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SIMPLY CONNECTED SPIN MANIFOLDS

WITH POSITIVE SCALAR CURVATURE

TETSURO MIYAZAKI

Abstract. Let /„ be equal to 2 or 4 according as n is congruent mod 8 to zero or not.

If the /(-genus of a compact simply connected spin manifold of dimension n > 5

vanishes, then the connected sum of /„ copies of the manifold admits a metric of

positive scalar curvature. This supports a conjecture of Gromov and Lawson.

Introduction. In relation to the works of Kazdan and Warner and others (see [2]),

it is an important problem to describe the condition for a given manifold to admit a

metric of positive scalar curvature.

Lichnerowicz' theorem [6] states that the vanishing of the A -genus is one of the

necessary conditions for spin manifolds to have such metrics. Moreover, Hitchin [5]

proved a vanishing theorem for the KO-characteristic number si: ß|pin —> KO*(pt.),

which essentially coincides with the A -genus in dimensions congruent to zero mod 4.

On the other hand, a cobordism-theoretic approach was achieved in one of the

papers of Gromov and Lawson [4]. They showed that every compact simply

connected manifold which is not spin and whose dimension is not less than 5 carries

a metric of positive scalar curvature. Also they showed that if the A -genus of a

compact simply connected manifold of dimension not less than 5 vanishes, the

connected sum of some copies of the manifold carries a metric of positive scalar

curvature. They conjectured that for a compact simply connected manifold of

dimension not less than 5, the KO-characteristic number si is the complete obstruc-

tion to the existence of a metric of positive scalar curvature.

Let us put it in another way. Let P C ß|pm be the ideal consisting of the set of

classes containing representatives with positive scalar curvature. We consider the

homomorphism

n:ß|Pin -» ß!Pin/T.

Gromov and Lawson proved that a simply connected spin manifold which is spin

cobordant to a spin manifold of positive scalar curvature also admits a metric of

positive scalar curvature. Therefore, the conjecture of Gromov and Lawson means

that ker si coincides with P and, as a result, II and Q^¡"n/P coincide with si and

KO*(pt.), respectively. They proved that II ® Q is exactly the ,4-genus.
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In this paper, we show a more refined result concerning this conjecture. Note that

the theorem of Hitchin guarantees that P is contained in ker si. What we want is its

converse. Let lk be equal to 4 or 2 according as k is congruent mod 8 to zero or not.

We denote kerj^Ti ß^pin and P n ß^pin by kzrsik and Pk respectively. Our result is

the following.

Theorem. lkkersik is contained in Pk. In particular, let M be a compact simply

connected manifold of dimension k > 5 whose A-genus vanishes. Then the connected

sum of lk copies of M admits a metric of positive scalar curvature.

Note that this implies that the conjecture is true mod any odd number p, i.e.

IT ® Z  coincides with si® Zp.

The conjecture of Gromov and Lawson has a close relation to the following

problem. If some multiple M # ■ ■ ■ # M carries a metric of positive scalar curva-

ture, then does M itself carry such a metric? In general, the answer is no even in the

case of simply connected spin manifolds. In fact, there exists a 9-dimensional simply

connected spin manifold M such that the KO-characteristic number si does not

vanish and such that M #M carries positive scalar curvature (it is cobordant to S9).

However, our Theorem asserts that the answer is yes for odd numbers.

Corollary. Let M be a compact simply connected spin manifold such that the odd

multiple M # ■ ■ ■ # M carries a metric of positive scalar curvature. Then M itself

carries such a metric.

Remark. One can show that each class of kcrsik (k < 12) or kersik/Tor (k < 20)

is represented by a spin manifold of positive scalar curvature using HP4 and

manifolds in our proof and in [7]. This means that the conjecture is true in low

dimensions.

Concluding this Introduction, the author wants to propose the following problem.

Problem. Can each class in the kernel of the map

si® Z2: ß|pm ® Z2 -» KO,(pt.) ® Z2

be represented by a spin manifold with positive scalar curvature?

Our Theorem implies that if this problem is solved affirmatively, then the original

conjecture is true.

The author would like to express his hearty gratitude to Professor Aiko Hattori for

his valuable suggestions and continuous encouragement.

We have learned since writing this paper that Jonathan Rosenberg has indepen-

dently proved a parallel result except that he needs a larger power of 2 in dimensions

congruent to 4 mod 8.

Proof of the Theorem. In order to represent each class of lkkcxsik by a spin

manifold of positive scalar curvature, we need three types of manifolds. P(E(M))

denotes the complex or quaternion projective space bundle of the complex or

quaternion vector bundle E over the manifold M. cdk (resp. hdk) denotes a trivial

/c-dimensional complex (resp. quaternion) vector bundle.
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First, we consider a 4/c-dimensional spin manifold (k > 2)

A; = P{hX @h62(HPk-2)),

where hX is the canonical line bundle. By some calculation (cf. [9]), we get

sm{0>{-r))[Xk]- ±2(2* + l)(*-l).

Secondly, we consider a 4/c-dimensional manifold (k > 2)

P(f © cÖ3(P(i e c61(CP2k-4)))),

where f and £ are complex line bundles. Let a and ¿> be the first Chern classes of the

canonical line bundles over CP2*"4 and />(£ ffi cö^CP2*-4)) respectively, and let |

and f have the first Chern classes /a and ma + nb (l, m, n e Z) respectively. For

given numbers /, w, «, we denote the above manifold by Yk.¡ m „.Then we get (cf. [3])

sW{*{*WkJ.m*\ =±(2k + X)(k - 2){(m + nl)2"-' - m2k^)/l.

The necessary and sufficient condition for YkJmn to be spin is that / + m is odd and

n is even.

Thirdly, we consider the 4&-dimensional manifold Hmn , where m + n - X =

2k, n, m ^ 2. Hmfipq is the hypersurface of CP"' X CP" which is dual to pu + qv,

where u and v are the first Chern classes of the canonical line bundles over CP"1 and

CP" respectively, and p and q are integers. We get (cf. [10])

^)(^(t))[^,m]=í(\+1)a".

Since m + n is odd, we may assume that m is odd and n is even. Then the necessary

and sufficient condition for 77m ,, p   to be spin is that p is even and q is odd.

Lemma. (1) Xk (k > 2) and Yk ¡ mn (k > 2) carry metrics of positive scalar

curvature.

(2) Hm carries a metric of positive scalar curvature if m < n and p < 0, q = -1.

Proof. (1) Xk and Yk, mn carry such metrics because, for each complex or

quaternion projective space bundle of a vector bundle, a metric of positive scalar

curvature is constructed as follows. In the direction along the fibers, it is constructed

from the ordinary metric of a complex or quaternion projective space and in the

direction vertical to the fibers, it is constructed from an arbitrary metric of the base

space using a metric connection of the vector bundle. This defines a Riemannian

submersion with totally geodesic fibers. Shrinking the metric in the fibers, it deforms

to a metric of positive scalar curvature (cf. [8]).

(2) We use a homogeneous coordinate ([z0,... ,zm], [w0,.. .,wn]) of CP"' X CP". It

is straightforward to see Hm_n (m < n, p < 0, q = -1) is represented by the

nonsingular hypersurface of degree (p, 1) defined by T."L0zfwi = 0 (cf. [10, p. 81,

131]). Hm „ „ is a CP"_1-bundle over CPm whose projection is inherited from the

first projection CP"' X CP" -» CPm. Give Hmnpq the metric induced from CPm X

CP". Then pull back the metric of the base space CP"' in the direction vertical to the

fibers. This defines a Riemannian submersion with totally geodesic fibers. Shrinking

the metric in the fibers, one has the desired metric.
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Proposition. For each integer k ^ 2, there is a 4k-dimensional spin manifold Mk

which admits a metric of positive scalar curvature and

2        if2k + X + rs for any prime r and integer s,
s    (¿P(t))\ M 1

<A) k        \2r      if'2k + X = rs for some prime r and integer s.

Proof. The ^-numbers of Xk, YkXS)2 and YkQX2 are ±2(2k + X)(k - X),

±22k~\2k + X)(k - 2) and ±2(2* + X)(k - 2)(2k - 3) respectively. Taking the

greatest common divisor of these three numbers, one can construct a spin manifold

Nk with its s-number 2(2k + 1).

Let r be the odd prime that divides 2k + X. If 2k + X is not a power of r, then one

may write 2k + X = r'd with d * 0 mod r. Then the s-number of Hr, r,{d_X)_2_x is

.¡r'd\2,

r

and this is not congruent to 0 mod r. If 2 k + X = r' for some s > 2, then the

s-number of 77r, i r2_r»-i _2 i is

±(;:,K
and this is not congruent to 0 mod r2. Again taking the greatest common divisor, we

construct Mk.

Now we can prove the Theorem. Since all torsion in the spin cobordism ring has

order two, we restrict ourselves to ß|pin/Tor. Let Bso c ß|°/Tor be the polynomial

algebra generated by the classesy¡ (i > 1) characterized by

s(l)(^(r))[y,]= ±m2im2i_x    for/>2,

%,(^(t))[^]= +233,

where m, = r if i + X = rs for some prime r and positive integer s and m¡= X

otherwise (cf. [10, p. 280]). Let Mk be the manifold given in the Proposition. Since

the i-number of Mk is 2m2k, we may assume M¡ = y¡ if i = 2s and M¡ = 2>>, if /' + 2s

(i > 2). Therefore 2y¡ (/ > 2) is represented by a 4/c-dimensional spin manifold with

positive scalar curvature.

Note that ßfpin/Tor = ßRi and ß|p|n4/Tor = 2fi8,. + 4 (cf. [10, p. 340]). Additive

generators of ß|f+n4/Tor are grouped into two types:

(i) 2y2, + l. The A -genus is not zero and this cannot carry positive scalar curvature.

(ii) 2y¡ ■ ■ ■ y¡, /', + • • ■ + ij = 2/ + 1 and ij # 1. 2(2 y¡ ■ ■ ■ y¡) is spin cobor-

dant to (2 y¡ ■ ■ ■ y¡ )(2y¡ ), which is represented by a product manifold of a spin

manifold and a spin manifold of positive scalar curvature. Similarly, generators of

ßgf1" are grouped into two types.

(i)y2'. This cannot carry positive scalar curvature.

(ii) y¡  ■ ■ ■ y¡, í'i +  ••• + /= 2i and i¡ # 1. 4y¡  ■ ■ ■ y¡   is spin cobordant to

(2y¡   ■ ■ • y¡    )(2y¡ ) and carries positive scalar curvature.

The Theorem is the immediate consequence of these.

Proof of the Corollary. By the Theorem, 4M carries positive scalar curvature. Then

take the greatest common divisor.
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