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SIMPLY CONNECTED OPEN 3-MANIFOLDS WITH
RIGID GENUS ONE ENDS

DENNIS GARITY, DUŠAN REPOVŠ, AND DAVID WRIGHT

Abstract. We construct uncountably many simply connected open

3-manifolds with genus one ends homeomorphic to the Cantor set.

Each constructed manifold has the property that any self homeo-

morphism of the manifold (which necessarily extends to a homeo-

morphism of the ends) fixes the ends pointwise. These manifolds

are complements of rigid generalized Bing-Whitehead (BW) Can-

tor sets. Previous examples of rigid Cantor sets with simply con-

nected complement in R3 had infinite genus and it was an open

question as to whether finite genus examples existed. The examples

here exhibit the minimum possible genus, genus one. These rigid

generalized BW Cantor sets are constructed using variable num-

bers of Bing and Whitehead links. Our previous result with Željko

determining when BW Cantor sets are equivalently embedded in

R
3 extends to the generalized construction. This characterization

is used to prove rigidity and to distinguish the uncountably many

examples.

1. Introduction

Each Cantor set C in S3 has complement an open 3-manifold with

end set C. Properties of the embedding of the Cantor set give rise to

properties of the corresponding complementary 3-manifold. See [SS12]

for an example of this and [BC87] for another setting in which wild

Cantor sets in S3 arise.

In [GRŽ06] new examples were constructed of Cantor sets that were

both rigidly embedded and had simply connected complement. Prior to

that, only examples having one of these properties were known. The
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Antoine type [Ant20] rigid Cantor sets [Shi74] failed to have simply

connected complement. Their rigidity was a consequence of Sher’s re-

sult [She68] that if two Antoine Cantor sets are equivalently embedded,

then the stages in the defining sequences must match up exactly.

The new examples [GRŽ06] had points in the Cantor set of arbitrarily

large local genus and thus the complementary 3-manifold did not have

finite genus at infinity. The rigidity here was a consequence of a dense

set of points in the Cantor set having distinct local genera. The simple

connectivity of the complement was a consequence of a Skora type

[Sko86] construction for the stages. The question arose as to whether

finite genus examples possessing both properties were possible. For

any such examples, rigidity would have to be determined in some other

manner since local genus could no longer be used.

In this paper, we construct examples of Cantor sets that are rigid,

have simply connected complement, and have local (and global) genus

one (See Theorem 4.2). These examples exhibit the minimal possible

genus. For the corresponding statement concerning simply connected

open 3-manifolds of genus one at infinity with rigid end structure, see

Theorem 5.1.

In Section 2, we give definitions and the basic results needed for

working with generalized Bing-Whitehead (BW) Cantor sets. In the

following section, Section 3, we generalize the results from our previous

paper with Željko [GRWŽ11] that are needed in the new setting. In

Section 4 we state and prove the main results about Cantor sets. In

Section 5 we state the corresponding results for the complementary

3-manifolds. Section 6 lists some remaining questions.

2. Preliminaries

Background information. Refer to [DO74], [Wri89] and [GRWŽ11]

for results about BW Cantor sets, to [GRŽ05, GRŽ06] for a discussion

of Cantor sets in general and rigid Cantor sets, and to [Žel05] for results

about local genus of points in Cantor sets and defining sequences for

Cantor sets. See [CMZ] for results about dynamics of self-maps of

the Cantor set. The bibliographies in these papers contain additional

references to results about Cantor sets. For background on Freudenthal

compactifications and theory of ends, see [Fre42], [Dic68], and [Sie65].

Two Cantor sets X and Y in S3 are equivalent if there is a self home-

omorphism of S3 taking X to Y . If there is no such homeomorphism,
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the Cantor sets are said to be inequivalent, or inequivalently embedded.

A Cantor set C is rigidly embedded in S3 if the only self homeomor-

phism of C that extends to a homeomorphism of S3 is the identity.

This is in marked contrast to the standard embedding of a Cantor set

in S3 for which every self homeomorphism extends. See Daverman

[Dav79] for nonstandard embeddings of Cantor sets with this strong

homeomorphism extension property.

Let T be a solid torus. Throughout this paper, we assume that

the tori we are working with are unknotted in S3. (Our results and

constructions also work in R3.) A Bing link in T is a union of 2 linked

solid tori F1 ∪ F2 embedded in T as shown in Figure 1. A Whitehead

link in T is a solid torus W embedded in T as shown in Figure 1. For

background details and terminology, see Wright’s paper [Wri89].

T

W

T

F2F1

Figure 1. Bing and Whitehead links

Construction of (generalized) Bing-Whitehead compacta. For

completeness and consistency of notation, we outline the steps in the

construction of standard Bing-Whitehead (BW) compacta. Let M0 be

an unknotted torus in S3, and M1 be obtained from M0 by placing a

Bing link in M0. Inductively obtain Mk from Mk−1 either by placing a

Bing link in each component of Mk−1 or by placing a Whitehead link

in each component of Mk−1. Let m1 denote the number of consecutive

Whitehead links placed in M1 before the second Bing link occurs, and

let mk denote the number of consecutive Whitehead links that occur

between the k-th and (k + 1)st Bing links.

Definition 2.1. The standard Bing-Whitehead compactum associated

with this construction is defined to be

X =

∞⋂

i=0

Mi and is denoted X = BW (m1, m2, . . .).
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We also define Mi, i < 0, so that Mi is a Whitehead link in Mi−1 and

letX∞

M be
⋂

i (S
3 \Mi). The set X

∞

M is called the compactum at infinity

associated with X corresponding to the defining sequence M = (Mi).

This approach leads to the association of a BW compactum with

a BW (infinite) labeled binary tree where the vertices correspond to

one of the two torus components of a Bing link placed in a torus

and the labels on the vertices correspond to the number of White-

head constructions to perform in the torus associated with that vertex

before performing another Bing construction. See Figure 2.2 where

m1 = w1,1 = w1,2, m2 = w2,1 = · · · = w2,4, and so on.

Note that in this standard BW construction we require that all tori

inMk are obtained by the same (Bing or Whitehead) construction from

the respective tori in Mk−1. We also assume that infinitely many of the

Mi, i > 0, arise from Bing constructions and that infinitely many of

them arise from Whitehead constructions.

. . .

. . .

. . .

. . .

. . .

0

w1,1 w1,2

w2,1 w2,4

wk,1 wk,2k

Figure 2. Bing-Whitehead tree

In a generalized BW construction we require that all tori in Mk are

either obtained by Bing or Whitehead construction from the respective

tori in Mk−1, but not necessarily all of the same kind.

The construction can also be associated with a labeled binary tree

(see Figure 2). The top node represents an unknotted solid torus in

S3 denoted by M0 or T0,1. Each of the successive nodes at depth i

represents an unknotted torus Ti,j , j = 1 . . . 2i, which is one component

of a Bing link in the immediately preceding stage. The numbers wi,j ∈

{0, 1, 2, . . .} on nodes denote the number of consecutive Whitehead
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constructions placed in the torus associated with that node before the

next Bing construction occurs. Define Mi =
⋃2i

j=1 Ti,j.

Definition 2.2. The generalized BW compactum associated with this

construction is defined to be

X =

∞⋂

i=0

Mi and is denoted X = BW (z1, z2, . . .)

where zi = [wi,1, wi,2, . . . , wi,2i].

As in the standard construction, we also define Mi, i < 0, so that Mi

is a Whitehead link in Mi−1, and let X∞ be
⋂

i (S
3 \Mi).

Consider now a component x in a generalized BW compactum X .

This component corresponds to a unique ray starting at the root vertex

in the associated binary tree. The vertex labels along this ray form a

sequence s(x) = (0, w1,x(1), w2,x(2) . . .).

Definition 2.3. The sequence s(x) = (0, w1,x(1), w2,x(2), . . .) is called

the Whitehead sequence associated with the component x with respect

to the generalized BW compactum X = BW (z1, z2, . . .).

This will be of interest in the next few sections, particularly when

the components consist of single points so that the compactum X is a

Cantor set.

Geometric Index. If K is a link in the interior of a solid torus T ,

then we denote the geometric index of K in T by N(K, T ). This is the

minimum of the cardinality |K ∩D| over all meridional disks D of T .

If T is a solid torus and M is a finite union of disjoint solid tori so that

M ⊂ Int(T1), then the geometric index N(M,T ) of M in T is N(K, T )

where K is a core of M . The geometric index of a Bing link in a torus

T is 2. The geometric index of a Whitehead link in a torus T is also 2.

Let T0 and T1 be unknotted solid tori in S3 with T0 ⊂ Int(T1). Then

∂T0 and ∂T1 are parallel if the manifold T1 − Int(T0) is homeomorphic

to ∂T0 × I where I is the closed unit interval [0, 1].

Remark 2.4. See Schubert [Sch53] and [GRWŽ11] for the following

needed results about geometric index.

• Let T0 and T1 be unknotted solid tori in S3 with T0 ⊂ Int(T1)

and N(T0, T1) = 1. Then ∂T0 and ∂T1 are parallel.
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• Let T0 be a finite union of disjoint tori. Let T1 and T2 be

tori so that T0 ⊂ intT1 and T1 ⊂ IntT2. Then N(T0, T2) =

N(T0, T1) ·N(T1, T2).

• Let T be a torus in S3 and let T1, T2 be unknotted tori in T ,

each of geometric index 0 in T . Then the geometric index of

∪2
i=1Ti in T is even.

3. Results on generalized Bing-Whitehead compacta

Constructions yielding Cantor sets.

We are primarily interested in generalized BW compacta that are Can-

tor sets. At one extreme, if no Whitehead links are used, then the

construction can result in a Bing Cantor set [Bin52]. At the other ex-

treme, if no Bing links are used, the resulting compactum has a single

component which is the Whitehead continuum and the decomposition

of S3 that shrinks this to a point does not yield S3.

For standard BW compacta, Ancel and Starbird [AS89], and inde-

pendently Wright [Wri89], gave a complete characterization of when

the construction can be done so as to yield a Cantor set in S3. What is

needed is sufficiently many Bing links, or equivalently sufficiently few

Whitehead links in the process. For a generalized BW construction, let

wi = max(zi) = max[wi,1, wi,2, . . . , wi,2i]. An examination of Appendix

A in [Wri89] shows that the argument there proves the following result:

Theorem 3.1. If
∑

∞

i=1

1

2σi

= ∞ where σi = w1 +w2 + · · ·+wi, then

the decomposition given by points and components of the generalized

BW compactum X is shrinkable.

This result will guide us in the next section in the construction as-

sociated with Theorem 4.2.

Properties of BW Constructions and Compacta.

Many of the results in [Wri89] and [GRWŽ11] about standard BW

constructions carry over directly with the same proofs to the setting

of generalized BW constructions. We list some of the results from the

1989 paper, restated in the general setting, that will be useful for our

main results.

Lemma 3.2. Let M be a Bing or a Whitehead link in a torus T . Let X

be a generalized BW compactum with defining sequence M = (Mi) and

X∞

M the associated continuum at infinity. Then the following holds:
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• [Wri89, Theorem 4.6 ] No sphere in the complement of X ∪X∞

separates X ∪X∞.

• [Wri89, Theorem 4.3 ] A loop on the boundary of Mi is essen-

tial in the boundary of Mi if and only if it is essential in the

complement of X ∪X∞.

• [Wri89, Theorem 4.4] If loops ℓ1 and ℓ2 in ∂Mi and ∂Mj re-

spectively, i 6= j, are homotopic in the complement of X ∪X∞,

then they are inessential in X ∪X∞.

• [DO74], [Wri89, Appendix B]) The complement of a generalized

BW compactum in S3 is simply connected.

Matching up Stages. The key to proving rigidity for certain gener-

alized BW Cantor sets is to show that if such a Cantor set C has two

defining sequences (Mi) and (Ni) then the components can be made to

match up. For completeness, we provide outlines of the proofs of key

results: Lemma 3.3, Lemma 3.4, Corollary 3.5 and Theorem 3.6. For

more complete details, see [GRWŽ11].

Lemma 3.3. Let X be a generalized BW compactum with two defin-

ing BW sequences (Mi) and (Nj). Let T be a component of some

Mi and let T ′ be the component of Mi−1 containing T . If T lies in

the interior of a component S ′ of some Nj, and S ′ ⊂ M0, then there

is a homeomorphism h of S3, fixed on X ∪ (S3 − (T ′ ∪ S ′)), so that

h(∂(T )) ∩ ∂(Nj+1 ∩ S ′) = ∅.

Proof. After a general position adjustment, we may assume that ∂(T )∩
∂(Nj+1∩S ′) consists of a finite collection of simple closed curves. Since

a curve on the boundary of T is essential if and only if it is essential

in the complement of X ∪X∞

M and a curve in the boundary of Nj+1 is

essential if and only if it is essential in the complement of X ∪X∞

N , we

see that a curve on ∂T is trivial on ∂(T ) ∩Nj+1 is trivial on ∂T if and

only if it is trivial on ∂Nj+1.

Removing Trivial Curves of Intersection: If there are any triv-

ial curves, choose a component S of S ′ ∩ Nj+1 that contains such a

curve in ∂S. Choose an innermost trivial simple closed curve α on ∂S.

Since α is innermost, it bounds a disk D′ with interior missing ∂T . The

curve α also bounds a disk D in ∂T .

The 2-sphere D ∪D′ bounds a three-cell in S ′ ∩ T ′ that contains no

points of X . Use this three-cell to push D onto D′ and then a little

past D′ into a collar on the cell by a homeomorphism h of S3. This
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homeomorphism can be chosen to fix X , S3−S ′, and S3−T ′. This has

the result that h(∂T ) ∩ ∂(S ′ ∩ Nj+1) has fewer curves of intersection

than ∂T ∩ ∂(S ′ ∩Nj+1), and so that no new curves of intersection with

∂(Nj+1) are introduced. Continuing this process eventually removes all

trivial curves of intersection of ∂T ∩ ∂(S ′ ∩Nj+1).

Removing Nontrivial Curves of Intersection: At this point,

there is at most one component S of Nj+1 ∩ S ′ for which ∂T ∩ ∂S 6= ∅.

These remaining curves of intersection on ∂T must be parallel (p, q)

torus curves and the corresponding curves on ∂S must be parallel (s, t)

curves. If both p and q are greater than 1, so that the torus curve is a

nontrivial knot, then (s, t) = (p, q) or (s, t) = (q, p).

To simplify notation in what remains, we will refer to h(T ) as (the

new) T . We work towards removing these remaining curves of inter-

section of the boundaries, so that T is either contained in a component

Nj+1 ∩ S or contains the components of (Nj+1 ∩ S). Consider an an-

nulus A on the boundary of S bounded by two adjacent curves of the

intersection of ∂S and ∂T . Choose this annulus so that its interior lies

in the interior of T . We consider separately all possibilities for how the

boundary curves of A lie on S.

I. Curves of intersection on T that are (p, q) curves for p ≥ 2.

Consider a meridional disk D for T in general position with respect

to A so that D∩A consists of p arcs intersecting the boundary of D in

endpoints and of simple closed curves. Figure 3 illustrates a possible

situation when p = 5 and q = 3 and trivial curves of intersection have

been removed. The solid unlabeled disks indicate the intersection of

the next stage Mi+1 with D.

The intersection of A with D can be adjusted using cut and paste

techniques similar to that used in the trivial curve case so that the end

result is intersections as in one of the two cases in Figure 3.

Each of the regions labeled Mi can be shown to be a meridional disk

of a torus T1 that is contained in T . This torus will then be used to push

across and remove the intersections of A with T . The intersection of T

with S corresponding to A can now be removed by a homeomorphism

of S3 fixed on X and on the complement of a small neighborhood of T

that takes A through T1 to an annulus parallel to A1 and just outside

of T . Inductively, all curves of intersection of T with S can be removed

by a homeomorphism of S3 fixed on X and the complement of a small

neighborhood of T .
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B0

B1

B2

B3
B4

C 0
C 1

C 2

C 3

C 4

M

M

M

M

M

0

1

2

3

4

B0

B1

B2

B3
B4

C 0
C 1

C 2

C 3

C 4

M0

M1

M2

M
3

M4

Figure 3. Meridional Disk D of T after Adjustment

II. Curves of intersection on S ′ that are (p, q) curves for p = 1.

An argument similar to that above can be used.

III. Curves of intersection on S ′ that are (p, q) curves for p = 0.

In this case the curve is a (0, q) curve for the torus T , but it is a (q, 0)

curve for the complementary torus with q 6= 0. In this case there is an

annulus A on the boundary of T that has its interior in the exterior

of T , so that the intersection of A with the boundary of T consists of

curves in the intersection of the boundaries of T and S ′. This essentially

turns the problem inside out, and we can use the previous methods to

push A to the interior of T fixed on a slightly shrunken T , all the other

components of Mi, and the complement of Mi−1.

�

Lemma 3.4. Assume that X is a generalized BW compactum with two

defining BW sequences (Mi) and (Nj). Choose N so that the compo-

nents of MN are in the interior of N0. Let T be a component of MN .

Then there is an integer K and a homeomorphism h of S3, fixed on

X ∪ (S3 − (N0 ∪ MN−1)) so that h(T ) is interior to components of

Ni, i < K and so that h(T ) is a component of NK .

Proof. Choose an integer L so that the components of NL are interior

to MN . Inductively apply Lemma 3.3 producing successive homeomor-

phisms so that the image of ∂(T ) is disjoint from ∂(Ni) until a first

stage K ≤ L is reached where a component of NK is interior to the

image of T .
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At this point, there is a homeomorphism h of S3, fixed on X ∪ (S3−

N0)∪(S3−MN−1) and a component S ′ of NK−1 so that h(T ) ⊂ Int(S ′)

and so that a component S of NK ∩ S ′ is interior to h(T ).

Case 1. S is a Whitehead link in S ′:

The geometric index of S in S ′ is two. Thus the geometric index of

h(T ) in S ′ is non-zero and the geometric index of S in h(T ) is non-zero.

So the geometric index of h(T ) in S ′ must be one or two. If it is one,

then there is a further homeomorphism of h′ of S3 that is fixed on X

and the complement of a small neighborhood of S ′ that takes h(T ) to

S ′. If the geometric index of h(T ) in S ′ is two, then the geometric

index of S in h(T ) is one and there is a further homeomorphism of h′

of S3 that is fixed on X and the complement of S ′ that takes h(T ) to

S.

Case 2. S is one component of a Bing link in S ′:

Let R be the other component of the Bing link. If h(T ) contains

S ∪R, the geometric index of S ∪R in S ′ is two, and so the geometric

index of S ∪ R in T and the geometric index of h(T ) in S ′ must be

nonzero and ≤ 2. The geometric index of each of R and S in h(T )

must then be zero since the geometric index of R and S in S ′ is zero.

So the geometric index of S ∪R in h(T ) is even and must be two, and

the geometric index of h(T ) in S ′ must be one. Then there is a further

homeomorphism of h′ of S3 that is fixed on X and the complement of

a small neighborhood of S ′ that takes h(T ) to S ′.

The other case where h(T ) contains only S but not R follows from

the fact that there is a homeomorphism of S3 to itself that takes T −
Int(S ∪R) to itself and takes ∂S to ∂T . This homeomorphism follows

from the fact that S ∪R ∪ (S3 − Int(T )) are Borromean Rings.

�

The next result shows that once stages of defining sequences match

up, all further stages can be made to match up.

Corollary 3.5. If x is a component of the generalized BW compactum

with two defining sequences (Mi) and (Nj) and with M0 = N0, then

the Whitehead sequence of x with respect to (Mi) is the same as the

Whitehead sequence of x with respect to (Nj).

Proof. It suffices to show that there is a self homeomorphism of M0 =

N0 that is fixed on ∂M0 = ∂N0 and on X that takes Mi onto Ni for

any specified finite number of stages.



SIMPLY CONNECTED 3-MANIFOLDS WITH RIGID GENUS ONE ENDS 11

Suppose that such a homeomorphism hn exists that matches the

components up through n stages. Let T be a component of Nn. Let

M equal hn(Mn+1)∩T and N equal Nn+1 ∩T . By Lemma 3.3 we may

assume that the boundaries of M and N are disjoint.

A geometric index argument shows that M and N both have the

same number of components. If M and N both have one component,

a geometric index argument similar to Case 1 of Lemma 3.4 shows ∂N

is parallel to ∂T or ∂M . But the geometric index of N in T is 2 so

∂M and ∂N are parallel and the boundaries can be matched up with a

homeomorphism of T taking ∂M to ∂N fixed on X and ∂T . The same

argument works if N lies in M .

Suppose now that M and N both have two components. Then one

component of M contains or is contained in one component of N and

the other component of M contains or is contained in the other com-

ponent of N . A geometric index argument similar to Case 2 of Lemma

3.4 can be used to show that ∂M and ∂N are parallel and as before we

can get a homeomorphism fixed on X and ∂T taking M to N .

Repeating this argument in each component of Nn gives the homeo-

morphism hn+1. �

The previous lemmas and corollary were used in [GRWŽ11] to show

that if a standard BW Cantor set X in S3 has two defining sequences

(Mi) and (Nj), then past some finite stage N , the BW pattern for X

from (Mi) must be identical to the BW pattern for X from (Nj). That

is, the BW patterns for the two defining sequences can differ only in a

finite number of Whitehead constructions. This is a consequence of the

fact that the lemmas above, together with the characterization of when

a Cantor set is obtained, show that if the BW patterns do not match up

at some same finite stage, then the BW patterns are repeating which

contradicts the fact that a Cantor set is obtained.

The situation is not quite so simple for generalized BW constructions.

The pattern illustrated in Figure 4 can occur. If A, B, C, and D

represent four generalized BW compacta, they can be assembled into

a single BW compactum in either of the two ways (and in other ways)

indicated in this Figure. On the left, the constructions for A, B, C,

and D are performed after doing two initial Bing constructions. On the

right, the construction for A is done in one of the two tori of an initial

Bing construction. The construction for B is done in one of the two tori
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after another Bing construction in the component not corresponding

to A. The constructions for C and D are done at the next stage.

. . .

A B C D

. . .

. . .

. . .

. . .

. . .
. . .

. . .

A

B

C D

Figure 4. Equivalent Generalized Constructions

We can however analyze the following situation that is needed in

proving rigidity (the case X = Y of the following).

Theorem 3.6. Assume that X and Y are generalized BW compacta

with defining sequences (Mi) and (Nj). Let c be a component of X.

Assume there is a self homeomorphism h of S3 that takes X to Y and

takes c to a component d of Y . Let s(c) be the Whitehead sequence

associated with c from (Mi) and let s(d) = s(h(c)) be the Whitehead

sequence associated with d from (Nj) as in Definition 2.3. Then these

two sequences have the same tails. That is, there is a stage n in the

first sequence and a stage m in the second sequences such that for all

k, s(c)n+k = s(d)m+k.

Proof. By Corollary 3.5, there is a homeomorphism of S3, fixed on Y

that takes a component of some stage in the defining sequence (h(Mi))

for h(c) to a component of some stage in the defining sequence (Nj)

for d. By viewing these stages as the initial stages of generalized BW

constructions, and by applying Corollary 3.5, one sees that the White-

head sequence s(h(c)) with respect to (h(Mi)) matches up with the

Whitehead sequence s(d) with respect to (Nj) past this stage. But the

Whitehead sequence for s(h(c)) with respect to (h(Mi)) is the same
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as the Whitehead sequence s(c) with respect to (Mi). The assertion

follows. �

4. Main Results

Construction 4.1. For every increasing sequence s = (s1.s2, s3, . . .) of

positive integers, we describe a construction of a BW compactum C(s).

The compactum C(s) will be BW (z1, z2, . . . ) for a specific sequence

(z1, z2, . . . ) associated with the sequence s. A subsequence (n1, n2 . . .)

of the sequence of positive integers will be described inductively. For i

not in this subsequence, zi is an ordered 2i-tuple of zeros. For i = nj

in this subsequence, zn1
consists of the first 2n1 terms in s, zn2

consists

of the next 2n2 terms in s, and so forth. As before, let wi = max(zi)

and σi = w1+w2+ · · ·wi. To make sure that we can choose C(s) to be

a Cantor set, we just choose the ni appropriately as in Theorem 3.1.

Choose n1 = 1, and for i > 1 choose ni+1 = 2σi + ni. See Figure 5.

s

sk

2s1

s3

0

2

0

0 0

sk2 sk3
+1

.  .  .

.  .  .

.  .  . 0

.  .  .

.  .  .

.  .  .

.  .  .

= sk1

Figure 5. Stages in Main Construction
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Theorem 4.2. For every increasing sequence s = (s1.s2, s3, . . .), the

BW compactum C(s) above can be constructed so as to be a rigid gen-

eralized BW Cantor set C(s) ⊂ S3 with simply connected complement.

Proof. The complement of the compactum C(s) is simply connected

by Lemma 3.2. It is an easy matter to check that
∞∑

i=1

1

2σi

= ∞ and

so it is possible to construct C(s) to be a Cantor set by Theorem 3.1.

It remains to be shown that C(s) is rigidly embedded.

Let h be a self homeomorphism of S3 that takes C(s) to itself. If h

restricted to C(s) is not the identity, then there are points x 6= y in

C(s) with h(x) = y. The construction guarantees that the Whitehead

sequences s(x) and s(y) do not have the same tail, whereas Theorem

3.6 requires that they do. This contradiction establishes the result. �

Lemma 4.3. If two sequences s and t with only finitely many terms in

common are used to construct Cantor sets C(s) and C(t) as in Theorem

4.2, then C(s) and C(t) are inequivalently embedded.

Proof. Assume there is a homeomorphism of S3 taking C(s) to C(t).

The construction guarantees that no point in C(s) has Whitehead se-

quence with the same tail as a point in C(t), contradicting Lemma

3.6. �

Theorem 4.4. There are uncountably many inequivalent BW Cantor

sets in S3 with simply connected complement.

Proof. This follows from Lemma 4.3 and the fact that there are un-

countably many increasing sequences of positive integers, any two of

which have only finitely many terms in common. One easy way to

see this is to sequentially label the vertices of an infinite binary tree

with the positive integers, and choose the sequences corresponding to

descending rays through the tree. �

5. Application to 3-manifolds

Theorem 5.1. For every generalized BW Cantor set C(s) as in The-

orem 4.2, there is an open 3-manifold M(s) with end set C(s) with the

following properties:

• M(s) is simply connected,

• The Freudenthal (endpoint) compactification of M(s) is S3,
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• Any self homeomorphism h of M(s) extends to a unique home-

omorphism h of S3,

• The homeomorphism h restricted to the ends is the identity, and

• M(s) has genus one at infinity.

Proof. Given C(s) as in Theorem 4.2, let M(s) be the complement

of C(s) in S3. Theorem 4.2 shows that M(s) is simply connected.

The definition of M(s) shows that the end set is C(s) and that the

Freudenthal (endpoint) compactification of M(s) is S3. Standard re-

sults about endpoint compactifications show that any self homeomor-

phism h of M(s) extends to a unique homeomorphism h of S3. The

extension homeomorphism h must be the identity when restricted to

the ends since C(s) is rigidly embedded. The genus at infinity of M(s)

is the same as the genus of C(s) which is one since C(s) has a defining

sequence with genus one components, and since no point of C(s) is

tamely embedded. �

Corollary 5.2. There are uncountably many distinct 3-manifolds hav-

ing the properties listed in Theorem 5.1.

Proof. This follows directly from Theorem 4.4 since a homeomorphism

between M(s) andM(t) implies equivalence of embeddings of C(s) and

C(t). �

6. Questions

The following questions arise from a consideration of the results in

this paper.

Question 6.1. For the simply connected 3-manifolds constructed in

this paper, each with end set a Cantor set, is every self homeomorphism

isotopic either to an involution fixing the ends or to the identity?

Question 6.2. Does there exist a simply connected 3-manifold with

only one end so that every self homeomorphism is isotopic either to an

involution fixing the ends or to the identity?

Question 6.3. Can the techniques of this paper be used to show there

exist rigid embeddings of compacta in S3 with simply connected com-

plement?

Question 6.4. What is the group of isotopy classes of self homeomor-

phisms of the Whitehead 3-manifold? The expected answer would be
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Z × Z2, where the first factor comes from ratcheting [Wri92] and the

second factor from flipping.
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