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Abstract

Few-shot segmentation (FSS) methods perform im-
age segmentation for a particular object class in a
target (query) image, using a small set of (support)
image-mask pairs. Recent deep neural network
based FSS methods leverage high-dimensional fea-
ture similarity between the foreground features of
the support images and the query image features.
In this work, we demonstrate gaps in the utiliza-
tion of this similarity information in existing meth-
ods, and present a framework - SimPropNet, to
bridge those gaps. We propose to jointly predict
the support and query masks to force the support
features to share characteristics with the query fea-
tures. We also propose to utilize similarities in the
background regions of the query and support im-
ages using a novel foreground-background atten-
tive fusion mechanism. Our method achieves state-
of-the-art results for one-shot and five-shot seg-
mentation on the PASCAL-5i dataset. The paper
includes detailed analysis and ablation studies for
the proposed improvements and quantitative com-
parisons with contemporary methods.

1 Introduction

Semantic image segmentation assigns class labels to image
pixels. It finds applications in image editing [1, 20, 21], med-
ical diagnosis [8, 13, 18], automated driving [7] etc. Super-
vised deep neural network methods such as [2, 3, 4, 5, 6, 23,
27] enable highly accurate image segmentation. However,
they work for only a small number of fixed object classes,
and require a large number of image-mask pairs for training
which are hard to manually annotate. In several practical sce-
narios, including online commerce and design, the images
may exist in a large number of sparsely populated classes
(for instance, images of products). In such cases obtaining
image-mask pairs for all possible classes to train a super-
vised method may be infeasible. Thus, segmentation meth-
ods that generalize to new classes with scant training data
are of significance. Few-shot image segmentation methods,
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Figure 1: Few-shot Image Segmentation: Broad architecture of con-
temporary methods ([24, 25, 26]). Features from the support images
(in the support mask regions) are processed to obtain a probe rep-
resentation and fused with features from the query image, and de-
coded to predict the query mask. Improving similarity propagation
between the support and query branches is the focus of this work.
The yellow mask in the diagram is a (1-shot) result from our method.

like [15, 24, 26], are class-agnostic and alleviate the need for
a large number of image-mask pairs. These methods utilize
additional images and their masks of a particular class in pre-
dicting the binary segmentation mask for a given image of the
same class. This work proposes a new few-shot segmentation
framework that seeks to alleviate a fundamental limitation in
existing techniques and significantly improves upon the state-
of-the-art.

Few-shot segmentation (FSS) methods typically take as in-
put - a query image for which the segmentation mask is re-
quired, a set of support images, and their segmentation masks
(support masks). One-shot segmentation is the extreme set-
ting where only a single support image-mask pair is avail-
able. Our method achieves state-of-the-art performance in
both one-shot and few-shot settings (about 5% and 4% gain
respectively).

Recent deep neural network based FSS methods (like [16,
24, 25, 26]) employ variations of the following broad process
(Figure 1):

1. Query and support image features are extracted using
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shared, pre-trained (on ImageNet [14]) network layers.
2. A probe representation for regions of attention in the

support image is obtained from the support features and
mask(s).

3. The attention representation is fused with the query fea-
tures.

4. The fused features are decoded to obtain the query mask.

The attention extraction and fusion modules leverage the
high-dimensional feature similarity between the query and
the support images to selectively decode the query features
to output the segmentation mask. The focus of this work is to
demonstrate gaps in the propagation of this similarity infor-
mation in existing methods and to bridge those gaps.

Experiments with two state-of-the-art methods - [16] and
[26] (see Section 3.1) reveal that FSS methods make errors in
visually similar regions, across image pair samples of iden-
tical classes. They perform poorly when support is identical
to query inputs as well. These results indicate that the class
and visual similarity information is not propagated optimally
across the support and query branches .

We predict the support mask from the support features to
endow the features with specificity with respect to the tar-
get class, which in turn aids in similarity propagation be-
tween the support and query. We also leverage the similar-
ities in the background regions of the support and query im-
ages through a background attention vector computed from
the support features and inverse mask, and fuse it with the
query features. Finally, to prevent the network from over-
fitting on training class-conditional similarities, we employ
an input channel averaging input augmentation for the query
input. With these improvements we achieve state-of-the-art
performance on PASCAL 5i dataset for both one-shot and
five-shot segmentation tasks.

The contributions of this work can be summarized as fol-
lows:

1. It highlights gaps in existing FSS methods in fully utiliz-
ing the similarity between the support and query images.

2. It introduces SimPropNet, a few-shot segmentation
framework that bridges those gaps and achieves state-of-
the-art performance on the PASCAL 5i dataset in both
1-shot and 5-shot evaluation settings. The framework
employs:

a. A dual-prediction scheme (DPr) where the query
and support masks are jointly predicted using a
shared decoder, which aids in similarity propaga-
tion between the query and support features.

b. A novel foreground-background attentive fusion
(FBAF) mechanism for utilizing cues from back-
ground feature similarities between the query and
support images.

The next section places the proposed method in the context
of previous work related to the problem.

2 Related Work

Recent methods for few-shot semantic segmentation (FSS)
build a framework for one-shot segmentation and subse-
quently construct methods to use the framework for k-shot
segmentation (k > 1). The proposed work follows the same
methodology.

As described in Section 1, most FSS methods employ a
dual branched neural network model with a support branch
and a query branch. This model was introduced by Shaban
et al. [15] where the support branch is conditioned on the
support input to predict the weights of the last layer in the
query branch which then predicts the query mask.

Rakelly et al. [12] improve upon [15] by employing a late
fusion strategy for the support mask and support feature maps
to segment the query image. Late fusion adopts a parametric
module in a two branch setting, which fuses information ex-
tracted from the support set with the features of the query
image to produce the segmentation mask. Dong and Xing [9]
combine the late fusion methodology with the idea of proto-
typical networks introduced in [19] to learn a metric space
where distances to prototypes represent class-level similar-
ity between images. Their method uses the prototypes as
guidance to fix the query set segmentation rather than obtain-
ing segmentation directly from metric learning. Zhang et al.
[25] take a different approach to late fusion. They introduce
masked average pooling (MAP) that pools support features
of the regions of interest in the support images, and fuses
them with the query features using vector cosine-similarity.
This attention map is then decoded to predict the query’s seg-
mentation maps. Building on [9], Wang et al. [24] combine
Prototypical Learning [19], and MAP [25] to incorporate the
support information into the segmentation process. Zhang et
al. [26] adopt a learnable method through an attention mech-
anism to fuse support information from multiple support ex-
amples along with iterative refinement. Their method also
uses MAP, but instead of fusing its output with the query
features using cosine-similarity, they concatenate it with the
query features and then decode the output.

These methods for few-shot segmentation depend on the
support set to produce the segmentation for the query image,
but fail to fully utilize the support information efficiently. We
present evidence for this gap in Section 3.1 and subsequently
propose SimPropNet, a few-shot segmentation framework
that seeks to bridge this gap and improve performance.

3 Method

In this section, we first establish firm ground to motivate our
work, and then elucidate the proposed method in the one-shot
segmentation setting. Subsequently, we demonstrate how we
adapt the method for k-shot segmentation setting.

3.1 Premise Validation

We first present experimental evidence validating the premise
that there are gaps in similarity propagation between the sup-
port and the query images. This argument is expressed as
follows:

1. FSS methods make errors for image regions that may not
be inherently hard to segment.

2. The regions of error in the support and query images are
class-conditionally similar.

3. Even with maximally similar support and query images,
current FSS methods are unable to produce good predic-
tions.

We conduct experiments to corroborate this argument which
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Figure 2: SimPropNet Architecture: The support and query images are encoded to Fs, Fq respectively, with pre-trained ResNet-50 layers
and a single convolutional layer (as described in [26]). The support features and the support mask are used to compute the foreground(FG)
and background(BG) MAP vectors (Zf , Zb) where µ is average pooling. They are used to compute the four attention maps Af

s ,Ab
s, Af

q ,

and Af
q (FG and BG for both support and query). The feature+attention fusion module combines (Fs, Zf , Af

s , and Ab
s) to obtain Gs, and

identically, (Fq , Zf , Af
q , and Ab

q) to obtain Gq . These fused features (Gs, Gq) are finally decoded with the atrous spatial-pyramid pooling

and convolutional layers to obtain the predicted masks M̃s and M̃q respectively.

indicates an opportunity to improve similarity sharing be-
tween the support and query images.

We also provide evidence to show that the background re-
gions of the support and query images may be similar and
could hold cues for improved segmentation of the query. The
experiments use author-provided implementations of the re-
cent state-of-the-art methods [16] and [26].

Errors by FSS versus Supervised Methods We measure
the overlap (Table 1) between the error regions of output
masks from two FSS methods ([16] and [26]) with the error
regions of masks produced by DeepLab v3+ [6] (a state-of-
the-art supervised method). The overlap between the error re-
gions for FSS methods and DeepLab v3+ is very small, while
the gap in the mean-IoU for correct predictions (DeepLab v3+
versus FSS methods) is large. This indicates that there are im-
age regions where supervised methods like DeepLab v3+ do
not fail (but FSS methods do), and that they are not charac-
teristically difficult to segment.

Similarity of mispredicted regions To determine the simi-
larity between regions of the query and support images where
[26] makes errors, we compute the Masked Average Pooling
vectors (as described in [25]) using pre-trained VGG-16 [17]
features. This is done for several pairs of images of identical
classes. for the following two regions of each image:

a. the pixels covered by the ground-truth masks (Zg), and
b. the pixels present in the regions mispredicted by the FSS

method (Ze).

Method FN Overlap FP Overlap TP Gap

CANet 18.32 9.11 23.28
AMP 10.99 19.06 39.41

Table 1: Percentage (%) error overlap between Deeplab v3+
(DLv3+) [6], and FSS Methods (CANet [26], and Adaptive Masked
Proxies (AMP) [16]). FN = False Negative (missed regions), FP =
False Positives (incorrectly predicted as part of the mask). TP Gap =
Overall gap in true prediction made by Deeplab v3+ and FSS meth-
ods. Low error overlap and high prediction gap indicates that FSS
methods make different mistakes than DLv3+.

For each image pair (A,B) of a class, the ratio of the inner-
products of the MAP vectors for the error regions and the
ground-truth mask regions - (Ze(A)·Ze(B))/Zg(A)·Zg(B)
- is a measure of the similarity of the corresponding error re-
gions relative to the similarity of the ground-truth mask re-
gions. We measure the ratio over a 1000 pairs of images from
the PASCAL VOC dataset [10] and find the average to be
0.87 (std. dev. = 0.25). The high value of relative similarity
of error regions substantiates the claim that errors are com-
mitted in regions of similarity that could have possibly been
propagated from the support to the query.

Identical Inputs: (Support = Query) Table 2 reports re-
sults from a third experiment with [16] and [26] where the
same image is given as input for both support and query (in-
cluding the ground-truth mask for the support). This con-
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stitutes a basic test for similarity propagation in the network.
Ideally, the network must produce the exact mask as provided
in the support input, because the query and the support are as
similar as possible. However, both methods ([16] and [26])
perform poorly for these inputs indicating the loss of similar-
ity information in the networks.

Method split-1 split-2 split-3 split-4

CANet 54.51 63.98 48.20 52.76
AMP 54.41 69.34 64.79 60.02

Table 2: Percentage (%) mean-IoU measured for FSS methods
(CANet [26] and AMP [16]) for the test images from PASCAL 5

i

dataset when query image (Iq) = support image (Is).

Cues from Background Similarity Figure 3 indicates the
degree of similarity measured as the cosine-similarity be-
tween the MAP vectors of foreground and background re-
gions for the pairs of images. The figure indicates that im-
ages of identical object classes have higher degree of fea-
ture similarity in their background features, than in the actual
foreground features. This represents an opportunity to collect
more information for accurate segmentation.

The results of these experiments indicate the gaps in sim-
ilarity propagation in existing FSS methods that we propose
to exploit. Next, we describe the organization of the proposed
network and how it addresses the similarity propagation prob-
lem.

3.2 Network Organization

Figure 2 illustrates the architecture of SimPropNet. The net-
work is organized into two branches (support and query) with
a shared encoder, a fusion module and a shared decoder. For
our experiments, we use a ResNet-50 [11] based feature ex-
tractor, and atrous spatial pyramid pooling based decoder as
in [26]. The encoder comprises of three layers from a ResNet-
50 network pre-trained on ImageNet [14], and a single 3× 3
dilated (rate = 2) convolutional layer with 256 filters. The
ResNet-50 layers are frozen during training. The decoder
comprises of an atrous spatial pyramid pooling layer (as in-
troduced in [4]), and two convolutional layers. The last layer
has linear activation and produces a 2-channel output (1/8)th

the input size. The output from the last layer is resized to
the expected mask size with bilinear interpolation. The pre-
dicted query and support masks are compared to their respec-
tive ground-truths using the cross-entropy loss.

3.3 Support and Query Mask Prediction (DPr)

The network is trained to predict both the support and the
query masks using the same encoder and decoder. We sub-
mit that this dual prediction requirement forces the query and
support features from the shared encoder to share greater and
more target-specific similarity. For instance, if the support
image (and mask) is of a car, the network must be able to
recover back the support mask (i.e. the entirety of the car)
from the foreground support features. Because the encoder is
shared between the support and the query images, the query
features share this characteristic with the support features.

This is reflected in the effective gain in the mIoU as discussed
in Section 5.1.

Figure 3: Foreground and Background cosine-similarity
based on MAP vectors computed using ResNet-50
(layer2+layer3) features for 4000 image pairs from the
PASCAL VOC dataset. Background similarity has a greater
average magnitude than foreground similarity across all
classes. This indicates the opportunity to obtain cues from
similar background regions.

3.4 Foreground/Background Attentive Fusion
(FBAF)

Late fusion methods (like [12, 24, 25, 26]) fuse the fore-
ground features from the support branch into the query branch
to locate the regions of class-conditional similarity. The fore-
ground features are obtained using the masked average pool-
ing (MAP) operation that computes a channel-wise weighted
average of the support features where the weights are the sup-
port mask values at each position. We submit that fusing the
background feature information from the support branch has
the effect of suppressing similar background features in the
query features. The fusion process can be concisely stated
using the following three equations, each representing a step
of the process:

1. Dual Probe Feature Extraction: The foreground and the
background MAP vectors are computed using the sup-
port mask and the support features.

Zf =µc(Fs ∗ M̆s)

Zb =µc(Fs ∗ (1− M̆s))
(1)

Here, µc is the average pooling operation with a kernel
size equal to the feature map size, Fs are the support

features, and M̆s is the support mask down-sampled to
the height and width of Fs.

2. FG/BG Attention Map Generation: Four attention maps,
two (foreground and background) each from the support
and query features are computed.

C(F,Z) =(1 + cossim(F,Z))/2

N(A,B) =(A/(A+B), B/(A+B))

Af
s , Ab

s =N(C(Fs, Z
f ), C(Fs, Z

b))

Af
q , Ab

q =N(C(Fq, Z
f ), C(Fq, Z

b))

(2)
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Method 1-shot 5-shot

split-1 split-2 split-3 split-4 mean split-1 split-2 split-3 split-4 mean

SimPropNet(ours) 54.86 67.33 54.52 52.02 57.19 57.20 68.50 58.40 56.05 60.04
CA-Net [26] 50.41 63.02 46.09 47.46 51.75 52.27 65.29 47.15 50.50 53.81
PA-Net [24] 42.40 58.00 51.10 41.20 48.13 51.80 64.60 59.80 46.50 55.70
SG-One [25] 40.20 58.40 48.40 38.40 46.30 41.90 58.60 48.60 39.40 47.10

AMP [16] 41.90 50.20 46.70 34.70 43.40 41.80 55.50 50.30 39.90 46.90
co-FCN [12] 36.70 50.60 44.90 32.40 41.10 37.50 50.00 44.10 33.90 41.40
OSLSM [15] 33.60 55.30 40.90 33.50 40.80 35.90 58.10 42.70 39.10 43.90

Table 3: Percentage (%) mean-IoU of one-shot segmentation on the PASCAL 5
i dataset using random partitions. The best results are

highlighted in bold. SimProp-Net achieves state-of-the-art performance on both the 1-shot and 5-shot settings.

Here cossim is the cosine-similarity measure and Fq are
the query features.

3. Feature and Attention Map Fusion: The attention maps
and the features for the query and support are fused
to two feature vectors that are finally decoded into the
query and support mask predictions respectively.

G0

∗
=F∗⊕Zf

G1

∗
=IN(Conv3×3(G

0

∗
) +G0

∗
)

G2

∗
=IN(Conv3×3(G

1

∗
⊕Af

∗
⊕Ab

∗
) +G1

∗
)

G∗ =IN(Conv3×3(G
2

∗
) +G2

∗
)

(3)

Here G∗ is for both support (Gs) and query (Gq) fea-
tures, and ⊕ is the concatenation operation and IN is
the Instance-Normalization operation [22].

Because the fusion process combines information from
both the foreground and the background support features, we
term this FG/BG Attentive fusion (FBAF). The analysis in
Section 5.1 demonstrates the effective increase in prediction
accuracy by employing FBAF.

3.5 k-Shot Inference

The network is not specifically trained for k-shot training
(k > 1). To incorporate more than one support example pairs
in inference, the MAP vectors computed in the Dual Probe
Feature Extraction step are averaged over the support pairs:

Zf
kshot =

∑
k Z

f
k

k
, Zb

kshot =

∑
k Z

b
k

k
(4)

These MAP vectors are used to compute the foreground and
background attention maps, and are fused with the query fea-
tures (Section 3.4) to predict the query segmentation mask.

3.6 Implementation Details

The training is done on virtual machines on Amazon AWS
with four Tesla V100 GPUs and 16-core Xeon E5 processors.
The standard SGD optimization algorithm is used, learning
rate is kept at (2.5× 10−3) and the batch size is 8 for all
training. Training with still higher learning rate yields even
better results than reported in the paper, but the training is
not always stable and may decay considerably in later train-
ing steps. Training for each split is run for 180 epochs and
the checkpoint with the highest validation score (mIoU) is re-
tained. To prevent the network from overfitting on the train-
ing classes, we also use an input regularization technique

Figure 4: Qualitative One-shot Segmentation Results from SimProp-
Net. Notice that providing a more similar support image helps to
improve the segmentation (Cow’s horn in the top row, and marbles
in the bottom row).

Figure 5: One-shot segmentation results compared to CANet[26]
output. Row 1 indicates improved class-specificity - the mask is
localized on the correct target class. Row 2 demonstrates better uti-
lization of similar background context.

called Input Channel Averging (ICA) where the query RGB
image is mapped to a grayscale input (after normalizing) with
a switch probability (initialized at 0.25 for our experiments)
that decays exponentially as training progresses. The partic-
ular benefit of using ICA is discussed in Section 5.1.

4 Results

In this section, we present the evaluation metrics and report-
ing criteria for few-shot segmentation, the quantitative results
for SimPropNet, and comparison with other state-of-the-art
methods. For brevity, we include very few qualitative results
highlighting the key benefits our work.
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4.1 Metric and Reporting

For consistency of comparison with baseline techniques, we
follow the evaluation protocol established by Shaban et al.
[15]. Different instances of the network are trained with the
different training splits of the PASCAL-5i dataset, each with
15 classes of objects and their masks. Testing is done on
the images with objects of the 5 withheld classes. The mean
intersection-over-union (mIoU) metric for output masks with
respect to the ground-truth mask is computed. We report the
mean IoU values for random support and query pairs (images
of the same class) in the standard 1-shot and 5-shot (k = 5
support images) settings. To ensure fairness in comparison,
we use author-provided code for baselines and evaluate per-
formance for three sets of random support-query test pairs for
each of the splits and report the average performance. These
splits will be released along with the paper upon acceptance.

4.2 SimPropNet Results

Quantitative Results We compare our performance using
the method described in [15] that employs random query
and support image pairs (partitions) from each test class in
PASCAL-5i splits. The mean intersection-over-union (mIoU)
values are reported in Table 3. Our method, SimPropNet,
achieves state-of-the-art performance in both the 1-shot and
the 5-shot setting. SimPropNet outperforms CANet [26], the
current state-of-the-art in 1-shot setting, by 5.44% in 1-shot
and 6.23% in the 5-shot evaluation. Further, SimPropNet out-
performs PANet [24], the current state-of-the-art in 5-shot
setting, by 9.06% in the 1-shot evaluation and 4.34% in the
5-shot evaluation task.

Qualitative Results Qualitative one-shot segmentation re-
sults also indicate significant improvements in output. Figure
4 highlights how providing a more similar support image and
mask helps in improving the segmentation, and is expected
in a practical scenario. Figure 5 presents two sample results
for comparison with CANet [26]. The first row illustrates
how CANet may overfit on training classes (target test class
(person) is from split-2, and bicycle is in the training set) or
its features lack specificity to the target class, and how Sim-
PropNet overcomes this issue. Row 2 of the figure illustrates
the benefit of providing support images with similar back-
grounds.

5 Analysis

In this section, we first analyse the particular benefit of each
component contribution of SimPropNet individually. Next,
we probe the effectiveness of SimPropNet in improving sim-
ilarity propagation. We present these evaluations in the one-
shot setting and compare against CANet [26], the existing
state-of-the-art.

5.1 Ablation Study of Components

We study the effectiveness of each of our contributions in-
dividually - dual prediction (DPr) of the support and query
masks, and foreground-background attentive fusion (FBAF).
Table 4 reports the mIoU values over the different splits of the
PASCAL 5i dataset. As highlighted by the results, both DPr
and FBAF used individually demonstrate clear gains over the

baseline (CANet [26]) of 4.14% and 3.75% in mIoU respec-
tively. FBAF alone performs better than DPr in three of the
four splits, but has a slightly worse mean because of its sharp
decline in performance in split-3. The combination of DPr
and FBAF achieves an improvement of 5.34% over [26]. Ad-
ditionally using ICA during training further improves mIoU
on three of the splits and increases mean mIoU to 57.19%.

Method split-1 split-2 split-3 split-4 mean

Baseline (CANet) 50.41 63.02 46.09 47.46 51.75

DPr 52.69 66.57 53.1 51.23 55.89
FBAF 54.16 66.71 49.11 52.00 55.50

DPr + FBAF 54.08 67.29 54.05 52.93 57.09

SimPropNet 54.86 67.33 54.52 52.02 57.19

Table 4: Ablations for the different components of SimPropNet (DPr
+ FBAF + ICA). DPr is the joint prediction of query and support
masks, FBAF is the FG/BG Attentive Fusion module, and ICA is
the input channel averaging regularization.

5.2 Measuring Gain in Similarity Propagation

We evaluate the performance of the proposed network on
identical support and query images (as reported for [26] and
[16] in Table 2 in Section 3.1). The performance of a one-
shot segmentation method on identical inputs for the query
and the support is the upper bound on the degree of similar-
ity propagation in the network. Results of this experiment for
SimPropNet (Table 5) show an average gain of 21.5% over
CANet [26], and 14.23% over AMP [16], over all splits. This
indicates clearly that the network is utilizing the similarity
information between the query and support images better.

Method split-1 split-2 split-3 split-4 mean

SimPropNet 71.24 82.09 74.97 77.15 76.36

CANet 54.51 63.98 48.2 52.76 54.86
∆CANet 16.73 18.11 26.77 24.39 21.50

AMP 54.41 69.34 64.79 60.02 62.14
∆AMP 16.83 12.75 10.18 17.13 14.23

Table 5: Percentage (%) mean-IoU measured for FSS methods as
compared with the proposed SimPropNet for test images from PAS-
CAL 5

i dataset when query image (Iq) = support image (Is)

6 Conclusions and Future Work

The paper presents a rigorous argument that similarity prop-
agation in existing few-shot image segmentation networks is
sub-optimal. It proposes SimPropNet, a deep neural network
with two strategies for bridging this gap - predicting the sup-
port mask besides the query mask with a shared decoder, and
fusing background features into the feature fusion module.
The network achieves a new state-of-the-art as shown by a
comprehensive set of experiments. Class-conditional similar-
ity matching can only match pixels with a similar class-mix
between the query and the support images. In future work,
we focus on exploring the ”objectness” aspect of the target
image to improve few-shot segmentation.
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