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SIMPLY INVARIANT SUBSPACES

YOSHIKI O H N O

(Received June 20,1967)

Our subject is a theorem on simply invariant subspaces of Lff, the usual
Lp-space taking values in a Hilbert space £). Let X be a compact Hausdorff
space and A a Dirichlet algebra on X. We shall fix a non-negative finite Borel
measure m on X such that

/ >jfdm (ft A)

defines a multiplicative linear functional on A. Define Ao to be the set

A0={fzA; ffdm = 0} .

Let f) be a separable Hilbert space and let LfJ (1 ^ p ^ co) denote the space
of §-valued functions on X which are weakly measurable and whose norms
are in scalar Lp(dm). L\ is a Hilbert space for the inner product

if, 9)=

where the inner product on the right is the one in i). We define A^ by
the completion of the algebraic tensor product A<S>fy under the uniform norm
in C(X, I}) (the space of all i)-valued continuous functions on X). For 11^ p<°°
we define H\ by

the closure of At> in Z/fJ and we define H$ by

H™ = Hi) n Z/̂ T.
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We write Hp instead of H% in the case of Ij = C. Call © a range function if @
is a function on X a.e.(Jm) to the family of closed subspaces of fy. Two range
functions which agree a.e. are regarded as the same function. @ is measurable
if the orthogonal projection G(x) on Gb(x) is weakly measurable in the operator

sense. We shall denote by © the operator on L\ defined by (&f)(x)
= G(x)f (x) a.e. Say that a subspace 9JI of L\ is doubly invariant if

(i) 9JJ is closed in h\ if 1 :g/><oo and weak*~closed if p = oo .
(ii) 9JJ is invariant under multiplication by functions in A + A 0

(where the bar denotes complex conjugation). Say that a subspace 9K of LfJ is
simply invariant if it satisfies (i) above and

(u) mA0]2^m

where [ ]2 denotes the Z^-closure. The purpose of this paper is to prove
the following theorem.

THEOREM 1. The simply invariant subspaces SO? of L|J(1 ^ p^ °°) are
precisely the subspaces of the form

where © is a measurable range function, and U is a measurable operator
function whose values are isometries of an auxiliary Hilbert space i)i into
fy with range perpendicular to © a.e.

For the circle | ^ | = 1 , this theorem was proved in Helson [2] for p=2.
The analogous theorem for doubly invariant subspaces was proved in Srinivasan
[3] and Hasumi and Srinivasan [1]. Our discussion was suggested by that of
Helson [2]. We first give a proof of the theorem for the case of p—2 and
for general case apply the interpolation method of Srinivasan and Wang [4].

THEOREM 2. Every doubly invariant subspace 9J{ of Li,(l t=k ptSi °°) is

of the form @LJJ for some measurable range fuaction ©; 9Ji determines ©
uniquely.

S K E T C H OF T H E P R O O F FOR T H E CASE OF p=2. Let {^}r=i be
some fixed c.n.o.s. for fj and qk be the projection of the constant function
ek on 9JL Each qk is defined a.e. on X and all qk 's together. Let © (x) be the
closed linear span of {qk(x)}ZLi i n fj- Then ®(x) is defined a.e. We conclude
that

(i) © is measurable
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(ii) 2R= {/€ Ll;f(x) e ®(x) a.e.) .
We shall refer to Srinivasan [3] for the details of the proof of Theorem 2.

Let 2J2 be a closed subspace of L\. The range function. © associated with
the smallest doubly invariant subspace containing 9Jf, we shall call the range
function of 2ft.

PROPOSITION 3. Let Wbe a closed subspace of L\, and let © be the
range function of 90?, then

);fzm,\\f(x)%<<~}^ a.e.

where [ ]t, denotes the closed linear span in f).

PROOF. Let SJL^ be the smallest doubly invariant subspace containing
2R. Then

SW_« = 1/€ L\; f(x) 6 ®(a:) a.e.}

by Theorem 2. Now we define <S(x)=[{f(x); / € 9K, j|/(^)||f, <oo}]s. Clearly
@(J:)D©(J;) a.e. Indeed, there exist ^ e 50J_M such that %{x) = [{q^x)}^
a.e. by the construction of © (See Srinivasan [3]). Hence

; / e att_. ; !!/0r)||^ < 00} ], a.e.

Since [(A+A0)9JJ]2=9K_«,, we have

; / € SK.. ; ||/(x)|U < °°}]* = @(^) a.e.

we conclude (3(x)<zS(x) a.e.

LEMMA 4. W^ put Z(J)={x€X;f(x) = 0} and K= (^\ Z(J), then m(K)
fzAo

= 0.

PROOF. Suppose m(K) > 0. We take a measurable set E such that E
contains K and put ^H — CE'U{dm) (where CE denotes the characteristic
function of E), then W is a doubly invariant subspace in U(dm). Hence
[Aoatt]2 = 9W. Thus any fzW vanishes on Ec\jK. We conclude that

wiccEnKcL2 = cE.K

which is a contradiction.
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PROPOSITION 5. Let 3R be a closed subspace of L2, then @ associated
with 3R in the proof of Proposition 3 coincides with that of [A$fl\2 a.e.

PROOF. The assertion follows from Lemma 4.

PROOF OF THEOREM 1 (the case of p=2). Let SDL be the largest doubly
invariant subspace which is contained in 9JJ and let 9K_OO be the smallest doubly
invariant subspace containing W. Clearly LjD5K_c^2tt=jE2Roo =>{0}. We put

( i ) Since ffll is simply invariant, it is easy to see that 31 is simply
invariant.

(ii) From the maximality 9JL, it follows !JL = {0}.
(iii) By Theorem 2, 3ROQ = @>L?) for some measurable range function ©.

(vi) If / € 31, g e 9JL, then f±%g for all % z A+Ao.
Hence

J = 0 (VH A+Ao

and so (f(x), g(x)) = 0 a.e. on X We have /(.x)_L©(.z) a.e. and the range of -Jt is
perpendicular to © a.e.

(v) Let 9fJ0[A9fl]2=-Ro By the invariance of 91 and the closedness of %
[AR0]2(i3l. Let g z ^©[Ai?0]2. Then

0 = / (flf, fr)dm = JfCflf, q)dm (M^Aqe Ro).

Also since Aog(Z[Ao9l]2±Ro, we have

0 = J (rjg, q)dm= J rj(g, q)dm (\/v z Ao, q e 2?0).

So - 0 = 1 " %(g, q)dm (\/£zA0 + A,qz Ro),

and (g(x),q(x)) = 0 a.e. on X for any q e RQ. We conclude that g(x) is
orthogonal to the range function of Ro a.e. Now the range function of
R0 = ̂ lQ[A0yi]2 coincides with that of 31. Indeed (i?0)-oo = ^-oO9([A0^]2)oo and
g^mlO] by (ii). Hence g(x) is orthogonal a.e. to the range function of 31, But
gz% we have g = 0 a.e. It follows that 3l = [AR0]%.
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(vi) If u,veR0 and J (u,v)dm = c, then (u(x),v(x)) = c a.e. Indeed since

Let fz A, then /— / fdm <= Ao, and by the above formula,

/ /•(#, v)dm = c* I fdm.

Hence I f{(u,v) — c}dm = 0 for all /<= A. Similarly we have I rj{(u,v) — c

= 0 for all 77 € Ao. Thus

im

We conclude that (u(v),v(x)) = c a.e.
(vii) Now we regard i?0 as a Hilbert space and denote it by t)l5

abstractly. Let U the operator which maps u of ^ to w of Ro by considering
w as an element of Ro. (Essentially U is the identity operator.) Extend U to
an operator of Uidni)®^ by setting

/ = i

The extended operator U is an isometry of L2®t)i into L|. Indeed in the

expression of ̂ Zfj^Uj we may consider that (ui,uj) = $ij by the definition of

tensor products. Thus by (vi) we have

= £ f l/j-1 2(̂ ;, « i ) » ^ = E f \f,

= E / fj(x)fi(x)(uj(x) tUiix^dm = I E //^K

E/X^
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Hence U has a unique extension to an isometry of L2^ into L2*,. We also
denote this extended isometry by U.

(viii) UHKI=[ARQ\2 = ^1. Because if A®\ ^f— YLfj®uj> then by the

definition of U

U(f)(x) = Y^ f(x)u(x) € \AR 1

Therefore UHia[AR0]2. On the other hand, for h=Fge AR0(Fz A, g z Ro),
we put f=F®g, then fz.H\x and U(f) = h. Hence [ARQLCC/H^.

(ix) For xeX, we define an operator Z7(.r) of ^ into {) by U{x)u—u{x)
for uet)1=R0<zL2i). It is easy to see that for almost all x e X, this operator
t/(x) is measurable and isometric. Now we have that for all Fe L2^,

(T7F)(r) — JT(T\ F(T)

Indeed this holds for constant functions by definition, and for F€(A+A0)®^i
because the construction of U. Finally the formula holds on all of L2^ by
continuity. This clompletes the proof for the case of p—2.

LEMMA 6. Let lSp<2 and l/r+l/2 = l/p. If f*L\ and f$[A,f\v
then f=Fh where hzH2 is outerw and Fe [fA\C\L\.

PROOF. We put that

f,(x) = \\flxW
o if Mx) = o

f(x) if f

Then fx e L2,f2 e Ll,f=f1f2 and fx K [fiA0]2. Hence by the factorization Lemma
of the scalar case, we have fi—qh where q e [fiA]2 is unitary and heH2

is outer. Define F=qf2, then Fe L\ and Fe [fA]p. (See[4]).

Let {en}n=i be some fixed c.n.o.s. for f). We define / = Ylfn®en by f(x)

(*) A function heH* is said to be outer if [hA]2=H2. For the details of the scalar case, see
Srinivasan and Wang [4].
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oo

— XI fn(x)en in the algebraic sense.
71 = 1

LEMMA 7. Let l^kp^k°°.
oo

(i) / / / € Lf, */*<?« / = E

(ii) / / / € At,, zAen / =
w = l

oo

(iii) If ft HI thenf= J2fn®en, /„€#>, »« particular,
71 = 1

PROOF, (i) is trivial. We shall prove (ii). If ge A®$, then g=

oo

'j €A,Uje f)(j=l, 2, • •', N)). If we express u} as Uj = E oCn'^, then
71 = 1

j= l n=l 7i

JV oo

Since / n = ^ oi^f) £ A, g has the expression g= ]C/n®*»>/n € -A- Now for
. 7 = 1 71 = 1

fzAij, there exist #t = X ! ^ ® ^ ^ ^ ® ^ such that gt —>/(unif.). If we put
71 = 1

/ = E fr,®en,fn € L2 then
7 1 = 1

-(j^(x)V («=1, 2, • • •)

It follows that / „ € A. The proof of (iii) is similar and the last assertion
follows from Lemma 8.

L E M M A 8. Let 1 ^

PROOF. Hlc[Hv®^~\v is clear. Conversely, if
3=1

t h e n for any £ > 0, t h e r e exists gj e A such t h a t \\fj — gj\\p < £. W e have t h a t
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jjQuj € A\ and Ig&u^f&u^ < B\u5\ ,(j=l, 2, • • •, N). Therefore f5®u5 €
N

j = l,2,---,N). Hence £/,<g)M,c[A ]p and H^®t)cH%. Thus [i^p®^]p

L E M M A 9. Let 1 ^ />^ oo.

•where A^i<s is defined by A0®xfy.

oo

PROOF. Let fzAhf= J^fn®en{fn&A,n = l,2, • • •) and let r̂sAf,,, g
71 = 1

= Z] 9n®en, (gn € Ao; w = l, 2, • • •). Then we have
n=l

I (f,9)dm= J2 \fn9ndm = £ I /.Jm ( gnd?n = 0.
J n=lJ n=lJ J

From this, it is easy to see that j (/, 'g)dm = 0 for /<= H£. Let p=2. We take

/^L2^ such thatf (f,g)dm = 0 for all ̂ ^ AM. We put / = ^£fn®en, fn$L\
J 7 1 = 1

then we have ^ / \fn\2dm= \ \f\\dm <oo. Since £®en€A$ |0 for all ^ Ao,
n = l »/ •/

0 = / (f,£®en)dm= ffn£dm(n = l, 2,. .. ) .

Hence / „ € HP and by Lemma 7 (iii), f€ H\. Next let p=l. Take / € Lj such

that I (f,~g)dm = 0 for all g e A^>0. We may assume that fK[fA0]i. From

Lemma 6, it follows that f=Fh where F^\fA\r\L\ and h^H2 is outer.
There exist %a £ A such that £«/—> F in Lj. Therefore for all (7 e. A$f0, we have

\ZJ,9)dm= f(f,g£x)dm=0.

Hence f (F,g)dm=Q (V^eAt,,0). By the case of />=2, it follows that
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Now,

The case of p= oo follows immediately from the definition of H^ and the above

case. For the other case we shall show Hl=H\c\L\, then the proof will be

complete. Let 1 < ^ > < 2 . For / ^ H j n L f , we may assume fK[fA0]p and by

Lemma 6, one have f= Fh where Fz[fA]pnLl and h £ H2 is outer. Since

r > 2, Fz L\ and since fe H\, Fz \fA\cH\. Therefore FzH\r\L\=Hl cH£

O < 2 ! ) . Hence f=Fh € FH2 =-F[A]2G[FA]poH^ Thus H^DHjnLf. The

converse is trivial. Let 2<^><oo. We put l//>+ l/q=l. In this case again

H J c JHjnLf is clear, and suffices to show that if jFJtJj-# € LJ, then ^JLH^ fiLf. By

the case of ̂ >=1, it follows that ~g € HJi0 where Hjj0 is the L^-closure of At,f0. As

1 < q < 2, by the above case, ~g £ H\tQ riLf=H?f0. So there exist #n ̂  AS0) such
that gn -*g in Lj. Hence

0= [(h,gn)dm-

for all /i £ Hj> fi Lf. So the proof is completed.

P R O O F O F T H E O R E M 1 (the case of l < / > < 2 ) . Put 3i=L\c\SSR. It is
clear that 9? is L^-closed subspace and [A09l]2c9l. We wish to show that %l is
simply invariant. As 3J? is simply invariant, there exists an /4=0 shch that fz 9JJ
-[Aom]p. So / ^ [ / A 0 ] p , and by lemma 6, f=Fh where hzH2 is outer and
^ ^ [ / A ] p n L ^ aWf\Ll = 3l. Also F^[9?A0]2, since / ^ [mA0]p. Thus $R is simply
invariant and by the case of p—2, we have

Now 2RDt/'-flJ'1©®L5 i s trivial. To see the reverse inclusion, let fz Wl-[mAQ]p,
/ ^ 0 . Then akeady we have / = Fh where hzH2 is outer and ^
It follows that

f=Fh<

Thus m-[mA0]pc:U - Hl@®Lp
9. The algebraic sum

shows that [STOA0]1,cI/".H;ie$I.f. We get that
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} U

(the case of 2 < j & ^ c o ) Put l/p+l/q=l. We defined by [3KA0]i=

{/e LjJ; I (/, g)dm-0, (\/g £ [WIA,,]^}, then it is easy to check that 9? is a

simply invariant subspace of L\. By the case of 1 :g /> < 2, we have

So [AO9K]P=f/ • H?,,0©®Lf, and
Now for / e 9K, put

\ = ©V,

We shall show that F, € U-H&. For f=F1 +F2, we have ?/=fFi + ?F, and

^/efSKAo],, for all £e Ao. But ^F2 € ®Lf, so fF, € 17VHJ,,. Let e=I7*F,. For

fixed (jr e Aj,,?0,

£(6, ff)rfm= j* (17*^,, ?)Jw=O (V? s A) .

Because, for g= J2 g^UjZ A0®§l9 we get

f (^*f^i ,g)dm= Z [ {g£F» Uu3)dm=Q

by Lemma 9. We conclude that for each g € A$lj0, (©, g) £ H%(dm) as a scalar
function. Thus

f (0, = 0

Hence © € Jf ^, so UU^Fl € U-H^. Since JF\(J:) is contained in the range of

^ =F! and Fx € 17 • Hg,.

The following theorem is a generalization of Theorem 6 of Srinivasan [3]
for a general Dirichlet algebra.

THEOREM 10. A measurable range function © is of constant dimension
a.e. if and only if it is the range function of a simply invariant subspace
m such thatmoo={0}.

PROOF. The sufficiency follows from Theorem 1. We shall show the
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necessity. Since © is of constant dimension, there exist qk £ L\(k = l, 2, • • •)

such that [qk(x)} is a c.n.o.s. of ®(x) a.e. (Srinivasan [3], Theorem 5). We

put $Jl = [{Aqk;k = l9 2, • • -}]2 and let / £ 3tt. Then / has the expression

k=l

& ® ^ . For 7i = l ,2 , . . . ,^ B «g B ±[{(A + A)gifc}r-i]» ^9K by the
A : = l

construction of qk (see [3]). So for all g e Ao,

0 = J (/, 9(en-qn))dm = J fnCEngdm - J fngdm

= J fnCEngdm - J fndm J gdm = J fnCEngdm.

Thus f fnCEngdm = 0 for all g € Ao and « = 1, 2, • • • , and so fnCEn € H 2 . Of

course, 2 ] J \fnCEn\
2dm <oo? and / € H2^ by Lemma 7. Therefore 9KcH^2 and
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