(W2(V1, M; 0'), W2(V2, M; 1#(0'))), f..l) 
== ((W2(V1, M; 0'), W2(V2, M; 1#(0'))), (-A * (1]),1])) 
== (W2(V1, M; 0'), -A *(1])) + (W2(V2, M; 1#(0')),1]) 
== (W2(V1, M; 1l'A(0'))' -1]) + (W2(V2, M; 1#(0')),1]) by Lemma (2.9)(i) 
== (82B(f, A), 1]) by Lemma (4.1)(i) 
== (B(f, A), 82 (1])) 
== (B(f, A),!* o8(f..l)) see Diagram (IV.2). 0 

349 

PROOF OF THEOREM (0.7). Assume first of all that the morphism (f,A) is 
realized geometrically by a homeomorphism F: VI - V2. Clearly A(Vd == A(V2). 
To show that B(f, A) == 0, it suffices to prove that 1# = 1l'F.' To that end let 
0' E Spin(M). Using the definition of the functions w2(Vi, M) (i = 1,2) it can be 
shown that W2(V2, M; 1#(0')) = (F*)-l w2 (V1, M; 0'). Hence, 

1l'F. (0') = 121 0 F. 0 , 1(0') 
= 121 0 F. 0 DVl (W2(V1, M; 0')) 
= 121 0 DV2 0 (F*)-1(W2(V1, M; 0')) as F has degree 1, 
= 121 0 DV2 (W2 (V2, M; 1# (0'))) 
= 1#(0') by the identity (11.1). 

Thus 1# = 1l'F. and so B(f, A) == 0 as claimed. 
To prove the converse we shall show that the hypothesis B(f, A) == 0 implies 

there is a maximal isotropic subgroup J of H2(V) such that i*(G(-A)) ~ J and 
8(J) = HI (M). The desired conclusion will then follow from Proposition (4.2). 

The subgroup J will be built as the sum of two isotropic subgroups J1 and J2 
of H2 (V) which satisfy 

(i) i.(G( -A)) C J1, 8(Jd = T1(M) and 

rank(Jd = rank(H2(V1)) - rank(H1(M)); 

(ii) the composition J2 ~ H1(M) - HI (M)/T1(M) is an isomorphism; 
(iii) J1 n J2 = {O} and J1 . J2 = {O}. 
Assuming we have found such subgroups, we let J be the smallest direct sum-

mand of H2(V) containing J1 + J2. As rank(H2(V)) = 2rank(H2(Vd), J is evi-
dently the desired subgroup of H2 (V) and the proof will be complete. 

CONSTRUCTION OF J1• Let J1 be the smallest direct summand of H2 (V) 
containing i.(G(-A)). Now i.(G(-A)) is isotropic in H2(V), as A is an isometry. 
Thus J1 is also. 

Next we prove 8(J1) = T1(M). If f..l E J1, there is an integer m > 0 such that 
mf..l E i.(G( -A)). But then m8(f..l) = 0, as 80 i* = O. Hence 8(f..l) E T1(M) which 
shows 8(Jd ~ T1(M). 

To derive the opposite inclusion, let v E T1 (M). 
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(4.4) LEMMA. There is a class Jt E H2(V) with 8(Jt) = v and k*(Jt) E G( -A*). 

PROOF. Fix any ", E H2(V2,M) such that 82(",) = I*(v). Now as (f,A) 
is a morphism, G(-A*) c image(k*) (see Diagram (IV.2)), so we may choose a 
Jt E H2(V) for which k*(Jt) = (-A*(",), ",). Further, 

8(Jt) = 1;1 082 0 pr2 0 k*(Jt) see Diagram (IV.2) 
= 1;1 082 (",) 

= v by choice of",. 0 
Choose Jt as in the lemma and set k*(Jt) = (-A*(",),,,,). Now since v E T1(M), 

we may find an m > 0 and ~ E H2 (Vt} such that jp(~) = -mA*(",). Then 
k* oi*(~,-A(~)) = m(-A*(",),,,,) (see Diagram (IV.2)) and thus 

(IV.3) i*(~, -A*(~)) = mJt + h*((3) 
for some (3 E H2(M). 

(4.5) LEMMA. The class (3 is divisible by m in H2(M). 
We delay the demonstration of this lemma till the end of the proof of Theorem 

(0.7). Assuming it, we see from equation (IV.3) that Jt + h*((3/m) E J1. Then 

v = 8(Jt) = 8(Jt + h .. ((3/m)). 
Thus v E 8(Jt} and as v was chosen arbitrarily, we conclude 8(Jt) = T1(M). 

Finally, to calculate rank(Jt}, note 

ker(i .. ) = {(h1. ((3), -h2.1*((3))!(3 E H2(M)} ~ G( -A). 
Thus 

rank(Jt} = rank(i*(G( -A))) = rank(G( -A)) - rank(ker(i*)) 
= rank(H2 (V1 )) - rank(H1 (M)). 

CONSTRUCTION OF J2. Set F1(M) = H1(M)/T1(M) and choose Vt, V2, ... , Vm 
E H1(M) which project to a basis of this group. By Lemma (4.4), there are classes 
Jt~, Jt~, ... Jt'm E H2(V) such that 

(i) 8(Jt~) = Vi, 1 ::; i ::; m, 
(ii) k*(Jti) E G(-A*), 1::; i::; m. 

Let (31, (32, ... , (3m E H2(M) be the basis dual to Vt, ... , Vm. That is (3i . Vj = Oij. 
Set 73i = h .. ((3i) (1::; i::; m) and note that 

(i) (3i . (3j = 0, 1 ::; i, j ::; mj 
(ii) (3i . Jtj = Oij, 1 ::; i, j ::; m. 

Define 
m 

" , '"" (' , )-(3 Jti = Jti - L- Jti· Jtj j, 1 ::; i ::; m, 
j=i+1 

and observe that k*(Jtn = k*(Jti) E G(-A*). Thus for each i, 

Jti'· Jt'! == B(f,A)(f* o8(Jti')) by Lemma (4.3) 
== 0 (mod 2) as B(f, A) == O. 

Thus we may form 
" 1 (" ")7.1 H (V) Jti = Jti - "2 Jti . Jti /Ji E 2 , 1 ::; i ::; m. 
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Now it can be checked that J.Li . J.Lj = 0 (1 ~ i,J· ~ m), 8(J.Li) = I/i (1 ~ i ~ m), and 
k*(J.Li) E G(-A*). Thus if we set J2 = Span(J.LbJ.L2, . .. ,J.Lm) ~ H2(V), 

(i) J2 is isotropic; 
(ii) the composition J2 ~ H 1 (M) -+ F1 (M) is an isomorphism; 

(iii) k*(J2) ~ G(-A*). 
Thus J2 satisfies the desired properties. 
PROOF THAT J1 n J2 = 0 AND J1 . J2 = o. That J1 n h = 0, simply observe 

that under the composition 
H2 (V) ~ H1(M) -+ F1 (M), 

J1 maps to zero while J2 maps monomorphic ally. 
To see that J1 . J2 = 0, choose J.Li E Ji (i = 1,2). Now by the construction 

of J1 and J2, we may choose an integer m > 0, and elements e E H2(VI) and 
1] E H2(V2, M) such that mJ.L1 = i* (e, -A( e)), k* (J.L2) = (-A * (1]), 1]). Then 

J.L1 . J.L2 = ~i*(e, -A(e)) . J.L2 = ~[e· (-A*(1])) + A(e)· 1]J = o. 
m m 

As J.Lb J.L2 were arbitrary, J l . J2 = O. 
To complete the demonstration of Theorem (0.7), we must prove Lemma (4.5). 
PROOF OF LEMMA (4.5). It suffices to show that !3 . 1/ == 0 (mod m) for each 

1/ E H1(M). But from the properties of J2, for any such 1/ there is some J.L' E J2 
with 8(J.L') - 1/ E T1 (M). Then 

!3.1/ = h*(!3) . J.L' = i.(e, -A(e)) . J.L' - mJ.L· J.L' by (IV.3) 
=-mJ.L·J.L' 

as i.(e, -A(e)) E J1 • Thus Lemma (4.5) follows. 0 
PROOF OF THEOREM (0.10). According to Corollary (1.8), there is an integer 

m1 > 0 depending only on T1(M) such that for any I-connected 4-manifold V with 
boundary M and I E )/+ (M) there is a morphism (fml, A): V -+ V. 

According to Proposition (4.1)(iv), there is an m2 > 0 depending only on H1 (M) 
such that O(fml m2 , A m2) = o. By Theorem (0.7), Iml m2 extends to a homeomor-
phism F:V -+ V. 0 

We complete this section by proving Proposition (0.8). 
PROOF OF PROPOSITION (0.8). (i) When H1(M; Q) ~ 0, [1(M) ~ o. Thus 

as O(f, A) E [1 (M), O(f, A) = o. 
(ii) This statement requires more work. First note that if ¢: H2(Vb M) -+ 

H2(M) is an arbitrary homomorphism then setting A' = A+h2.o¢oih, (f, A'): Vl -+ 
V2 is a morphism. To calculate O(f, A'), set 

y(¢) = DA/ 0 ¢ 0 Dvl (W2(Vt}) E [1(M). 
Now by the definition of "f1:Spin(M) -+ H2(V1;Z/2) (§2) and Lemma (2.7)(i), it 
can be shown that it. b1 (u)) = DVl (W2 (VI)) for any u E Spin( M). Then 

7l"A/(U) = "fi1(Ab1 (u)) + h2 .. 0 ¢ 0 it.b1 (u))) 
= "fi1b2(7l"A(U)) + h2 .. 0 DM(y(¢))) by Lemma (2.9)(i) 
= "fi1b2(Y(¢)· 7l"A(U))) by Lemma (2.8)(ii) 
= y(¢) ·7l"A(U). 

Hence O(f,A') = O(f,A) + y(¢). 
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Next choose a basis 6, 6, ... , ~n for H2 (Vt) with ~i, ~2' ... ,~~ the associated 
dual basis of H2 (Vl. M). The Wu formula implies that 

n 
DV1(W2(Vt}) == L(~i· ~i)~; (mod 2). 

i=l 

Hence 
n 

y(</» = L(~i . ~i)DAl</>(C)· 
i=l 

Now suppose we have chosen the basis 6, ... , ~n so that ~i· ~i == 1 (mod 2) if and 
only if i = 1. Then y(</» == DA.l</>(~i). Hence if y E Il(M) is given, choose any </> so 
that D"i.l. </>(~i) = y. The associated morphism (J, A') has fJ(J, A') = fJ(J, A) + y. 
Evidently this suffices to deduce (ii). 

(iii) That fJ(J,A) is independent of A and is given by d(J#(uv1 ),o'V2 ) is precisely 
Proposition (4.1)(v). As V admits a spin structure if and only if 1# (uvJ = UV2' 
we are done. 0 

5. In this final section we prove Theorems (0.1) and (0.2) as well as Propositions 
(0.5) and (0.6). 

Fix a bilinear form space (zn,L) which presents H.(M) and suppose V is a 1-
connected 4-manifold with boundary M and A: (zn, L) -+ (H2 (V),·) an isometry. 

(5.1) LEMMA. (i) The double coset H+(M)8(A)AdM) E BL(M) depends 
only upon the class of V in lJdM). 

(ii) If L is even, the double coset H+(M)(8(A), 7rA)fh(M) depends only upon 
the class 01 V. 

PROOF. Let Vi be another 1-connected 4-manifold with boundary M and sup-
pose there is a homeomorphism F: V -+ Vi. Let \If: (zn, L) -+ (H2(Vt},·) be an 
arbitrary isometry. Then with 1 = FIM, 

H+(M)8(\If)AdM) = H+(M)/. 0 8(A) 0 8(A-1 0 F.- 1 0 \If)AdM) 
= H+(M)8(A)AdM). 

This proves the first part of the lemma. 
To prove the second part, note that Theorem (0.7) shows fJ(J, F.) = O. Hence 

f# = 7rF. and therefore 

(8(\If), 7r1lt) = (J., f #) 0 (8(A), 7rA) 0 (8(A -1 0 F.- 1 0 \If), 7r A -loF.-1ollt). 

This equality implies the desired result. 0 
We shall denote the class of V in lJdM) by [VI. Lemma (5.1) shows that there 

is a well-defined function 

where A: (zn,L) -+ (H2(V),·) is an isometry. 
Similarly when L is even there is a function 

CL: lJdM) -+ theM), [VI -+ H+(M)(8(A), 7rA)AdM). 
Evidently if Pi: i1£ (M) -+ B d M) is the natural projection (see §3), then Pi 0 C L = 
CL· 
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(5.2) LEMMA. (i) II VI and V2 represent classes in lh(M), then ed[Vl]) = 
ed[V2]) il and only il there is a morphism (j, A): VI - V2' 

(ii) II L is even, then CL([V1]) = CL([V2]) il and only il there is a morphism 
(j, A): VI - V2 with B(j, A) = O. 

PROOF. Choose isometries \IIi: (zn, L) - (H2 (Vi),·) (i = 1,2). 
If eL([Vl]) = ed[V2])' then there is some I E )(+(M) and an isometry r of 

(zn, L) such that 

The pair (f, \1120 r- 1 0 \1111 ) is the desired morphism between VI and V2. 
Conversely, if (j, A): VI - V2 is a morphism, then 

8(\112) = I .. 0 8(\IIt) 08(\1111 0 A-I 0 \112), 
from which it is apparent that ed[Vl]) = ed[V2]). This proves the first part of 
Lemma (5.2). 

The second part follows by an argument essentially the same as that above so 
we omit it. 

PROOF OF THEOREMS (0.1) AND (0.2). Define et to be the composite 

lh(M) ~ BL(M) ~ Bt{M) 
(see §1 for the definition of t2)' Combining Corollary (1.10), Lemma (5.2) and 
Corollary (0.9) shows that when L is odd, 

01 = et x~: 1h(M) - Bt{M) x Z/2 
is injective. This proves Theorem (0.1). 

Now assume that L is even. Combining Lemma (5.2) with Theorem (0.7) shows 
that CL is injective. 

Finally, let P2 denote the composite 

ih(M) ~ B1 (M) ~ Bt{M). 
By Corollary (1.10), t2 is bijective. Thus the desired bijection between 
p2"l(p2((a,1I'))) and lI'(SpindM))/)(+(M,a) is assured by Proposition (3.4). This 
completes the proof of Theorem (0.2). 0 

PROOF OF PROPOSITION (0.6). That IBi(M)1 = 1 is Corollaries (1.9) and 
(1.10). 

Now assume L is even. As I Bt{M) I = 1, Theorem (0.2) provides an injection 
1/;(i\) 0 CL: 1h(M) - SpinL(M)/)(+(M, 1). 

But using Proposition (1.6) it is easy to check that )(+(M, 1) = )(+(M). The result 
follows. 0 

We close the paper by working out several instances in which both 01 and h 
are bijections. 

We start by detailing a construction which will be used in both situations. 
Suppose A is an integrally framed link in M such that surgery along A yields 

a homology 3-sphere E(A). If W(A) is the contractible 4-manifold with boundary 
E(A), we may construct a I-connected 4-manifold by setting 

V(A) ~ (M X J) UA (Q H('») UE(A) (-W(A)). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



354 STEVEN BOYER 

Thus V(A) is the trace of the surgery along A together with W(A). 
Note that aV(A) = M and that by turning the 2-handles upside-down, V(A) ~ 

V~!11 82 • 
We also remark that 

(V.1) ~(V(A)) == ~(W(A)) == J.t(E(A)) (mod 2). 
PROOF OF PROPOSITION (0.5). Suppose H1(M) ~ zn. We shall concentrate 

first of all on constructing 4-manifolds with form (zn, 0). 
Let K = K1 U K2 U··· U Kn be a (smoothly) embedded link in M such that the 

classes of K1, K2"'" Kn form a basis for H1(M). Let 
n 

T = UTi: U 8 1 X D2 -=. T(K) 
i=l 

o 

be a fixed (closed) tubular neighbourhood of K and set Mo = M\T(K). 
Now using duality and excision, it can be shown that H1(Mo) ~ zn, while 

H2 (Mo) ~ zn-1. Plugging these groups into the long exact sequence of the pair 
(M, Mo) implies that the inclusion Mo -t M induces an isomorphism H1 (Mo) -=. 
H1(M). Hence, there is a basis for H1(Mo) consisting oflongitudes of K 1,K2, ... , 
Kn. Further, the meridians to these curves are null-homologous in Mo. Thus we 
see that any integral surgery along K yields a homology 3-sphere. 

For each b E {O, l}n, we may construct an integrally framed link Ab whose 
underlying link is K and whose ith framing curve (see §9G of [RIm is given by 

{ Ti({(U,*)IUE8 1 ,{*H;;;81}) if b(i) =0; 
Ti({(U,u)luE81}) if b(i) = 1. 

Form V (Ab) as in the discussion prior to the beginning of this proof. As V (Ab) ~ 
V~l 8 2 and H1(M) ~ zn, it is not hard to argue that (H2(V(Ab)),') ~ (zn,O). 

We note that if (jb E Spin(M) is the unique spin structure extending over V(Ab), 
then 
(V.2) 

To see this suppose bl, b2 are distinct elements of {O, l}n. Then there is an 
i E {1,2, ... ,n} for which Ib1(i) - b2 (i)1 = 1. But then by the construction of 
V(Ab j ) (j = 1,2), (jb 1 will not extend over the jth 2-handle of V(Ab2). Thus 
(jb 1 -=I- (jb2 and a counting argument shows (V.2) holds. 

Now to the proof of Proposition (0.5) proper. 
Let (zm,L) be an arbitrary form presenting H.(M). Then (zm,L) splits or-

thogonallyas (zn,o) EB (zm-n,L 1) where (zm-n,Ld is a unimodular form which 
is odd if and only if (zm, L) is. 

First assume that L is odd. According to Freedman (Theorem (1.5) of [Fr]), 
there are I-connected 4-manifolds V{ and V~ such that 

(i) a(Vn ~ a(vD ~ 83 ; 
(ii) (H2(V/),') ~ (zm-n, Ld (i = 1,2); 
(iii) ~(Vn t ~(vD· 
Let Vo be any I-connected 4-manifold with boundary M and intersection form 

(zn, 0), as constructed above. Then if 

Vi = VoW/ (i = 1,2), 
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we have that 8(Vi) ~ M, (H2(Vi),·) ~ (zm, L), while ~(vd ~ ~(V2)' Thus 
~: VL(M) --+ Z/2 is bijective as claimed. 

When L is even, Freedman's work shows there is a unique 4-manifold V{ with 
boundary 8 3 and form (zm-n, Ld. Taking the boundary connected sum of V{ with 
the manifolds V(Ab), bE {O, l}n, previously constructed, provides us with mani-
folds V1 (b), b E {O, 1} n, each having boundary M and form (zm, L). Further, by 
(V.2), Spin(M) = {O'v1 (Ab)!b E {O, l}n}. Finally, from Corollary (1.7) and Theorem 
(0.2), it now follows that the composition 1jJ(1~1) 0 CL: VL(M) --+ Spin(M)/)i+(M) 
is a bijection. 

This completes the proof of Proposition (0.5). 0 

(5.3) REMARKS. (i) Let M = #~=181 X 8 2, n ~ O. It is well known that 
)i+(M) acts transitively on Spin(M). Thus 

L is odd, 
L is even. 

Further, when L is odd, the two manifolds are distinguished by their Kirby-Sieben-
mann invariants. 

(ii) It seems likely that a construction similar to that in the last proposition will 
show that image(cL) = PI 1 (image(cL)) when L is even. 

Our next example shows that C1 and CL may be bijections when T1(M) '¥- {a}. 
(5.4) EXAMPLE. Suppose that H.(M) is presented by the form (Z,L) where 

L(n, m) = rnm, r 1:- O. We shall show that when r is odd, C1: VL(M) --+ B1(M) x 
Z/2 is bijective, as ci: VL(M) --+ Bi(M) is when r is even. 

Now a quick calculation shows that Hl (M) = Tl (M) ~ Z/r. Evidently then, 

A(M) = {u!u 2 == 1} ~ Z/r. 

Note that A(M) is abelian so that 

BL(M) = A(M)/[H+(M)AL(M)] 

inherits a transitive action from A(M): 

(V.3) 

We remark that AL(M) = {±1}, but H+(M) can be an arbitrary subgroup of 
A(M), depending on M. 

We state the following lemma without proof. 

(5.5) LEMMA. Let K be a (smooth) simple closed curve in M representing a 
class 0: E H 1 (M). For there to be an integral surgery along K yielding a homology 
3-sphere, it is necessary and sufficient that IM(O:, 0:) == ±l/r. Further, iflM(O:, o:) == 
±l/r where r is odd, there are knots Kl and K2 in M representing 0: and integral 
surgeries along Kl and K2 such that the associated homology 3-spheres have distinct 
J-l-invariants. 0 

Now as H.(M) is presented by (Z, L), there is an 0: E H1(M) such that IM(O:, 0:) 
== -l/r. For each u E A(M), let Ku be a closed curve representing uo: and Au a 
framing of Ku which gives a homology 3-sphere. 
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IfV(Au) is the I-connected 4-manifold constructed in the discussion prior to the 
proof of Proposition (0.5), then 

(i) 8V(Au) = Mj 
(ii) (H2 (V(Au)),·) ~ (Z, L). 

(When Irl ~ 2, care must be taken in the choice of integral surgery so as to ensure 
(ii).) It can also be checked that if TJ E H2 (V(Au), M) ~ Z is a generator, then 
8TJ = ±ua. Using this observation we can construct isometries A(u): (Z, L) -
(H2 (V(Au)),·) for which 8(A(u) . A(l)-l h = u. But then, from the action of 
A(M) on Bi(M) (V.3) we see 

cL([V(Au)]) = ucd[V(AdJ)· 
As u was arbitrary, ct is onto. This together with Theorem (0.2) implies that 
ct: VdM) - Bi is bijective when r is even. 

Finally, when r is odd, use Lemma (5.5) with identity (V.I) to deduce the bijec-
tivity of Ci: VdM) - Bi(M) x Z/2. 

(5.6) REMARKS. (i) Suppose M is the lens space L(r, 8). It is well known that 

Ht (L(r 8)) = {{±l}, 82 ¢. I (modr), 
+, {±1,±8}, 82 == I (modr) 

(see Chapter V of [C] for instance). Thus 

V (M) '" Bt (M) '" {At(M)/{±I}, 
L = L. = At(M)/{±I, ±8}, 

where At(M) = {ulu2 == I} ~ Z/r. 

82 ¢. I (mod r), 
82 == I (modr). 

(ii) When r is even, it is natural to ask how random ~: VdM) - Z/2 is. By 
(V.I), ~(V(Au)) == J.l(E(Au)), and arguing as in [Fu] it is possible to show that 
J.l(E(AuJ) == J.l(E(Au2 )) as long as UIU2 == I (mod2r). This though is the only 
restriction as enough examples may be constructed using the results in [Tu]. 
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