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Abstract We construct a compact simply connected 7-dimensional manifold admitting a
K-contact structure but not a Sasakian structure. We also study rational homotopy properties
of such manifolds, proving in particular that a simply connected 7-dimensional Sasakian
manifold has vanishing cup product H2 × H2 → H4 and that it is formal if and only if all
its triple Massey products vanish.
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1 Introduction

Sasakian geometry has become an important and active subject, especially after the appear-
ance of the fundamental treatise of Boyer and Galicki [3]. Chapter 7 of this book contains an
extended discussion of the topological problems in the theory of Sasakian, and, more gen-
erally, K-contact manifolds. These are odd-dimensional analogues to Kähler and symplectic
manifolds, respectively.
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The precise definition is as follows. Let (M, η) be a co-oriented contact manifold with a
contact form η ∈ �1(M), that is η ∧ (dη)n > 0 everywhere, with dim M = 2n + 1. We say
that (M, η) is K-contact if there is an endomorphism � of T M such that:

• �2 = − Id+ξ ⊗ η, where ξ is the Reeb vector field of η (that is iξ η = 1, iξ (dη) = 0),
• the contact form η is compatible with � in the sense that dη(�X,�Y ) = dη(X, Y ),

for all vector fields X, Y ,
• dη(�X, X) > 0 for all nonzero X ∈ ker η, and
• the Reeb field ξ is Killing with respect to the Riemannian metric defined by the formula

g(X, Y ) = dη(�X, Y ) + η(X)η(Y ).

In other words, the endomorphism � defines a complex structure on D = ker η compatible
with dη, hence� is orthogonal with respect to the metric g|D . By definition, the Reeb vector
field ξ is orthogonal to ker η, and it is a Killing vector field.

Let (M, η, g,�) be a K-contact manifold. Consider the contact cone as the Riemannian
manifold C(M) = (M × R

>0, t2g + dt2). One defines the almost complex structure I on
C(M) by:

• I (X) = �(X) on ker η,
• I (ξ) = t ∂

∂t , I
(
t ∂
∂t

) = −ξ , for the Killing vector field ξ of η.

We say that (M, η,�, g, I ) is Sasakian if I is integrable. Thus, by definition, any Sasakian
manifold is K-contact.

There are several topological obstructions to the existence of the aforementioned structures
on a compact manifold M of dimension 2n + 1, for example:

(1) the evenness of the pth Betti number for p oddwith 1 ≤ p ≤ n, of a Sasakianmanifold,
(2) some torsion obstructions in dimension 5 discovered by Kollár [17],
(3) the fundamental group of Sasakian manifolds are special,
(4) the cohomology algebra of a Sasakian manifold satisfies the hard Lefschetz property,
(5) formality properties of the rational homotopy type.

An early result [13] establishes that the odd Betti numbers up to the middle dimension of
Sasakian manifolds must be even. The parity of b1 was used to produce the first examples of
K-contact manifolds with no Sasakian structure [3, example 7.4.16]. More refined tools are
needed in the case of even Betti numbers. The cohomology algebra of a Sasakian manifold
satisfies a hard Lefschetz property [4]. Using it examples of K-contact non-Sasakian mani-
folds are produced in [5] in dimensions 5 and 7. These examples are nilmanifolds with even
Betti numbers, so in particular they are not simply connected.

The fundamental group can also be used to construct K-contact non-Sasakian manifolds.
Fundamental groups of Sasakian manifolds are called Sasaki groups, and satisfy strong
restrictions. Using this it is possible to construct (non-simply connected) compact manifolds
which are K-contact but not Sasakian [8].

When one moves to the case of simply connected manifolds, K-contact non-Sasakian
examples of any dimension ≥9 were constructed in [16] using the evenness of the third Betti
number of a compact Sasakian manifold. Alternatively, using the hard Lefschetz property
for Sasakian manifolds there are examples [19] of simply connected K-contact non-Sasakian
manifolds of any dimension ≥9.

In [24] and in [2] the rational homotopy type of Sasakian manifolds is studied. In [2] it is
proved that all higher order Massey products for simply connected Sasakian manifolds van-
ish, although there are Sasakian manifolds with non-vanishing triple Massey products. This
yields examples of simply connected K-contact non-Sasakian manifolds in dimensions ≥17.
However, Massey products are not suitable for the analysis of lower dimensional manifolds.
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Hence, the problem of the existence of simply connectedK-contact non-Sasakian compact
manifolds (open problem 7.4.1 in [3]) is still open in dimensions 5 and 7. Dimension 5 is
the most difficult one, and it is treated in [3] separately. Here one has to use the obstructions
of [17] which are very subtle torsion obstructions associated to the classification of Kähler
surfaces. By definition, a simply connected compact oriented 5-manifold is called a Smale–
Barden manifold. These manifolds are classified topologically by H2(M,Z) and the second
Stiefel–Whitney class. Chapter 10 of the book byBoyer andGalicki is devoted to a description
of some Smale–Barden manifolds which carry Sasakian structures. The following problem
is still open (open problem 10.2.1 in [3]).

Do there exist Smale–Barden manifolds which carry K-contact but do not carry Sasakian
structures?

In this note we solve the described problem in the easier case of dimension 7 (the solution
is still possible by means of homotopy theory combined with symplectic surgery).

Theorem 1 There exist 7-dimensional compact simply connected K-contact manifolds which
do not admit a Sasakian structure.

We then turn around to the study of the rational homotopy type of K-contact and Sasakian
simply connected manifolds of dimension 7. In particular, we prove:

Corollary 2 Let M be a simply connected compact K-contact 7-dimensional manifold. Sup-
pose that the cup product map H2(M)× H2(M) −→ H4(M) is non-zero. Then M does not
admit a Sasakian structure.

Formality is a very useful rational homotopy property that has been widely used to distin-
guish between symplectic and Kähler manifolds [21] (see Sect. 6 for definitions and details).
Simply connected compact manifolds of dimension ≤6 are always formal, so formality
becomes interesting in dimension 7. We study this property in detail giving a precise char-
acterisation for Sasakian manifolds (see Theorem 15). In particular, we have the following:

Corollary 3 Let M be a simply connected compact Sasakian 7-dimensional manifold. Then
M is formal if and only if all triple Massey products are zero.

2 Gompf–Cavalcanti manifold

Let (M, ω) be a symplectic manifold of dimension 2n. For every 0 ≤ k ≤ n, we define the
Lefschetz map as Lω : Hn−k(M) → Hn+k(M), Lω([β]) = [β ∧ ωn−k]. We say that M
satisfies the hard Lefschetz property if Lω is an isomorphism for every 0 ≤ k ≤ n.

Proposition 4 There exists a simply connected 6-dimensional symplectic manifold (M, ω)

such that dim ker (Lω : H2(M) → H4(M)) is odd.

Proof Gompf constructs in [14, Theorem 7.1] an example of a simply connected 6-
dimensional symplectic manifold (M, ω)which does not satisfy the hard Lefschetz property,
that is, the Lefschetz map Lω : H2(M) → H4(M) is not an isomorphism. If dim ker Lω is
already odd then we have finished.

So let us suppose that dim ker Lω is even. Take a cohomology class a ∈ H2(M) which
belongs to the kernel of Lω. In [7, Lemma 2.4] Cavalcanti proves that given a symplectic
manifold (M, ω) as above satisfying that there exists a symplectic surface S ↪→ M with
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〈a, [S]〉 
= 0, then there is another 6-dimensional symplectic manifold (M ′, ω′) (the sym-
plectic blow-up of M along S) satisfying

dim ker
(
Lω′ : H2 (

M ′) → H2 (
M ′)) = dim ker

(
Lω : H2 (M) → H2 (M)

) − 1.

The symplectic blow-up of M along S is constructed in [20], where it is proved that the
fundamental groups π1(M ′) ∼= π1(M), hence M ′ is simply connected. This means that
the simply connected 6-dimensional symplectic manifold M ′ satisfies that dim ker(Lω′ :
H2(M ′) → H4(M ′)) is odd, as required.

It remains to find S ↪→ M as required. The cohomology class a is non-zero, so there is
some b ∈ H4(M,Z) such that a ∪ b 
= 0. It is easy to see that there is a rank 2 complex
vector bundle E → M with c1(E) = 0, c2(E) = 2b. This corresponds to the fact that the
map [M, B SU(2)] → H4(M,Z) given by the second Chern class exhausts 2 H4(M,Z). A
short proof runs as follows: B SU(2) has trivial 3-skeleton and it has π4(B SU(2)) = Z and
π5(B SU(2)) = Z2. Represent the cohomology class b by a cocycle ϕb : C4(M) → Z, where
C4(M) is the space of cellular chains. Given b, we define f : M → B SU(2) inductively
on the skeleta (in what follows we denote by X [k] the k-skeleton of a space X ). It is trivial
on the 3-skeleton of M . For every 4-cell c, we define f : c → B SU(2)[4] = S4 to have
degree ϕb(c) ∈ Z. As M is simply connected there are no 5-cells, so it only remains to attach
the 6-cell c6 to the 4-skeleton M[4]. The attaching map is given by some g : S5 → M[4].
When composed with f , we have a map f ◦ g : S5 → B SU(2), which gives an obstruction
element o f ∈ π5(B SU(2)) = Z2. If we multiply b by two, then the map ϕb gets multiplied
by 2. The corresponding f is given by composing f with a double cover of S4, hence the
obstruction element is 2o f = 0. This means that the map f associated to 2b can be extended
to M → B SU(2).

Now take the rank 2 bundle E → M just constructed. Assume that [ω] is a an integral
cohomology class (which can always be done by perturbing ω slightly to make it rational
and multiplying it by a large integer). Let L → M be the line bundle with first Chern
class c1(L) = [ω]. We now use the asymptotically holomorphic techniques introduced by
Donaldson [10]. Specifically, the result of [1] guarantees the existence of a suitable large
k � 0 and a section of E ⊗L⊗k whose zero locus is a symplecticmanifold (an asymptotically
holomorphic manifold in fact). This zero locus S ⊂ M is a symplectic surface, and the
cohomology class defined by S is c2(E ⊗ L⊗k) = c2(E)+2kc1(L) = 2b+2k[ω]. Therefore
〈a, [S]〉 = 〈a, 2b + 2k[ω]〉 = 2〈a, b〉 
= 0, as required. ��

We will call the manifold produced in Proposition 4 the Gompf–Cavalcanti manifold,
because it is constructed by the surgery technique of Gompf [14] together with the symplectic
blow-up ofCavalcanti [7].Note however that this is not a unique one but a family ofmanifolds.

3 Simply-connected K-contact non-Sasakian manifolds in dimension 7

We show the existence of simply connected compact K-contact non-Sasakian manifolds
in dimension 7 by proving that the Boothby–Wang fibration over the Gompf–Cavalcanti
manifold is K-contact but non-Sasakian. The existence of a K-contact structure on such
fibration is shown in [2] and [16]. For the convenience of the reader we briefly recall these
constructions.

Let (B, ω) be a symplectic manifold such that the cohomology class [ω] is integral.
Consider the principal S1-bundle π : M → B given by the cohomology class [ω] ∈
H2(B, Z). Fibrations of this kind were first considered by Boothby andWang and are called
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Simply connected K-contact and Sasakian manifolds of dimension 7 461

Boothby–Wang fibrations. By [25], the total space M carries an S1-invariant contact form η

such that η is a connection form whose curvature is dη = π∗ω. We have the following result
(which is known, compare Theorem 6.1.26 and Proposition 7.1.2 in [3]).

Theorem 5 Any Boothby–Wang fibration admits a K-contact structure on the total space.

Proof To prove this theorem we need to introduce a certain tool, called the universal contact
moment map in the sense of Lerman [18]. Recall that by our assumption the given contact
distributionD is determined by the contact form η, that isD = ker η. Consider its annihilator
D0 ⊂ T ∗M . Clearly, D0 is a line bundle, and, therefore, it has two components after the
removal of the zero section,

D0\M = D0+ � D0−.

Single out one of these components, sayD0+. Consider the Lie algebra of contact vector fields
χ(M, η) on M . It is known that this Lie algebra can be identified with a space of sections
of the vector bundle T M/D, that is χ(M, η) ∼= (M, T M/D). Because of that there is a
natural pairing between points of the line bundle D0 and contact vector fields given by the
formula

D0 × χ(M, η) → R, ((p, β), X) �→ 〈β, X p〉
where β ∈ D0, X p ∈ Tp M, p ∈ M . Suppose that a Lie algebra g acts on M by contact vector
fields, that is, there exists a representation ρ : g → χ(M, η). Define the universal moment
map as the map

ψ : D0+ → g∗

by the formula

〈ψ(p, β), X〉 = 〈(p, β), ρ(X)〉 = 〈β, ρ(X)p〉,
where (p, β) ∈ (D0+)p ⊂ T ∗

p M, X ∈ g. Now the proof becomes a consequence of the
following criterion proved by Lerman [18].

Proposition 6 A compact co-orientable contact manifold (M, η) admits a K-contact metric
g if and only if there exists an action of a torus T on M preserving the contact structure D
and a vector X ∈ t = L(T ) so that the function 〈ψ, X〉 : D0+ → R is strictly positive. ��

We continue with the proof of Theorem 5. Consider the S1-action on M given by the
Reeb vector field. Let g = L(S1), and ρ : g → χ(M, η) be the homomorphism of Lie
algebras determined by this action (thus, g = t = L(S1) in this particular situation). Since
the S1-action is free, ρ(X)p 
= 0 for any p ∈ M . Now,

〈ψ, X〉(p, β) = 〈ψ(p, β), X〉 = 〈β, ρ(X)p〉.
Note that in the considered case β ∈ (D0+)p ⊂ T ∗

p M , and, therefore, β 
= 0. Also (p, β)

belongs to the annihilator of the distribution D, while ρ(X) is transversal to D, since it
is given by the Reeb vector field. Thus, for any point p, 〈(p, β), ρ(X)p〉 
= 0. Hence, X
may be chosen to yield positive sign everywhere, and we complete the proof by applying
Proposition 6. ��
Remark 7 Proposition 7.1.2 from [3] is due to Rukimbira. In this work we give a different
proof based on Lerman’s criterion given by Proposition 6.

The following gives a proof of Theorem 1.

123



462 V. Muñoz, A. Tralle

Theorem 8 The total space of the Boothby–Wang fibration over the Gompf–Cavalcanti
manifold is a simply connected K-contact non-Sasakian manifold of dimension 7.

Proof Let (M, ω) be aGompf–Cavalcantimanifold as given byProposition 4.We can assume
that [ω] is an integral cohomology class. Let

S1 → E → M (1)

be the associated Boothby–Wang fibration. By Theorem 5, E has a K-contact structure. Now
we need to prove that E cannot carry Sasakian structures.

There is an exact sequence

H2(M) → H1
(
S1) = Z → H1(E) → 0

from the Serre spectral sequence. The map H2(M) → Z is cupping with [ω] ∈ H2(M).
Taking [ω] integral cohomology class and primitive, we have that H2(M) → Z is surjective
and hence H1(E) = 0. The long homotopy exact sequence gives π1(S1) = Z → π1(E) →
π1(M) = 0, hence π1(E) is abelian. Therefore E is simply connected.

The Gysin exact sequence associated to (1) is

H1(M) = 0
∧ω−→ H3(M) −→ H3(E) −→ H2(M)

∧ω−→ H4(M).

Thus

b3(E) = b3(M) + dim
(
ker Lω : H2(M) → H4(M)

)
.

As M is a 6-manifold, we have that b3(M) is even (by Poincaré duality, the intersection
pairing on H3(M) is an antisymmetric non-degenerate bilinear form, hence the dimension
of H3(M) is even). By construction, dim(ker Lω : H2(M) → H4(M)) is odd, so b3(E) is
odd. As the third Betti number of a 7-dimensional Sasakian manifold has to be even [13], we
have that E cannot admit a Sasakian structure. ��

4 Regularity and quasi-regularity

A Sasakian or a K-contact structure on a compact manifold M is called quasi-regular if there
is a positive integer δ satisfying the condition that each point of M has a foliated coordinate
chart (U, t) with respect to ξ (the coordinate t is in the direction of ξ ) such that each leaf for
ξ passes through U at most δ times. If δ = 1, then the Sasakian or K-contact structure is
called regular (see [3, p. 188]).

If N is a Kähler manifold whose Kähler form ω defines an integral cohomology class,
then the total space of the circle bundle S1 ↪→ M

π−→ N with Euler class [ω] ∈ H2(M,Z)

is a regular Sasakian manifold with contact form η such that dη = π∗(ω). The converse also
holds: if M is a regular Sasakian structure then the space of leaves N is a Kähler manifold,
and we have a circle bundle S1 → M → N as above. If M has a quasi-regular Sasakian
structure, then the space of leaves N is a Kähler orbifold with cyclic quotient singularities,
and there is an orbifold circle bundle S1 → M → N such that the contact form η satisfies
dη = π∗(ω), where ω is the orbifold Kähler form.

Similar properties hold in the K-contact case, substituting Kähler by symplectic (actually
almost Kähler). If M has a regular K-contact structure, then it is the total space of a circle
bundle S1 ↪→ M

π−→ N , where (N , ω) is a symplectic manifold, with Euler class [ω] ∈
H2(M,Z) and dη = π∗(ω). If M has a quasi-regular K-contact structure, then it is the total
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space of an orbifold circle bundle S1 → M → N over a symplectic orbifold N with cyclic
quotient singularities and Euler class [ω] ∈ H2(M,Z), where ω is the orbifold symplectic
form.

A result of [22] says that if M admits aSasakian structure, then it admits also a quasi-regular
Sasakian structure. This also extends to the case of K-contact structures (Rukimbira [23], see
also Theorem 7.1.10 in [3]).

Proposition 9 If a compact manifold M admits a K-contact structure, it admits a quasi-
regular contact structure.

Proof Assume that there is a K-contact structure on M . By Proposition 6, there exists a
torus action T × M → M preserving the contact distribution and a vector X ∈ t such that
〈ψ, X〉 > 0. Choose a vector Y ∈ t with the property that it is tangent to an embedding
T ′ = S1 ↪→ T . Clearly, the corresponding fundamental vector field YM has the property
that the leaves of the corresponding foliations are compact. The set of such Y is dense in t.
Therefore, for vectors Y which are sufficiently close to X , the condition 〈ψ, Y 〉 > 0 is still
satisfied.

So it remains to see that there is K-contact structure whose Reeb vector field is YM , since
this will be quasi-regular because the leaves of the characteristic foliation are all compact.We
follow the notations of the proof of Theorem 5. The action of the circle T ′ on M preservesD,
hence the lifted action of T ′ on T ∗M preserves D0. Since T ′ is connected, the lifted action
preserves the connected component D0+ as well. It follows that for any 1-form β on M with
ker β = D, the average β̄ of β over T ′ still satisfies ker β̄ = D. So β̄ ∈ D0. Now use the
formula [derived in [18], formulae (3.4) and (3.5)],

iYM β̄ = 〈
ψ ◦ β̄, Y

〉
> 0.

Now let

η = (〈ψ ◦ β̄, Y 〉)−1
β̄,

which satisfies iYM η = 1. Hence η defines the contact structure and YM is its Killing vector
field. Then T M = D ⊕ 〈YM 〉, and the splitting is T ′-invariant. We use the splitting to
define the desired Riemannian metric g. Declare D and 〈YM 〉 to be orthogonal and define
g(YM , YM ) = 1, thus YM becomes a unit normal to D. On D we choose a T ′-invariant
complex structure compatible with dη|D and define g|D(·, ·) = dη|D(·,�·). Then g is
T ′-invariant and hence LYM g = 0. Thus we have obtained a K-contact structure on M . ��

5 Minimal models and formality

Now we want to analyse the rational homotopy type of K-contact and Sasakian simply
connected 7-manifolds, in particular the property of formality. Simply connected compact
manifolds of dimension ≤6 are always formal [12], so dimension 7 is the first instance in
which formality is an issue.

We start by reviewing concepts about minimal models and formality from [11,12,15]. A
differential graded algebra (or DGA) over the real numbers R, is a pair (A, d) consisting
of a graded commutative algebra A = ⊕k≥0Ak over R, and a differential d satisfying the
Leibnitz rule d(a · b) = (da) · b + (−1)|a|a · (db), where |a| is the degree of a. Given a
differential graded commutative algebra (A, d), we denote its cohomology by H∗(A). The
cohomology of a differential graded algebra H∗(A) is naturally a DGA with the product
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inherited from that on A and with the differential being identically zero. The DGA (A, d)

is connected if H0(A) = R, and A is 1-connected if, in addition, H1(A) = 0. Henceforth
we shall assume that all our DGAs are connected. In our context, the main example of DGA
is the de Rham complex (�∗(M), d) of a connected differentiable manifold M , where d is
the exterior differential.

Morphisms between DGAs are required to preserve the degree and to commute with the
differential. A morphism f : (A, d) → (B, d) is a quasi-isomorphism if the map induced in
cohomology f ∗ : H∗(A, d) → H∗(B, d) is an isomorphism. Quasi-isomorphism produces
an equivalence relation in the category of DGAs.

A DGA (M, d) is minimal if

(1) M is free as an algebra, that is, M is the free algebra
∧

V over a graded vector space
V = ⊕

i V i , and
(2) there is a collection of generators {xτ }τ∈I indexed by some well ordered set I , such that

|xμ| ≤ |xτ | if μ < τ and each dxτ is expressed in terms of preceding xμ, μ < τ .

We say that (
∧

V, d) is a minimal model of the differential graded commutative algebra
(A, d) if (

∧
V, d) is minimal and there exists a quasi-isomorphism ρ : (

∧
V, d) −→

(A, d). A connected DGA (A, d) has a minimal model unique up to isomorphism. For 1-
connected DGAs, this is proved in [9]. In this case, the minimal model satisfies that V 1 = 0
and the condition (2) above is equivalent to dxτ not having a linear part.

A minimal model of a connected differentiable manifold M is a minimal model (
∧

V, d)

for the de Rham complex (�∗(M), d) of differential forms on M . If M is a simply connected
manifold, then the dual of the real homotopy vector space πi (M) ⊗ R is isomorphic to V i

for any i (see [9]).
Amodel of aDGA (A, d) is anyDGA (B, d)with the sameminimalmodel (that is, they are

equivalent with respect to the equivalence relation determined by the quasi-isomorphisms).
A minimal algebra (

∧
V, d) is called formal if there exists a morphism of differential

algebras ψ : (
∧

V, d) −→ (H∗(
∧

V ), 0) inducing the identity map on cohomology. Also
a differentiable manifold M is called formal if its minimal model is formal. The formality of
a minimal algebra is characterized as follows.

Proposition 10 [9] A minimal algebra (
∧

V, d) is formal if and only if the space V can be
decomposed into a direct sum V = C ⊕ N with d(C) = 0 and d injective on N, such that
every closed element in the ideal I (N ) in

∧
V generated by N is exact.

This characterization of formality can be weakened using the concept of s-formality
introduced in [12].

Definition 11 A minimal algebra
(∧

V, d
)
is s-formal (s > 0) if for each i ≤ s the space

V i of generators of degree i decomposes as a direct sum V i = Ci ⊕ Ni , where the spaces
Ci and Ni satisfy the three following conditions:

(1) d(Ci ) = 0,
(2) the differential map d : N i −→ ∧

V is injective, and
(3) any closed element in the ideal Is = I

(⊕
i≤s N i

)
, generated by the space

⊕
i≤s N i in

the free algebra
∧ (⊕

i≤s V i
)
, is exact in

∧
V .

A differentiable manifold M is s-formal if its minimal model is s-formal. Clearly, if M is
formal then M is s-formal, for any s > 0. The main result of [12] shows that sometimes the
weaker condition of s-formality implies formality.
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Theorem 12 [12] Let M be a connected and orientable compact manifold of dimension 2n
or (2n − 1). Then M is formal if and only if it is (n − 1)-formal.

By Corollary 3.3 in [12] a simply connected compact manifold is always 2-formal. There-
fore, Theorem 12 implies that any simply connected compact manifold of dimension not
more than six is formal. For simply connected 7-dimensional compact manifolds, we have
that M is formal if and only if M is 3-formal.

Theorem 12 also holds for compact connected orientable orbifolds, since the proof of [12]
only uses that the cohomology H∗(M) is a Poincaré duality algebra.

6 Homotopy properties of simply connected Sasakian 7-manifolds

Proposition 13 Let M be a simply connected compact K-contact 7-dimensional manifold.
Then a model for M is (H ⊗ ∧

(x), d), where H is the cohomology algebra of a simply
connected symplectic 6-dimensional orbifold and dx = ω ∈ H2 is the class of the symplectic
form.

If M is Sasakian, then H is the cohomology algebra of a simply connected 6-dimensional
Kähler orbifold.

Proof Suppose M admits a Sasakian structure. Then M admits a quasi-regular Sasakian
structure [22]. Therefore, there is an orbifold circle bundle S1 → M → B, where B is a
compact Kähler orbifold of dimension 6, with Euler class given by the Kähler form ω ∈
H2(B). We note that B is simply connected because M is so (see [3, Theorem 4.3.18]).
In particular, S1 → M → B is a rational fibration, hence if M is a model for B, then
M ⊗ ∧

(x), with |x | = 1, dx = ω, is a model for M .
Now B is a simply connected compact orbifold of dimension 6. So it is 2-formal.

Theorem 12 also holds for orbifolds, hence B is formal. Therefore M ∼ (H, 0), where
H = H∗(B) is the cohomology algebra of B. So amodel for M is of the form (H ⊗∧

(x), d),
dx = ω ∈ H2.

The case where M admits a K-contact structure is similar. By Proposition 9, it admits a
quasi-regular K-contact structure. Therefore, M is an orbifold S1-bundle over a symplectic
orbifold S1 → M → B, with Euler class given by the orbifold symplectic form ω ∈ H2(B).
As above, a model for M is (H ⊗ ∧

(x), d), dx = ω ∈ H2, where H = H∗(B). ��

We prove now Corollary 2.

Corollary 14 Let M be a simply connected compact K-contact 7-dimensional manifold.
Suppose that the cup product map H2(M)× H2(M) −→ H4(M) is non-zero. Then M does
not admit a Sasakian structure.

Proof Let us compute the cohomology of M from its model (M, d) = (H ⊗ ∧
(x), d),

dx = ω, where H = H∗(B) is the cohomology algebra of a 6-dimensional simply connected
symplectic manifold. Note that ω ∈ H2 is a non-zero element with ω3 ∈ H6 generating the
top cohomology.

Consider the Lefschetz map Lω : H∗ → H∗+2, and let K ∗ = ker Lω, Q∗ = coker Lω.
We have a (non-canonical) isomorphism Hi (M) ∼= Qi ⊕ K i−1x . Note that Q3 = K 3 = H3

and H6 = R. Also Q2 = H2/〈ω〉, and K 4 = ker(Lω : H4 → R) are vector spaces of
codimension one. We have the following:
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H0(M) = R,

H1(M) = 0,

H2(M) = Q2,

H3(M) = H3 ⊕ K 2x,

H4(M) = Q4 ⊕ H3x,

H5(M) = K 4x,

H6(M) = 0,

H7(M) = 〈ω3x〉.

The map H2(M) × H2(M) → H4(M) factors through Q2 × Q2 → Q4. Hence if it is non-
zero then Q4 
= 0. In particular, the Lefschetz map Lω : H2 → H4 is not an isomorphism,
so B is not hard Lefschetz.

If M admits a Sasakian structure, then there is a quasi-regular fibration S1 → M → B
with B satisfying the hard Lefschetz property (it is a Kähler orbifold, so [26] is applicable).
This contradicts the above. ��

Now we shall study the case of Sasakian 7-manifolds in more detail. Let M be a simply
connected compact Sasakian 7-dimensional manifold. Then

M =
(

H ⊗
∧

(x), d
)

is a model for M , by Proposition 13, where H = H∗(B) is the cohomology algebra of a
simply connected compact 6-dimensional Kähler orbifold. This algebra H has a very rich
structure:

(1) there is a canonical isomorphism H6 ∼= R, which is given by integration
∫

M : H6 → R;
(2) H is a Poincaré duality algebra, hence H3 ⊗ H3 → R is an antisymmetric bilinear

pairing;
(3) there is a scalar product on each H j . This is given by the Hodge star operator ∗ : H j →

H6− j combined with wedge and integration;
(4) H has aHodge structure, that is, H⊗Chas a bigrading such that Hk⊗C = ⊕p+q=k H p,q ,

where H p,q = Hq,p, and the wedge product respects the bigrading;
(5) there is a distinguished element ω ∈ H2 which is in H1,1. This defines the space of

primitive forms P = 〈ω〉⊥ ⊂ H2. Hence H2 = 〈ω〉 ⊕ P . Moreover P = P1,1 ⊕ P2,0,
where P1,1 = P ∩ H1,1 and P2,0 = P ∩ (H2,0 ⊕ H0,2);

(6) the Lefschetz map Lω : H2 → H4 is an isomorphism. Therefore H4 = 〈ω2〉⊕ωP1,1⊕
ωP2,0. By Theorem 3.16 of Chapter V of [27], for α1 ∈ P1,1 we have ∗α1 = −α1 ∧ ω,
for α2 ∈ P2,0 we have ∗α2 = α2 ∧ ω, and ∗ω = 1

2ω
2. This implies that Lω : 〈ω〉 ⊕

P1,1 ⊕ P2,0 → 〈ω2〉 ⊕ ωP1,1 ⊕ ωP2,0 is of the form Lω(α) = Lω(α0 + α1 + α2) =
1
2 ∗ α0 − ∗α1 + ∗α2, where α = α0 + α1 + α2 is the decomposition according to
H2 = 〈ω〉 ⊕ P1,1 ⊕ P2,0.

The Lefschetz map Lω : H2 → H4 is an isomorphism so there is an inverse L−1
ω : H4 →

H2. Using it, we can define a map F : P × P × P × P → R by

F(α, β, γ, δ) =
∫

M
L−1

ω (α ∧ β) ∧ γ ∧ δ.
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This clearly factors through Sym2 P × Sym2 P . Using (5) above, we have the alternative
description

F(α, β, γ, δ) = 2〈(α ∧ β)0 , (γ ∧ δ)0〉 − 〈(α ∧ β)1 , (γ ∧ δ)1〉 + 〈(α ∧ β)2 , (γ ∧ δ)2〉,
from where it follows that F factors as a map Sym2(Sym2 P) → R.

Let KM be the kernel of the map Sym2(Sym2 P) → Sym4 P . Then we define a map

FM = F |KM : KM → R.

We have the following result.

Theorem 15 Let M be a simply connected compact Sasakian 7-dimensional manifold. Then
M is formal if and only if FM = 0.

Proof Using Theorem 12, we only have to check whether M is 3-formal. For this we have
to construct the minimal model ρ : (

∧
V, d) → M = (H ⊗ ∧

(x), d) up to degree 3. This
is easy:

V 1 = 0,

V 2 = P,

V 3 = H3 ⊕ N 3, where N 3 = Sym2 P,

where the differential is givenbyd = 0on P and H3, andd : N 3 → ∧
V 2 is the isomorphism

Sym2 P → ∧2 P . Themapρ is given as follows.ρ : V 2 = P → M2 = H2 is defined as the
obvious (inclusion) map, ρ : H3 → M3 = H3⊕ H2x is the inclusion on the first summand,
and ρ : N 3 = Sym2 P → M3 = H3 ⊕ H2x is defined as ρ(α · β) = L−1

ω (α ∧ β) x . Note
that

d(ρ(α · β)) = L−1
ω (α ∧ β) dx = L−1

ω (α ∧ β)ω

= α ∧ β = ρ(α) ∧ ρ(β) = ρ(α ∧ β) = ρ (d(α · β)) ,

so ρ is a DGA map. Clearly it is a 3-equivalence (it induces an isomorphism on cohomology
up to degree 3 and an inclusion on degree 4).

The space of closed elements isC3 = H3. Now let us check when the elements z ∈ I (N 3)

with dz = 0 satisfy [ρ(z)] = 0 ∈ H∗(M). The only cases to check is when z has degree 5 or
7. If z has degree 5, then [ρ(z)] 
= 0 if and only if there exists some β ∈ P, [ρ(β)] ∈ H2(M),
such that [ρ(z)] ∧ [ρ(β)] 
= 0, by Poincaré duality. Hence [ρ(zβ)] 
= 0. This means that we
can restrict to elements z of degree 7, that is z ∈ N 3 · ∧2 P .

Let z ∈ N 3 ·∧2 P ∼= Sym2 P ×Sym2 P . Then themap d : N 3 ·∧2 P → ∧4 P coincides
the full symmetrization map Sym2 P × Sym2 P → Sym4 P . So

Z = ker d|I (N3)7 = KM ⊕ Ant2
(
Sym2 P

)
,

where Ant2(W ) denotes the antisymmetric 2-power of a vector space W .
Now we have to study the map

ρ : Z → H7(M) = H6x,

and see if this is non-zero. This is given (on the basis elements) by

ρ ((α · β) · (γ · δ)) = (
L−1

ω (α ∧ β) ∧ γ ∧ δ
)

x,

so FM = ρ|KM . Note that ρ automatically vanishes on Ant2(Sym2 P), hence M is formal if
and only if ρ vanishes on KM if and only if FM = 0.
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According to Theorem 12, to check non-formality we have to test the relevant property
(2) on any splitting V 3 = C3 + N ′3. If we take another splitting V 3 = C3 + N ′3, then the
projection π : V 3 → N 3 gives an isomorphism π : N ′3 → N 3, and so an isomorphism
N ′3 ·Sym2 P ∼= N 3 ·Sym2 P . Clearly, d ◦π = d on N ′3, so the spaces of cycles correspond
K′ ∼= K. On the other hand H3 · H2 · H2 = 0, so the maps ρ : K → H6x and ρ : K′ → H6x
also correspond. Thismeans that the correspondingF andF ′ coincide under the isomorphism
K ∼= K′. This means that the choice of splitting is not relevant. ��

This result means that the formality or non-formality of M only depends on the cohomol-
ogy algebra H . Theorem 15 can be applied to the examples in Section 5.3 of [2]. For instance
for B = CP1 × CP1 × CP1, we have a simply connected Sasakian 7-manifold which is
non-formal (Theorem 12 of [2]). For B = CP3, we have obviously P = 0 and hence M is
formal.

The element FM of Theorem 15 is the principal Massey product defined by Crowley and
Nordström [6] for simply connected compact 7-manifolds in general. The principal Massey
product is the full obstruction to formality for simply connected compact 7-manifolds.

Now we deduce Corollary 3.

Corollary 16 Let M be a simply connected compact Sasakian 7-dimensional manifold. Then
M is formal if and only if all triple Massey products are zero.

Proof Suppose that FM 
= 0. We choose an orthonormal basis for H2 = 〈e0, e1, . . . , em〉,
where e0 = 1√

3
ω, P1,1 = 〈e1, . . . , es〉, P2,0 = 〈es+1, . . . , em〉. The vector space KM is

generated by elements of the form

ai jkl = (
ei · e j

) · (ek · el) − (ek · e j ) · (ei · el) ,

for 0 ≤ i, j, k, l ≤ m (here, as usual, the dot product means symmetric product). Now define
the numbers

λi jk =
∫

M
ei ∧ e j ∧ ek ∈ R,

for 0 ≤ i, j, k ≤ m. Note that these numbers are fully symmetric on i, j, k. Also λ000 = 2√
3

and λi j0 = 1√
3
εiδi j , for (i, j) 
= (0, 0), where εi = −1 for 1 ≤ i ≤ s and εi = 1 for

s + 1 ≤ i ≤ m. Then

L−1
ω (ei ∧ e j ) = 2 ∗ (ei ∧ e j )0 − (ei ∧ e j )1 + (ei ∧ e j )2 = 2λi j0e0 +

∑

t>0

εtλi j t et .

So

FM ((ei · e j ) · (ek · el)) = 2λi j0λkl0 +
∑

t>0

εtλi j tλklt .

Evaluating FM on ai jkl gives a set of equations to determine the formality of M . M is non-
formal when there exists some ai jkl with FM (ai jkl) 
= 0. By [6], we have that the triple
Massey product 〈ei , e j , ek〉 is a well-defined element of H5(M) and it satisfies

FM (ai jkl) = 〈ei , e j , ek〉 ∪ el .

So 〈ei , e j , ek〉 
= 0, as required. ��
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This result is of relevance since it is not known if for general simply connected com-
pact 7-dimensional manifolds there are obstructions to formality different from triple
Bianchi-Massey tensor, as remarked in [6]. It is true that for higher dimensional manifolds,
there are obstructions to formality even when all Massey products (triple and higher order)
can be zero.
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