Tôhoku Math. Journ. Vol. 19, No. 3, 1967

SIMPLY INVARIANT SUBSPACES

Yoshiki Ohno

(Received June 20, 1967)

Our subject is a theorem on simply invariant subspaces of $L_{\mathfrak{h}}^{p}$, the usual L^{p} -space taking values in a Hilbert space \mathfrak{h} . Let X be a compact Hausdorff space and A a Dirichlet algebra on X. We shall fix a non-negative finite Borel measure m on X such that

$$f \longrightarrow \int f dm \qquad (f \in A)$$

defines a multiplicative linear functional on A. Define A_0 to be the set

$$A_0 = \{f \in A; \int f dm = 0\}.$$

Let \mathfrak{h} be a separable Hilbert space and let $L^p_{\mathfrak{h}}$ $(1 \leq p \leq \infty)$ denote the space of \mathfrak{h} -valued functions on X which are weakly measurable and whose norms are in scalar $L^p(dm)$. $L^2_{\mathfrak{h}}$ is a Hilbert space for the inner product

$$(f,g) = \int (f(x),g(x))_{\mathfrak{h}} dm$$

where the inner product on the right is the one in \mathfrak{h} . We define $A_{\mathfrak{h}}$ by $A \otimes_{\lambda} \mathfrak{h}$, the completion of the algebraic tensor product $A \otimes \mathfrak{h}$ under the uniform norm in $C(X, \mathfrak{h})$ (the space of all \mathfrak{h} -valued continuous functions on X). For $1 \leq p < \infty$ we define $H^p_{\mathfrak{h}}$ by

$$H^p_{\mathfrak{h}} = [A_{\mathfrak{h}}]_p$$

the closure of $A_{\mathfrak{h}}$ in $L^p_{\mathfrak{h}}$ and we define $H^{\infty}_{\mathfrak{h}}$ by

$$H^{\infty}_{\mathfrak{h}} = H^{1}_{\mathfrak{h}} \cap L^{\infty}_{\mathfrak{h}}.$$

We write H^p instead of $H^p_{\mathfrak{g}}$ in the case of $\mathfrak{h}=C$. Call \mathfrak{G} a range function if \mathfrak{G} is a function on X a.e.(dm) to the family of closed subspaces of \mathfrak{h} . Two range functions which agree a.e. are regarded as the same function. \mathfrak{G} is measurable if the orthogonal projection G(x) on $\mathfrak{G}(x)$ is weakly measurable in the operator sense. We shall denote by \mathfrak{G} the operator on $L^p_{\mathfrak{g}}$ defined by $(\mathfrak{G}f)(x)$

=G(x)f(x) a.e. Say that a subspace \mathfrak{M} of $L_{\mathfrak{g}}^{\mathfrak{p}}$ is doubly invariant if

- (i) \mathfrak{M} is closed in $L_{\mathfrak{h}}^p$ if $1 \leq p < \infty$ and weak*-closed if $p = \infty$.
- (ii) \mathfrak{M} is invariant under multiplication by functions in $A + \overline{A}_0$

(where the bar denotes complex conjugation). Say that a subspace \mathfrak{M} of $L^p_{\mathfrak{h}}$ is simply invariant if it satisfies (i) above and

(ii') $[\mathfrak{M}A_0]_2 \subseteq \mathfrak{M}$

where $[]_2$ denotes the $L^2_{\mathfrak{g}}$ -closure. The purpose of this paper is to prove the following theorem.

THEOREM 1. The simply invariant subspaces \mathfrak{M} of $L^p_{\mathfrak{h}}(1 \leq p \leq \infty)$ are precisely the subspaces of the form

$$U \cdot H^p_{\mathfrak{h}_1} \oplus \widehat{\mathfrak{G}}L^p_{\mathfrak{h}_1}$$

where \mathfrak{G} is a measurable range function, and U is a measurable operator function whose values are isometries of an auxiliary Hilbert space \mathfrak{h}_1 into \mathfrak{h} with range perpendicular to \mathfrak{G} a.e.

For the circle |z|=1, this theorem was proved in Helson [2] for p=2. The analogous theorem for doubly invariant subspaces was proved in Srinivasan [3] and Hasumi and Srinivasan [1]. Our discussion was suggested by that of Helson [2]. We first give a proof of the theorem for the case of p=2 and for general case apply the interpolation method of Srinivasan and Wang [4].

THEOREM 2. Every doubly invariant subspace \mathfrak{M} of $L_{\mathfrak{h}}^{p}(1 \leq p \leq \infty)$ is of the form $\mathfrak{G}L_{\mathfrak{h}}^{p}$ for some measurable range function \mathfrak{G} ; \mathfrak{M} determines \mathfrak{G} uniquely.

SKETCH OF THE PROOF FOR THE CASE OF p=2. Let $\{e_k\}_{k=1}^{\infty}$ be some fixed c.n.o.s. for \mathfrak{h} and q_k be the projection of the constant function e_k on \mathfrak{M} . Each q_k is defined a.e. on X and all q_k 's together. Let $\mathfrak{G}(x)$ be the closed linear span of $\{q_k(x)\}_{k=1}^{\infty}$ in \mathfrak{h} . Then $\mathfrak{G}(x)$ is defined a.e. We conclude that

(i) ⁽ⁱ⁾ is measurable

(ii) $\mathfrak{M} = \{ f \in L^2_{\mathfrak{h}}; f(x) \in \mathfrak{G}(x) \text{ a.e.} \}$.

We shall refer to Srinivasan [3] for the details of the proof of Theorem 2.

Let \mathfrak{M} be a closed subspace of $L_{\mathfrak{h}}^2$. The range function \mathfrak{G} associated with the smallest doubly invariant subspace containing \mathfrak{M} , we shall call the range function of \mathfrak{M} .

PROPOSITION 3. Let \mathfrak{M} be a closed subspace of $L^2_{\mathfrak{h}}$, and let \mathfrak{G} be the range function of \mathfrak{M} , then

$$\mathfrak{G}(x) \subset [\{f(x); f \in \mathfrak{M}, \|f(x)\|_{\mathfrak{h}} < \infty\}]_{\mathfrak{h}} \quad \text{a.e.}$$

where $[]_{\mathfrak{h}}$ denotes the closed linear span in \mathfrak{h} .

PROOF. Let $\mathfrak{M}_{-\infty}$ be the smallest doubly invariant subspace containing $\mathfrak{M}.$ Then

$$\mathfrak{M}_{-\infty} = \{ f \in L^{2}_{\mathfrak{h}}; f(x) \in \mathfrak{G}(x) \quad \text{a.e.} \}$$

by Theorem 2. Now we define $\mathfrak{S}(x) = [\{f(x); f \in \mathfrak{M}, ||f(x)||_{\mathfrak{h}} < \infty\}]_{\mathfrak{h}}$. Clearly $\mathfrak{S}(x) \supset \mathfrak{G}(x)$ a.e. Indeed, there exist $q_k \in \mathfrak{M}_{-\infty}$ such that $\mathfrak{G}(x) = [\{q_k(x)\}_{k=1}^{\infty}]_{\mathfrak{h}}$ a.e. by the construction of \mathfrak{G} (See Srinivasan [3]). Hence

$$\mathfrak{G}(x) \subset [\{f(x); f \in \mathfrak{M}_{-\infty}; \|f(x)\|_{\mathfrak{h}} < \infty\}]_{\mathfrak{h}} \quad \text{a.e.}$$

Since $[(A + \overline{A}_0)\mathfrak{M}]_2 = \mathfrak{M}_{-\infty}$, we have

$$[\{f(x); f \in \mathfrak{M}_{-\infty}; \|f(x)\|_{\mathfrak{h}} < \infty\}]_{\mathfrak{h}} = \mathfrak{S}(x) \quad \text{a.e.}$$

we conclude $\mathfrak{G}(x) \subset \mathfrak{S}(x)$ a.e.

LEMMA 4. We put $Z(f) = \{x \in X; f(x)=0\}$ and $K = \bigcap_{f \in A_0} Z(f)$, then m(K) = 0.

PROOF. Suppose m(K) > 0. We take a measurable set E such that E contains K and put $\mathfrak{M} = C_E \cdot L^2(dm)$ (where C_E denotes the characteristic function of E), then \mathfrak{M} is a doubly invariant subspace in $L^2(dm)$. Hence $[A_0\mathfrak{M}]_2 = \mathfrak{M}$. Thus any $f \in \mathfrak{M}$ vanishes on $E^c \cup K$. We conclude that

$$\mathfrak{M} \subset C_{E \cap K} cL^2 = C_{E-K} L^2 = \mathfrak{M}$$

which is a contradiction.

PROPOSITION 5. Let \mathfrak{M} be a closed subspace of L^2 , then \mathfrak{S} associated with \mathfrak{M} in the proof of Proposition 3 coincides with that of $[A_0\mathfrak{M}]_2$ a.e.

PROOF. The assertion follows from Lemma 4.

PROOF OF THEOREM 1 (the case of p=2). Let \mathfrak{M}_{∞} be the largest doubly invariant subspace which is contained in \mathfrak{M} and let $\mathfrak{M}_{-\infty}$ be the smallest doubly invariant subspace containing \mathfrak{M} . Clearly $L_{\mathfrak{g}}^{2} \supset \mathfrak{M}_{-\infty} \xrightarrow{\sim} \mathfrak{M} \xrightarrow{\sim} \mathfrak{M}_{\infty} \supset \{0\}$. We put $\mathfrak{N} = \mathfrak{M} \ominus \mathfrak{M}_{\infty}$.

(i) Since \mathfrak{M} is simply invariant, it is easy to see that \mathfrak{N} is simply invariant.

- (ii) From the maximality \mathfrak{M}_{∞} , it follows $\mathfrak{N}_{\infty} = \{0\}$.
- (iii) By Theorem 2, $\mathfrak{M}_{\infty} = \widehat{\mathfrak{GL}}_{\mathfrak{h}}^2$ for some measurable range function \mathfrak{G} .
- (vi) If $f \in \mathfrak{N}, g \in \mathfrak{M}_{\infty}$, then $f \perp \xi g$ for all $\xi \in A + \overline{A}_0$.

Hence

$$\int (f(x), g(x))_{\flat} \overline{\xi}(x) dm(x) = 0 \quad (\forall \xi \in A + \overline{A}_{\mathfrak{o}})$$

and so (f(x), g(x))=0 a.e. on X. We have $f(x)\perp \mathfrak{G}(x)$ a.e. and the range of \mathfrak{N} is perpendicular to \mathfrak{G} a.e.

(v) Let $\mathfrak{N} \ominus [A\mathfrak{N}]_2 = R_0$ By the invariance of \mathfrak{N} and the closedness of \mathfrak{N} , $[AR_0]_2 \subset \mathfrak{N}$. Let $g \in \mathfrak{N} \ominus [AR_0]_2$. Then

$$0 = \int (g, \xi q) dm = \int \overline{\xi}(g, q) dm \qquad (\forall \xi \in A, q \in R_0).$$

Also since $A_0g \subset [A_0\mathfrak{R}]_2 \perp R_0$, we have

$$0 = \int (\eta g, q) dm = \int \eta(g, q) dm \qquad (\forall \eta \in A_0, q \in R_0)$$
$$0 = \int \xi(g, q) dm \qquad (\forall \xi \in A_0 + \overline{A}, q \in R_0),$$

So

and (g(x), q(x))=0 a.e. on X for any $q \in R_0$. We conclude that g(x) is orthogonal to the range function of R_0 a.e. Now the range function of $R_0 = \mathfrak{N} \bigoplus [A_0 \mathfrak{N}]_2$ coincides with that of \mathfrak{N} . Indeed $(R_0)_{-\infty} = \mathfrak{N}_{-\infty} \bigoplus ([A_0 \mathfrak{N}]_2)_{\infty}$ and $\mathfrak{N}_{\infty} = \{0\}$ by (ii). Hence g(x) is orthogonal a.e. to the range function of \mathfrak{N} . But $g \in \mathfrak{N}$, we have g=0 a.e. It follows that $\mathfrak{N} = [AR_0]_2$.

(vi) If $u, v \in R_0$ and $\int (u, v)dm = c$, then (u(x), v(x)) = c a.e. Indeed since $R_0 = \Re \bigoplus [A_0 \Re]_2$,

$$\int \xi(u,v)dm = 0 \qquad (\forall \xi \in A_0)$$

Let $f \in A$, then $f - \int f dm \in A_0$, and by the above formula,

$$\int f \cdot (u, v) dm = c \cdot \int f dm.$$

Hence $\int f\{(u,v)-c\}dm=0$ for all $f \in A$. Similarly we have $\int \overline{\eta}\{(u,v)-c\}dm=0$ for all $\eta \in A_0$. Thus

$$\int f \cdot \{(u, v) - c\} dm = 0 \qquad (f \in A + \overline{A}_0).$$

We conclude that (u(v),v(x))=c a.e.

(vii) Now we regard R_0 as a Hilbert space and denote it by \mathfrak{h}_1 , abstractly. Let U the operator which maps u of \mathfrak{h}_1 to u of R_0 by considering u as an element of R_0 . (Essentially U is the identity operator.) Extend U to an operator of $L^2(dm) \otimes \mathfrak{h}_1$ by setting

$$U\left(\sum_{j=1}^{N} f_{j} \otimes u_{j}\right)(x) = \sum_{j=1}^{N} f_{j}(x)u_{j}(x).$$

The extended operator U is an isometry of $L^2 \otimes \mathfrak{h}_1$ into $L^2_{\mathfrak{h}}$. Indeed in the expression of $\sum_{j=1}^{N} f_j \otimes u_j$ we may consider that $(u_i, u_j) = \delta_{ij}$ by the definition of tensor products. Thus by (vi) we have

$$\left\| \sum_{j=1}^{N} f_{j} \otimes u_{j} \right\|_{L^{\frac{N}{2}}}^{2} = \sum_{j=1}^{N} \int |f_{j}|^{2} (u_{j}, u_{j})_{\mathfrak{h}, l} dm = \sum_{j=1}^{N} \int |f_{j}|^{2} dm$$
$$= \sum_{i, j=1}^{N} \int f_{j}(x) \bar{f}_{i}(x) (u_{j}(x), u_{i}(x))_{\mathfrak{h}} dm = \int \left\| \sum_{j=1}^{N} f_{j}(x) u_{j}(x) \right\|_{\mathfrak{h}} dm$$
$$= \left\| \sum_{j=1}^{N} f_{j}(x) u_{j}(x) \right\|_{L^{\frac{2}{3}}}$$

373

Hence U has a unique extension to an isometry of $L^2_{\mathfrak{h}}$ into $L^2_{\mathfrak{h}}$. We also denote this extended isometry by U.

(viii) $UH_{\zeta_1}^2 = [AR_0]_2 = \mathfrak{N}$. Because if $A \otimes \mathfrak{h}_1 \ni f = \sum_{j=1}^N f_j \otimes u_j$, then by the

definition of U

$$U(f)(x) = \sum_{j=1}^{N} f_j(x) u_j(x) \in [AR_0]_2.$$

Therefore $UH_{\mathfrak{h}_1}^2 \subset [AR_0]_2$. On the other hand, for $h=Fg \in AR_0(F \in A, g \in R_0)$, we put $f=F \otimes g$, then $f \in H_{\mathfrak{h}_1}^2$ and U(f)=h. Hence $[AR_0]_2 \subset UH_{\mathfrak{h}_1}^2$.

(ix) For $x \in X$, we define an operator U(x) of \mathfrak{h}_1 into \mathfrak{h} by U(x)u=u(x) for $u \in \mathfrak{h}_1=R_0 \subset L^2\mathfrak{h}$. It is easy to see that for almost all $x \in X$, this operator U(x) is measurable and isometric. Now we have that for all $F \in L^2\mathfrak{h}$,

$$(UF)(x) = \boldsymbol{U}(\boldsymbol{x}) F(x).$$

Indeed this holds for constant functions by definition, and for $F \in (A + \overline{A_0}) \otimes \mathfrak{h}_1$ because the construction of U. Finally the formula holds on all of $L^2_{\mathfrak{h}_1}$ by continuity. This clompletes the proof for the case of p=2.

LEMMA 6. Let $1 \leq p < 2$ and 1/r+1/2=1/p. If $f \in L_{\mathfrak{h}}^p$ and $f \notin [A_0f]_p$, then f=Fh where $h \in H^2$ is outer^(*) and $F \in [fA]_p \cap L_{\mathfrak{h}}^r$.

PROOF. We put that

$$egin{aligned} &f_1(x) = \|f(x)\|_{\mathfrak{h}^{p/2}}^p \ &f_2(x) = \left\{egin{aligned} 0 & ext{if} \ f_1(x) = 0 \ & \ rac{f(x)}{f_1(x)} & ext{if} \ f_1(x){
eq} 0 \end{aligned}
ight. \end{aligned}$$

Then $f_1 \in L^2$, $f_2 \in L_{\mathbb{R}}^r$, $f = f_1 f_2$ and $f_1 \notin [f_1 A_0]_2$. Hence by the factorization Lemma of the scalar case, we have $f_1 = qh$ where $q \in [f_1 A]_2$ is unitary and $h \in H^2$ is outer. Define $F = qf_2$, then $F \in L_{\mathbb{P}}^r$ and $F \in [fA]_p$. (See[4]).

Let $\{e_n\}_{n=1}^{\infty}$ be some fixed c.n.o.s. for \mathfrak{h} . We define $f = \sum_{n=1}^{\infty} f_n \otimes e_n$ by f(x)

^(*) A function $h \in H^3$ is said to be outer if $[hA]_2 = H^3$. For the details of the scalar case, see Srinivasan and Wang [4].

 $=\sum_{n=1}^{\infty}f_n(x)e_n$ in the algebraic sense.

LEMMA 7. Let
$$1 \leq p \leq \infty$$
.
(i) If $f \in L_{\mathfrak{h}}^{p}$, then $f = \sum_{n=1}^{\infty} f_{n} \otimes e_{n}$, $f_{n} \in L^{p}$
(ii) If $f \in A_{\mathfrak{h}}$, then $f = \sum_{n=1}^{\infty} f_{n} \otimes e_{n}$, $f_{n} \in A$
(iii) If $f \in H_{\mathfrak{h}}^{p}$, then $f = \sum_{n=1}^{\infty} f_{n} \otimes e_{n}$, $f_{n} \in H^{p}$, in particular,
if $f = \sum_{n=1}^{\infty} f_{n} \otimes e_{n}$, $f_{n} \in H^{2}$ and $\sum_{n=1}^{\infty} |f_{n}|^{2} dm < \infty$, then $f \in H_{\mathfrak{h}}^{2}$.

PROOF. (i) is trivial. We shall prove (ii). If $g \in A \otimes \mathfrak{h}$, then $g = \sum_{j=1}^{N} f'_{j} \otimes u_{j}$ $(f'_{j} \in A, u_{j} \in \mathfrak{h}(j=1, 2, \dots, N))$. If we express u_{j} as $u_{j} = \sum_{n=1}^{\infty} \alpha_{n}^{(j)} e_{n}$, then

$$g(x) = \sum_{j=1}^{N} f'_{j}(x) \sum_{n=1}^{\infty} \alpha_{n}^{(i)} e_{n} = \sum_{n=1}^{\infty} \left\{ \sum_{j=1}^{N} \alpha_{n}^{(j)} f'_{j}(x) \right\} e_{n}.$$

Since $f_n = \sum_{j=1}^{N} \alpha_n^{(j)} f'_j \in A$, g has the expression $g = \sum_{n=1}^{\infty} f_n \otimes e_n$, $f_n \in A$. Now for $f \in A_{\mathfrak{H}}$, there exist $g_i = \sum_{n=1}^{\infty} g_n^{(j)} \otimes e_n \in A \otimes \mathfrak{H}$ such that $g_i \to f(\text{unif.})$. If we put $f = \sum_{n=1}^{\infty} f_n \otimes e_n$, $f_n \in L^2$ then

$$\|f(x) - g_i(x)\|_{\mathfrak{h}}^2 = \sum_{n=1}^{\infty} |f_n(x) - g_n^{(i)}(x)|^2 \ge |f_n(x) - g_n^{(i)}(x)|^2 \quad (n = 1, 2, \cdots)$$

It follows that $f_n \in A$. The proof of (iii) is similar and the last assertion follows from Lemma 8.

LEMMA 8. Let $1 \leq p < \infty$. $H^p_{\mathfrak{h}} = [H^p \otimes \mathfrak{h}]_p$.

PROOF. $H^p_{\mathfrak{g}} \subset [H^p \otimes \mathfrak{h}]_p$ is clear. Conversely, if $f \in H^p \otimes \mathfrak{h}, f = \sum_{j=1}^N f_j \otimes u_j$ then for any $\mathfrak{E} > 0$, there exists $g_j \in A$ such that $\|f_j - g_j\|_p < \mathfrak{E}$. We have that

 $g_j \otimes u_j \in A_{\mathfrak{h}}^p$ and $||g_j \otimes u_j - f_j \otimes u_j||_p < \mathcal{E}||u_j|| \ (j = 1, 2, \cdots, N)$. Therefore $f_j \otimes u_j \in [A_{\mathfrak{h}}]_p (j = 1, 2, \cdots, N)$. Hence $\sum_{j=1}^N f_j \otimes u_j \subset [A_j]_p$ and $H^p \otimes \mathfrak{h} \subset H_{\mathfrak{h}}^p$. Thus $[H^p \otimes \mathfrak{h}]_p \subset H_{\mathfrak{h}}^p$.

LEMMA 9. Let $1 \leq p \leq \infty$. Then

$$H^{p}_{\mathfrak{h}} = \{ f \in L^{p}_{\mathfrak{h}}; \int (f, \overline{g}) dm = 0 \ (\forall g \in A_{\mathfrak{h}, \mathfrak{0}}) \},\$$

where $A_{\mathfrak{h},\mathfrak{0}}$ is defined by $A_{\mathfrak{0}} \otimes_{\lambda} \mathfrak{h}$.

PROOF. Let
$$f \in A_{\mathfrak{h}}, f = \sum_{n=1}^{\infty} f_n \otimes e_n (f_n \in A, n=1, 2, \cdots)$$
 and let $g \in A_{\mathfrak{h},\mathfrak{o}}$ g
= $\sum_{n=1}^{\infty} g_n \otimes e_n, (g_n \in A_0; n=1, 2, \cdots)$. Then we have
 $\int (f, \overline{g}) dm = \sum_{n=1}^{\infty} \int f_n g_n dm = \sum_{n=1}^{\infty} \int f_n dm \int g_n dm = 0.$

From this, it is easy to see that $\int (f, \overline{g}) dm = 0$ for $f \in H_{\mathfrak{h}}^{p}$. Let p=2. We take $f \in L_{\mathfrak{h}}^{2}$ such that $\int (f, \overline{g}) dm = 0$ for all $g \in A_{\mathfrak{h},0}$. We put $f = \sum_{n=1}^{\infty} f_n \otimes e_n$, $f_n \in L^2$, then we have $\sum_{n=1}^{\infty} \int |f_n|^2 dm = \int ||f||_{\mathfrak{h}}^2 dm < \infty$. Since $\xi \otimes e_n \in A_{\mathfrak{h},0}$ for all $\xi \in A_0$, $0 = \int (f, \overline{\xi} \otimes e_n) dm = \int f_n \xi dm (n=1, 2, \cdots)$.

Hence $f_n \in H^2$ and by Lemma 7 (iii), $f \in H^2_{\mathfrak{h}}$. Next let p=1. Take $f \in L^1_{\mathfrak{h}}$ such that $\int (f, \overline{g}) dm = 0$ for all $g \in A_{\mathfrak{h}, \mathfrak{0}}$. We may assume that $f \notin [fA_{\mathfrak{0}}]_{\mathfrak{l}}$. From Lemma 6, it follows that f=Fh where $F \in [fA]_{\mathfrak{l}} \cap L^2_{\mathfrak{h}}$ and $h \in H^2$ is outer. There exist $\xi_{\alpha} \in A$ such that $\xi_{\alpha} f \to F$ in $L^1_{\mathfrak{h}}$. Therefore for all $g \in A_{\mathfrak{h}, \mathfrak{0}}$, we have

$$\int (\xi_{\alpha}f,\bar{g})dm = \int (f,g\bar{\xi}_{\alpha})dm = 0.$$

Hence $\int (F, \overline{g}) dm = 0$ ($\forall g \in A_{\mathfrak{h}, \mathfrak{0}}$). By the case of p=2, it follows that $F \in H_{\mathfrak{h}}^{\mathbf{2}}$.

Now,

$$f = Fh \in H^2_{\mathfrak{g}} \cdot H^2 \subset H^1_{\mathfrak{g}}$$
.

The case of $p=\infty$ follows immediately from the definition of H_b° and the above case. For the other case we shall show $H_b^p = H_b^1 \cap L_b^p$, then the proof will be complete. Let $1 . For <math>f \in H_b^1 \cap L_b^p$, we may assume $f \notin [fA_0]_p$ and by Lemma 6, one have f=Fh where $F \in [fA]_p \cap L_b^r$ and $h \in H^2$ is outer. Since r > 2, $F \in L_b^2$ and since $f \in H_b^1$, $F \in [fA]_p \subset H_b^1$. Therefore $F \in H_b^1 \cap L_b^2 = H_b^2 \subset H_b^p$ (p < 2!). Hence $f = Fh \in FH^2 = F[A]_2 \subset [FA]_p \subset H_b^p$. Thus $H_b^p \supset H_b^1 \cap L_b^p$. The converse is trivial. Let 2 . We put <math>1/p + 1/q = 1. In this case again $H_b^p \subset H_b^1 \cap L_b^p$ is clear, and suffices to show that if $H_b^p \perp g \in L_b^q$, then $g \perp H_b^1 \cap L_b^p$. By the case of p=1, it follows that $\overline{g} \in H_{b,0}^1 \cap L_b^q = H_{b,0}^q$. So there exist $g_n \in A_{b0}$, such that $g_n \to \overline{g}$ in L_b^q . Hence

$$0 = \int (h, \overline{g}_n) dm \to \int (h, g) dm$$

for all $h \in H^1_{\mathfrak{h}} \cap L^p_{\mathfrak{h}}$. So the proof is completed.

PROOF OF THEOREM 1 (the case of $1 \leq p < 2$). Put $\mathfrak{N} = L_{\mathfrak{h}}^2 \cap \mathfrak{M}$. It is clear that \mathfrak{N} is $L_{\mathfrak{h}}^2$ -closed subspace and $[A_0\mathfrak{N}]_2 \subset \mathfrak{N}$. We wish to show that \mathfrak{N} is simply invariant. As \mathfrak{M} is simply invariant, there exists an $f \neq 0$ shch that $f \in \mathfrak{M}$ $-[A_0\mathfrak{M}]_p$. So $f \notin [fA_0]_p$, and by lemma 6, f = Fh where $h \in H^2$ is outer and $F \in [fA]_p \cap L_{\mathfrak{h}}^r \subset \mathfrak{M} \cap L_{\mathfrak{h}}^2 = \mathfrak{N}$. Also $F \notin [\mathfrak{N}A_0]_2$, since $f \notin [\mathfrak{M}A_0]_p$. Thus \mathfrak{N} is simply invariant and by the case of p=2, we have

$$\mathfrak{N} = \boldsymbol{U} \cdot H^2_{\mathfrak{y}_1} \oplus \widehat{\mathfrak{G}} L^2_{\mathfrak{y}}.$$

Now $\mathfrak{M} \supset U \cdot H^p_{\mathfrak{h}} \oplus \widehat{\mathfrak{G}}L^p_{\mathfrak{h}}$ is trivial. To see the reverse inclusion, let $f \in \mathfrak{M} - [\mathfrak{M}A_{\mathfrak{o}}]_p$, $f \approx 0$. Then already we have f = Fh where $h \in H^2$ is outer and $F \in [fA]_p \cap L^r_{\mathfrak{h}}$. It follows that

$$f = Fh \in F[A]_2 \subset [FA]_p \subset [\mathfrak{F}A]_p \subset [\mathfrak{F}A]_p \subset [\mathfrak{N}]_p = U \cdot H^p_{\mathfrak{h}_1} \oplus \mathfrak{S}L^p_{\mathfrak{h}_2}.$$

~

Thus $\mathfrak{M}-[\mathfrak{M}A_0]_p \subset U \cdot H^p_{\mathfrak{h}} \oplus \widehat{\mathfrak{S}}L^p_{\mathfrak{h}}$. The algebraic sum

$$[\mathfrak{M} - \mathfrak{M} A_0]_p\} + [\mathfrak{M} A_0]_p \subset \mathfrak{M} - [\mathfrak{M} A_0]_p$$

shows that $[\mathfrak{M}A_0]_p \subset U \cdot H^p_{\mathfrak{h}} \oplus \mathfrak{H}L^p_{\mathfrak{h}}$. We get that

$$\mathfrak{M} = \{\mathfrak{M} - [\mathfrak{M}A_{\mathfrak{o}}]_p\} \cup [\mathfrak{M}A_{\mathfrak{o}}]_p \subset \boldsymbol{U} \cdot H^p_{\mathfrak{h}} \oplus \mathfrak{G}L^p_{\mathfrak{h}}$$

(the case of 2) Put <math>1/p+1/q=1. We define \mathfrak{N} by $[\mathfrak{M}A_0]_p^{\perp} = \{f \in L_p^q; \int (f, \overline{g}) dm = 0, (\forall g \in [\mathfrak{M}A_0]_p)\}$, then it is easy to check that \mathfrak{N} is a simply invariant subspace of L_p^q . By the case of $1 \leq p < 2$, we have

$$\mathfrak{N} = \boldsymbol{U} \cdot H^{q}_{\mathfrak{h}_{1}} \oplus \mathfrak{G}^{\prime} L^{q}_{\mathfrak{h}}.$$

So $[A_0\mathfrak{M}]_p = U \cdot H^p_{\mathfrak{h},0} \oplus \widehat{\mathfrak{G}}L^p_{\mathfrak{h}}$, and $\mathfrak{M} \supset U \cdot H^p_{\mathfrak{h},1} \oplus \widehat{\mathfrak{G}}L^p_{\mathfrak{h}}$. Now for $f \in \mathfrak{M}$, put

$$F_1 = \widehat{\mathfrak{G}} \widehat{\bot} f, \qquad F_2 = \widehat{\mathfrak{G}} \widehat{f}.$$

We shall show that $F_1 \in U \cdot H_{\mathfrak{h}_1}^p$. For $f = F_1 + F_2$, we have $\xi f = \xi F_1 + \xi F_2$ and $\xi f \in [\mathfrak{M}A_0]_p$ for all $\xi \in A_0$. But $\xi F_2 \in \widehat{\mathfrak{G}}L_{\mathfrak{h}}^p$, so $\xi F_1 \in U \cdot H_{\mathfrak{h}_0}^p$. Let $\mathfrak{S} = U^*F_1$. For fixed $g \in A_{\mathfrak{h}_1,0}$,

$$\int \xi(\Theta, \overline{g}) dm = \int (U^* \xi F_1, \overline{g}) dm = 0 \qquad (\forall \xi \in A).$$

Because, for $g = \sum_{j=1}^{n} g_j \otimes u_j \in A_0 \otimes \mathfrak{h}_1$, we get

$$\int (\boldsymbol{U}^* \boldsymbol{\xi} F_1, \boldsymbol{\overline{g}}) d\boldsymbol{m} = \sum_{j=1}^N \int (g_j \boldsymbol{\xi} F_1, \boldsymbol{U} \boldsymbol{u}_j) d\boldsymbol{m} = 0$$

by Lemma 9. We conclude that for each $g \in A_{\mathfrak{h}_{1,0}}$, $(\Theta, \overline{g}) \in H^p_0(dm)$ as a scalar function. Thus

$$\int (\Theta, \,\overline{g}) dm = 0 \qquad (\forall g \in A_{\mathfrak{h}_{1,0}}) \,.$$

Hence $\Theta \in H^p_{\mathfrak{h}}$, so $UU^*F_1 \in U \cdot H^p_{\mathfrak{h}}$. Since $F_1(x)$ is contained in the range of $U(x), UU^*F_1 = F_1$ and $F_1 \in U \cdot H^p_{\mathfrak{h}}$.

The following theorem is a generalization of Theorem 6 of Srinivasan [3] for a general Dirichlet algebra.

THEOREM 10. A measurable range function \mathfrak{G} is of constant dimension a.e. if and only if it is the range function of a simply invariant subspace \mathfrak{M} such that $\mathfrak{M}_{\infty} = \{0\}$.

PROOF. The sufficiency follows from Theorem 1. We shall show the

necessity. Since \mathfrak{G} is of constant dimension, there exist $q_k \in L^2_{\mathfrak{h}}(k=1, 2, \cdots)$ such that $\{q_k(x)\}$ is a c.n.o.s. of $\mathfrak{G}(x)$ a.e. (Srinivasan [3], Theorem 5). We put $\mathfrak{M} = [\{Aq_k; k=1, 2, \cdots\}]_2$ and let $f \in \mathfrak{M}$. Then f has the expression

$$f=\sum_{k=1}^{\infty}f_kq_k,\;f_k\in H^2,\;\sum_{k=1}^{\infty}\int|f_k|^2dm<\infty$$

Now $f = \sum_{k=1}^{\infty} f_k C_{E_k} \otimes e_k$. For $n=1, 2, \dots, e_n - q_n \perp [\{(A + \overline{A})q_k\}_{k=1}^{\infty}]_2 \supset \mathfrak{M}$ by the construction of q_k (see [3]). So for all $g \in A_0$,

$$0 = \int (f, \overline{g}(e_n - q_n)) dm = \int f_n C_{E_n} g dm - \int f_n g dm$$
$$= \int f_n C_{E_n} g dm - \int f_n dm \int g dm = \int f_n C_{E_n} g dm.$$

Thus $\int f_n C_{E_n} g dm = 0$ for all $g \in A_0$ and $n = 1, 2, \dots$, and so $f_n C_{E_n} \in H^2$. Of course, $\sum_{n=1}^{\infty} \int |f_n C_{E_n}|^2 dm < \infty$, and $f \in H^2_0$ by Lemma 7. Therefore $\mathfrak{M} \subset H^2_0$ and $\mathfrak{M}_{\infty} = \{0\}$.

REFERENCES

- M. HASUMI AND T. P. SRINIVASAN, Doubly invariant subspaces II, Pacific Journ. Math., 14(1964), 525–535.
- [2] H. HELSON, Lectures on Invariant Subspaces, Academic Press, 1964.
- [3] T. P. SRINIVASAN, Doubly invariant subspaces, Pacific Journ. Math., 14(1964), 691-697.
- [4] T. P. SRINIVASAN AND J.-K. WANG, Weak* Dirichlet algebras, Proc. Tulane Symposium on Function Algebras, 1966, 216-249.
 - The College of General Education Tôhoku University, Sendai, japan.