MEMORANDUM

RM-3310-PR
NOVEMBER 1962

SIMSCRIPT:
A SIMULATION PROGRAMMING LANGUAGE

H. M. Markowitz, B. Hausner and H. W. Karr

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

AV 1) p—n

SANTA MONICA « CALIFORNIA

MEMORANDUM

RM-3310-PR
NOVEMBER 1962

SIMSCRIPT:
A SIMULATION PROGRAMMING LANGUAGE
H. M. Markowitz, B. Hausner and H. W. Karr

This research is sponsored by the United States Air Force under Project RAND — Con-
tract No. AF 49(638)-700 — monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Technology, Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policy of the United States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be obtained from The RAND Corporation.

e LA D s

1700 MAIN ST « SANTA MONICA » CALIFORNIA

—iii—
PREFACE

The SIMSCRIPT Simulation Programming Language described in this

manual is a direct descendant of two earlier systems. Its immediate
predecessor, SPS-1 (Simulation Programming System—1), was'devel—
oped at The RAND Corporation. SPS-1, in turn, was an outgrowth of
GEMS (General Electric Manufacturing Simulator), which was prev—

iously developed by H. Markowitz at General Electric Manufacturing

Services. Since neither GEMS nor SPS—1 was distributed publicly, it
seems appropriate at this time to acknowledge the help of certain
individuals who contributed to these parent systems, as well as to
acknowledge those who have contributed directly to SIMSCRIPT.

GEMS benefited greatly from the excellence and diligence of Morton
Allen, who did most of the GEMS programming. Regretfully, we
must forebear from listing a number of other contributors at General
Electric (particularly several each from Manufacturing Services,
Ordnance Department, Circuit Protective Devices Department, and
Lynn Computations Operation).

Jack Little of RAND contributed to early discussions of SPS-1.
Richard Conway of Cornell University, who spent several months at
RAND during which time he programmed extensively in SPS-1, con—
tributed to the design of SIMSCRIPT.

The three authors whose names appear on this manual constituted the
design team for SIMSCRIPT. H. Markowitz acted as chairman and had
final responsibility for the logical design of the system. B. Hausner
was solely responsible for the programming of both the SPS—1 and
SIMSCRIPT Translators. H. Karr wrote the present SIMSCRIPT
manual.

The SIMSCRIPT system was developed under the auspices of Project
RAND to provide more efficient ways of preparing simulation pro—
grams of direct benefit to RAND projects, and indirectly, to benefit
those many other organizations using simulation. A copy of the

SIMSCRIPT translator for the 709/7090 computer can be obtained by
sending a blank tape to the Computer Sciences Department of RAND.

While SIMSCRIPT was being written, others elsewhere were also ex—
perimenting with simulation programming techniques. Amongsystems
worth noting are SIMPAC (Mike Lackner, System Development Corp—
oration, Santa Monica), GPSS (Geoffrey Gordon, IBM, White Plains),
and CSL (Laski, Esso Petroleum, U. K. ; and Buxton, IBM, U. K.).

—V—
SUMMARY

In a variety of fields, simulation with digital computers has proved to
be a valuable management—analysis technique. One obstacle, however,
has been the substantial time needed to program simulations of even
moderate complexity. The SIMSCRIPT system described in this man—
ual was developed to meet the need to reduce programming time. It
also provides increased flexibility in modifying such models in accord—
ance with the findings of preliminary analysis and other circumstances.

Although SIMSCRIPT may also be used as a computer language for non—
simulation problems, our discussion in this Summary and our main

emphasis in the manual which follows, is in terms of its application to
simulation. The purpose of this manual is to enable a person already
familiar with computer programming to apply SIMSCRIPT to his task,
by furnishing him the necessary information including detailed instruc—
tions and forms.

Everydigital simulation involves a numerical description of the "Status"
of the system to be simulated. This "Status'' is modified as "Events"
occur at various points in simulated time. The SIMSCRIPT view of
Status and Events may be schematized as follows:

’

Entities
Temporary

STATUS < Permanent

Attributes

| Sets

Exogenous

EVENTS {Endogenous

As of any particular moment in simulated time, the Status of the system
being portrayed is described in terms of what ''Entities’ exist, what the
current values of their "Attributes" are, what "'Sets'' they belong to, and
what "Sets" they own. Each kind of Event may occur repeatedly, and at
any desired points in simulated time. Some may occur "exogenously,’
"impelled by forces outside the simulated process. Others may occur
"endogenously, " caused by preceding Events within the simulation.

1

A standardized definition form is used to tell the SIMSCRIPT translator
the names of the different types of Entities, Attributes, and Sets to be
distinguished in a particular simulation. Various other kinds of inform—

—vi—

ation concerning these Entities, Attributes and Sets are also indicated on
the definition form (such as the number of words of computer memory
required to store the Attributes of ""Temporary' Entities; the integer or
floating point mode of Attributes; and the organization of Sets, e. g., LIFO

or FIFO). ‘

In SIMSCRIPT, a sub—program must be written for each different kind of
event, describing how it changes Status or causes future Events. These
routines are written in the SIMSCRIPT source language, which provides
commands (such as CREATE, DESTROY, CAUSE, CANCEL, REMOVE,
FILE, FIND MAX, etc.) particularly suited to the needs of simulation, -
as well as more conventional arithmetic, control, and input—output com-
mands.

Finally, SIMSCRIPT contains a ''Report Generator'' which permits the
user to specify the form, content, and the repetition of printed output
on a layout form. From this an output routine is generated without
further programming.

—vii—

CONTENTS

Preface ... e e e e e e iii

1 BASIC CONCEP TS .ttt ittt et et e it it e i 1
The Use of Simulation, 1
The Purpose of SIMSCRIPT, 2
Status Description, 3
Definition of Entities, Attributes and Sets, 3
Event Routines and Timing, 5
Changing the Status of an Entity, 6
Creating or Destroying an Entity, 6
Changing an Attribute Value, 6
Changing a Set Membership, 7
Causing and Cancelling Events, 7
Executing Decision Rules, 8
Accumulating and Analyzing Results, 8
Printed Output, 8
Summary, 10

2 VARIABLES AND IDENTIFICATION NUMBERS........ 11
Local Variables, 11
Temporary Attributes, 11
Permanent Attributes, 13
Event Notice Identification Numbers, 15
Use of Identification Numbers in Set Operations, 16
Constants and Expressions, 18

3 AN EXAMPLE OF A SIMSCRIPT SOURCE PROGRAM. .. 19
EXOGENOUS EVENT ORDRIN, 22
SUBROUTINE ARRVL, 24
SUBROUTINE ALLOC, 25
ENDOGENOUS EVENT EPROC, 27
EXOGENOUS EVENT ANALYZ, 29
REPORT RESULT, 30
Initial Conditions and End of Simulation, 32

4 ENTITY OPERATIONS . . .ottt it ittt i tneeanaenns 33
CREATE Statements, 33
DESTROY Statements, 34
CAUSE Statements, 34
CANCEL Statements, 35
FILE Statements, 36
REMOVE FIRST Statements, 36
REMOVE "Specific' Statements, 37

ARITHMETIC AND CONTROL COMMANDS

DECISION COMMANDS

INPUT AND OUTPUT COMMANDS

—viii—

LET Statements, 38

STORE Statements, 39

Control Phrases, 39

FOR Control Phrases, 40

FOR EACH "Entity" Control Phrases, 40
FOR EACH OF '"Set' Control Phrases, 41
WITH Control Phrases, 41

OR Control Phrases, 42

AND Control Phrases, 42

DO TO Statements and LOOP Statements, 43
DO TO "Set' Statements and REPEAT Statements, 44

IF Statements, 45

"Three-Way'" IF Statements, 45

IF EMPTY Statements, 46
"Unconditional GO TO Statements, 46
"Computed" GO TO Statements, 46

FIND MAX, FIND MIN Statements, 47
WHERE Phrases, 48

FIND FIRST Statements, 48

Exogenous Event Tape, 50
SAVE Statements, 51
READ Statements, 51
FORMAT Statements, 52
Integer Field Description, 53
Decimal Field Description, 53
Decimal-Hours Field Description, 53
Days, Hours and Minutes Field Description, 54
Alpha-Numeric Field Description, 55
Skip Description, 56
Right-adjusted Integer Field Description, 56
READ FROM Statements, 56
WRITE Statements, 57
ADVANCE Statements, 57
BACKSPACE Statements, 58
REWIND Statements, 58
ENDFILE Statements, 59
LOAD Statement, 59
RECORD MEMORY Statements, 59
RESTORE STATUS Statements, 60

MISCELLANEOUS COMMANDS..... e e

ACCUMULATE Statements, 61
COMPUTE Statements, 63
STOP Statements, 64
DIMENSION Statements, 64
FORTRAN Inserts, 64
Statement Continuation, 65

............

.............................

..................

9 EVENT ROUTINES AND OTHER SUBPROGRAMS. 66

Exogenous Event Routines, 66
Endogenous Event Routines, 68
Subroutine Subprograms, 69

CALL Statements, 69

Function Subprograms, 70

Events List, 70

System Package, 72

Entity, Attribute and Set Packages, 72
Main Routine, 73

10 REPORT GENERATORttt iieeaneannn 74

REPORT and END Statements, 74
Form Lines, 77
Text, 77
Integers, 77
Decimal Numbers, 78
Stored Alpha-Numeric Data, 78
Content Line, 79
Heading Codes, 80
Spacing Codes, 80
New Section Code, 80
Same Page Code, 80
Blank Half, 81
Page Numbers, 81
Row Repetition, 81
Column Repetition, 81

11 AUTOMATICALLY GENERATED SYSTEM VARIABLES
AND FUNCTIONS . .o ittt ittt it e iiceinaanns 88

Time Variables and Functions, 88
"TIME", 88
"HOURS" and 'MINS", 89
"DECHR'"', 89
"DPART'", '"HPART'" and ''MPART'", 89
Qutput Variables, 89
"PAGE", 89
"LINES", 90
"OTAPE", 90
Random Variables and Functions, 90
"RANDI(I,J)", 90
"RANDM", 90
"RANDR", 91
Random Look=-up Tables, 91
Step Function, 91
Linear Interpolation, 92
Permanent Entity and Attribute Dimensions, 93
FORTRAN Library Routines and Functions, 9%

—_—

12 COMPILATION AND EXECUTIONovviiinervnrennns 96
Compile Deck, 96
FORTRAN Monitor Type 1 Control Cards, 96
SIMSCRIPT Loader, 97
Dummy Type I Control Cards, 97
Definition Cards, 97
Source Language Subprograms, 98
"OFF" or "BINARY" Control Card, 98
Previously Compiled Object Subprograms, 99
Execute Deck, 99
FORTRAN Monitor Type 1 Control Cards, 100
Object Subprograms, 100
Data Deck, 100
"DATA'" Card, 100
System Specifications Card, 101
Initial Conditions Deck, 102
Blank Card, 102
Exogenous Event Deck, 102

13 DEFINITION CARDS ...ttt ittt ittt i e 103
Definition of Temporary Entities, 103
Definition of Event Notices, 104
Definition of Temporary Attributes, 104
Array Numbers, 108
Definition of Permanent Entities, 110
Definition of Permanent Attributes, 110
Definition of Random Attributes, 111
Equivalence, 113
Definition of Sets, 113
Definition of Function Names, 114

14 INITIAL CONDITIONS DECK. . . o vttt ettt teeeneenns 115
Unsubscripted Permanent Attributes, 115
Single=-subscripted Permanent Attributes, 119
Double-subscripted Permanent Attributes, 121
Ragged Tables, 123
Random Look-up Tables for Unsubscripted Attributes, 124
Random Look-up Tables for Single-subscripted Attributes, 126
Initialization of Packed Floating Point Variables, 126

15 MEMORY LAYOUT. ..ottt it ciiiiiaeaens 129

® N D> U W N e

10.
11.
12,
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

27,

FIGURES

SIMSCRIPT Definition Form (reduced), 4

SIMSCRIPT Report Generator Layout Form and Stock Status Report, 9
Definitions for Example Program, 20

Events List for Example — Job shop Simulation, 21

Exogenous Event Routine Describing the Receipt of an Order, 22
Subroutine Describing the Arrival of an Order at a Machine Group, 24
Subroutine for Allocating a Machine to an Order, 26

Endogenous Event Routine Describing the End Process for an Order
at a Machine Group, 27

Exogenous Event Routine for Analyzing Accumulated Results, 30
SIMSCRIPT Report Generator Layout Form (reduced), 31
Exogenous Event Routine to Stop the Simulation, 32

Illustration of Cumulative Total, 61

Example of an Events List, 71

SIMSCRIPT Report Generator Layout Form (actual size), 75
Example of the Use of Column Repetition, 83

Example of Row and Column Continuation with Suppression of
Marginal Totals, 86

Column Repetition for Groups of Variables, 87
Discrete Probability Distribution, 92

Continuous Probability Distribution, 93
Composition of the Compile Deck, 97
Composition of the Execute Deck, 99
Composition of the Data Deck, 100

SIMSCRIPT Definition Form (actual size), 105
SIMSCRIPT Initialization Form (actual size), 117

Initialization Card Entries for a Single Unsubscripted Permanent
Attribute, 116

Initialization Card Entries for a Series of Unsubscripted Permanent
Attributes, 119

Initialization Card Entries for Reading In a Single—subscripted
Permanent Attribute List, 120

28.

29.

30.

31.
32.

33.

34.

—xii—
Initialization Card Entries for Setting Single—subscripted Permanent

Attribute Lists to Zero, 121

Initialization Card Entries for Reading In a Double—subscripted
Permanent Attribute Table, 122

Initialization Card Entries for Setting Double—subscripted Permanent
Attribute Tables to Zero, 123

Initialization Card Entries for Reading In a Ragged Table, 124

Initialization Card Entries for a Random Look-up Table for an Un—
subscripted Permanent Attribute, 125

Initialization Card Entries for a Random Look—up Table for a Single—
subscripted Permanent Attribute, 127

SIMSCRIPT Memory Layout, 130

—xiii—

TABLES

Summary of Automatically Defined Variables
and Functions, 95

Memory—packing Codes for Temporary Attributes
and Single—subscripted Permanent Attributes, 107

Storage and Retrieval Times for Temporary
Attributes, 109

Storage and Retrieval Times for Subscripted
Permanent Attributes, 112

Chapter 1

BASIC CONCEPTS

THE USE OF SIMULATION

In recent years, computer simulation of real systems has become a valu—
able aid to managers and analysts in such diverse fields as manufacturing,
logistics, economics, transportation, and military operations. Computer
programs have been developed to simulate the behavior through time of
manufacturing systems, logistics systems, transportation systems, and
the like. These computer simulations are used to trace out the perform-—
ance of alternate system configurations guided by alternate sets of decision
rules under various conditions.

In the simulation of manufacturing systems, for example, the computer
is told the physical structure of the manufacturing facility—the number

of machines of each kind, the number of men of each kind on each shift,
which men can work on which machines, and so on. It is also told the
rules the system operates under, such as the dispatching rules for deter—
mining which order to work on first, and overtime rules for determining
when men will work extra hours. Finally the computer is told the work
load to be processed through the plant, including both the orders waiting
at the start of simulation and the orders received during the course of
simulated time. With this information the computer runs the orders
through the plant, routing them from one machine to the other according
to specified routing information, and making them wait their turn for men
and machines already occupied. During the course of simulated time the
computer keeps track of how well the simulated system performs, accord—
ing to such measures as machine utilization, labor utilization, and the
time required for orders to be completed.

Similarly, the computer can be told (partly through program, partly
through data) how to simulate the movement of motor vehicles or aircraft
through a transportation system, the processing of supply and maintenance
requests through a logistics system, the changing water levels and rates
of flow through a hydroelectric system, and the like.

These simulated systems can then be operated any number of times, with
variations in the load to be processed, the decision rules to be followed,
or the configuration of the physical system itself.

Simulating the dynamics of alternate systems under a variety of conditions
often uncovers potential difficulties that traditional static analyses are
incapable of finding. If the real system in question is large, complex, and

costly, the use of a computer as a ''pilot plant" or "wind tunnel" is in—
expensive compared to the cost of a trial-and—error approach with the real
system.

THE PURPOSE OF SIMSCRIPT

Although simulation has proven to be a valuable tool, it has suffered from
the fact that it usually takes several times as long to develop the computer
program as it does to formulate the basic simulation model. Many prob—
lems to which simulation was applicable in principle could not in fact use
it because decisions had to be made before computer programs could be
developed.

Fortunately, experience now confirms that much of the time spent in both
logical formulation and actual programming is spent on operations that are
often similar from one simulation problem to the next. Thus there is a
clear opportunity and need for a programming system specially adapted to
the problems of writing simulation programs. SIMSCRIPT was designed
to answer this need.

Any digital simulation consists of a numerical description of the "Status"

of the simulated system. This Status is modified at various points in simu—
lated time which may be called "Events.'' SIMSCRIPT provides a stand—
ardized definition—form for specifying the Status description. It also auto—
matically provides a main timing routine to keep track of simulated time
and the occurrence of Events. An "Event Routine' is then written for each
kind of Event, describing how the Status is to change. The SIMSCRIPT
source language is specifically designed to facilitate the formulation and
programming of these Event Routines.

In particular, the following operations may each be accomplished by a
single source—language statement: the allocation or return of storage space
for temporary variables, the filing of items into or out of ''sets, " the
accumulation of information across simulated time, the summarization of
information at a point in time, and the finding of minimums or maximums
over collections of items meeting specified conditions. Additional features
include subscripted subscripts to any level, and a memory layout philosophy
which affords considerable flexibility in making program modifications
and which permits both source and object programs to be "dimension—free. '
A "Report Generator' is also provided which permits the user to specify the
form, content, and repetition of printed output on a layout form from which
an output routine is generated without further programming.

1

Although SIMSCRIPT was developed for simulation problems, and the
present exposition is presented in terms of simulation problems, SIM-
SCRIPT is actually a general programming system that is also readily
usable for non—simulation problems.

STATUS DESCRIPTION

In SIMSCRIPT, the ''Status' of the simulated system is defined in terms
of what are called Entities, Attributes of Entities, and Sets of Entities.

Any type of unit to be independently identified in the simulation, such as
a truck, a species of animal, a chair, or a bank loan, is called an "En—
tity. "

Each type of Entity is in turn described by enumerating its particular
"Attributes. ' The Attributes of a truck might include its initial cost, its
payload, and its operating cost per mile; those of a bank loan might in—
clude the amount due, the due date, and the interest rate.

A Status description may comprise any number of different types of En—
tities; there can also be any number of Entities of a particular type. En—
tities are considered to be of the same type if their Attribute names are
identical; the values of these Attributes may of course be different. Two
bank loans, for example, may have different due dates, although both
have an Attribute called "due date. "

Whether or not something is to be considered an Entity or an Attribute of
an Entity depends on whether it is to be independently identified in the
simulation. If it is desired to keep track of each unit of a particular spare
part, each unit must appear in the Status description as an Entity. If
there is no need to distinguish among units, they might appear as "stock
on hand, " which could be an Attribute of some other type of Entity, such
as ''stock number. "

Interrelationships among individual Entities may be depicted in the Status
description by grouping the Entities into ''Sets;" for example: "'passengers
holding reservations for flight 72, " or ''requisitions on backorder at depot
3." Entities may be members of Sets and also owners of Sets. For ex—
ample, "passengers' are members of a Set belonging to ''flight 72, " and
"requisitions" are members of a Set belonging to ''depot 3." An Entity
may belong to any number of Sets and may own any number of Sets. In
SIMSCRIPT, Entities may be readily inserted or removed from Sets on a
"first-in—first—out" or a "last—in—first—out'' basis, or on a "ranked' basis
by which the Entity's ranked position is determined by the value of one of
its Attributes.

DEFINITION OF ENTITIES, ATTRIBUTES, AND SETS

The procedure for specifying Status consists of defining each different type
of Entity, Attribute, and Set on the SIMSCRIPT Definition Form shown in
Fig. 1.

SIMSCRIPT DEFINITION FORM

PEOSLEM
oare
TEMPORARY SYSTEM VARIABLES PERMANENT SYSTEM VARI/IABLES SETS FUNCTIONS g
TEMPORARY AND EVENT NOTICE ENTITIES ATTRIBUTES A = S N S
- RECORD 812 B ARRAY 1l H l ! ATTRIBUEY 15
;; . o sz "5; NAWE 3 ol pack |8 VAME ol PACK- § g SlEf il mame |y el usép N Yl wame g
: NAM x SATELLITE 4 3 s Y/ L §
Sy [<|§! §l8 m;ii N‘axg* g 3% RANKING (1% 3
: b & |2 “ s ¥ b 3
v FjEjEIs 4 (8 (878 ol / LF] : / LF u.s|s.Lil 2 LEf L ¥
::Tn:(\'zmoaoemourn1011111114151617 19119[20{21[22[23)24(25{26)27 [2n 2913031 ‘lzn34353631!6'!946414243444545474-495_951525354555557“506061ne:_o_fas 66| 6v|8r 6|0 [[12 |23
-
+ / /
 +| / /
+ / /
hd / /
+ / / L
+ / /
+ / /
A / /
+ / /
|+ ; L / /
hd g / /
B i / /
hd / /
+ | / /
+ o : / /
+ ; / v /
e T 3220
+) | / i /
4 ¥
| T
I+ . / ' /
-+ ! / /
|+ / /
+ / /
I
4] 11 1 / /
|*) /| / |
oy avmianrs oo L
> st oovrces P R H t
enE ey P SeT name Y t(ouum:;mmwzs
SV Ser |S ey mane |y ¥ MEMBER_ENTITIES
srmar misar | F ser namE o ¥ o o le{REQuUImED ATIRISUTES]
Lasr sy | L ser mamE V.Y ownee ENmTIES
o
w2y s

Fig. 1= SIMSCRIPT Definition Form (reduced)

Although such differentiation is not essential, certain computing and pro—
gramming economies can be obtained by distinguishing among different
classes of Entities called Temporary Entities, Event Notice Entities,
Permanent Entities, and the simulated System, which also may be thought
of as an Entity.

Temporary Entities, Event Notices, and their Attributes are defined in the
first panel of the Definition Form. Permanent Entities, their Attributes,
and Attributes of the System are defined in the second panel. Each kind of
Set to be included in the simulation is defined in the third panel. The
fourth panel is for defining the names of special Functions. Space is pro—
vided for specifying the name by which each type of Entity, Attribute, or
Set will be referred to in the source program. Space is also provided for
specifying such things as the size of memory records, number of sub—
scripts, sign convention, etc., as may be appropriate for particular
definitions.

The meanings of the various Definition Form card fields, and the rules for
making the various entries, are illustrated in the example program given

in Chapter 3, and are discussed in detail in Chapter 13.

EVENT ROUTINES AND TIMING

A separate subprogram must be written for each different kind of Event,
describing how it changes the Status. There may be any number of dif—
ferent kinds of Events, and a particular kind of Event may occur repeatedly
and at any desired point in simulated time. For example, one Event rou—
tine may describe how Status changes every time a requisition is received
at a supply depot. Another may describe how Status changes every time a
shipment of material is received at a supply depot.

Each kind of Event is enumerated in what is called an "Events List. "
Based on this Events List, SIMSCRIPT automatically generates a main
Timing routine which keeps track of simulated time and calls the various
Event routines in the proper sequence.* In SIMSCRIPT simulation pro—
grams, time is advanced by variable increments rather than being broken
into a sequence of fixed increments. Therefore, Events may occur at any
desired point in simulated time. When the execution of a particular Event
routine is finished, simulated time is immediately advanced to the time
of the next most imminent Event, whether it be seconds, hours, or days
away, and the appropriate Event Routine is automatically called. The
intervening time periods when no Status changes occur are skipped. The

*1f a non-simulation program is to be written in SIMSCRIPT, the generation
of the Timing routine can be suppressed and a control routine called MAIN
must be written into the source program to replace it., (See Chapter 9).

-6-

SIMSCRIPT Timing routine permits the occurrence of both "Endogenous
Events' (those caused by previous Events within the simulation) and "Ex—
ogenous Events'' (those introduced from outside the simulation by means
of an "Exogenous Event Tape'").

For purposes of discussion, the various operations performed by Event
routines (or by subroutines on which they call) may be grouped under the
following headings:

(1) Changing the Status of individual Entities
(2) Causing or cancelling future Events

(3) Executing decision rules

(4) Accumulating and analyzing results

(5) Printing results

CHANGING THE STATUS OF AN ENTITY

Since Status is defined in terms of Entities, Attributes, and Sets, an En—
tity can change its Status in only three ways:

(1) It can come into or go out of existence (i.e., be created or
destroyed);

(2) It can change an Attribute value; or
(3) It can change a Set membership.
SIMSCRIPT provides a number of commands especially adapted to making

these changes.

Creating or Destroying an Entity

To create a record in memory for a new Entity that is just coming into
existence (for example, a new bank loan) it is necessary merely to write
a single statement, such as "CREATE LOAN." fThis record will be in
whatever configuration was specified on the Definition Form. If the bank
loan is going out of existence, the statement "DESTROY LOAN" will zero
out the record of its Attributes and make the storage space available

to subsequent 'CREATE' statements. Entities that may be created and
destroyed are either ""Temporary Entities" or "Event Notices. "

Changing An Attribute Value

SIMSCRIPT uses a ""LET'" statement to change an Attribute value arith—
metically. For example, a statement like the following could set the cur—
rent stock of an item equal to the previous stock plus receipts:

LET STOCK(ITEM) = STOCK(ITEM) + RCPTS(ITEM)

If this computation were to be done for each item on a list, the statement
could read:

LET STOCK(ITEM) = STOCK(ITEM) + RCPTS(ITEM), FOR EACH
ITEM OF LIST

In these examples, "'STOCK'" and "RCPTS" are Attributes of "ITEM, " and
"LIST" is a Set of ITEMS.

Changing a Set Membership

SIMSCRIPT provides special statements such as "FILE ITEM IN LIST"

or "REMOVE FIRST ITEM FROM LIST'" for transferring Entities into and
out of Sets.

While the preceding examples are not exhaustive, they demonstrate that
in changing the Status of an Entity, a single SIMSCRIPT statement is suf—
ficient to create or destroy it, change an Attribute value, or change a

Set membership.

CAUSING AND CANCELLING EVENTS

To help keep track of Events, SIMSCRIPT provides a special kind of
Temporary Entity called an "Event Notice.'" Event Notices have the same
properties as Temporary Entities: they may be created and destroyed,
have Attributes, and be members and owners of Sets. The programming
steps for causing a future Event are:

(1) Creating an "Event Notice' for the particular Event;
(2) Posting the values of its Attributes, as required; and
(3) Scheduling its occurrence.

For example, if an order is shipped to a base, its arrival following a
transit-time delay might be caused by the following statements:

CREATE ARRVL

STORE ORDER IN ITEM(ARRVL)
STORE BASE IN DESTN(ARRVL)
CAUSE ARRVL AT TIME + TRANT

Prior to its occurrence, this Event could be cancelled by the statement
"CANCEL ARRVL. "

EXECUTING DECISION RULES

In Event routines, it is usually necessary to perform tests or computa—
tions in order to decide how Status should change and what future Events
should be caused or cancelled. For making simple decisions, an assort—
ment of "IF'" and "GO TO" statements are provided. In addition, SIM—
SCRIPT provides "FIND MAX, " "FIND MIN, " and "FIND FIRST'" state—
ments. For example,

FIND LEVEL = MIN OF STOCK(ITEM, BASE), FOR ITEM =
(1)(N), FOR EACH BASE OF ZI, WITH
(PRICE (ITEM))GR(CAT(2))

In cases where more complex decision rules are desired, the source
language provides a full complement of arithmetic and control statements
so that any desired algorithm may be programmed.

ACCUMULATING AND ANALYZING RESULTS

Data describing simulation results may be accumulated and analyzed by
progressively changing the values of certain Attributes through standard
arithmetic and control operations. However, some accumulation and
analysis operations are required so often that special commands are pro—
vided.

The integral of an Attribute value may be accumulated over time by an

ACCUMULATE statement, such as:

ACCUMULATE STOCK(ITEM) INTO CUMSK(ITEM) SINCE LAST(ITEM)

Certain frequently desired statistical quantities may be computed by a

COMPUTE statement, such as:

COMPUTE M, S, V = MEAN, STD-DEV, VARIANCE OF PRICE(ITEM),
FOR EVERY ITEM OF JOB

PRINTED OUTPUT

Printed output in SIMSCRIPT programs normally comes from the ''SIM—

SCRIPT Report Generator, " which generates output routines based on the
contents of the "Report Generator Layout Form'" in Fig. 2. The form and
content of the printed output are specified on the Layout Form by what are
called "Form Lines" and ""Content Lines.' Any desired text may be speci—
fied in a Form Line by writing the characters into the print positions where
it is desired to have them appear. Numerical fields for printing the values
of Attributes are specified by inserting asterisks in the desired print posi—
tions. Any Form Line containing one or more numerical fields must be
followed by a Content Line which lists the names of the Attributes whose

iy
a3

L Ll bl _—
oatn SIMSCRIPT REPORT GENERATOR LAYOUT FORM
il LEPT RAND CARDS ‘ AIGHT HAND CARDS
PRINY POSITIONS PRINT POSITIONS
T IF 0 T T T .
7 | mmm s R Smam s - y 5 T
RIT] AN A iE ; 1] N . L
O 1 1 RN L 1]
S p e e b s s N LR R R e NN Toiiabin |
0 b l i AR TSN IS idl D aEE
i aiNiRANN l | I ESRCCGCCZERE RRNER ARRANY ARARNE AR 1R
STC REGIRPER (||, . ﬁﬁ@@nﬁhi.. SYRICK, L E[MAND, ST TR R 1 A0 FURS SN DRI S SRS
[UMBIE] PRk N T ; ANTITN PN HAND THILS. MONITIH pemand) P eRcE) o]] di
 IRRRRE! 14 ! I BN ERRRRI D! il [l e e e
;] i gl * s RRRRNE N 222N AR B DR DRREE RN |
T sMdo) Rl L ReCol T s o, il 1] s, | T prreglad T
| i RS AENEN i Bl IRANEN RRENE ERARAI NERNRE DROER RN ENRERI IO
i el . l 5 IEA [DRSOEI |
H rull SMEGY 4 CGCIAN ZRGEE 100N S NN MESY B 1 Do 1 HUDNE ERES1 DNSE INRIN) MiSH i1 PN S &
i {1 ARRARR ANANNN ARRNEM BRRNEI 0N 1 I |1 SRENA DRRURE RATAN 31 EERR0E IRRONY HERRA1 IO
N SE M I I Fidifia Gt b LHH‘,LI MR R INRUES RS FRRTNS - PN DES DY P . 11
} l E\ND ¥ 1t + + IS B Jw‘ +4+ T 11 ;l 1E$N'D + t t 1 1
IR ! I ‘I‘ﬂn [UEEE FERSSY EEREAS RRRARD DROTRI IRRREY RURNST NRORDY ENRUNI MNERS) 0B I BN
ke R FURREY JOUNN IS AT I . doicp JHe . I NI S § U I FOUTN PR S
1
o STOCK STATUS REPORT
I AVERAGE
@) STOCK REORDER REGRDER STOCK DEMAND SIX MONTH UNIT
NUMBER POINT QUANTITY ON HAND THIS MONTH DEMAND PRICE
; @) aN-118 17 120 84 1 3.81 0.10
546-NA 9 1 9 1 1.30 485.60
s 9-27118 2 3 3 1 0.17 5.92
O 421-13 300 140 392 584 2489.75 21.00
ANMG21 1 4 2 1 0.33 3.58
191-52 0 1 0 1 0.17 9000.00
O 1914CN 25 285 137 1 8.24 0.02
c97-11 2 26 26 2 2.89 1.04
€97-18 12 12 14 7 17.66 12.75
@) 420554 1 37 23 2 0.33 0.05
420555 0 12 7 1 0.17 0.2%
143187 s 1 4 3 2.90 13.80
o 2-8238 13 295 119 1 4,06 0.01

Fig. 2 = SIMSCRIPT Report Generator Layout Form and Stock Status Report

-6-

-10-

values are to be printed in the numerical fields. A variety of other con—
trol features are also provided in the SIMSCRIPT Report Generator, they
are descr1bed in detail in Chapter 10. :

~ SUMMARY

In SIMSCRIPT, the Status of a simulated system is described in terms of
Entities, Attributes of Entities, and Sets of Entities. Each type of Entity,
Attribute, and Set is defined on the SIMSCRIPT Definition Form. Status

is changed at points in simulated time called Events. A separate Event
Routine must be written for each different kind of Event to be included in
the simulation. For convenience in writing these routines, the SIMSCRIPT
source language contains a variety of commands especially adapted to sim—
ulation problems. Some of these commands have already been illustrated.

In SIMSCRIPT programs, each kind of Event may occur repeatedly and at
any desired point in simulated time. Exogenous Events are initiated from
outside the simulation process by means of the Exogenous Event Tape.
Endogenous Events are initiated from within the simulation process by
CATUSE statements in previously executed subprograms. A Timing routine
is automatically provided to keep track of simulated time and call the vari—
ous Event routines in the proper sequence.

Additional features include subscripted subscripts, ''dimension—free"
source and object programs, and printed—output routines automatically
generated by means of the Report Generator Layout Form.

-11-

Chapter 2

VARIABLES AND IDENTIFICATION NUMBERS R

SIMSCRIPT contains three different kinds of variables, referred to as

(1) Local Variables, (2) Temporary Attributes (Attributes of Temporary
 Entities and Event Notices), and (3) Permanent Attributes (Attributes of
Permanent Entities). This Chapter describes the properties of each, and
the use of subscripts or identification numbers.

In the following discussion the term ''System Variable' includes Temporary
and Permanent Attributes but excludes Local Variables. The term ''Vari—
able'" includes all three.

LOCAL VARIABLES

Except as noted below, Local Variables must conform to all rules pre—
scribed for FORTRAN variables, including the conventions for naming
integer and floating point variables. Local Variables are defined by the
source language statements they appear in; no other definition is required.
In addition to FORTRAN rules, the name of a SIMSCRIPT Local Variable
may not contain two consecutive "X's. "

Since Local Variables are not available from one subroutine to another,
the same name may be given to different Local Variables in different sub—
routines without conflict.

Local Variables are rarely subscripted; if they are, they must appear in a
DIMENSION statement. As in the case of Temporary and Permanent At—
tributes described below, a subscript of a Local Variable may be any in—
teger expression. The Variables in this expression may in turn be sub—
scripted to any order.

TEMPORARY ATTRIBUTES

Storage space for Temporary Attributes is assigned each time a Temporary
. Entity or Event Notice is created during execution of the object program.
When the Entity is destroyed, this space is returned for use in storing the
values of other Temporary Attributes.

The‘ name of each kind of Temporary Attribute must be defined on the
SIMSCRIPT Definition Form. It may consist of one to five letters or num—
bers, one of which must be a letter. It may not end in "F' or contain
"XX" or a special character such as $, +, /, etc. Examples of permis—
sible names are COST, ITEM, XY3, 3A5. Examples of names not permitted
are AXX, COEF, A$B, and DEMAND.

-12-

A Temporary Attribute is always referred to in the source program by
its name plus a single subscript. The subscript identifies the particular
Temporary Entity or Event Notice of which the variable is an Attribute.
The subscript may be a Local or System Variable and may itself be sub—
scripted without limit, e. g., COST(HOUSE(OWNER(DOG))).

When a new Entity is created by a CREATE statement, space for storing
its Attribute values is allocated in the amount specified on the Definition
Form. This record is given an identification number, and the Variable
specified in the CREATE statement is automatically set equal to this
number. *

For example, the statement "CREATE DOG CALLED FIDO'" allocates the
required amount of storage for the Attributes of a DOG, and sets FIDO
equal to the identification number of the Attribute record. DOG is a type
of Temporary Entity, and FIDO is a Local Variable. If Entities of the
type called DOG have an Attribute called AGE, the AGE of the particular
DOG called FIDO would be referred to as AGE (FIDO).

The Variable set equal to the identification number in the CREATE state—
ment may be either a Local Variable, Temporary Attribute, or Permanent
Attribute. Like any number, this value may also be given to other addi—
tional Local or System Variables. Theidentification number of a parti—
cular Entity may be made available to subsequent Event routines or sub—
routines by giving its value to a subsequently identifiable Temporary or
Permanent Attribute, by use of the various kinds of Set operations, or in
case of a.subroutine by giving its value to an argument of the CALL and
SUBROUTINE statements.

In addition to being used as subscripts for Temporary Attributes, Vari—
ables whose values are the identification numbers of Entities also appear
in the source language statements, such as CREATE, FILE, REMOVE
FIRST, etc., provided for the manipulation of Entities.

The name of an Entity type as specified on the Definition Form may also
be used as the name of a Local Variable without conflict. This is a useful
feature since it permits statements such as CREATE DOG to be equivalent
to CREATE DOG CALLED DOG. In this case, DOG is both the name of a
type of Temporary Entity and the name of a Local Variable. The age of
the particular dog would be referred to as AGE(DOG) instead of AGE(FIDO)
as in the earlier example. Either the "long form'" (e. g., CREATE DOG
CALLED DOG) or the "short form" (e. g., CREATE DOG)may be used when
writing CREATE, DESTROY, CAUSE, or CANCEL statements. Although

*The identification number is equal to one greater than the absolute address
of the first word of the Master Record, as discussed in Chapters 13 and 15.

-13-

the identification number of a Temporary Entity is an integer, a floating
-point Local Variable such as DOG or FIDO may be used in the CREATE
statement for ease in assigning names, so long as this Variable does not
appear in subsequent arithmetic operations. The STORE statement is
provided so that the value of an identification number may be given to
another Variable without regard to mode. f

PERMANENT ATTRIBUTES

If the number of Entities of a particular type cannot change during the
simulation run, the Entity type and its Attributes should be defined as
"Permanent" rather than "Temporary" on the Definition Form. When ap—
propriate, it is advantageous to use Permanent Attributes because they
require less storage space, can be identified by their Entity's ordinal
designation (e. g., the "'second machine" or the "third man'), and can be
controlled as indexed variables without using the more time— and space—
consuming Set operations.

Attributes of Permanent Entities are available to all subroutines, and their
names are formed according to the same naming rules previously given
for Temporary Attributes.

Subscripts of Permanent Attributes, like those of Temporary Attributes,
identify the particular Entity which the Attribute describes. However, in
the case of Permanent Attributes the value of the subscript is the ordinal
designation of the particular Entity. For example, if DEPOT is a type of
Permanent Entity, the identification numbers of the individual DEPOTs run
from "1" up to the number of DEPOTs. If SIZE is an Attribute of DEPOT,
SIZE(1) is the size of the first DEPOT and SIZE(I) is the size of the Ith
DEPOT. If BASE is also a type of Permanent Entity, the identification
numbers of the individual BASEs run from ''1" up to the number of BASEs.
The size of the first BASE may be written SIZEB(1); that of the Ith BASE,
SIZEB(I). Note that Permanent Entities of two different types may have
the same identification number (both the first DEPOT and the first BASE
are identified by the number '1"), but they may not have Attributes with
exactly the same name.

The subscript of a Permanent Attribute may be an integer Local or System
Variable, an integer constant, or an integer expression containing Vari—
ables and/or constants. The Variables in a subscript may in turn be sub—
scripted to any order. "Unlike the subscripts of Temporary Attributes,
‘those of Permanent Attributes can and often do appear in arithmetic
operations; therefore, it is not advisable to use Local Variables w1th float—
ing point names as subscripts of Permanent Attributes.

-14-

The identification numbers of Permanent Entities are made available from
one routine to the next by the same procedures mentioned for Temporary
Entities. They may also be controlled by means of the FOR and FOR
EACH "ENTITY" statements described in Chapter 5. Unlike Temporary
Attributes, which always have a single subscript, Permanent Attrlbutes
may have no subscript, one, or two.

Unsubscripted Permanent Attributes, sometimes called System Attributes,
do not have an Entity which they describe, but in themselves may be
thought of as Attributes of the entire simulated system. (The simulated
system is conceptually a kind of Permanent Entity, but it is not necessary
to define it as such.) System Attributes are stored as single numbers and
are referred to by their source language names as defined on the Defini—
tion Form.

Two interpretations are possible for double—subscripted Permanent At—
tributes. They may be thought of as Attributes of pairs of Permanent
Entities; for example, the transit time between two different supply depots
would be expressed as a double—subscripted Permanent Attribute such

as TRANT(I,J). They may also be thought of as Attributes that may have
more than one value for each Entity. For example, the number of targets
assigned to bomber squadrons may vary from squadron to squadron. The
identification of the targets could be treated as a double—subscripted At—
tribute of the Permanent Entity, "squadron.'"* In either case, the At—
tributes are stored as tables. The first case would be a rectangular table
each dimension of which would equal the number of a particular type of
Permanent Entity. The second case is referred to in subsequent discus—
sion as a ""Ragged Table'" in which the number of rows is equal to the num—
ber of a particular type of Permanent Entity (e.g., "squadron'), and the
length of each row varies. B

In addition to the Permanent Attributes defined on the Definition Form, the
SIMSCRIPT translator automatically defines a number of Permanent At—
tributes; one most frequently referred to is the current value of simulated
time, called TIME. (See Chapter 11 for the complete list of translator—
defined System Attributes and functions.)

As with a Temporary Entity, the name of a type of Permanent Entity may
be given to Local Variables without conflict, provided the rules for nam-
ing Local integer variables are not violated. For example, the name

ITEM can be used to identify a type of Permanent Entity, and at the same

*Although Temporary Attributes may have only one value for eﬁthyTemporary
Entity, the same effect may be obtained through the use of a Set. For ex-
ample, if "squadron" were a type of Temporary Entity, 'target" could be
defined as another type of Temporary Entity and filed into a Set belonging
to a '"'squadron".

=15~

time be used as a Local Variable whose value indicates the number of the
particular ITEM involved. As mentioned before, the use of Local Vari—
ables with floating point names for this purpose is poss1b1e but not advis—
able in the case of Permanent Entities. :

EVENT NOTICE IDENTIFICATION NUMBERS ,
‘The handling of Event Notice identification numbers is identical to that of
Temporary Entities, with one additonal feature: the identification number
is made available to the Event Routine describing the particular kind of
Event by means of the CAUSE and ENDOGENOUS EVENT statements.
This transfer of the identification number from the causing routine to the
Event Routine, as well as the general use of subscripts, is illustrated

by the following pair of program fragments which create a job shop work

order, assign its next destination, and cause its arrival at that machine
group:

CREATE ORDER Equivalent to CREATE ORDER CALLED ORDER.
Creates an Attribute record as specified
on the Definition Form for an Entity of the
type called ORDER. Also sets a Local Vari-
able called ORDER equal to the identifica-
tion number of this record.

LET DEST(ORDER)=NEXT DEST is an Attribute of the type of Tempo-
rary Entity ORDER and is defined as such
on the Definition Form. The subsecript
ORDER is the Local Variable whose value is
the Temporary Entity identification number
established by the previous statement.
NEXT might be a Local or System Variable
previously set equal to the identification
number of a particular machine group.

CREATE ARRVL Equivalent to CREATE ARRVL CALLED ARRVL.
Creates an Attribute record for the Event
Notice called ARRVL. Sets a Local Variable
called ARRVL equal to its record identifica-
tion number.

STORE ORDER IN ORDRA (ARRVL) Stores the identification number of the
: ORDER called ORDER as an Attribute of the
ARRVL called ARRVL.

CAUSE ARRVL AT TIME + TRANT Equivalent to CAUSE ARRVL CALLED ARRVL AT
TIME + TRANT. Causes the Timing routine to
call for the ENDOGENOUS Event ARRVL routine
when simulation time is equal to TIME +

-16-

TRANT. The value of the Local Variable (in
this case ARRVL) will automatically be giv-
en to another Local Variablevcalled‘ARRVL
when the ENDOGENQUS EVENT ARRVL routine is
called. [T

When the particular Event scheduled by the preceding statement becomes
the most imminent, the Timing Routine will set TIME equal to the time at
which the Event is to occur and call the routine called ENDOGENOUS
EVENT ARRVL. This routine might begin as follows:

ENDOGENOUS EVENT ARRVL Each type of Endogenous Event and its cor-
responding type of Event Notice must always
have the same name. The value of the Local
Variable mentioned in the CAUSE statement
is automatically given to a Local Variable
in the Endogenous Event Routine when the
Event Routine is called. This latter Local
Variable also always has the same name as
the Endogenous Event and its Event Notice
(there is no '"long form" of the ENDOGENOUS
EVENT statement). Note that the same name
may appear repeatedly as the names of Local
Variables in various routines, as the name
of a type of Event Notice, and as the name
of an Endogenous Event Routine.

STORE DEST(ORDRA(ARRVL)) IN MG Sets the Local Variable MG equal to the
identification number previously obtained
from the variable NEXT.

USE OF IDENTIFICATION NUMBERS IN SET OPERATIONS

Sets of Entities are in fact collections of Entity identification numbers.
These numbers represent the members of the Set and are arranged on a
"last—in—first—out" (LIFO) or "first—in—first—out" (FIFO) basis, or they
are ''ranked' according to the value of one of the members' Attributes.

The type of Set organization (LIFO, FIFO, or Ranked) is specified on the
Definition form.

Identification numbers are inserted into Sets by means of the FILE state—
ment. They may be removed from Sets by the REMOVE FIRST or RE—
MOVE "SPECIFIC" statements. If there is a Set of DOGs called CAGE,
the statement FILE FIDO IN CAGE inserts the value of FIDO into the col—
lection of identification numbers identifying the various DOGs in the Set.

-17-

When this particular identification number becomes first in the Set, the
next—executed REMOVE FIRST statement will remove this identification
number from the Set and assign its value to whatever Variable is men—
tioned in the REMOVE FIRST statement. For example, if the identifica—
tion number previously referred to as FIDO were next to be removed from
the Set, the statement REMOVE FIRST HOUND FROM CAGE would delete
it from the Set and assign its value to the Local Variable HOUND. These
statements could also have been written FILE DOG IN CAGE and REMOVE
FIRST DOG FROM CAGE, using "DOG'" as a Local Variable.

A Set may have zero, one or two subscripts. Unsubscripted Sets are con—
sidered as belonging to the entire system, single—subscripted Sets belong
to individual Entities, and double—subscripted Sets belong to pairs of En—
tities. The subscripts are the identification numbers of the owning En—
tities.

Forthe translator to accomplishthe various Set operations, it isnecessary
to define one or more special Attributes for the type of Entity belonging to
the Set and for the type of Entity owning the Set.

The member type of Entity must have an Attribute whose value is the iden—
tification number of the Entity immediately succeeding it in the set ("'suc—
ceeding" in terms of the order in which it will be removed). If the Set is
Ranked, the member type of Entity must also have an Attribute whose
value is the identification number of the preceding member of the Set.

The owner type of Entity for each Set must have an Attribute whose value
is the identification number of the first member to be removed from the
Set. If the set has a FIFO or Ranked organization, the owner type of En—
tity must also have an Attribute whose value is the identification number
of the last member to be removed from the Set.

In the definition of these Attributes on the Definition Form, their names
are always formed by prefixing a single letter to the name of the Set. The
prefixes corresponding to "first,' '"last, " "predecessor, ' and "successor"
are "F," "L," "P," and "'S, " respectively. For example, if DOGs are
members of the Set called CAGE, DOG must have an Attribute called
"SCAGE." If CAGE is a Ranked Set, DOG must also have an Attribute
called "PCAGE." Assuming CAGE is unsubscripted and is therefore
owned by the system, there must be an unsubscripted Permanent Attribute
called "FCAGE. " If the Set is FIFO or Ranked, there must also be an un—
subscripted Permanent Attribute called "LCAGE "

The meaning of each type of special Attribute, the manner in which its name
is formed, and the types of Set organization that require it are summarized
below:

-18-

Requiring Describes
Attribute Types of Set Memberor
Meaning Name Organization Owner Entity
Predecessor in Set P''Set name" Ranked Member
Successor in Set S'"Set name" All '~ Member
First in Set F''Set name" All Owner
Last in Set L'Set name" Ranked, FIFO Owner

The values of the "first," "last,' "predecessor," and "successor' Attri—
butes are automatically changed as required by FILE, REMOVE FIRST,
and REMOVE "SPECIFIC" statements. These Attributes are available to
all subprograms, but their values may not be modified by source state—
ments other than FILE, REMOVE FIRST, and REMOVE "SPECIFIC. "

Note that because of the required owner Attributes, double-subscripted
Sets may belong only to Permanent Entities, since double—subscripted

Attributes are not permitted for Temporary Entities.

CONSTANTS AND EXPRESSIONS

Constants and expressions may be of integer or floating point mode. Val—-
ues of integer constants are written with no decimal point. Values of
floating point constants are written with a decimal point (either preceding,
following, or between the digits).

An integer expression consists of one or more integer Variables and/or
integer constants combined by arithmetic operations. Similarly, a float—
ing point expression consists of one or more floating point Variables and/
or floating point constants combined by arithmetic operations. Mixed
expressions are not permitted; however, integer expressions may appear
as subscripts in floating point expressions. Expressions may containboth
System and Local Variables.

The notation and conventions for arithmetic operations and for the use of
parentheses are the same in SIMSCRIPT as they are in FORTRAN.

-19-

Chapter 3

AN EXAMPLE OF A SIMSCRIPT SOURCE PROGRAM = -

" To illustrate the writing of a SIMSCRIPT source program,_ﬂsupposé a sim—

ple job shop simulation were to be programmed with the following features.
The simulated shop consists of a number of machine groups. The machines
in a group are considered identical for all practical purposes. The number
of groups and the number of machines within a group are specified sepa—
rately for each simulation run and remain constant throughout the run.
Orders come into the shop from outside the simulation process at arbitrary
points in time. Each order must go through operations at each of a series
of different machine groups. The routing through the shop and the pro-—
cessing time at each machine group are specified for each order and may
vary for different orders. After an order is processed by one machine
group, it is immediately routed to the next machine group. It is put into
process at once if there is a machine available; otherwise it is put into the
queue of orders waiting for that machine group. Orders enter and leave
the queues on a first—in—first—out basis.

The results desired from the simulation are the average length of time
that orders remain in the shop, and the average number of orders in the
queue of each machine group. These results are to be obtainable at arbi—
trarily specified dates during the simulation run.

The following discussion describes one possible way this simulation could
be programmed in SIMSCRIPT.

The Entity types used to define the shop Status include the Permanent En—
tity MG ("'machine group''), the Temporary Entity ORDER, and the Event
Notice EPROC for an Endogenous Event describing the end of a process.

The queue of orders waiting for a machine group is treated as a ''first—
in—first-out' Set called QUE(MG) having the type of Entity called ORDER
as members and belonging to the type of Entity called MG. This FIFO
Set requires that Attributes called FQUE (first in queue) and LQUE (last
in queue) be defined for the Entity MG. It also requires that an Attribute

‘called SQUE (successor in queue) be defined for the type of Entity called
ORDER.

In describing the routing of an order, it is convenient to treat the routing
as a Set of "'destinations' called ROUT(ORDER). This approach requires
an additional type of Entity called DESTN. Attributes called FROUT and
LROUT (first and last destinations in routing) must be defined for the En—
tity ORDER, and the Attribute SROUT (successor in routing) must be de—
fined for the Entity DESTN.

pesecc - SIMSCRIPT DEFINITION FORM

bare
TEMPORARY SYSTEM VARIABLES PERAMANENT SVYSTEM YAR/ABLES SETS FUNCTIONS §
TEMPORARY AND EVENT NOTICE ENTITIES “ ATTRISUTES ‘ =4 ’ ¢
aecono size iy . wnesex| wame pacr || 1 tHE NAME g ‘o | 1 wam 2
gl sarere JiE) | NAME ()8 Pack g g /Nfi § 3% e $12(2]3] manmrms | I3 ‘ § §
:Wi slsle|7|n v § m‘“ “E !h\ z°]
A h A LA B / ¥ / LF o i | B2 i—‘: 4
o1}j02 f‘ﬂOGIOS 08107 |08 [~ NO|11[12[13|14[15 |16 (37 Jhe '1‘9 20121 |2212312412% (2612720 |29(30|31 |} 32|3%{3a |35 MIJ’I 38 A2[43 |44 148 (48 (47 [4r |49 50 S$1[52|Sy |54 s |561i57|sn|50]|60t61{62|62 54 85 |166|67|8=[6q| 70|11 [|72 |73 2418
[+|IT|_ PR DIER4 T [plarlel | W /[[IF ielime /| le lavle] [1] e :
[+] T FlrRgloir] 2] [/] | Iz] | [2[N[@IRID VIRRG - Rlelulr]i] [«
+] v eRplor 3] /] | [T | [3leRiAN A TR
L T Islelel [& /] T Tl [4{calsiT /AT
+|E] v | / 5M|C|T] /| | P
N [EP R W MelpiRle] 3] |/[[[£ /
+ OrplRP 4 /] | IT 6MG /1L
+ir] Diess|t 1. Meipisie] 1| /] [|2}l | [7nigalv /1]
+ T .PTILME 2 |/ f FQUE / I
[+] SIROUT 8| |/] | IIll | }LQUE /L LK
[+ / L ON|IIN / F
+ / 1t]elume /I F
+] / tHairiMg | /| |
L+ | / |[3MEAN /I | F
|+ / /
|+ : / /
+] f / 7
 +] / /
+| /| /
+| / /
4| / /
+| / /
+| / /
4] / /
4] / / i
T ‘ Y
rrEpECESSOR! P sar vamk led - o Jedrcouineo arrmraumes
B er | S | aer mane ‘—/.‘/./:j wesrin exrmes I
Par wsar | F aer wame o] v,«_«jﬁ@};ﬁfu—n]
mrmurl; SET aME -t owwer ENTITIES
Pty o8

Fig. 3 = Definitions for Example Program

-21-

Among the other Attributes of the various Entities are the number of
‘machines available in a machine group, NOAVL(MG), the date of receipt
of an order, DATE(ORDER), and the processing time at a destination,
PTIME(DESTN). These Entities, Attributes, and Sets, and additional
Attributes for storing identification numbers and interim result totals,
are defined on the Definition Form as shown in Fig. 3.

In the present example, the shop is simulated with two different kinds of
Events: EXOGENOUS EVENT ORDRIN representing the receipt of an
order in the shop, and ENDOGENOUS EVENT EPROC representing the end
of the processing of an order at a machine group. Two additional kinds

of Events, EXOGENOUS EVENT ANALYZ and EXOGENOUS EVENT
ENDSIM, are used to analyze the results and end the simulation. In the
present example two Subroutines and one Report Routine are also used.

In order that the SIMSCRIPT translator may generate an appropriate Tim-
ing Routine, each type of Event is enumerated in an "Events List'" as i1—
lustrated in Fig. 4. The conventions for preparing an Events List are de—
scribed in Chapter 9. In addition to the Events List, one Event Routine is
written to describe each type of Event.

=1
o
B
9
ez |2 STATEMENT
112 5 :7 72
EVENTS
3 EXOGENOUS
ORDRIN (1)
ANALYZ (2)
ENDSIM (3)

1 ENDOGENOUS
EPROC

END

Fig. 4 — Events List for Example — Job Shop Simulation

-22-

EXOGENOUS EVENT ORDRIN

Flg 5 shows the required subroutine describing the changes in Status
when an order is received in the shop. -

STATEMENT

STATEMENT
NUMBER

o Continuation

EXOGENCUS EVENT ORDRIN
SAVE EVENT CARD
CREATE ORDER
LET DATE (ORDER)
READ N

FORMAT (I4)

DO TO 10, FOR I = (1)(N)

CREATE DESTN

READ MGDST(DESTN), PTIME(DESTN)
FORMAT (14, H3.2)

FILE DESTN IN ROUT (ORDER)

10 LOOP

CALL ARRVL(ORDER)

RETURN

END

TIME

Fig. 5 — Exogenous Event Routine Describing the Receipt of an Order

In general terms, the subroutine shown in Fig. 5 creates a record inmem-—
ory for storing the Attribute values of the new order, notes the date of
receipt as one of its Attributes, and reads in the number of destinations
in the routing of the order. For each destination, it creates a record for
storing the destination's Attribute values and reads and stores two of these
values, namely, the processing time and the machine group involved.
The destination is then filed into its proper place in the routing of the

~order. Finally, the order is moved to its first destination by calling a
o subroutine describing the arrival of an order at its next destination. The

specific meaning of each of the commands is described on the followmg
page.

- EXOGENOUS EVENT ORDRIN
SAVE EVENT CARD

' CREATE ORDER

LET DATE (ORDER) = TIME

READ N

FORMAT (I4)

DO TO 10, FOR I = (1)(N)
CREATE DESTN

READ MGDST (DESTN), PTIME (DESTN)
FORMAT (I4, H3.2)

-23-

Indicates an Event Routine describing an
Exogenous Event called ORDRIN

Indicates that additional data are. ‘to be
read from the Event Card. o

Creates a record in memory for storing the
Attributes of the Entity type ORDER. The
configuration of the record is specified
when defining ORDER on the Definition Form.
The identification number of this record is
given to a Local Variable also called ORDER.
In other words, the statement is equivalent
to CREATE ORDER CALLED ORDER.

Sets the date of receipt of the order equal
to the current value of simulated time.

DATE is an Attribute of the Entity type
called ORDER. DATE(ORDER) is an Attribute of
the particular ORDER whose identification
number is equal to the Local Variable ORDER.
TIME is a System Attribute that is automati-
cally defined by the tramslator and is al-
ways available. 1Its value is set automatic-
ally equal to current simulated time prior
to the calling of each Event Routine.

Reads the integer N from the first four data
columns of the Event Card. N is equal to
the number of destinations in the routing

of the order. The routing is described by

N data cards following the Event Card on the
Exogenous Event Tape,

Indicates that the following sequence of
statements through statement 10 is to be ex-
cuted N times,

Creates a record in memory for storiung the
Attributes of a particular destination of
the order.

Reads and stores two of theﬁdeétination s
Attributes, namely, the machlne group in-
volved MGDST(DESTN) and proce551ng time re-
quired at that destination PTIME(DESTN).

10

FILE DESTN IN ROUT(ORDER)

LOOP

CALL ARRVL(ORDER)

RETURN

END

2=

Files the destination into the routing of

the order on a first-in-first-out basis as
specified in defining ROUT on the Deflnl-

tion Form.

Returns control to the DO TO.stgtéﬁéht.

Calls on the ARRVL Subroutine describing
the arrival of an order at a machine group.
The argument ORDER indicates the identifi-
cation number of the particular order in-

volved.

Returns control to the Timing routine.

Designates the physical end of the sub-

program.

SUBROUTINE ARRVL

Figure 6 shows the Subroutine describing the arrival of an order at a
machine group.
able' is reduced by one and a Subroutine is called which allocates a ma—
If a machine is not available, the order is placed
in the queue of the machine group on a first—in—first—out basis, and data

related to the average size of the queue are accumulated.

chine to an order.

If a machine is available, the "number of machinesavail—

STATEMENT
NUMBER

o CONTINUATION

STATEMENT

72

SUBROUTINE ARRVL(ORDER)

STORE MGDST (FROUT (ORDER)) IN MG

IF (NOAVL(MG))EQ(0), GO TO 10

LET NOAVL(MG) = NOAVL(MG)-1

CALL ALLOC(MG, ORDER)

RETURN

10

FILE ORDER IN QUE(MG)

ACCUMULATE NINQ(MG) INTO CUMQ(MG) SINCE TMQ(MG),

POST NINQ(MG) + 1.0

RETURN

END

Fig. 6 — Subroutine Describing the Arrival of an Order

at a Machine Group

-25-

- The specific meaning of each of the statements is described below.

SUBROUTINE ARRVL(ORDER) Indicates a Subroutine Célled ARRVL with
: one argument. The Local Variable ORDER
identifies the order involved..

STORE MGDST (FROUT(ORDER)) IN MG Stores the identification number of the
' machine group destination that is cur-
rently first in the routing of the order
in the Local Variable MG.

IF (NOAVL(MG))EQ(0), GO TO 10 Transfers control to statement number 10
if number of machines available equals
zero. Otherwise, execution continues
with the following statement.

LET NOAVL(MG)=NOAVL(MG)-1 If a machine is available at the machine
group, the number available is decreased
by one.

CALL ALLOC (MG,ORDER) Calls the Subroutine which allocates a

machine to an order. The arguments given
to the Subroutine indicate the machine
group and the order involved.

RETURN Returns control to the Timing routine.

FILE ORDER IN QUE(MG) If a machine is not available, the order
is filed into the queue of the machine
group.

ACCUMULATE NINQ(MG) INTO Accumulates the data needed for computing

CUMQ(MG) SINCE TMQ(MG), the average size of the machine group's

POST NINQ(MG) + 1.0 queue. It multiplies the number of orders

in the queue by the elapsed time since
the previous change in the queue and adds
this to the cumulative total. The number
in the queue is then increased by one.

RETURN Returns control to the Timing routine.
“'END Designates physical end of subprogram.

SUBROUTINE ALLOC

To allocate a machine to an order, the Subroutine shown in Fig. 7 creates
an Event Notice for the coming "end of process' and posts the values of
two Attributes to this record. The end of process is then® scheduled for
occurrence following the lapse of the particular processing time. The
present destination is removed from the routing of the order and destroyed.

-26-

smoe | STATEMENT

SUBROUTINE ALLOC(MG, ORDER)

CREATE EPROC

STORE MG IN MGPRC(EPROC)

STORE ORDER IN ORDRP(EPROC) .

CAUSE EPROC AT TIME + PTIME(FROUT(ORDER))
REMOVE FIRST DEST FROM ROUT(ORDER)
DESTROY DESTN

RETURN
END

Fig. 7 — Subroutine for Allocating a Machine to an Order

This subroutine is described in detail below.

SUBROUTINE ALLOC (MG,ORDER) Indicates a subroutine called ALLOC with
two arguments supplied by the calling rou-
tine. The first argument is the identifi-
cation of the machine group involved; the
second argument identifies the order.

CREATE EPROC Creates a record for storing the Attribute
values of the end-of-process Event Notice.

STORE MG IN MGPRC (EPROC) Sets the Attribute MGPRC of the Event No-
tice EPROC equal to the machine group
specified by the calling routine.

STORE ORDER IN ORDRP(EPROC) Sets the Attribute ORDRP of the Event No-
tice EPROC equal to the order specified by
the calling routine.

~ CAUSE EPROC AT TIME + Instructs the Timing routine to call the
" PTIME (FROUT (ORDER)) ENDOGENOUS EVENT EPROC routine when simu-
R lated time is equal to current time.plus
the processing time for thq destination
that is first in the routing of the order.

REMOVE FIRST DESTN FROM Removes the first destination from Ehe
ROUT (ORDER) routing of the order.

DESTROY DESTN

" RETURN
D

-27-

Sets the contents of the destination rec-
ord equal to zero and makes this storage
space available to subsequent CREATE state-

ments. B
Returns control to the calling routine.

Designates physical end of théVSdbprogram.

ENDOGENOUS EVENT EPROC

The Event routine describing the end of process for an orderatamachine
group is shown in Fig. 8. If the order has another destination in the

shop, the ARRVL(ORDER) Subroutine is called.

If the order has no

STATEMENT
NUMBER

@ Continuation

STATEMENT

72

ENDOGENOUS EVENT EPROC

STORE ORDRP(EPROC) IN ORDER

STORE MGPRC(EPROC) IN MG

DESTROY EPROC

-~ DISPOSITION OF THE ORDER -

IF ROUT(ORDER) IS EMPTY, GO TO 10

CALL ARRVL(ORDER)

GO TO 20

10

LET CUMCT + TIME - DATE(ORDER)

LET NORDR = NORDR + 1,0

DESTROY ORDER

- DISPOSITION OF THE MACHINE -

20

IF QUE(MG) IS EMPTY, GO TO 30

REMOVE FIRST ORDER FROM QUE(MG)

CALL ALLOC(MG, ORDER)

ACCUMULATE NINQ(MG) INTO CUMQ(MG) SINCE TMQ(MG),

POST NINQ(MG) - 1.0

RETURN

30

LET NOAVL(MG) = NOAVL(MG) + 1

RETURN

END

Fig. 8 — Endogenous Event Routine Describing the End Process

for an Order at a Machine Group

10

-28-

other destinations, its time in the shop is added to cumulative cycle time
for the shop, it is tallied to the number of orders completed, and its rec—
ord is destroyed. Following the disposition of the order, the routine next
deals with the machine that has just become available. If other orders
are in the machine group's queue, the first order is removed and given
to the Subroutine for allocating a machine to an order, and the data re—
lating to the average size of the queue are then updated. If there is no
queue, the number of machines available is increased by one. A detailed
description of the Event Routine is given below.

ENDOGENOUS EVENT EPROC Indicates an Event Routine describing an
Endogenous Event called EPROC.

STORE ORDRP(EPROC) IN ORDER Sets the Local Variable ORDER equal to
the identification of the order that has
finished processing.

STORE MGPRC (EPROC) IN MG Sets the Local Variable MG equal to the
machine group that has just completed
the process.

DESTROY EPROC Sets the contents of the end-of-process
record equal to zero and makes this stor-
age space available to subsequent CREATE
statements.

-DISPOSITION OF THE ORDER - A Comment. Does not affect the object
program,

IF ROUT(ORDER) IS EMPTY, GO TO 10 Tests to see if any destinations remain
in the routing of the order.

CALL ARRVL(ORDER) Calls the previously described Subroutine
describing the arrival of an order at a
machine group.

GO TO 20 Transfers control to statement number 20.

LET CUMCT=CUMCT+TIME-DATE (ORDER) Adds the elapsed time the order has been
in the shop to the cumulative cycle time
of all previously completed orders.

LET NORDR=NORDR-+1.0 Increases the number of orders completed
_ : by one. : ‘
'DESTROY ORDER Sets the record of the order to. 2ero and

makes the space avallable for the use of
subsequent CREATE statements.

-DISPOSITION OF THE MACHINE - A comment.

20

-29-

EN

IF QUE(MG) IS EMPTY, GO TO 30 Tests to see if there is ahothér order in

the queue of the machine group that just
completed the process.

- REMOVE FIRST ORDER FROM QUE (MG) Removes the order that is first in the

30

queue of the machine group. The Local
Variable ORDER now identifies the order
just removed from the queue.

CALL ALLOC(MG,ORDER) Calls the previously described Subroutine
that allocates a machine to an order.

ACCUMULATE NINQ(MG) INTO CUMQ(MG) Updates the cumulative number in queue
SINCE TMQ(MG), POST NINQ(MG)-}.0 and decreases the number in queue by one.

RETURN Returns control to the Timing routine.
LET NOAVL(MG)=NOAVL (MG)+1 Increases the number of machines avail-
able by one if the queue is empty.
RETURN"® Returns control to the Timing routine.
END Indicates the physical end of subprogram.

The preceding two Event Routines, plus the Subroutines for the arrival of

an order at a machine group and for allocating a machine to anorder, de—
scribe the running of the shop. The remaining routines analyze and report
results and stop the simulation run.

EXOGENQOUS EVENT ANALYZ

The Exogenous Event routine shown in Fig. 9 analyzes the queue—lengthand
cycle—time data that have accumulated since the previous Report. The

various cumulative quantities and time variables are appropriately reset so
that the data for the next report can be accumulated. Except for COMPUTE,

~ the meanings of the statements have alreadybeen illustrated. The state—

ment COMPUTE GRAND = MEAN OF MEANQ(I), FOR EACH MGI computes

the arithmetic mean of the quantities MEANQ(I) and sets GRAND equal to
thxs value.

The EXOGENOUS EVENT ANALYZ routine calls a repor’c‘(routikne(called
RESULT which is written on the Report Generator Layout Form as shown
in Fig. 10.

-30-

k
s
S STATEMENT
NUMBER «
3
1|2 s{6]7 _12
EXOGENOUS EVENT ANALYZ
LET MCT = CUMCT/NORDR
DO TO 10, FOR EACH MG I
ACCUMULATE NINQ(I) INTO CUMQ(I) SINCE TMQ(I)
LET MEANQ(I) = CUMQ(I)/(TIME - LAST)
LOOP
COMPUTE GRAND = MEAN OF MEANQ(I), FOR EACH MG I
CALL RESULT
LET LAST = TIME
LET CUMCT = 0,0
LET NORDR = 0,0
LET CUMQ(I) = 0.0, FOR EACH MG I
LET TMQ(I) = TIME, FOR EACH MG I
RETURN
END
Fig. 9 — Exogenous Event Routine for Analyzing Accumulated Results

REPORT RESULT

For purposes of explanation, each line has been given a number in the
left-hand margin of Fig. 10. The meaning of each line is as follows:

1.

4,

Indicates the name of the particular Report Routine. Does not
appear in the printed output.

A "Form Line" that dlsplays text to be printed exactly as in—
dicated. The "3" under ' Spacmg specifies that three lines
are to be skipped following the printing of this line (the use of
this and other control columns is explained in Chapter 10).

Except for the asterisks, all characters in this "Form Line"
will be printed in the print positions shown. The asterisks
designate integer fields for printing the values of the two vari—
ables specified in the Content Line immediately following it.

A "Content Line'" indicating that the "days part" of time vari—
able LAST(time of last report) and TIME(time of this report)
are to be printed in the previously specified integer fields.
Variables in a Content Line correspond in order to the asterisk
fields in the preceding Form Line. They need not be written
directly under their respective print positions astheyareinFig.
10.

w o 8

SIMSCRIPT REPORT GENERATOR LAYOUT FORM

i
LEPT MAND CARDS f RIGHT HAND CARDS

PRINT POSTTIONS PRINT POSITIONS
100

7 [s0 jo0 [roi71 Irafrs Lo s bvs o [ralre tao i a2 [u faaes fue o e |ns{ooes oz oa lnaas o] Jos [00 fo1 [n2los [oa s

=

hd

DY =]

E
RGN CI O G 2 SR Ol

s
s

[3 | X
FaE
A NE S

o
C 8 3
3
=3
=
w

‘ AVE‘RI%QE mlq‘q‘tm 0k oRDERS WAT|TING! F im EAck =ng;uiru«e Grldue

-‘[c-

s

3 Eanadr
i | 1 |
GRAND] WVERR P :
GRAN

. i
IH4A50 R001 RERARI (620D

FUNCN THIS SIOR PINST, WW.——-’EQ——W OTHER SIIR FIRST

Fig. 10 — SIMSCRIPT Report Generator Layout Form (reduced)

-32-

5. Another Form Line containing both text to be printed as writ—
ten and a decimal field defined by asterisks. The decimal
point will appear in the print position indicated.

6—10. Additional Form and Content Lines.
11. A "Row Repetition' line specifying that the output defined by
the previous pair of Form and Content Lines is to be repeated

for each machine group (FOR EACH MG I).

12,13. Form and Content Lines for printing the average queue for all
machine groups.

14. Signifies the end of the report.

INITIAL CONDITIONS AND END OF SIMULATION

In order that SIMSCRIPT source and object programs may be "dimension—
free, " the initial Attribute values for Permanent Entities and for the Sys—
tem are input at the time of object program execution as described in
Chapter 14.

If it is desired to start the simulation with Temporary Entities in exist—
ence and with Endogenous Events already scheduled, these conditions may
be established by a special Exogenous Event routme written for this pur—
pose and occurring at time zero. In the present example, the simulation
is started with an empty shop. Orders can be introduced by means of the
EXOGENOUS EVENT ORDRIN routine.

Program execution is terminated by the STOP statement. In the present
example, the end of simulation might be accomplished by the following
Exogenous Event:

£

(=]

b

STATEMENT _;’:’: STATEMENT
NUMBER | B
S
112 5 16{7 72

EXOGENOUS EVENT ENDSIM
STOP
END

Fig. 11 — Exogenous Event Routine to Stop the Simulation

-33-

Chapter 4

ENTITY OPERATIONS

The following SIMSCRIPT statements are provided for creating and de—

stroying Entities, filing and removing them from Sets, and causing and
cancelling Events:

CREATE FILE

DESTROY REMOVE FIRST
CAUSE REMOVE "SPECIFIC"
CANCEL

CREATE STATEMENTS

When a new Temporary Entity or Event Notice first comes into being, a
record for storing its Attribute values must be established by means of a
CREATE statement.

GENERAL FORM EXAMPLES

CREATE '"Temporary Entity or Event Notice" CREATE ORDER CALLED I
1 3 1"
CALLED "Variable CREATE EPROC CALLED E

The CREATE statement accomplishes two actions: first, storage space is
assigned for the record of the newly created Temporary Entity or Event
Notice; second, the "Variable'" mentioned in the CREATE statement is set
equal to the identification number of this record. All new records contain
zeros. The record configuration for each kind of Temporary Entity or
Event Notice is specified on the Definition Form. For convenience, the
following short form of the CREATE statement is provided:

GENERAL FORM EXAMPLES
CREATE "Temporary Entity or Event Notice" CREATE ORDER
This short form is equivalent to: which means:
CREATE '"Temporary Entity or Event Notice" CREATE ORDER CALLED ORDER
CALLED "'Local Variable with same name as
the Temporary Entity or Event Notice"

-3 -

DESTROY STATEMENTS

When a Temporary Entity or Event Notice goes out of existence, a DE—
STROY statement destroys its record to make this storage space avail—
able for the records of new Entities.

GENERAL FORM EXAMPLES

DESTROY '"Temporary Entity or Event Notice" DESTROY ORDER CALLED I
CALLED '"Variable"

The "Temporary Entity or Event Notice'" mentioned in the DESTROY state—
ment identifies the type of record to be destroyed. The "Variable'" indi—
cates the identification number of the record. As with the CREATE state—
ment, a short form of the DESTROY statement is provided:

GENERAL FORM EXAMPLES

DESTROY "Temporary Entity or Event Notice' | DESTROY TRNST
This short form is equivalent to: which means:

DESTROY "Temporary Entity or Event Notice' | DESTROY TRNST CALLED TRNST
CALLED 'Local Variable with same name as
the Temporary Entity or Event Notice"

CAUSE STATEMENTS

GENERAL FORM EXAMPLES

CAUSE "Event Notice" CALLED '"Variable' AT CAUSE PROC CALLED LPR AT
"floating point expression specifying time | TIME + LT
that the Event is to occcur"

The CAUSE statement instructs the object program to call for an Event
Routine called "ENDOGENOUS EVENT 'Event Notice'" at the point in sim—
ulated time specified by the floating point expression. The "Variable"
must equal the identification number of the Event Notice record. When the

-35-

Event Routine is called, the value of this identification number is auto—
matically given to a Local Variable with the same name as the Event and
the Event Notice. The CAUSE statement may be written in the short form
shown below.

GENERAL FORM EXAMPLES
CAUSE "Event Notice' AT '"time expression" CAUSE ARRVL AT TIME + TRANT
This short form is equivalent to: which means:
CAUSE "Event Notice' CALLED '"Local Variable | CAUSE ARRVL CALLED ARRVL AT
with same name as the Event Notice' AT TIME + TRANT
"time expression"

CANCEL STATEMENTS

GENERAL FORM EXAMPLES

CANCEL "Event Notice' CALLED '"Variable" CANCEL TRANS CALLED TR

This statement removes a coming Endogenous Event from the calendar of
coming Events. The Event may be rescheduled to occur at another time
by another CAUSE statement, or the Event Notice may be destroyed or dis—
posed of in any other desired manner. As in the case ofthe CAUSE state—
ment, the Variable" must be equal to the identification number of the par—
ticular Event Notice. The short form is also permissible.

GENERAL FORM EXAMPLES
CANCEL "Event Notice" CANCEL ARRVL
This short form is equivalent to: which means:

CANCEL "Event Notice" CALLED "Local Variable CANCEL ARRVL CALLED ARRVL
with same name as the Event Notice"

-36-

FILE STATEMENTS

GENERAL FORM EXAMPLES

FILE '"Variable' IN "Set" FILE ORDER IN QUE(MG)
FILE ITEM IN LIST
FILE JOB(MG) IN LOAD(MG,LC)

The FILE statement inserts an Entity into its proper position in a Set. The
members of a Set are inserted and removed on a last—in—first—out (LIFO),
first—in—first—out (FIFO), or ranked basis, depending on the type of Set
organization specified on the Definition Form. The "Variable' in the FILE
statement must be equal to the identification number of the Entity to be
filed. The FILE statement automatically modifies the required member
and owner Attributes.

The "Set'" may have zero, one, or two subscripts, depending on whether it
belongs to the System, a single Entity, or a pair of Entities. The sub-—
scripts are the identification numbers of the owning Entities. Ownership
of double—subscripted Sets is limited to Permanent Entities.

REMOVE FIRST STATEMENTS

GENERAL FORM EXAMPLES

REMOVE FIRST 'Variable' FROM "Set" REMOVE FIRST PART FROM BIN
REMOVE FIRST X(M) FROM AB(J)

The REMOVE FIRST statement removes the first Entity from the Set, and
the ""Variable' is set equal to the identification of the particular Entity
being removed. Determination of which Entity is first depends onthe type
of Set organization specified on the Definition Form. Modification of the
required member and owner Attributes is automatically accomplished by
the REMOVE FIRST statement.

-37-

REMOVE "SPECIFIC" STATEMENTS

GENERAL FORM EXAMPLES

REMOVE '"Variable' FROM ''Set" REMOVE TRUCK FROM SHOP
REMOVE B(LM) FROM LSS

The REMOVE "SPECIFIC'" statement removes a specified Entity from a
Ranked Set irrespective of its rank position. The "Variable'' must be equal
to the identification number of the particular Entity to be removed. The
identification number of the Entity must be in the Set at the time the
REMOVE "SPECIFIC" statement is executed. Modification of the required
owner and member Attributes is automatically accomplished by the
REMOVE "SPECIFIC" statement.

The REMOVE "SPECIFIC" statement may not be used with LIFO or FIFO
Sets. However, the same effect can be obtained by using a Ranked Set with
the priority based on the time of entry into the Set. Using a Ranked Set
to accomplish LIFO or FIFO operations should be avoided when possible,
since Ranked Sets require more storage space and more computing time
than do Sets with LIFO or FIFO organizations.

-38-

Chapter 5

ARITHMETIC AND CONTROL COMMANDS

SIMSCRIPT provides the following statements and phrases for performing
and controlling arithmetic operations:

LET OR

STORE AND

FOR DO TO

FOR EACH "ENTITY" LOOP

FOR EACH OF "SET" DO TO "SET"
WITH REPEAT

LET STATEMENTS

GENERAIL FORM EXAMPLES
LET ''Variable' = "expression','any LET ALPHA = M(I) + COST
number of control phrases separated
by commas" LET SB(I) = C(I+E(I)), FOR EACH
BASE I, WITH (H(X(I)))GR(5),AND
(XYZ(I))LS(6)

The LET statement evaluates the ""expression' and sets the "Variable"
equal to this value. The expression may be integer or floating point, and
may contain both Local and System Variables. If the mode of the expres—
sion is different from that of the Variable, the mode of the expression's
value is automatically changed prior to setting the Variable equal to it.

The "Variable' to the left of the equal sign may or may not be subscripted.
The subscript may be any integer expression and may in turn contain sub—
scripted or non—subscripted integer Variables to any order.

In all SIMSCRIPT statements, written words or names must be separated
by one or more spaces unless separated by a special character. There—
fore, at least one blank space must be left between the word "LET' and
the name of the "Variable." Any number of control phrases (FOR, FOR
EACH "ENTITY, " FOR EACH OF "SET, " WITH, OR, or AND) may fol—
low the expression to control the execution of the LET statement. These
control phrases are described below.

-39-

STORE STATEMENTS

GENERAL FORM EXAMPLES

STORE ''Variable" IN 'Variable',"any number STORE ORDER IN ORDRA(ARRVL)
1
of control phrases separated by commas STORE X(I) IN Y(AB(F))

At least one '"Variable' must be a System
Variable,

The STORE statement sets the value of one Variable equal to the value of
another Variable without regard to mode. In other words, whatever the
binary representation of the value of the first Variable, the same binary
representation is given to the value of the second Variable. This some—
what curious feature is provided so that Local Variables with either integer
or floating point names may be used for storing Entity identification num—
bers.

The use of the STORE statement instead of the LET statement is manda—
tory when transferring an identification number from an integer Variable
to a floating point Variable, or vice versa. To avoid errors, it is advis—
able always to use the STORE statement when transferring identification

numbers.

CONTROL PHRASES

A number of SIMSCRIPT source language statements may be modified by
what are called control phrases. These control phrases are:

FOR
FOR EACH "ENTITY"
FOR EACH OF "SET"

WITH
OR
AND
The statements that may be controlled by control phrases are:
LET FIND MAX or MIN READ FROM
STORE FIND FIRST WRITE
DO TO CALL COMPUTE

DO TO "SET" READ

-40-

The general form of each kind of control phrase is described below, and
its use with the various kinds of statements is described in the discussion
of the individual statements. Control phrases are also used in the Report
Generator discussed in Chapter 10.

FOR CONTROL PHRASES

GENERAL FORM EXAMPLES
FOR "integer Local Variable' = ("integer FOR I = (1)(N)
expression") ("integer expression'")("integer - 2
expression') FOR I (K) (N(X(1)))(2)
FOR J = (2)(NBASE-1)

The last integer expression may be omitted.

The first expression specifies the first value to which the Local Variable
or index will be set. The second expression specifies the last or maximum
value the Local Variable will assume. The third expression specifies the
size steps by which the Local Variable is to be advanced. If this last ex—
pression is omitted, it is assumed to be ''one." Each expression must be
enclosed in parentheses.

In a sequence of FOR, FOR EACH "ENTITY, " or FOR EACH OF "SET"
phrases, the index of the last control phrase advances most rapidly and
the index of the first control phrase advances most slowly.

FOR EACH "ENTITY" CONTROL PHRASES

Repetitive operations on each Permanent Entity of a particular type may be
controlled by the FOR EACH "ENTITY" phrase.

GENERAL FORM EXAMPLES
FOR EACH
FOR ALL |''Permanent Entity" "integer Local | FOR EACH BASE I
FOR EVERY Variable"
which is equivalent to: equivalent to:
FOR "integer Local Variable'" = (1) (number FOR I = (1) (NBASE) where
of Permanent Entities of the particular NBASE equals the number
type" of BASEs

41-

EACH, ALL, and EVERY are synonyms. The translator automatically
defines an unsubscripted Permanent Attribute with the name ''NEntity
type" for each type of Permanent Entity defined on the Definition Form.
This System Attribute must be set equal to the number of Entities of the
particulartype each time the program is executed. For example, if BASE
is a type of Permanent Entity, NBASE is automatically defined; it must
be set equal to the number of BASEs each time the program is executed.
The System Variable "NBASE" is available to all subprograms, but itmay
not be modified.

FOR EACH OF "SET'" CONTROL PHRASES

Repetitive operations on each member of a Set may be controlled by the
FOR EACH OF "SET" phrase. -

GENERAL FORM EXAMPLES

FOR EACH MEMBER IN QUE(J)

FOR EACH OF
FOR ALL | "Local Variable" | IN |'set™ FOR ALL I OF LIST
FOR EVERY gg FOR EVERY X OF S(I,M(J+K))

EACH, ALL, and EVERY are synonyms, and OF, IN, ON, and AT are
synonyms. For ease in assigning names, the ""Local Variable' may have
either an integer or floating point name as long as the Variable is not in—
volved in arithmetic operations in the statements controlled by the FOR
EACH OF "SET'" phrase. If the Local Variable is to be used in arithme—
tic operations, it must be given an integer name. As shown inthe exam—
ples, the "Set" may or may not be subscripted.

WITH CONTROL PHRASES

GENERAL FORM

EXAMPLES

WITH ("expression'')'comparison'("expression'’)

WITH (X+Z)GE (HCB)
WITH (STOCK(I))LS(RP(I))

42~

WITH phrases are used to limit FOR, FOR EACH "ENTITY" and FOR
EACH OF "SET'" phrases. Cases not satisfying the comparison indicated
in the WITH phrase are excluded from the cases specified in the FOR,
FOR EACH "ENTITY, " or FOR EACH OF "SET'" phrase. Permissible
comparisons and their codes are as follows:

Code Comparison

GR greater than

GE greater than or equal to
EQ equalto

NE not equal to

LS less than

LE less than or equal to

The WITH phrase always limits the FOR, FOR EACH "ENTITY, " or FOR
EACH OF "SET" phrase immediately preceding it. The two expressions

in a WITH phrase need not be of the same mode; one may be integer and
the other floating point.

OR CONTROL PHRASES

OR pkfrases impose alternative conditions on WITH phrases.

GENERAL FORM EXAMPLES

OR ('"expression')'comparison'('"expression) OR (LEVEL + 1)LE(R + Q)

Permissible "comparisons' and their codes are the same as described for
the WITH phrase. The expressions may be integer or floating point and
need not be of the same mode. Any number of OR phrases may modify

a WITH phrase. OR phrases always modify the first WITH phrase imme—
diately preceding them.

AND CONTROL PHRASES

AND phrases impose additional conditions on the previous WITH or OR
phrase. Any number of AND phrases may modify WITH or OR phrases.

GENERAL FORM EXAMPLES

AND ("expression')''comparison'('expression') AND (X(I))NE(Q(J))

-43-

To summarize the use of control phrases, suppose it is desired to com—
pute the total inventory value for a selected group of items in a supply
system consisting of several different bases. Items are to be selected
from a particular list, and only those items on the list whicheither have a
unit price greater than $ 5000 or which have both a unit pr1ce greater than
$1000 and an annual dollar volume of more than $ 5000 are to be included
in the inventory value total. This computation could be accomplished by
the following pair of statements:

LET VALUE = 0.0

LET VALUE = VALUE + PRICE(ITEM)*QUANT(ITEM, J),
FOR EACH BASE J, FOR EACH ITEM OF
LIST, WITH (PRICE(ITEM))GR(5000),
OR (PRICE(ITEM))GR(1000), AND
(PRICE(ITEM)*RATE(ITEM))GR(5000)

DO TO STATEMENTS AND LOOP STATEMENTS

The DO TO statement, and the LOOP statement always used in conjunction
with it, are used to accomplish the repetitive execution of a series of
statements. The DO TO statement is always controlledby one or more
FOR or FOR EACH "ENTITY'" phrases, perhaps modified by WITH, OR,
or AND phrases. It may not be controlled by FOR EACH OF "SET" state-
ments.

GENERAL FORM EXAMPLES
3 STATEMENT § STATEMENT
112 516]7 12 112 51617 12
DO TO "statement number', DO TO 20, FOR I=(1l)(N),
"one or more FOR or FOR X| WITH (I)NE(SPEC)
EACH 'ENTITY' phrase per-
haps modified by WITH, OR
or AND phrases"
LOOP 20| | LOOP
"statement
number
specified
in the
DO TO
statement" B
_ﬁ/ 'V—/‘ 4

by -

DO TO "SET" STATEMENTS AND REPEAT STATEMENTS

If a series of statements are to be executed for each Ent ity in a Set, the
DO TO "SET" statement must be used. The general forms of the DO TO
"SET" statement and the REPEAT statement always used in conjunction

with it are as follows:

GENERAL FORM EXAMPLES
; ¥
S STATEMENT 8 STATEMENT
12 51617 72 1]2 5]617 v
"statement DO TO ''statement number 'b'" 10} [DO TO 20, FOR EACH
number 'a'"| |FOR EACH '"Local Variable" X{MAN OF TEAM, WITH
OF "Set", '"any number of X| (SKILL(MAN))GR(8)
WITH, OR or AND phrases" 2
"statement REPEAT "statement number ‘'a'"! 20| |REPEAT 10

number 'b'"

J ~ 7~

In a DO TO "SET" statement, the last statement in its range must be a
REPEAT statement returning control to the DO TO "SET'" statement

(it may never be a LOOP statement). Explicit statement numbers must be
assigned to both the DO TO "SET'" and REPEAT statements.

Only one FOR EACH OF "SET" phrase may be used to control each DO
TO "SET" statement, but it may be modified by any number of WITH, OR
or AND phrases.

-45-

Chapter 6

DECISION COMMANDS

SIMSCRIPT provides the following commands for selecting among alterna—
tives:

IF "COMPUTED" GO TO
"THREE-WAY'" IF FIND MAX, FIND MIN
IF EMPTY FIND FIRST
"UNCONDITIONAL" GO TO WHERE

IF STATEMENTS

GENERAL FORM EXAMPLES

IF ("expression")'"comparison''("expression'’), IF (X+1)NE(Y), GO TO 50

" "
any statement IF (STOCK(ITEM))EQ(0), LET
NUMBER = NUMBER + 1

The IF statement makes the indicated comparison, and, if the condition
is met, executes the indicated statement. If the condition is not met, the
statement is ignored and control passes to the next statement in the pro—
gram. Expressions may be of different mode. Permissible comparisons
and their codes are:

Code Comparison

GR greater than

GE greater than or equal to
EQ equal to

NE not equal to

LS less than

LE less than or equal to

"THREE-WAY'" IF STATEMENTS

This SIMSCRIPT statement is like the IF statement in FORTRAN. If the
expression is negative, control is transferred to the statement indicated
by the first statement number. If the expression equals zero, control is
transferred to the second statement. If the expression is positive, con—
trol is transferred to the third statement. As in other SIMSCRIPT

-46-

GENERAL FORM EXAMPLES

IF ("expression') "statement number', IF (PRITY(K)+B) 10, 20, 30
“"statement number', '"statement number"

statements, the expressions may contain both Local and System Variables
and may have subscripted subscripts.

IF EMPTY STATEMENTS

GENERAL FORM EXAMPLES

IF "Set"-{IS }-EMPTY, "any statement" |IF QUE(MG) IS EMPTY, GO TO 50

IS NOT
IF LIST(A) IS NOT EMPTY, REMOVE
FIRST ITEM FROM LIST(A)

The preceding statement is included in the SIMSCRIPT language as a con—
venient way to test whether a Set is empty. If the condition is met, the in—
dicated statement is executed. If the condition is not met, the statement
is ignored and control passes to the next statement in the program.

"UNCONDITIONAL" GO TO STATEMENTS

GENERAL FORM EXAMPLES

GO TO "statement number" GO TO 40

The execution of this statement transfers program controlto the statement
with the specified statement number.

"COMPUTED'" GO TO STATEMENTS

The execution of this statement transfers program control to either the
first, second, third, etc., statementdepending on whether the expression

-47-

GENERAL FORM EXAMPLES
GO TO ("'statement number', '"statement GO TO (30, 20, 95), I +J
number', ,,.,'"statement number'"), '
"expression"

equals 1, or 2, or 3, etc. This statement is the same as in FORTRAN
except that where FORTRAN requires an integer variable, SIMSCRIPT
permits any expression. Floating point expressions will be truncated.

FIND MAX, FIND MIN STATEMENTS

GENERAL FORM EXAMPLES
FIND '"Variable" ={I~}ﬁ)1\(l OF "expression', |FIND MSTOCK = MAX OF STOCK(I),
FOR EACH ITEM I

"one or more control phrases, and if
desired, WHERE phrases', IF NONE, "any FIND MPRI = MIN OF PRI(MG)*
statement" ' FCTR(LC), FOR EACH LC OF LIST2,
WHERE LCMIN IS BEST LC, FOR
EACH MG OF SRUD(LC), WITH
(NIDL(MG))GR(0), WHERE MGMIN
IS BEST MG, IF NONE, GO TO 50

This statement finds the maximum or minimum value of an expression and
sets a Variable equal to this value. The search is controlled by one or
more FOR, FOR EACH "ENTITY", or FOR EACH OF "SET'" phrases,
perhaps modified by WITH, OR, or AND phrases. Additionally, any FOR,
FOR EACH "ENTITY", or FOR EACH OF "SET'" may have one WHERE
phrase associated with it. The W HE RE phrase is described below.

Cases are possible in which there is no maximum or minimum—for ex—
ample, when a FOR EACH OF "SET'' phrase refers to a Set that happens
to be empty. It can also occur that the conditions of WITH, OR, or AND
phrases cannot be fulfilled. The "IF NONE' phrase permits the specifi—
cation of a SIMSCRIPT statement to be executed if the MAX or MIN is
found to be nonexistent. The "IF NONE'" phrase may be omitted if there
is no possibility that the MAX or MIN does not exist.

48~

WHERE PHRASES

GENERAL FORM EXAMPLES

WHERE ''Variable' '"optional text" WHERE MGMIN IS BEST MACHINE GROUP
or optionally:
WHERE MGMIN

Being a selection statement, FIND MAX or MIN produces at least two
values: (1) the value of the maximum or minimum result, and (2) the iden—
tification of the particular Variable or Variables that produced this result.
The "'Variable' in the WHERE phrase will be set equal to the value attain—
ed by the index or identification number controlled by the preceding FOR,
FOR EACH "ENTITY", or FOR EACH OF "SET" phrases when the mini—
mum or maximum is achieved. The WHERE phrase refers to the preced—
ing FOR, FOR EACH "ENTITY", or FOR EACH OF "SET'" phrase, even
though it may be separated from it by WITH, OR, or AND phrases. This
is illustrated in the following example:

FIND XY = MAX OF X(I)*Y(I), FOR EACH I OF L.ST,
WITH (X(I))GR(0), WHERE IMAX IS THE
VALUE OF I WHICH MAXIMIZES X(I)*Y(I)

As stated above, the text following "WHERE IMAX" is optional. There

are no restrictions on the optional text except that it may not contain com—
mas.

FIND FIRST STATEMENTS

GENERAL FORM EXAMPLES

FIND FIRST 'optional text'", 'one or FIND FIRST, FOR EACH SN I, WITH
more control phrases and WHERE (X(I))GR(0), WHERE IFIRST IS FIRST,
phrases', IF NONE, "any statement" IF NONE, GO TO 60

FIND FIRST COMBINATION OF I AND
J, FOR I = (1)(N), WHERE IX,
FOR J = (1) (N2), WHERE JX, WITH
(X(I))LE(5), AND (Y(J))GR(7)

-49-

In the first example, "IFIRST" is set equal to the first value of "I" with
X(I) greater than zero. The second example finds the first combination
of """ and "J" that meets the specified conditions. It sets "IX" equal to
"1", and ""JX" equal to "J" for this combination. It is not necessary that
each FOR, FOR EACH "ENTITY", or FOR EACH OF "SET" phrase have
a WHERE phrase, and the IF NONE phrase may be omitted. However,
there must be either a WHERE phrase or an IF NONE phrase in the FIND
FIRST statement.

If there are several FOR, FOR EACH "ENTITY'", and FOR EACH OF
"SET" phrases, the FIND FIRST statement selects the first combination
of Variables encountered in the search which meets all the specified con—
ditions. The Variables indicated in the WHERE phrases are thenset equal
to the values of the indexes in their corresponding FOR, FOR EACH "EN—
TITY", or FOR EACH OF "SET'" phrases.

-50-

Chapter 7

INPUT AND OUTPUT COMMANDS

In SIMSCRIPT programs, the input of data is usually done by means of the
initialization procedures and subsequently from the Exogenous Events.
Tape. Printed output is usually obtained by means of the Report Genera—
tor. A number of tape—handling commands are also provided.

The present Chapter describes the composition of the Exogenous Events
Tape plus the following tape—handling commands:

SAVE BACKSPACE
READ REWIND

FORMAT ENDFILE

READ FROM LOAD

WRITE ON RECORD MEMORY
ADVANCE RESTORE STATUS

Initialization procedures and the Report Generator are described in sub—
sequent Chapters.

EXOGENOUS EVENT TAPE

The Exogenous Event Tape is formed from a deck of cards containing one
Exogenous Event Card for each Event occurrence. Exogenous Events are
ordered chronologically on the tape, and each Event card may be followed
by one or more Data Cards for input of information related to the Event.
Exogenous Event Cards have the following layout:

Cols. 1-3 identification number of the Exogenous Event type
Cols. 4-7 the day of simulation that the Event occurs

Cols. 8-10 the hour of the day that the Event occurs

Cols. 11-12 the minute of the hour that the Event occurs

Cols. 13-72 additional data, if any.

The data in Cols. 1 through 12 of the Event Card are available only to the
SIMSCRIPT—generated Timing routine and may not be referred to insource
language statements. On the basis of these data, the Timing routine

advances simulated time and calls the appropriate Exogenous Event
routine.

Data to be read in by the Exogenous Event routine may be entered in Cols.

13 through 72 of the Event Card, or may be entered in Cols. 1 through 72
of subsequent Data Cards.

-51-

SAVE STATEMENTS

"If data are to be read from Cols. 13 through 72 of the Event Card, the
second statement in the Exogenous Event routine must be a SAVE state—
ment. If the second statement is not a SAVE statement, these columns
are ignored, and the next—executed READ statement will start reading
from the first column of the following Data Card. The SAVE statement is
used only for this one purpose; its general form is as follows:

GENERAL FORM EXAMPLES

SAVE '"optional text" SAVE
SAVE EVENT CARD

READ STATEMENTS

Data are read from the Exogenous Event Tape by means of a pair of READ
and FORMAT statements.

GENERAL FORM EXAMPLES

READ "any number of Variables separated READ RL, RB, M

by commas', "any number of FOR or FOR =
READ Y(I FOR I=(1)(N
EACH 'ENTITY' phrases' X(1), ¥(D1), (1)

The Variables in the READ statement may be Local or System, subscript—
ed or unsubscripted. If a READ statement contains both subscripted and
unsubscripted Variables controlled by FOR or FOR EACH "ENTITY"
phrases, the unsubscripted Variables will be read in repeatedly until the
control phrases are satisfied. In addition to FOR and FOR EACH "EN—
TITY" control phrases, FOR EACH OF "SET", WITH, OR, and AND are
also permitted in contrelling a READ statement. However, as a practical
matter they would rarely be used since data entries on the tape must cor—
respond precisely to the conditions called for in the control phrases.

If data are being read from an Event Card, the READ statement begins
reading from Col. 13; otherwise it begins reading from Col. 1.

-52-

The READ statement may be used only to read from the Exogenous Event
Tape. Data are read from other tapes by means of the READ FROM state—
ment. TR

FORMAT STATEMENTS

. A FORMAT statement must immediately follow each READ, READ FROM,
- _or WRITE statement.

GENERAL FORM EXAMPLES

FORMAT "optional constant'" ('one field FORMAT (I6,2D3.5)
description for each Variable in the RMAT
preceding statement") FO 6(216)

Field descriptions are separated by commas and correspond in order ‘to
the Variables mentioned in the preceding READ, READ FROM, or WRITE
statement.

The "optional constant' may be used to indicate that the group of Variables
specified in the preceding READ, READ FROM, or WRITE statement is
repeated a certain number of times per card or record. For example,

READ X(I), Y(I), FORI = (1) (N)
FORMAT 6(21I5)

indicates that up to six pairs of X(I) and Y(I) are on each card, and that
each Variable is contained in a five—digit integer field. If the "optional
constant' is omitted, it is assumed to be "one."

When reading from the Exogenous Event Tape, no more than 72 charac—
ters may be specified in a FORMAT statement (no more than 60 if dataare
being read from an Event Card). In other words, the number of charac—
ters called for in the field descriptions times the optional constant, if any,
must not exceed 72 (or 60 in the case of an Event Card). The number of
characters specified in FORMAT statements accompanying READ FROM
or WRITE statements has no limit except that it may not exceed the length
of the tape record. Six different types of field descrlptions may be used
in FORMAT statements: SR

Integer Days, Hours, and Minutes .
Decimal Alpha—Numeric
Decimal Hours Skip

-53-

Integer Field Description

GENERAL FORM EXAMPLES
aIb 6i5 !
where a = number of consecutive fields 214

b = number of digits 18

If there is to be only one field of a particular configuration, the "1" may
be omitted as in the third example above. The number of digits must al—
ways be indicated even if the field consists of a single digit. An integer
field may be of any size but only the last six digits will be read in. The
value is stored in the decrement in the standard FORTRAN manner.

Decimal Field Description

GENERAL FORM EXAMPLES
aDb.c 2D6.3
where a = number of fields 4D4 4
b = number of columns in front of
R D3.6
the decimal point
¢ = number of columns following
the decimal point

If the "number of fields'" designation is omitted, it is assumed to be ''one. "

Whendata are punched into a decimalfield for transfer to a tape, the deci—
mal point must always be punched. Therefore, the width of the field will
- be one character greater than the total number of characters specified
to precede and follow the decimal point. For example, the field descrip—
tion "D3. 6" would use up 10 columns on an Event Card and 10 characters
on the Event Tape. A decimal number may not have more than six digits
.on either side of the decimal point. R

Decimal—Hours Field Description

Within a SIMSCRIPT program, simulated time is always expressed in
days and fractions of days. However, it is sometimes convenient to

-54-

input time—values expressed in hours and fractions of hours, or as days,
hours, and minutes. Consequently, special field descriptions are pro—
vided for this purpose. (Decimal-days are read in using the previously
described decimal field description.) IET L

The decimal~hours field description has the following form:

GENERAL FORM EXAMPLES
aHb.c 4H3.2
where a = number of fields H2.1
b = number of columns in front of
the decimal point
¢ = number of columns following
the decimal point

This field description follows the same rules as those described for the
decimal field description except that values input as decimal-hours are
automadtically converted to decimal-days.

In converting from decimal-hoursto decimal-days, the translator assumes
24 hours per simulated day. If a different number of hours per day 1is
desired, the System Attribute called ""HOURS' may be modified by source
language statements, or it may be given a different value as part of the
initial conditions. The System Attribute HOURS is automatically defined
by the translator and equals the number of hours per day (see Chapter 11
for further discussion.)

Days, Hours, and Minutes Field Description

There are three possible variations to the "days, hours, and minutes"
field description.

GENERAL FORM EXAMPLES
aM 2M3

aMc.b o
aMdoc.b M6 "?', .
where a = number of fields 4M3',2~'2 '

b = number of minutes columns S

¢ = number of hours columns .

d = number of days columns o

=55~

As before, if the number of fields is omitted it is assumed to be ''one. "

As shown above, it is possible to omit "days'" or ''days and hours' from
the field description. For example, '"M6. 2" specifies a single field, six
columns allocated to "hours, " and two columns allocated to "minutes. "
2M3 means two fields, each with three columns allocated to minutes only.
Inpunching, columns allocated to ""days' must be separated by a period
from columns allocated to "hours, " and "hours' columns from "minutes"

~columns. For example, the field description "M3. 2. 2" would require

nine characters as shown below:

XXX.XX. XX

days hours minutes

Time values input as days, hours, and minutes are automatically con—
verted to decimal days. In making the conversion, the object program
uses the values of HOURS and MINS which are automatically defined Sys—
tem Attributes, and are equal to the number of hours per day and the num—
ber of minutes per hour respectively. The values of HOURS and of MINS
may be specified in the initialization procedures and may be modified by
source language statements. Unless otherwise specified, HOURS is auto—
matically set equal to 24. 0 and MINS to 60. 0 at the startofobject program
execution. Time—values input in terms of decimal days may be expressed
to six—decimal-place accuracy. Decimal—hourswill be roundedtodecimal-
days with six—place accuracy. The accuracy limit for days, hours and
minutes is, of course, one minute.

Alpha—Numeric Field Description

If it is desired to store alpha—numeric information so as to output it later,
the following field description may be used:

GENERAL FORM EXAMPLES
aAb 2A6
where a = number of fields A5

b number of characters in the field

(must be equal to or less than six)

Since each alpha—numeric field must be stored in one full storage word,
the number of fields also equals the number of storage words to be used.
If an alpha—numeric field contains more than six characters, only the

last six characters will be read in.

-56-

Skip Description

If it is desired to skip over any part of a tape record, the f0110w1ng in—
struction or field description may be used: G '

GENERAL FORM EXAMPLES
Sb S12
where b = number of columns or characters S2
to be skipped

Right—adjusted Integer Field Description

GENERAL FORM EXAMPLES
aJb 236
where a = number of consecutive fields J3
b = number of digits

This field description reads an integer into the address portion of a word
(in contrast with the standard FORTRAN integer which is stored in the
decrement). The value may not exceed six digits although the field may
consist of more than six columns. This field description may be used to
read in alternate values for the random root usedto generate random num-
bers as discussed in Chapter 11. These values must be stored in a full
word ("'packing" as discussed in Chapter 13 is not permitted).

READ FROM STATEMENTS

GENERAL FORM EXAMPLES
READ FROM TAPE] ‘expression”, "a be READ FROM TAPE 5, A(I), B(I),
READ FROM pression’, "any number | c~(1), FOR I = (1)(N)
of Variables", "any number of FOR or FOR

EACH 'ENTITY' phrases" READ FROM N+]:, C_ASE, RUN

<

The READ FROM statement reads data from any specified tape other than
the Exogenous Event tape. The "expression' must equal the tape number.

«-57=

The word "TAPE" may be omitted when writing the statement. A FORMAT
- statement must immediately follow each READ FROM statement. -

In addition to FOR and FOR EACH "ENTITY" phrases, the other control
phrases (FOR EACH OF "SET", WITH, OR, and AND) may also be used,
but only if the data being read are certain to correspond to the conditions

o specified by the control phrases.

WRITE STATEMENTS

GENERAL FORM

EXAMPLES

WRITE ON TAP
WRITE ON
Variables', "any number of FOR or FOR EACH
'ENTITY' phrases"

E] "expression', "any number of

WRITE ON 6, A, B, C

WRITE ON TAPE K-1, QUE(I,J),
FOR EACH MG I, FOR EACH
PLANT J

The WRITE statement writes data onto any specified tape other than the

Exogenous Event tape.
number. The word "TAPE' may be omitted.
accompany each WRITE statement.
appropriate.

ADVANCE STATEMENTS

The value of the "expression' indicates the tape

A FORMAT statement must

The control phrases may be used if

Tape units may be advanced by the following statement:

GENERAL FORM

EXAMPLES

RECORD
ADVANCE TAPE],, "on nJRECORDS
ADVANCE] expression'',"expression FILE

FILES

ADVANCE TAPE N-1,M RECORDS

ADVANCE 3, 1 FILE

It is necessary to distinguish between Records and Files. The word
"TAPE'" may be omitted. The value of the first "expression' specifies
the tape number. The value of the second "expression" specifies the

number of records or the number of end—of—file marks through which the

tape is to be advanced.

-58~

~BACKSPACE STATEMENTS

GENERAL FORM EXAMPLES

RECORD BACKSPACE TAPE 2, 4
RECORDS | RECORDS

FILE
FILES BACKSPACE J + I, N-1
FILES

BACKSPACE TAP

E Tt " " "
BACKSPACE] expression', "expression

The word "TAPE" is optional. The first "expression' indicates the tape
number. The second "expression" indicates the number of records or
end—of—file marks through which the tape is to be backspaced. Inthe case
of files, the tape will be positioned at the beginning of the file adjacent to
the last end—of-file mark specified in the BACKSPACE statement. For
example, if a tape is positioned atthe beginning of a file, "backspacing
one file" will leave the tape where it is, since the tape will be backspaced
through the adjacent end—of—file mark and then advanced to its original
position at the beginning of the file.

REWIND STATEMENTS

A tape may be rewound by the following statement:

GENERAL FORM EXAMPLES

REWIND TAPE
REWIND

REWIND 11

"expression"
REWIND TAPE N+1

The "expression' specifies the tape number. -The word "TAPE" may be
omitted.

«59-

ENDFILE STATEMENTS

An end—of—file mark may be written on a tape by the following statement:

GENERAL FORM EXAMPLES
ENDFILE] expression

The word "TAPE" may be omitted. The "expression' specifies the tape
number.

LOAD STATEMENT

GENERAL FORM EXAMPLES
II“g:g PROGRAM] "integer expression" LOAD PROGRAM FROM TAPE 3
1};;81}: TAPE] "integer expression" LOAD I+1 FROM 2

The LOAD statement loads a designated program from a designated tape.
The first "'expression' specifies the identification number of the particular
program to be loaded. This identification'-number may have any value
from 1 to 32,767. The second "expression' specifies the logical designa—
tion of the tape, and may take on only the values 2, 3, or 4. Atthetime
of program execution, both the program identification number and the
tape number must also be specified on a '""CHAIN (R, T)" control card as
required by the FORTRAN Monitor. (See Chapter 12 for a discussion of
SIMSCRIPT Compile and Execute Decks.)

"RECORD MEMORY STATEMENTS

Except for a few words not available to the programmer, the entire con—
tents of memory followed by an end—of—file mark may be written on tape
by means of the RECORD MEMORY statement. A particular picture of
memory may thus be preserved and subsequently read back in by means
of the RESTORE STATUS statement.

-60-

GENERAL FORM EXAMPLES

RECORD MEMORY ON TAPE "expression', RESTORE RECORD MEMORY ON TAPE 9,
TO "statement number' RESTORE TO 30

Following execution of the RESTORE STATUS statement, control will go
to the statement specified in the original RECORD MEMORY statement,
and execution will continue, based on the newly restored contents of
memory.

RESTORE STATUS STATEMENTS

GENERAL FORM EXAMPLES

RESTORE STATUS FROM TAPE 'expression" RESTORE STATUS FROM TAPE 9

The RESTORE STATUS statement will replace the current contents of

memory with the previously recorded picture of memory (except for a few

words not available to the programmer). It also restores the contents of

index registers 1 and 2 and all four sense lights. Execution will proceed

with the statement specified at the time the contents of memory were
originally recorded on tape. The tape file containing the previous picture
of memory must be backspaced into position prior to execution of the RE—
STORE STATUS statement. The value of the "expression' specifies the

number of the tape. The word "TAPE'" may be omitted from the RESTORE

STATUS and RECORD MEMORY statements.

Chapter 8

MISCELLANEOUS COMMANDS

‘ Refusing to fit gracefully into the organization of previous Chapte“ré, the
following statements and topics are presented here:

ACCUMULATE

COMPUTE

STOP

DIMENSION

FORTRAN INSERTS
STATEMENT CONTINUATION

ACCUMULATE STATEMENTS

In simulation problems, it is usually necessary to accumulate various
totals as a function of time. Since status in SIMSCRIPT can change only
at points in time called Events and the time between Events may be vari—

able, a typical cumulative total might be represented by the area under
the curve shown in Fig. 12.

b
|
L.
|
|
Events Time of last Current
accumulation Event

Fig. 12 —Illustration of Cumulative Total

-62-

. Any number of cumulative totals of this type can be obtamed by the
" ACCUMULATE statement shown below. S

GENERAL FORM EXAMPLES

Acc ATE "floating point Variables a, ,a,,...8 " |ACCUMULATE IDLE(MG),
Ace 2 I |warr(orpER) INTO

INTO "floating point Variables b;,bj,...b," SINCE CIDLE(MG), CWAIT(ORDER)
"floating point Variables ¢y ,c;,...c,", ''any num- d

SINCE LASTM(MG),
ber of POST and/or ADD phrases separated by commas LASTO(ORDER), ADD -1.0,

POST NEWAT

The POST and ADD phrases have the following form:

POS

ADDT}"floating point expressions dy,dp,...dy"

The ACCUMULATE statement multiplies the Variables a; by the elapsed
times since the time values cy, and adds these quantities to the Vari—
ables b, . It then updates the time Variables ¢, . Finally, it either adds
each expression d; to the Variable a, or sets the Variables a; equal to
the expressions d; . '

More specifically, for each group of Variables a,, by, ¢;, and expres—
sion d,,. the ACCUMULATE statement accomplishes the following compu—
tations in this order:

(1) b, =b, +a, « (current TIME — c,)
(2) c; = current TIME
(3) a, =d,, if POST

a, =

a, +d,, if ADD
1 1 1

. The Variables and expressions must all be floating point. The Variables
may be Local or System. The word "ACCUMULATE" may be abbreviated
. to ”ACC. 1" ‘ . R

N 'I‘he expressions d, in POST and/or ADD phrases correspond in order to
the Variables a,. If the number (k) of expressions d, appearing in all
POST and ADD phrases is less than the number (n) of Variables a, , the
last (n—k) Variables are not modified by the ACCUMULATE statement.
The ACCUMULATE statement may also be written without POST or ADD

.

-63-

phrases. If all '"time'" Variables ¢,, ¢,, ...c, always have the same
value, the following variation of the ACCUMULATE statement may be used.

GENERAL FORM EXAMPLES
:‘ggUWLATE "Variables &,,a,,...a " ACC B(X), C(X), D(Y), INTO
- E
INTO "Varizbles by ,b,,...b " ALL SINE | no) 3 (X, T(D), ALL SINC
"Variable', '"POST or ADD phrases" * '

COMPUTE STATEMENTS

The following command is provided to permit the easy computation of
certain frequently needed statistical quantities.

GENERAL FORM EXAMPLES
COMPUTE ''one to seven Variables" = COMPUTE MX, SX, VX = MEAN,
"one to seven statistical quantities" STD-DEV, VARIANCE OF X(I),
OF "expression', "any number of con- FOR EACH BASE I
trol phrases" :

Variables onthe left side of the equation maybe Local orSystem Variables.
For each Variable indicated on the left side, a statistical quantity mustbe
indicated on the right side. Variables and statistical quantities correspond
in order, one for one. The indicated statistical quantities are computed

for the indicated expression across the particular subscripts specified by
the control phrases.

The source language names and definitions of the permissible statistical
quantities are as follows:

Name Definition
NUMBER =:number of cases that meet the conditions
specified by the control phrases . =
SUM = L expression
MEAN _ L expression

NUMBER

64~

SUM-SQUARES L (expression)®

_ I(expression)?
MEAN-SQUARE = e
2 g": s S)
’ RIA _ Iexpression — MEAN)® _ K : 2
| YA NCE NOMBER (MEAN ?QR)-(MEAN)
STD-DEV = y[VARIANCE

STOP STATEMENTS

GENERAL FORM EXAMPLES

STOP STOP

This statement stops the execution of the program. It is equivalent to the
FORTRAN statement CALL EXIT.

DIMENSION STATEMENTS

GENERAL FORM EXAMPLES

DIMENSION "any number of subsecripted DIMENSION A(5), B(20), X(5,50)
Local Variables with each subscript
equal to its maximum value'

If Local Variables are to be subscripted they must appear in a DIMENSION
statement. The 'subscripts' in the DIMENSION statement are integer con—
stants, indicating the maximum value the subscript can take on.

FORTRAN INSERTS

- In addition to the previously described source language, the FORTRAN

- language is also available for operations with Local Variables except that

COMMON, FREQUENCY, and IF OVERFLOW statements are not permit—
ted. Statements written in FORTRAN may not refer to SIMSCRIPT System
Variables. FORTRAN statements may be interspersed among SIMSCRIPT
statements inany desired manner. The first column of the

-65-

coding sheet is used to distinguish between SIMSCRIPT statements and
FORTRAN statements according to the following rules. If Col. 1 is blank,
it signifies a SIMSCRIPT statement; if it contains an "X, " it signifies an
ordinary FORTRAN statement and will be translated as if the FORTRAN
statement contained a blank in Col. 1. All other kinds of FORTRAN state—
~ments requiring a code letter in Col. 1 may be written.exactly as in
FORTRAN (namely, C for Comment, B for Boolean, I for Imaginary, F
for Function, D for Double Precision, and S for SAP). The first column
on the coding form may not be used for any other purpose, and statement
numbers are therefore limited to four digits.

A number of statements such as GO TO, SUBROUTINE, "THREE-WAY"
IF, etc. are the same in SIMSCRIPT as they are in FORTRAN. Such
statements, written with a blank in Col. 1, have access to System Vari-
ables and may use subscripted subscripts within expressions.

STATEMENT CONTINUATION

Statements may be continued from one line to the next of the coding form
by inserting a mark in Col. 6. A statement may be continued on as many
as 99 successive lines.

Control phrases such as FOR, WITH, etc. which may follow statements
such as LET, FIND, etc. are considered part of tke statement beingcon—

trolled. If control phrases appear on a subsequent line, a mark is re—
quired in Col. 6.

The statement following an IF statement or an IF NONE control phrase in
a FIND statement is considered to be part of the IF or FIND statement,
and requires a continuation mark if it appears on a subsequent card.

-66-

Chapter 9

EVENT ROUTINES AND OTHER SUBPROGRAMS - .

: ‘,SIMSCRIPT programs consist of a number of different kinds ‘of both writ—
~ten and generated subprograms. The present chapter discusses:

Exogenous Event Routines
Endogenous Event Routines
Subroutines

Functions

Events List

System Package

Entity, Attribute, and Set Packages
Main Routine

In addition to these subprograms, output routines are generated by the
SIMSCRIPT Report Generator as discussed in Chapter 10.

EXOGENOUS EVENT ROUTINES

Most of the special features of Exogenous Event routines have been dis—
cussed in previous Chapters. They are summarized here to provide a
single point of reference.

Exogenou's Event routines are called by the Timing routine in response to
an entry on the Exogenous Event Tape. Prior tocalling an Exogenous
Event routine, the Timing routine automatically advances simulated time
to the value specified for the particular Event occurrence. Exogenous
Event routines may not be called by any other means.

The Exogenous Event Tape is formed from a deck of cards. There must

be one Event Card for each occurrence of each kind of Exogenous Event.

The Event Cards are presented in the order of their occurrence. Each

Event Card contains an identification number indicating what kind of Exog—

enous Event it represents. It also contains the day, hour, and minute in
- “simulated time that the Event is to occur.

'Q‘ Additional data describing the Event may be included in Cols;' 13 to 72 of
~ the Event Card. Any number of additional Data Cards may alsofollow the

Event Card on the Event Tape. The Event Card format was described in
Chapter 7. T e

-67-

The correspondence between the identification number and the name of
each type of Exogenous Event is established by the Events Llst descrlbed
later in the present Chapter. PR

. The first statement of each Exogenous Event routine must be an EXOG—

" ENOUS EVENT statement:

GENERAL FORM EXAMPLES
giggENouélEVENT "Event Name" EXOGENOUS EVENT SALE
EXOG EVENT DEMAND

"EXOGENOUS' may be abbreviated to "EXOG'" as shown above. The Event
name may consist of any one to six letters or numbers, the first charac—
ter must be a letter, and the name may not contain "XX" or end in "F.

If data are to be read from the Event Card, the second statement in the
Exogenous Event routine must be a SAVE statement. The first READ
statement after a SAVE statement will start reading in Col. 13 of the
Event Card. If the SAVE statement is omitted, the next READ statement
will start reading in Col. 1 of the Data Card immediately following the
Event Card. The READ statement may be used only for reading from the
Exogenous Event Tape. The READ FROM statement may be used to read
from other tapes.

In Exogenous Event routines, control is returned to the Timing Routine
by the RETURN statement shown below.

GENERAL FORM EXAMPLES . .

RETURN RETURN -

. =68~

An END statement must appear at the physical end of each Exogenous
Event routine: s

GENERAL FORM EXAMPLES

END ' END

ENDOGENOUS EVENT ROUTINES

Endogenous Event routines are called by the Timing routine as a result of
CAUSE statements in previously executed Event routines or Subroutines.
Prior to calling an Endogenous Event routine, the Timing routine advances
simulated time to the value specified in the precipitating CAUSE statement.
Endogenous Event routines may not be called in any other manner. The
first statement in each Endogenous Event routine must be an ENDOGE-
NOUS EVENT statement:

GENERAL FORM EXAMFPLES

ENDOGENOUS EVENT EPROC
ENDOG EVENT START

ENDOGENOU

S ") "
ENDOG]EVENT name of Event Notice

"ENDOGENOUS'" may be abbreviated to "ENDOG" as shown.

The Event name must be identical to the name of a type of Event Notice de-
fined on the Definition Form. This same name is also automatically given
to a Local Variable in the Endogenous Event routine, and this Local Vari-
able is automatically set equal to the identification number of the Event

" Notice as previously specified in the CAUSE statement. The name of each
Endogenous Event must also appear in the Events List described later in
this Chapter. e o

Control is returned to the Timing Routine by the RETURK statement, and
an END statement must appear at the physical end of each Endogenous
Event routine.

-69-

SUBROUTINE SUBPROGRAMS

- The conventions for writing Subroutine subprograms in SIMSCRIPT are
the same as in FORTRAN, except as noted below. :

The SUBROUTINE statement must be the first statement in the subpro—
gram:

GENERAL FORM EXAMPLES

SUBROUTINE "Subroutine name' ("arguments, if any')| SUBROUTINE ALLOC(LC)

This statement must appear as the first statement of all subprograms with -
the following exceptions. It may not be used to be gin subprograms de—
scribing Endogenous Events, Exogenous Events, Report routines, the
Events List, Functions, or the "MAIN'" routine in non—simulation pro—
grams. Arguments appearing in a SUBROUTINE statement must be Local
Variables and are separated by commas.

Control is returned to the calling routine by the RETURN statement, and
an END statement appears at the physical end of each Subroutine sub—
program.

CALL STATEMENTS

Subroutines are called by means of the CALL statement:

GENERAL FORM EXAMPLES
CALL "Subroutine name" ("arguments, if any') CALL INTER(I+J,*X(I))
"any number of control phrases separated by FOR I = (1)(N)
commas ™ CALL SHIP

If the value of the argument is to be given to the Subroutine by the calling
routine, the argument may be an expression. If, on the other hand, the
value of the argument is to be given by the Subroutine to the calling rou—

-70-

tine it may be any Variable and it must be preceded by an asterisk. If
the argument is to be given to the Subroutine by the calling routine and
then given back to the calling routine with perhaps a different value, it
must be a Variable and must be preceded by two asterisks. -

;The CALL statement may be followed by any number of control phrases
5iseparated by commas.

. FUNCTION SUBPROGRAMS

Except as noted below, Function subprograms are handled inthe same
manner in SIMSCRIPT as in FORTRAN. The name and mode of each Func—
tion subprogram is specified on the Definition Form, and Function names

are formed according to the same rules as were described for System
Variables.

The first statement in a Function subprogram is the FUNCTION statement:

GENERAL FORM EXAMPLES

FUNCTION "Function name' ("arguments, if any'') FUNCTION DELAY
FUNCTION NXQ(X,Y)

In SIMSCRIPT, Function subprograms may or may not have arguments.
Only Local Variables may appear as arguments in a FUNCTION statement,
but when the Function is mentioned in other routines, the arguments may
be expressions containing Local and System Variables.

Control is returned to the routine calling for the Function by means of the

RETURN statement. An END statement appears at the physical end of
each Function subprogram.

In addition to written Function subprograms, a number of other Function
subprograms are automatically generated by the translator. These sub—
programs are discussed in Chapter 11.

“EVENTS LIST

For the translator to generate an appropriate Timing routine,":f“k“it is néces—-
“'sary to list each kind of Exogenous and Endogenous Event in what is called

an Events List. The Events List may be written on a standard c Odlng
sheet as shown in Fig. 13.

-71-

STATEMENT

STATEMENT
NUMBER

@ Continuation

72

EVENTS

3 EXOGENOUS
ORDRIN (1)
ANALYZ (2)
ENDSIM (3)

2 ENDOGENOUS
ARRVL
EPROC

END

Fig. 13— Example of an Events List

1"

The first line of the Events List consists of the word "EVENTS.

GENERAL FORM EXAMPLES

EVENTS EVENTS

The next line contains the word "EXOGENOUS'" or "EXOG'" preceded by the
number of different kinds of Exogenous Events to be included in the Timing
routine. The name of each type of Exogenous Event followed by a unique
identification number enclosed in parentheses is indicated next, with a
separate line for each kind of Exogenous Event. The identification numbers
need not be sequential or presented in order; they are used to identify the
various kinds of Exogenous Events on the Exogenous Event Tape.

, Followmg the definition of the Exogenous Events, the number of different
kinds of Endogenous Events is indicated, followed by the word ENDOG—

- ENOUS or ENDOG. The name of each kind of Endogenous Event is then
-listed on a separate line. Endogenous Events do not have identification

numbers. If desired, the definition of Endogenous Events may precede the

definition of Exogenous Events in the Events List.

The Events List is terminated by an END statement.

-72-

SYSTEM PACKAGE

. Each SIMSCRIPT object program must containa translator generated sub—

' program referred to as the System Package. The System Package is dif—

_ ferent for simulation and no:-simulation programs, but otherwise does
~ not vary from program to program.

A simuiation or non—simulation System Package may be obtained by insert-
ing a card containing the word SIMULATION or NON-SIMULATION in the
Compile Deck as described in Chapter 12.

GENERAL FORM EXAMPLES
SIMULATION SIMULATION
or: NON-SIMULAT ION

NON-SIMULATION

The word SIMULATION or NON-SIMULATION must appear somewhere in
Cols. 7 through 72, and the card is included in the Compile Deck as though
it were a source language subprogram.

ENTITY, ATTRIBUTE, AND SET PACKAGES

A separate package of subprograms is automatically generated for eachEn-
tity, Attribute, and Set defined on the Definition Form. These packages
are described below.

For each type of Temporary Entity and each type of Event Notice, there is
a package containing the subprograms that create and destroy their At—
tribute records. These subprograms are called on only by the CREATE
and DESTROY statements.

For each Permanent Entity, there is a short subprogram for retrieving

" the value of the automatically defined System Attribute indicating the num-—
- ber of Entities of that particular type. This subprogram is called on by
~ mentioning the System Attribute ''NEntity name' in any statement. It is

Aok

~also automatlcally called on by the FOR EACH "ENTITY" statement.

For each kind of Attribute defined on the Definition Form, whether Tem—
porary or Permanent, there is a generated package of subprograms for
storing and retrieving its values. These subprograms are called on as At~
tributes are mentioned in the various source language statements.

-73-

For each kind of Set, there is a package of subprograms®which accom—
plishes the operations involved in the FILE and REMOVE FIRST state-—
ments. If the Set is a Ranked Set, the package also includes a subprogram
for accomplishing the operations of the REMOVE "SPECIFIC" statement.

MAIN ROUTINE

If a non—simulation program is to be written in SIMSCRIPT, the Events
List and the resulting Timing Routine are omitted. A Control routine must
be written in place of the Timing Routine, and it must begin with the
statement ""MAIN. "

GENERAL FORM EXAMPLES
MAIN "optional text" MAIN ROUTINE
MAIN

This control routine will be the first routine executed following the input
of the Initial Conditions Deck described in Chapters 12 and 14.

If a "MAIN" routine is written, a non—simulation System Package must be
used. The "MAIN" routine must end with an END statement.

“74-

Chapter 10

REPORT GENERATOR

: “i*":‘The Report Generator generates output routines based on the contents of

~ the Report Generator Layout Form shown in Fig. 14. As many different
- Report subprograms as are desired may be included in a particular pro—
gram.

As can be seen in Fig. 14, the Layout Form contains a number of control
columns and 131 print positions. Each line of the Layout Form is punched
into a pair of cards. A double line separates the right— and left—hand
cards, along which the form may be folded for ease in key punching. The
order of punching and card presentation consists of all left—hand cards in
order, followed by all right—hand cards in order. The horizontal shaded
rows have no significance except as a visual aid in distinguishing one row
from another. The rules for completing the Layout Form are described
below.

REPORT AND END STATEMENTS

Each report must have a unique name, and the first entry on the Layout
Form must be a "REPORT" statement written in the print positions of the
left-hand card indicating the Report name and arguments, if any. Argu—
ments may be continued onto the right-hand card.

GENERAL FORM EXAMPLES

REPORT '"Report name' ("arguments, if any'") REPORT FINAL
REPORT INTER(BASE)

Report subprograms are called in the same manner as ordinary Subrou—
tines, with the CALL statement in the general form, "CALL 'Report
‘name’' ('arguments, if any')."

: The "Report name'' may consist of one to six letters or numbers The
first character must be a letter, and the name may not end in 'F" or con—

" _tain "XX" or a special character.

Argument values are given to a Report by the calling routine. Arguments
mentioned in a REPORT statement must be Local Variables, but expres—
sions containing Local or System Variables may be used as arguments in

- - -3] — - —t G- —
g =] ;
= & = : !
& | &]3]
A i A
B : L R R G -
e . ; i I . 4
=157 - —t- -
44 £ N S . g
15 1T 1 T
BE : - — =
=1 i i T
1 58 -3 i T
n <1 t Tt : t
~ B3N S QNN AN (IS SN G0 DS S } ; ; !
' i 1 T ; S A
N SRIEHUR SuITE RN SIS NP T g H
B B : : e : B R
Ehs i B 55 PR N Sy S S
=13 SRR W [U S R S -
=43 s TRER I SO — B SO S -
JENE IS (DU A R }
i i T
=} ; !
e]
£ © \L’ 3
- —poe et et e L -

PHRINT POSITIONS

S e i
s i
A N]
- : T
B I B
EE 1
| -y b ! d_
¢ 5 S S M
ko N e -
b , | 1 ﬁ
- - il i H - S
o i + : 4 -- 15
- S
U . A -
| -3 = ; - S [N -]]
1+ . B Rt B @
2 P . S S & [RN | =
] N i H i ! 1 H
H B ' ! g
< —1— - =
z 1% — + 1+ 4t At - - e g
& R i !] =
g S & i B , e s R
ey C e i 1 — W
RIT 04 - ' - + S {—
& 1 - SRR S S N
i [= § e : | [N SRS
%5 £ S 3 DA _ DN A el P T 1=
, z R B 0N R S St i Rl N 1=
' ™ i B e
i A B s A e - - oI Ty e
= e B e e e fo R S [N B 3
g . J S DR . U S S SO s 5
= =3 B ot - . 4 - — : S
o . «
S - IR) U R R A [O 1 .] .
w) Ld i ! ! : i @
N R 0 B N A IR N R N S I N
— 3 [A0 S £ £ B T3 _ i
- < - [Sl cons SR v Bl S e e et - e B
Q H BR0C I IS £00 AR S i 1o i
> P
<< e — —f - Rl i s — e +
— 3 < 1 i :
e T - 4
o Ry B3 .
=] N . i
[H B RSN A Rt Set BRI i A - - r o - -
< N) 1 "
o S T L -t - * -
e RS ; R S WP S N W
=4 % ;- H - S N U SERS ISR ed ey 4
& g [i i o Fret
< m i m Jﬁ : T T ‘.L - T
5 -
— g 1= " :
= L — b : oo d
=) & i 1 ; G S S S
o g =21 i] R :
w < = —
& = §S " N : N B ; |
- == Lob g — I
a ~ 1 1
— N T . - —
o = : 5 DN SN (U S U S B e d oy
o ¥ - ! - T
%] = - - ; L ;
= -
w

RIS DI BIEIT R BT :l[w . ”I”[

*
i
|
|

e[ion|osf rol 1aj12] I1}’

Lepsfas| ey redun| 2021 22(23] 240 | 20f27] 28 25V
Fig. 14 —SIMSCRIPT Report Generator Layout Form (actual size)

PROBLEN

-77-
\\

\
the CALL statement. The last line of each Report description must al—
ways consist of the word "END" written in the print positions of both the
right—hand and left—hand cards (RETURN statements are not used by the
Report Generator since the logical end and physical end are always the
'same). The line containing the END statement must contain no other
entries. :

~ FORM LINES

Print positions for text, integers, decimal numbers, and stored alpha-—
numeric data are assigned by means of Form Lines. A Form Line must
contain a mark in the column headed "Form." Print positions are then
assigned in the following manner.

Text

Text is written into the print positions where it is desired to have it ap—
pear. Asterisks may never be used in text since they always designate
print positions for the value of Variables or Functions, which are to be
defined on a ''Content Line" following the Form Line.

Integers

An integer field is indicated by an asterisk in the print position where the
units position is to go. The field will be as wide as there are unassigned
print positions to the left. Although the field can be of any size, 131,071
is the largest value an integer Local or System Variable can take on.

If desired, the asterisk in the units position of an integer field may be
preceded by additional asterisks to help in visualizing the appearance of
the printed output. Such asterisks must be continuous, however, since a
blank would be interpreted as indicating the start of another field. Integer
field layout conventions are illustrated in the following examples.

/ PRINT POSITIONS z PRINT POSITIONS

010203040506‘07@09101112131415161) 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
* * | —f [I | —
¥kl % LRI IE LI EIE RS ___>: [”][]
* wik| [x]x|%xl % (: [][4J[J
k| k|l B[l |]| 2% : []r ; ;J
* 1t ** > o Ol 1L I }
N » "J °

Integer Fields on Layout Form Size and Location of PrintedInteger Fields

-78-

The smallest possible successive integer field is two positions wide, since
at least one space and one asterisk are required todefine a separate field.
One—digit integer fields are possible, however, if separated by text.

Leading zeros are automatically suppressed.

'_ Deci£na1 Numbers

A decimal field is indicated by a decimal point in the desired print position,
 asterisks inall decimal places to the right of the decimal point, and an
asterisk in the units position to the left of the decimal point, Additional as—
terisks may be inserted preceding the units position to help visualize the
layout, so long as at least one space is left to separate successive fields.

If no places are specified to the right of the decimal point, only the trun—
cated integer portion and decimal point will be printed. Similarly, if the
asterisk is omitted from the units position to the left of the decimal point,
only the decimal pointand fractional part will be printed. Conventions for
specifying decimal fields are illustrated in the following examples.

[PRINT POSITIONS

0102030405!0607%091011121314151617181* 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

PRINT POSITIONS

eI IREE *.**f——: | . Il . [
sl Pl L el) C—3 a3
.*#.****#.t*{—.g NOT PERMITTED
* | Lxl (x| | xlx] | * *M———g D E]Dl . ”__]
o]
L~ - °
Decimal Fields on Layout Form Size and Location of Printed

Decimal Fields

Stored Alpha—Numeric Data

Print positions for stored alpha—numeric data are assigned by placing an
asterisk in eachprint position in the field, but the letter "A" must appear
at least once instead of an asterisk. There is a six—character maximum
for the alpha—numeric field per Variable specified in the accompanying

~ Content Line. The minimum is two characters, since the letter "A' with—

out an adjoining asterisk is interpreted as text. Alpha—numeric fields may
be written side by side without intervening spaces. A continuous series of

.. alpha—numeric fields will always be interpreted from left to right as a se—

ries of six—character fields, except that the last field will contain less than
six characters if the total number of assigned print positions is not aneven
multiple of six.

-79-

/ PRINT POSITIONS ‘i PRINT POSITIONS

01§02}03[04|05 josfo7{08}09110f11[12]13|14]{15[16 01020304050607m09103{1213141516
LRI EE xlglx|*[xlx g [j 1’ -]
«lal*| | |al*]*| | |*|*|4 ° 1 3 4
8/*| lclels| | |4]*] le|2[z|\—=2 B[] c21r] ca22
w(xlel g x|xlgl* (x| g/*]a _—g[]l |
o o
O
Alpha—numeric Fields on Size and Location of Printed Fields

Layout Form

Ifdesired, two or more field descriptions may be written side by side
without intervening spaces provided they are not ambiguous. Possible
ambiguities are "*AB", "A *" s " "x cg",

Every Form Line that contains one or more asterisk fields for integer,
decimal, or stored alpha—numeric data must be followed by a Content
Line identifying either Variables or Functions whose values are to be
printed in the indicated fields.

CONTENT LINE

Each Content Line is marked with a character in the column headed "Con—
tent. ' One Variable or Function must be specified in the Content Line for
each field of asterisks in the preceding Form Line. Variables may be
Local or System and may or may not be subscripted (the only Local Vari—
ables that could occur would be the arguments in the REPORT statement,
or Local Variables in FOR or FOR EACH "ENTITY' control phrases).
Functions may be written subprograms or may be Functions automatically
generated by the SIMSCRIPT translator or by the FORTRAN Library Tape.
Variables and Functions correspond in order with the preceding field of
asterisks. Successive Variables and Functions must be separated by at
least one space or comma. Although it is not necessary, it is helpful to
write each Variable or Function directly under itsrespective asterisk field
if space permits.

One Content Line for each Form Line is usually sufficient for defining the
Variables and Functions whose values are to be printed. This is not neces—
sarily true, however, since Variable names and subscripts can be longer
than the fields in which their values are to be printed. If required, a Con—
tent Line may be continued on the next line by placing a mark in Col. 2 of
each continuing line. The name of a Variable or Function may not be split
between the end of one line and the beginning of the next.

-80-

HEADING CODES

Heading codes designate on which of successive pages of a Report Sect1on
a Form Line is to be printed. These codes are: o ‘

"Blank'" in the column entitled ""Heading' will p;int the“ '
Form Line once on each page of the Report Section. . -

"1" under '""Heading" will print the Form Line once on
the first page only of the Section.

"2" under "Heading" will print the Form Line once on
all but the first page of the Section.

"3" under "Heading' will print the Form Line on
every page until the control phrases in a subsequent
Row Repetition Line are satisfied.

SPACING CODES

Spacing codes indicate how many lines are to be skipped following the
printing of a Form Line. A number from 'l" to "9" is inserted in the
column entitled "'Spacing, " depending on how many lines are to be skipped
following each Form Line. If no lines are to be skipped, zero is inserted
or the column is left blank.

The number of lines per page of printed output is an automatically defined
System Attribute called "LINES" and is always set equal to 55 by the
translator (see Chapter 11). If a different number is desired, the value
of the Attribute "LINES' may be specified on the System Specification
Card described in Chapter 12, or it may be modified by a source language
statement prior to calling the REPORT Routine.

NEW SECTION CODE

A given Report may be divided into two or more Sections. The start of
a new Section is indicated by placing a mark in the column entitled ''New
Section' on the first line of the new Section. Starting a new Section in
effect starts a new Report without control having been returned tothe call—
ing routine. Unless suppressed by a Same Page code, the first line of
each new Section will start on a new page.

- SAME PAGE CODE

'If it is desired to continue a new Report on the same page as the end of the
previous Report, a mark should be placed under "Same Page" on the line
following the REPORT statement. If it is desiredto continue anew Section
on the same page as a previous Section; insert a mark under '"Same Page"
on the line containing the New Section Code.

-81-

~ BLANK HALF

- For every left-hand card there must be a corresponding right—hand card
in order for the translator to generate the REPORT Routi'ne.j,,If aline has
no other entries on the right—hand card, a mark is inserted on the right—

~ hand card under ""Blank Half" to insure that it will be punched and included
~in the deck.

PAGE NUMBERS

For convenience in numbering pages, there is an automatically defined
System Attribute called "PAGE" (see Chapter 11). This Attribute is
automatically set equal to ''1" at the start of object program executionand
is advanced by "'1" each time a page of output is completed. It may be
modified at any time by source language statements, and its value may be
printed like that of any other integer Variable by means of a pair of Form
and Content entries.

ROW REPETITION

If it is necessary to output a table with a variable number of rows, this
can be accomplished with a Row RepetitionLine. Place amarkunder '""Row
Repetition' on the line immediately following the Form and Content Lines
describing the columns of the table. One or more FOR, FOR EACH
"ENTITY" or FOR EACH OF "SET" control phrases, perhaps modified by
WITH, OR or AND phrases may be inserted in the Row Repetition Line to
control the printing of the Variables and Functions specified in the Content
Line. Use of Row Repetition was illustrated in the examples in Chapters
1 and 3(see Figs. 2 and 10).

Only one series of control phrases for Row.Repetition is permitted in each
Report Section. If necessary, these control phrases may be continued on
successive lines of the Layout Form by placing additional marks under
"Row Repetition. "

If successive pages are required to print the number of rows specified by
the control phrases, headings will be repeated as specified by the previ—

@' - ous Heading and Spacing Codes within the particular Report Section.

" COLUMN REPETITION

A Column Repetition Line can be used if it is desired to print a series of
subscripted quantities across a row where the number of different values
the subscript can take on may vary. The main use of this feature is in
printing tables where both the number of rows and the number of columns
are either specified separately for each simulation run or are determined

-82-

as part of the simulation process. Column Repetition also permlts the
printing of a list across a row instead of down a column.

' Wheri Column Repetition isto be used, the "Column Repetition Line' must
be the first line following the REPORT statement, orthefirst line ofa new
Report Section. Only one Column Repetition Line is permitted in each
Report Section, and it remains in effect throughout the Section.

Figure 15 depicts the use of both Column and Row Repetition for printinga
two—dimensional table with 24 table columns per page. For purposes of
discussion, the various lines are numbered in the left margin of the figure.

The second line in Fig. 15 is a "Column Repetition Line, " and is so indi—
cated by inserting the number of cases to be printed across each page in
columns entitled "Column Repetition. " The control phrase "FOR EACH
DEPOT J" specifies the cases for which Variables are to be repeated
across the rows of the Report. One or more FOR, FOR EACH"ENTITY, "
or FOR EACH OF "SET" phrases, optionally followed by any number of
WITH, OR, or AND phrases, may be inserted in a Column Repetition Line.
The control phrases may be written across both the left— and right-hand
cards, and they may be continued on following lines by inserting additional
non—zero marks under "Column Repetition. "

When WITH, OR, or AND phrases are used to impose conditions on the
columns of a table, care must be taken that these conditions are independ—
ent of the control phrases in the subsequent Row Repetition Line, and vice
versa. In other words, WITH, OR, or AND phrases may be used to delete
entire columns or entire rows from the printed output, but not to delete a
particular cell at the intersection of a row and column.

Lines 3 and 4 are Form and Content Lines for printing page numbers (the
Variable "PAGE" is the previously mentioned translator—defined System
Attribute).

Line 5 is a Form Line containing the text "DEPOT TO BASE SHIPMENTS, "
which will be printed on every page to the end of the Report.

Line 6 is a Form Line containing the text "DEPOT, " followed by 24 integer
5. fields for printing the identification number of each Depot. . The text word
"TOTAL'" appears at the end of the line. Since the Headmg code is blank
2 ;thls Form Line will be printed on each page of the Report. YR

The accompanymg Content Line (line 7) contains two entrles Tﬁél‘f1 rst,
"24(J), " specifies that successive values of the Local Variable "J" are to
be printed in the 24 inte ger print fields defined on the preceding Form

-83-

2% 3

PAE

SIMSCRIPT REPORT GENERATOR LAYQUT FORM

RIGHT HAND CARDS

LEFT HAWD CARDS

PRINT POSITIONS

PRINT POSITIONS

i

5 i = 3o :
o3 ! " 1
ZEEE= SRR e S REERES
35 g SECCRSH B TR
als ! ! e 4 - -
il - - = SR R AR =1
ste i 4 111" g I O A 45 1 -
S 3 j 2 x W\J .m;*x ‘‘‘‘‘ mﬂ 1] . B
) - o] i A S oy
S > i - = T 2l
1§ 3 W 2 i H - - *
= ! ;3 x
F 5 : 1 -
m m ﬁ — m m g B . S 4
o | AT IR
fHe=s SRR R e
“ g 3 ———— m —
EEE EEngLENENLERNERREREE
s : B 008 NN Y N A & A e MR 4 B - N e
IEEE % SRS
. £ M o - i i (S0 R S NS RO A5 N
- 2] F 4 R TR [= Yo [g i
3 ; : o o X o= ;
3 j TR X iEL 5 Il T v
2 : A J U A S SRR I S IR St RRRR t B =
: S U S S S A G s A 1
: ! ! B 1 s s e e
H URDE ¥ 5 S S D 3 i B
- = - 4 - o Y R S B ey b—
%17] ¥ L TR 5o
RIS el et
o ol - R SR o [RSE3 v i s Bl
X T Y. 3 W N S QRO .
x 4 x : -
e e G ¢ ot < B e T e e

e

SIHIPIMEMTSES

lez[e1]sa|es [ned 2 [on jsn {ro (21 {223 174 178 [2s |17 17afhe Iaa o 02 1n3 fwades los Jn2 Jon| a0 ookt 0203 [oafss sk |an [49 foo ot lnzfer loa s

fss[s230i [r2] Fn Joz [os foalos fcsfov om koo (20 lia frzfha fsa fus e fo2 f1ahas fae ot a2]2 |2e

“@-———PUNCH OTHRR SIDE FIRST

PUNCH THIS SIDR PIRST, THEN TURN mceeii

; | R R ¥] TR] -3
[I VR A A G O SO I
F 3 (n
X W x :
; A I e E 3 S o 1. S —
S B
uJ X ; Ik 4
N 4 " 3 B Ll]
= — — ——
< E 3 b4 [RS
R B
=] X S 4 T DU N e L .
X W . mH iy - -
123 i I A £ 3 1
" W x E3 —
N I s G 4 e A [I] I S N B
e 3 i e ST et et
41 - SN VI SO SN TR ISP S SN SR
H 1 - - 1 -
=4 g
y
e 3 i Y R o T 3 e A o (e
o L e o
st el] et L
L3 K E 3 : M } -
Ed “ w S bonnd
N & E3 I~ “ t . -
@ % J N T30 S
= 3 x T
F N ERETEE=E == ENRERSE
== HM B S iy Y 163 s Y ' e - 1
] = ; 1 7
L - =3
§ =
E -l W ['V} x T N S W
£ Ou : I w IR -
= jYay H
LN 3 Y A F 1 -
£u =N
iz ¥ o tig
s = M =Y [#]
z -8 (i) =) wl —
B AN ” 2 DU A 45
g ol _loF . - II#(
wl } [=
(=3 [T N P x wl 1T IS B
* o o ~ —
SRR T R T % 150 s
z = e £
= A1 L
2 s {1
] W m
SEE e
i T - !
= -
o
F_ S0 = X1

1)

2)

3K
4)

5)
6)
7

8) |k

9)
10)

1n)

12) i
13)

14)

Fig. 15 —Example of the Use of Column Repetition

Line. The general form for specifying the Content for column repetltlons
is as follows. :

GENERAL FORM EXAMPLES '
"integer'" ("any number of Variables 12(JOB(QUE))
separated by commas'") 4(SHIP(I,J),ATM(I,J))

The "integer' specifies the maximum number of casesto be printed across
the page. This value must be the same as previously specified in the Col—
umn Repetition Line. Cases exceeding this maximum will be printed on
subsequent pages. The other entry in line 7, '*(127-131)," suppresses the
text word "TOTAL'" until after the control phrase "FOR EACH DEPOT J"
is satisfied. If there are more than 24 Depots, the word "TOTAL" will be
suppressed on all pages except those containing the final column of the ta—
ble. This suppression of print fields of the preceding Form Line may be
done only when the Form and Content Lines are under the control of a Col-
umn Repetition Line, and it may be applied only to print fields tothe right
of the columns being repeated. The general form of the suppress—notation
is:

GENERAL FORM EXAMPLES
*("any number of Variables or print field *(PAP(J))
designations separated by commas') *(AB(X),121-127,SUM(X))

As shown in the examples, print fields to be suppressed are specified by
writing the numbers of the first and last print positions in the field. The
two print position numbers are separated by a dash or minus sign.

“-Line 8 is a Form Line inserting the text word "BASE" as a heading for the
first column of the table. It contains a Heading Code "3" s0 that it will not
be repeated beyond the completion of the table rows. :

The next pair of Form and Content Lines (lines 9 and 10) define the contents
of the table itself. The first integer field is to contain the value of the
Local Variable "I" indicating the number of the Base. The next 24 integer
fields are to contain the up~to—24 values of "'SHIP(I,J)". The final field is

for printing the row total "TOT(I)"at the end of the row. If there

-85~

~are more than 24 Depots, the last field is suppressed until the row is com-
’ pleted. ’ g

Line 11 is a Row Repetition Line indicating that the output ‘described by the
preceding pair of Form and Content Lines is to be repeated "FOR
EACH BASE I". One or more FOR, FOR EACH"ENTITY", or FOR EACH
" OF "SET'" phrases, perhaps modified by WITH, OR, or AND phrases, may
" be inserted in a Row Repetition Line so long as the conditions are inde—
pendent of the conditions specified in the previous Column Repetition Line.

The final pair of Form and Content Lines (lines 12 and 13) call for print—
ing of column totals and a grand total at the end of the table.

To illustrate the conventions for the continuation of rows and columns on
subsequent pages and the suppression of marginal totals, suppose that the
Report described in Fig. 15 were to be printed for a case with 60 Depots
and 120 Bases. Assuming the standard 55 1lines per page, this Report
would require nine pages and would be printed as shown schematically in
Fig. 16.

The previous example had the values of a single Variable printed across
a row; however, the values of any number of Variables can be repeated for
successive cases across a row as illustrated in Fig. 17.

fo) Page 1 o Page 4 o o Page 7
o DEPOT TO BASE 'SHIPMENTS o DEPOT TO BASE SHIPMENTS o DEPOT TO BASE SHIPMENTS ‘
© Depot 1 2 4'ewt o o s o 24 © Derot 25 26 4 o 0 o o o o 48 © Depot 49 50 , p 4 60 Total
O Base O Basge o Base
o 1 x x . E]] L] o - ° X O 1 X X L] L] - [- L] . x O 1 X x L]] » x XXX
2 X X eeeeeecs X 2 X X 4o eeeee X 2 X X +.. X XXX
O E] O L] O »
O) O . O L]
o * O » O »
L] o L]
[e) o le]
* L3 L)
O ° o o O L
o] O * O o
50 X X 4 6o eaeoea X 50 X X o6 eoeeese X 50 X X 4oo X XXX
[@] O o)
(¢] Page 2 o Page 5 [e] Page 8
o DEPOT TO BASE SHIPMENTS ° DEPOT TO BASE SYTPNMENTS ° DEPOT TO BASE SHIPMENTS
O Dpotl 2 4 oo s e s e o 24 © Depot 25 26 o o o o s o « 48 © Depot 49 50 . . . 60 Total
O Base O Basge O PBase
O 5]- x x ¢ 8 8 8 O s » 0 x O 51 X X e & 0 & e o e x (o) 51 X x . & 0 X XXX
52 X X s eo0ee0sse X 52 X X 4o eeoeoeo X 52 X X ... X XXX
o] o] fo)
» L] »
O o O ° O 3
(o] . (o] e e} .
o L] O L) O *
L] L] -
O ® o L] O .
(e} . o . O .
o 100 X X seseeoes X o 100 X X 44esa... X o 100 X X ... X XXX
o Page 3 ° Page 6 o Page 9
o DEPOT TO BASE SHIPMENTS o DEPOT TO BASE SHIPMENTS o DFPOT TO- BASE SHTPMENTS
(o]
O Depot 1l 2 4 e v s a2 Depot 25 26 4 o o o o o o 48 O Depot 49 S50 . . . 60 Total
O Base © Base O TRase
O 101 X X 4 e eoecewoseo X o 101 X X o6 vooee X o 101 X X ... X XXX
o 102 X X X o 102 X X (...... X o 102 X X ... X XXX
. : . : .
0 120, X X 4 eeooees X O 120 X X 44 s e aoes X o 120 X X ... X XXX
O TOtAl XX XX . o o o o o o o o XX O TotAal XX XX o 6 o s o o o XX o Total XX XX ., . o XX XX
o i ; ° .
[o] (o] fe)
(o] (o] o)

Fig. 16 — Example of Row and Column Continuation with Suppression
of Marginal Totals

-98_

-87-

! 5 730 e =4
* = < n +
5 “g8 W5 —
g & 0,
" ko
| =2 : ,
F [¥]
m £ H q RS S | T 1 T N T bt B S
H £ 48 -4 N 1
& S -y - - Sl ol - g B
e o — —
5 2N S5 I WLMLWH: T S B -] [_—
H ; .
3 e Sl
B2 I : S
A i 1 = . 1 - i -
T % Tal T EE
B e I v) -
3 5 i o s e
2 & i 7N OIS i -
38 T & = L
2 s Il I Bl H M“V -
e WR.. g 1 S _
- — -+ - —~ -4 —
= N
b TR N . - . T =
= 1 R .
£ — | - - -
: -t + -
.
—t Pe e O AR S U R S QU U MG NERDERE v -
[
, = BESEEES
=TT ; B
= _ X =]
£ e IR

PRINT POSITIONS

AYEIRACE KNVERNGE

5
: aSe
~ Pzl “n
£ , S B B R s s (et O 55 Oy e
£ e i 1 o
M w > T B 1;\“: L N O G O)) K DR W
£ B TN ‘Lllm
zf= = T 1 1
N I = >] PR i DRUD VS
1= (W =, 4 4 - .
i ;] g
3 =t &
m < i o i Lrﬂ._ nm 1 SE i I]
g H: @ il ey B . SR 5
i 8 & L k — :
s PP e — T
2 -3 =4
m B . (VY
““““““““““““““ — ST T
m . ul of) E el - —_ p— —
_ 2 : v o . B e N
% £ EX R I A -
S 3 > <! . — -
s m] wl SN O Y B B N N - -] B
| K :
[Val ud k] N N i 1=
§ £ (g ol el R A et R e o £
: =) £ o 55 I S U I Y]] s
& B o o0 3 - - - - -]
w - : deod L b = — - °
— | 1 T H
2 |23 1 ,%. ST 1" - . 5
g 21] g
3 SR - =T
[« wJ < o I O e R
o
5] [V 0 . S) IO U5 o B N O 0 e S e . i
s e S) Y =N
= =< B IETVIRNNE S N T I n
uwy m. xR __lei o B Y U,] 4
Y o} Zlen T ol Tl T TR - . —
i <[]Vl ~| L
] g I: NE VI3 3 :
=1 =
ot g I= o A e 11
W £ =z =) 3] [L
o E W!!R = N A0S
w [= T3 i e
=Y
- + .
o —1t&arT —1 -+ s it S R
a , = -lal - L 31
o E] . f 3 Wi] 900 S S v Y A sl S S E
“ 2 w7 = 0 Ty A e
g = SE
» - T W”W)[,ﬂ I S
=i S e 0 N W X
= o= B RSy 123 W S O I S o
LR B 1 = ; ~
EHESIERLE el
B < | s T 3
EN 1 e IV IR mE k3
RN Emes LS
w b S - Y- Z s
<l Ty Ll I T
-] -
3 -
- [
MA =
o -
o
s, .538 [" T S
X ¥
m e : < 2<. =
E -3 F=3 212% x

Fig. 17 — Column Repetition for Groups of Variables

-88-

Chapter 11

AUTOMATICALLY GENERATED SYSTEM VARIABLES AND‘FUNCTIONS

A number of System Attributes and Functions are automatically defined
by the SIMSCRIPT translator, and their related subprograms are always
included in the System Package. System Variables representing the di—
mensions of Permanent Attribute lists and tables are also automatically
defined, based on the contents of the Definition Form. If desired, sub—
programs are generated for determining the values of Permanent At—
tributes by Random Look—Up Table procedures. These Variables and
Functions are discussed here under the following headings:

Time Variables and Functions

Output Variables

Random Variables and Functions

Random Look-Up Tables

List and Table Dimensions

FORTRAN Library Routines and Functions

TIME VARIABLES AND FUNCTIONS

During a simulation run, simulated time is accounted for in days and
fractions of days. Time values to be read in as input may be expressed
in other modes, and will be automatically converted to decimal—days.
Three automatically defined System Attributes — ""TIME, " ""HOURS, " and
"MINS'"— are related to the method of accounting for simulated time and
the conversion of input time values to a common mode. To permit the
output of time values in various modes, four Functions — "DECHR, "
"DPART, " "HPART, " and "MPART'" — are automatically provided as
part of the System Package.

HTIMEH

This translator—defined floating point System Attribute is always equal to
the current value of simulated time expressed in days and fractions of
days. It is automatically set equal to zero at the start of simulation. Be—
fore an Exogenous Event Routine is called, "TIME" is set equal to the
time—value specified for the Event occurrence on the Exogenous Event
Card. (The day, hour, and minute specified on the Event Card are auto—
matically converted to days and fractions of days.) Before an Endogenous
Event Routine is called, TIME is set equal to the time—value specified in
the prior CAUSE statement. The System Variable TIME is available to
all subprograms, but its value may not be modified by source language
statements. It is not to be defined on the Definition Form.

-89~

"HOURS" and "MINS"

These automatically defined floating point System Attributes are equal
respectively to the number of hours per simulated day, and of minutes
per simulated hour. Prior to object—program execution, they may be
assigned any value on the System Specifications Card as described in
Chapter 12. During program execution, the values of either or both may
“be modified at any time by source language statements. If the values of
HOURS and MINS are not specified on the System Specifications Card, they
are automatically set equal to 24. 0 and 60. 0 respectively.

"DECHR"

The Simulation System Package contains a Function for converting decimal—
days into decimal-hours. The Function has one argument, which may be
any floating point expression. The value of the Function is referred to in
source language statements as "DECHR(floating point expression)'; it is
equal to the floating point expression multiplied by the System Attribute
HOURS.

"DPART, " "HPART' and MPART"

To convert decimal—days into days, hours, and minutes, integer Functions
are provided for determining the "days part," "hours part, " or "minutes
part' of any time value expressed in decimal—-days.

The "days part'" Function, referred to as "DPART (floating point expres—
sion), "is equaltothe integer number of days contained in the value of the
floating point decimal—days time expression.

The "hours part'" Function, referred to as "HPART (floating point expres—
sion), " is equal to the integer number of hours contained in the remainder
of the time expression after the "'days part' has been subtracted from it.

The "minutes part'" Function, referred to as "MPART" (floating point ex—
pression), " is equal to the integer number of minutes in the remainder of
the time expression after the days and hours parts have been subtracted
from it.

The HPART and MPART conversions are based on the current values of
the System Attributes HOURS and MINS.

OUTPUT VARIABLES

‘Three translator—defined integer System Attributes ——""PAGE, " "LINES, "
and "OTAPE'" —— are related to the use of the Report Generator.
"PAGE'" is an integer System Attribute set equal to one at the start of ob—

ject—program execution and automatically advanced by one every time a
page of printed output is completed.

-90-

The value of PAGE may be modified at any time by source language state—
ments.

"LINES"

The value of the System Attribute "LINES'" specifies the number of lines
per page of printed output; it is automatically set equal to 55. If a dif—
ferent number of lines is desired, the value of LINES may be specified

- on the System Specification Card or may be modified by source language
statements up to a maximum of 60 lines.

"OTAPE"

The value of the System Attribute "OTAPE'" specifies the logical tape

unit on which Report Generator output is to be written. The value of
OTAPE is automatically set equal to six. If a different tape is to be used,
it may be specified under "Report Tape' on the Systems Specifications
Card or the Attribute OTAPE may be modified at any time by source lan—
guage statements.

RANDOM VARIABLES AND FUNCTIONS

Because of the frequent use of random variables in simulation problems,
SIMSCRIPT supplies rectangularly distributed integer and floating point
random numbers. One translator—defined Function, "RANDI(I, J)," and
two System Attributes, "RANDM" and "RANDR'" are provided for this
purpose. Random look—up table procedures are also provided for generat—
ing random variables with non—rectangular distributions, as described
later in the Chapter.

"RANDI(I, J)"

The successive values of this translator—defined Function are random

integers uniformly distributed from "I'" to "J." The arguments "I" and

"J" may be Local or System integer Variables or integer constants. A

new value of RANDI(I, J) is generated every time it appears in the source

program, even when it is repeated in the same statement. Its value can—
not be modified by source language statements.

' 7'7'RA‘.NDM"

' The successive values of "RANDM" are random floating pioint numbers
- uniformly distributed from "0.0" to "1.0." A new value of RANDM is
generated every time it appears, even when it is repeated in the same

statement. The value of RANDM cannot be modified by source language
statements.

-91-

"RANDR"

The value of '"RANDR" is the root used to generate the next value of
RANDI(I,J) or RANDM. RANDR is a ''right-adjusted" integer variable
and may be given any odd initial value at the time of object—program exe—
~cution. The value of RANDR may be modified at any time by source lan—
guage statements. Specific values may also be read in using the right
adjusted integer field description discussed in Chapter 7. If its initial

value is not specified, it is automatically set equal to '"l." RANDR may
not be an even number.

RANDOM LOOK-UP TABLES

Unsubscripted and single—subscripted Permanent Attributes may, if de—
sired, have their values determined by either of two random look—up
procedures. A step function procedure is provided for discrete probabil—
ity distributions; a linear interpolation procedure is provided for linear
approximations to continuous distributions.

Permanent Attributes that are to have their values determined from a
random look—up table must be so defined on the Definition Form as de—
scribed in Chapter 13.

The look—up tables consist of possible Attribute values with their cor—
responding probabilities. One look—up table is required for each unsub—
scripted random Attribute. Single—subscripted random Attributes require
a series of look—up tables, one for each value the subscript can take on.

The look—up tables themselves are input at the time of object—program
execution as part of the Initial Conditions Deck. They may therefore be

changed from one run to the next.

Step Function

If the look—up table describes a discrete probability distribution, such as

the example shown in Fig. 18, the ''step function'' procedure must be

specified on both the Definition and Initialization Forms as described in
Chapters 13 and 14.

I. The possible Attribute. values may be expressed by using any of the
FORMAT statement Field Descriptions described in Chapter 7 (except
alpha—numeric), and may be given any desired value. :

In the case of the step function, the probabilities may be read in as either
cumulative or individual probabilities. If individual probabilities are used,

-92-

Cumulative
-~ probability

0.
0 10 11 12 13 14 15 16

Attribute value

Fig. 18 — Discrete Probability Distribution

they are accumulated in the order of their appearance in the Initial Condi—
tions Deck. Cumulative probabilities must appear in the Initial Condi—
tions Deck in ascending order.

The last cumulative probability should equal 1.0, or individual probabili—
ties should sum to 1. 0. In any case, the final cumulative probability is
automatically set equal to 1. 0 regardless of the probability values that
are input.

A new value is automatically obtained every time the Attribute appears in
the source program, even if it is repeated in the same statement. The
value is determined by generating a value of RANDM and searching the
table from the proper entry.

Linear Interpolation

If the Attribute value is described by a continuous rather than a discrete
probability distribution, a piece—wise linear approximation such as that
shown in Fig. 19 may be used.

In this case, the look—up table describes a series of points from the
continuous cumulative probability curve. Each time the Attribute appears
in the source program, a new value for RANDM is generated and the table
is searched for the pair of cumulative probabilities which bracket that
value. The value of the Attribute is then determined by interpolation.
The cumulative probability curve may be described by as many points as
desired.

-93-

1.0

Cumulative
probability

]] { |
200 250 300 350

Attribute wvalue

0.0

Fig. 19 — Continuous Probability Distribution

For the linear interpolation procedure, the look—up table must be read—
in in terms of cumulative probabilities. Furthermore, the cumulative
probability of the first possible Attribute value must equal 0. 0; that of
the last possible should of course equal 1.0, and will automatically be
set equal to 1. 0 in any case.

One look—up table is required for an unsubscripted Permanent Attribute.
If the Attribute is subscripted, one look—up table is required for each
value the subscript can take on.

PERMANENT ENTITY AND ATTRIBUTE DIMENSIONS

For each type of Permanent Entity defined on the Definition Form, the

- SIMSCRIPT translator defines an unsubscripted Permanent Attribute. The
“name of this automatically defined System Attribute is formed by prefix—
“ing the letter ""N" to the name of the Permanent Entity Type. For example,
if "DEPOT" is a type of Permanent Entity, an unsubscripted Permanent

- -Attribute called "NDEPOT" is automatically defined. It will be noted that

"NEntity name' may consist of as many as six characters rather than the
usual five. The value of "NEntity name'' is specified in the Initial Condi—
tions Deck each time the object program is executed.

-94-

For each type of double—subscripted Permanent Attribute, the translator
automatically defines a single—subscripted Permanent Attribute called
"N'Attribute name'(I)"". This variable is equal to the number of entries

in the Ith row of the table, and is indispensable when the table is "Ragged,"
i. e., when a different number of entries can appear in each row. ;

FORTRAN LIBRARY ROUTINES AND FUNCTIONS

Because SIMSCRIPT is a pretranslator to FORTRAN, all FORTRAN
Library Routines and Functions are obtainable from the FORTRAN Li-
brary Tape. The arguments used when mentioning these Library Routines
may be Local or System Variables.

-95-

Table 1

SUMMARY OF AUTOMATICALLY DEFINED
VARIABLES AND FUNCTIONS

Value
Modifiable
by Source
Name Statements Mode What the Value Equals
TIME no floating point current value of simulated
time i{in decimal-days
HOURS yes floating point hours per simulated day; un-
less otherwise specified, it
is automatically set = 24.0
MINS yes floating point minutes per simulated hour;
unless otherwise specified,
automatically set = 60.0
DECHR (arg) no floating point argument | decimal-hours equivalent of
& floating point result | the floating point expression
evaluated as decimal-days
DPART (arg) no floating point argument | integer part of floating
& integer result point expression
HPART (arg) no floating point argument | number of integer-hours if
& integer result floating point expression
were expressed in days, hours
and minutes
MPART (arg) no floating point argument | number of integer-minutes if
& integer result the floating point expression
were expressed in days, hours
and minutes
PAGE yes integer page no., current page of the
printed output
LINES yes integer number of lines per page of
printed output; unless other=-
wise specified, automatically
set = 55
OTAPE yes integer number of current output tape
for printed reports; unless
otherwise specified, it is
automatically set = 6
RANDI(I,J) no integer arguments integer random variable uni-
& integer results formly distributed from "I"
to "J" where I and J are in-
teger variables or constants
RANDM no floating point floating point random vari-
R able uniformly distributed
. from 0.0 to 1,0
RANDR yes integer root used to the next random
) number . -
' NEntity name no integer number of Permanent Entities
of the particular type
NAttribute name(arg) no integer argument number of subscripted values
& integer result in the indicated row of a

Ragged Table

-96~

Chapter 12

COMPILATION AND EXECUTION

. The compilation and the execution of SIMSCRIPT programé are accom—
plished through the FORTRAN Monitor. Compilation requires two tapes
"in addition to the tapes required by FORTRAN. The SIMSCRIPT translator
is mounted on tape 12(B6), and tape 11(A6) is used as a SIMSCRIPT scratch
tape.

In making the compilation, the SIMSCRIPT translator directly generates
FORTRAN object programs for all SIMSCRIPT—provided subprograms,
namely, the System Package, the Timing Routine (called "EVENTS"), and
the Entity, Attribute, and Set packages described in Chapter 9.

All written SIMSCRIPT source programs (including Report Routines speci-
fied on the Report Generator Layout Form) are translated by SIMSCRIPT
into FORTRAN source programs, which must then be compiled by the
FORTRAN Monitor to obtain FORTRAN object programs. This double
processing amounts to two separate FORTRAN jobs. In the following
discussion, these jobs are referred to as ""Job 1" and "Job 2. " In Job 1,
SIMSCRIPT source programs are translated to FORTRAN source programs
which are written on the scratch tape. In Job 2, the scratch tape is run as
another FORTRAN job to obtain FORTRAN object programs, which of
course may then be executed in the standard FORTRAN manner without
further reference to the SIMSCRIPT translator. The procedure described
below accomplishes the translation from SIMSCRIPT into FORTRAN
source programs and the subsequent compilation into FORTRAN object
programs without getting off of the machine. It also permits SIMSCRIPT
jobs to be interspersed among non—SIMSCRIPT jobs on the standard
FORTRAN input tape.

COMPILE DECK

The general composition of the Compile Deck is shown in Fig. 20; its vari—
ous elements are discussed below.

" FORTRAN Monitor Type 1 Control Cards

Any FORTRAN Monitor Type 1 Control Cards that may be required by the
‘particular computer installation in order to execute the SIMSCRIPT Loader

T ‘must appear first in the Compile Deck. These Control Cards all relate to

the first job, namely the generation of the SIMSCRIPT—-provided object
program packages and the translation of written SIMSCRIPT source pro—
grams to FORTRAN source programs.

97~

- - —

] DATA DECK B .
S (ir execution 13 desired)

/et—-—————Previously oompiled OBJECT PROGRAMS s
if any

"OFF" or '"BINARY" CONTROL CARD

—————— SOURCE LANGUAGE SUBPROGRAMS

/‘—-—'—- DEFINITION CARDS

H

DUMMY FORTRAN TYPE 1 CONTROL CARDS
(to be transferred to the scratch tape for Job 2)

SIMSCRIPT LOALER

/‘ FORTRAN MONITOR TYPE 1 CONTROL CARDS FCR JOB 1

Fig. 20 — Composition of the Compile Deck

SIMSCRIPT Loader

The SIMSCRIPT Loader consists of three cards. The first two cards are
a FORTRAN object program that reads in the SIMSCRIPT translator from
tape unit 12(B6) and transfers controlto the translator. The third card is
a FORTRAN Data Control Card (¥*DATA) since the remainder of the cards
in the Compile Deck are, in fact, data as far as Job 1 is concerned.

Dummy Type I Control Cards

These FORTRAN Monitor Type 1 Control Cards relate to the second job,
namely the compilation of FORTRAN object programs from the FORTRAN
‘source programs to be generated during the course of Job 1. The trans—
- lator copies these dummy Type 1 Control Cards onto the scratch tape so
that the second job can be run from the scratch tape as a standard

) FORTRAN job. ~

Definition Cards

This deck consists of all Definition Cards punched from the SIMSCRIPT
Definition Form as described in Chapter 13.

-98~

If aDefinition Card has appeared in a previous compilation, it must still

.be included in the deck, but a punch in Col. 72 will suppress the genera—
tion of the SIMSCRIPT-provided Entity, Attribute, and Set Packages so

that they will not be generated a second time. Each Definition Card must
appear with a blank in Col. 72 in at least one compilation, and the appropri—
‘ate Entity, Attribute, and/or Set Packages (FORTRAN object programs)
will be written as output for Job 1 on the standard FORTRAN punch tape
(tape 7(B4)). If a change is made in a Definition Card, the changed card

is inserted with Col. 72 left blank, and its previously generated subpro—

grams packages must be discarded. The Definition Cards may be in any
order.

Source Language Subprograms

The source language subprograms to be compiled follow the Definition
Cards in the Compile Deck. * These subprograms may include Exogenous
and Endogenous Event routines, Subroutine subprograms, Function sub—
programs, cards punched from the Report Generator Layout Form, and a
"MAIN" routine in the case of a non—simulation program. The Events List
and the "SIMULATION" or "NON-SIMULATION" card calling for the Sys—
tem Package are included among these subprograms if they have not al—
ready appeared in a previous compilation. Each source language sub—
program may, if desired, be preceded by FORTRAN Monitor Type 2
control cards. These control cards will be copied on to the scratch tape
so as to be included as part of Job 2.

"OFF'" or "BINARY" Control Card

The source language subprograms are immediately followed by an "OFF"
Control Card, a "BINARY" Control Card, or the Data Deck, depending on
whether it is desired to get off the machine, to load previously compiled
object subprograms onto the scratch tape, or to load data on the scratch
tape so that all programs may be executed as part of Job 2.

The "OFF" control card, with an asterisk in Col. 1 and the word "OFF"
in Cols. 7 through 72, causes an end—of—file mark followed by an end—
tape mark to be written on the scratch tape. Control then returns to the
FORTRAN Monitor. If another SIMSCRIPT Job 1 is encountered, the
“translator will erase the end—tape mark on the scratch tape and the input
for the new Job 2 will be written following the end—of—file mark for the

& B (prev1ous Job 2.

*At least one Definition Card must be included in the Compiie‘Déék‘even if
the subprograms being compiled contain only Local Variables. A "plus"
punch in Col. 1 of an otherwise blank card will suffice.

-99-

‘A "BINARY" control card, with an asterisk in Col. 1 and the word
"BINARY" in Cols. 7 through 72, causes the object subprograms follow—
ing it to be transferred to the scratch tape. These object subprograms
will be written on the scratch tape and any FORTRAN object programs
that may have been generated by the SIMSCRIPT translator during the
earlier part of the current Job 1 are also copied from the FORTRAN
punch tape onto the scratch tape. All object programs will thus appear
on the scratch tape following the SIMSCRIPT—-translated FORTRAN source
programs, and Job 2 can both compile and execute.

If execution of the object program is desired immediately following the
compilation of Job 2, the Data Deck follows the source language sub—
programs (or the object subprograms, if any) on the Job 1 input tape with
no intervening cards. The composition of the Data Deck is described later
in the present Chapter.

Previously Compiled Object Subprograms

These subprograms may include both those generated by written SIMSCRIPT
or FORTRAN source programs and those automatically generated by the
SIMSCRIPT system or by the FORTRAN Library Tape.

EXECUTE DECK

If all subprograms have previously been compiled, the composition of the
Execute Deck is as shown in Fig. 21.

F otuiniuiiatatnsttaiataiiated (N
_______________ Y]
f)
: i
) 3]
£ !/ DATA DECX
," (SYSTEM PACKAGE (Simulation or Non-Simulation)

EVENTS routine or MAIN routine

| ENTITY, ATTRIBUTE, and SET PACKACES
[L A ﬁ EXOGFNOUS EVENT routines
e S EVF
(ORJECT PROGRAMS f;gg%”igu tfxef'r routines
- SUBROUTINES (SIMSCRIPT or FORTRAN)
_ FUNCTIONS (SIMSCRIPT or FORTRAN)

_A— FORTRAN MONITOR TYPE 1 CONTROL CARDS

Fig. 21 — Composition of the Execute Decl{" SIS

-100-

FORTRAN Monitor Type 1 Control Cards

The execution of object programs is accomplished in the usual FORTRAN
. manner, and Type 1 Control Cards as may be required by the partlcular

o \ mstallatlon appear first.

_Object Subprograms
The object subprograms may appear in any order; they consist of:

A Simulation or Non—Simulation System Package
An EVENTS routine or a MAIN routine

All Entity, Attribute, and Set Packages

All Exogenous Event routines

All Endogenous Event routines

All Report routines

All Subroutines (SIMSCRIPT or FORTRAN).

All Functions (SIMSCRIPT or FORTRAN)

DATA DECK

Figure 22 depicts the composition of the Data Deck. The various elements
of the Data Deck are discussed below.

"/‘——"—‘—EXOGENOUS EVENTS DECK

— BLANK CARD

-/4———-— INITIAL CONDITIONS DECK

“®——————————SYSTEM SPECIFICATIONS CARD

| - WDATA"™ CONTROL CARD

Fig. 22 — Composition of the Data Deck

" "DATA" Card

The first card in the Data Deck is a ""DATA" control card, w1th an asterlsk
in Col. 1 and the word "DATA" in Cols. 7 through 72.

-101-

System Specifications Card

‘The second card in the Data Deck is the System Specifications Card with
the following contents and format: '

COLUMNS CONTENTS
1 The number 1%,
7 through 12 Maximum "Array Number" that appears in Cols.

32 through 34 of the Definition Form. The
units position must be in Col. 12.

13 through 18 The number of minutes per hour of simulated
time. It must be an integer with the units
position in Col. 18. If this field is left
blank, the number of minutes per hour auto-
matically is assumed to be 60. This number
may be changed during program execution by
modifying the System Attribute MINS, *

19 through 24 The number of hours per day of simulated
time. It must be an integer with the units
position in Col. 24. If this field is left
blank, the number of hours per day is as-
sumed automatically to be 24. This number
may be changed during program execution by
modifying the System Attribute HOURS. *

25 through 30 The initial value of the root to be used in
generating random numbers. If this field is
left blank, the initial root is automatic-
ally set equal to 1. The root must be an
odd number. This root is a System Attribute
named RANDR and may also be modified during
program execution.

31 through 36 If it is desired to read the Initial Condi-
tions Deck from a tape other than Logical
Tape Unit Five, insert the desired tape
number in this field. If the field is left
blank, the Initial Conditions Deck will be
read from Logical Tape Unit Five. .The Sys-
tem Specifications Card is always read from
Logical Tape Unit Five. k

*Although the number of hours per day and the number of minutes per hour are
specified as integers on the System Specification Card, the automatically
defined System Attributes HOURS and MINS are floating point variables.

-102-~

37 through 42 If it is desired to read the Exogenous Events
£ Deck from a tape other than Logical Tape Unit
e Five, insert the desired tape number in this

field. 1If the field is left blank, the Exog-
enous Events Deck will be read from Loglcal
Tape Unit Five, g

* 43 through 48 If it is desired to write Reports on a tape
‘ unit other than Logical Tape Unit Six, insert
the desired tape number in this field. If the
field is left blank, Reports will be written
on Logical Tape Unit Six. The tape number may
be changed by modifying the System Attribute
OTAPE by source language statements.

49 through 54 The number of lines per page of printed output
is inserted in this field. The maximum number
of lines is 60. If the field is left blank, the
number of lines will be 55, This may be changed
at any time by changing the value of the System
Attribute LINES.

The format for the System Specification Card is included at the top of the
Initialization Form (see Fig. 24, Chapter 14).

Initial Conditions Deck

The Initial Conditions Deck consists of all Initialization Cards and Data
Cards, as described in Chapter 14. As mentioned above, the Initial Condi—
tions Deck may be read from tape units other than that containing the ob—
Ject program by indicating the desired tape unit on the System Specifica—
tions Card.

Blank Card

The Initial Conditions Deck must be followed by a blank card even if the
Exogenous Event Deck is to be read from a different tape.

-Exogenous Events Deck

- The preparatlon of the Exogenous Events Deck was descr1bed m the dis—
_‘,cussmn of the READ statement in Chapter 7. i

-103-

Chapter 13

DEFINITION CARDS

' Each type of Temporary Entity, Event Notice, Permanent Entity, Attribute,
~ Set, and written Function must be described on the Definition Form shown
-in Fig. 23. The Form is divided into four panels. The first is used for
~defining Temporary Entities, Event Notices, and Temporary Attributes;
the second for defining Permanent Entities and Permanent Attributes; the
third for defining Sets; and the fourth for specifying the name and mode of
any written Functions.

Entries may appear in any or all panels of a particular Definition Card.
Blank panels are ignored. If a Definition Card appears in the Definition
Deck with a blank in Col. 72, a translator—provided subprogram package
will be compiled for each definition on the card. If there is a mark in
Col. 72, none of the packages will be compiled. All Definition Cards
must be included in the Definition Deck, regardless of whether or not
their translator—provided packages have been previously compiled.

DEFINITION OF TEMPORARY ENTITIES

For each type of Temporary Entity, a "T" is inserted in Col. 2, and its
source language name in Cols. 4 through 8 starting in Col. 4. The name
may consist of one to five letters or numbers (one of which must be a
letter). It may not end in "F," or contain "XX'" or a special character
such as $, +, etc.

Columns 9 through 17 specify the size of the memory record required for
storing the Attribute values describing the particular type of Temporary
Entity. This record consists of one '"Master Record" plus, if desired,
one to eight "Satellite Records." Master Records and Satellite Records
may be one, two, four, or eight words long, the length being specified by
writing "1, " "2, "4 " or "8" in the appropriate column of the Definition
Form. If a Satellite Record is not needed, its record—size is left blank.

The Master Record must contain at least as many words as there are
- -Satellite Records. For each Satellite Record specified, the translator

o uses the second half of the corresponding storage word in the Master

2~ Record; it may not be used for storing Attribute values. For example,

: if Satellite Records 1, 2, and 3 are specified, the Master Record must be

. at least four words long (a three—~word record is not permitted), and the
second half of the first, second, and third words of the Master Record may
not be used when assigning locations to Attribute values. Particular num—
bered Satellite Records may be skipped so long as the preceding rules are
followed.

~104-

The use of Satellite Records should be avoided when possible, since their
storage and retrieval times are greater thanthose of Master Records
(These times are discussed later in the present Chapter.) ’

DEFINITION OF EVENT NOTICES

The Event Notice is a special kind of Temporary Entity, prov1ded to facil—
itate the scheduling of Endogenous Events. Its only difference from a
Temporary Entity is that the first two words of its Master Record are
used by the CAUSE and CANCEL statements and the Timing Routine;
therefore these two words may not be used for storing Attribute values.
The number of words allocated to the Master Record of an Event Notice
must always be at least two (and the first two words must not be used).
Satellite Records 1 and 2 are unavailable to Event Notices.

The definition of an Event Notice is distinguished from that of a Temporary
Entity by the insertion of an "N" in Col. 2 of the Definition Form. Its
name and record size are specified according to the rules previously de—
scribed for Temporary Entities, except that the first two words of the
Master Record are already assigned, and the first two Satellite Records
may not be used.

DEFINITION OF TEMPORARY ATTRIBUTES

Each Attribute of a Temporary Entity or Event Notice is defined in Cols.
18 through 31 of the Definition Form. A Temporary Attribute definition
may precede or follow the definition of its Entity, or it may appear on the
same card.

Whether an Attribute describes a Temporary Entity or an Event Notice
is indicated by inserting a "T" or an ''N'" respectively in Col. 18.

The Attribute name is inserted starting in Col. 20. It may consist of one
to five letters or numbers, one of which must be a letter. It may not end
in "F" or contain "XX" or a special character.

Each Attribute is stored in a fixed position within its Entity's record.
This position is specified in the columns headed "Record, " "Word, " and
"Packing. "

, Under 'Record, "' one indicates in which record the Attrlbute is to be stored

" by inserting a zero (or blank) if the Attribute is to be stored in the Master
Record, or by inserting the number of the Satellite (1, 2, .. 8) if lt is to

be stored in a Satellite Record. 2

PROGRAMMER —

o

SIMECEE

PROBLEM I . I o FERE £ P i -105-

DATE

—T TEMPORARY S‘;;STEM VA R‘/Aélfs 7 FMF&”F’M‘ AMENT \ BETS FUNCTIONG i
TEMPORARY AND EVENT NOTICE ENTITIES ATTRIBUTES g ;’ L
: ARRAY : | ATTRIBUTE | o :
iy RECORD SIZE < NUMEER] MAME NAME f {| vsep N H NAME b
S L C GG (R e 1 i 1 TEE] mawene | sy
“) ;T" Malaisisir|a ”" € / ik ’ 3 .:\ el
ol c:7 04105106 07 06 e Mo 11112 13 14138 16 {17 |[yal19] 2021 {22 {23 |7 afas en |27 20 [ru e 5 e T R B PP RER PRI PO RN RSN Y e laatarne salaninllas 63 6alaniienlorlseieslnln oz vy H‘Ps " in
[+] L 1/) L]
o IREE A / R ERRUEERERN , B
) /i _ L
A / e /] , 1 RN I
ool 1l WV _ RNV 4 INRREREN
L | . Ll b AN] -] e
MBS . / L A B 1 O 0 T O O O N A | .
i / i/
CEEEREE “ A Ll i
ht i RN L Nl]
d " Ao AREE NENES VL e RN
oL IRRENY pREEI _
-+ S I / oL] L
HOLd EREaE / N NN
+ M ERRERY HE I NN RN
) Ll Lol E / NN /L]) L
j: ! i - 4 L / | L R /1 PR S
|t ‘ N . / NIV B, L L B
|+ | | L / NN ERVIREN RN
L i 1L NN } Y _ ? j
D r / B / L
[+ :) / / IR
hd / BRSNS
+ / / .
- L S e DT
PREDECES S8 SET NAME e] REGOIRED ATTRIBUIES
Cioreen o e
) Fthesr e BEY i el ¥ o Ve
Fig. 23 — SIMSCRIPT Definition Form (actual size) cosr weser L sty e e Ve d ~’~J

PRE TN
i

FEy nAME

-107-

In the column headed "Word, " one indicates which word within the record
is to be used in storing the Attribute (inserting "1" if it is the first word,
Mt . . .

2" if it is the second, etc.).

If it is desired to store more than one Attribute per storage word, the
Attribute's position within the word is indicated in the columns headed
"Packing. "' The permissible fractional word storage allocations and their
corresponding codes are listed in Table 2. Any non—overlapping combina—
tion of these fractional spaces may be used. If overlapping storage assign—
ments are made, there is no protection. However, if during a run of the
object program an Attribute value exceeds the storage space allotted to

it, the program will exit, and the computer will print an error message.

Table 2

MEMORY—-PACKING CODES FOR TEMPORARY ATTRIBUTES
AND SINGLE-SUBSCRIPTED PERMANENT ATTRIBUTES

Approximate
Limits for Non-zero
Portion of Word|Maximum Integer Value| Floating Point Value
where Attribute

Packing Code | will be Stored Unsigned Signed Unsigned Signed
Blank or 1/1 full word 131,071 | 131,071 27128 o 277 | 27178 4o 2'%7
1/2| first half 131,071 | 131,071 [273% 4o 231 | 2716 4 215
2/2 | second half 131,071 131,071 2732 40 281 [2716 4, 215
1/3 first third 4,095 2,047
2/3 second third 4,095 2,047
3/3 last third 4,095 2,047
1/4 | first quarter 511 255 NOT PERMITTED
2/4 | second quarter 511 255
3/4 | third quarter 511 255
4/4 | fourth quarter 511 255

A special restriction on storage allocations is that the first bit of the first
word of a Master or Satellite Record must remain empty throughout the
execution of the program; the remainder of the word may be used so long
as the values being stored will not require use of the first bit.

This restriction prohibits storing a signed number in the first part of the
first word (or in the whole word). It also limits the permissible values

-108-

for unsigned numbers to those specified for signed numbers in Table 2.
This restriction applies only to the first word of a Record, and then only
to the case of a full word or if the packing code is 1/2, 1/3, 1/4. A con—
venient way to deal with this particular nuisance is to always use the first
word for storing Attributes whose values are Entity identification numbers
(for example, Attributes describing Set membership or ownership).

Identification numbers of Temporary Entities and Event Notices (being
equal to actual memory locations) always require at least one—half word
of storage. Identification numbers of Permanent Entities, being ordinal
positions in a list, may be stored in a third or fourth of a word, depend—
ing on how many Entities there are of the particular type. Floating point
numbers also require at least a half-word of storage. Alpha—numeric in—
formation must always be stored in a full word.

The packing procedure for Master and Satellite Records is the same ex—
cept that when Satellite Records are used, only the first half of the cor—
responding numbered word in the Master Record is available for storing
Attribute values.

Temponrary Attribute storage and retrieval times for the various fractional
word storage assignments are summarized in Table 3. These access times
are expressed in machine cycles and are currently applicable to the IBM
709 and 7090 versions of SIMSCRIPT. As can be seen, packing should not
be used if there is ample space for full-word storage, since it increases
storage and retrieval times. Furthermore, storage and retrieval times

are greater if the Attribute value is stored in a Satellite Record than if it
is stored in a Master Record.

If the Attribute is to be "signed, " a mark is placed in Col. 30; otherwise,
the translator will assume it is always positive.

Indicate the mode of the Attribute value in Col. 31 by inserting "I" for
integer or "F" for floating point.

ARRAY NUMBERS

As described above, Temporary Attributes are stored in individual mem—
ory records, each record containing all the Attributes of a particular
Entity. Permanent Attributes, on the other hand, are stored as zero—,

one—, or two—dimensional arrays, each array consisting of a single kind
of Attribute.

The position of a particular Permanent Attribute within an array corres—
ponds to the ordinal position of the particular Permanent Entity it de—
scribes. For example, if ITEM is a kind of Permanent Entity, the various

-109-

Table 3

STORAGE AND RETRIEVAL TIMES FOR TEMPORARY ATTRIBUTES

Stored in Master Record Stored in Satellite Record
Integer Floating Point Integer Floating Point
Packing
Code |Unsigned| Signed |Unsigned | Signed Junsigned! Signed |Unsigned| Signed
Blank 13 13 13 13 18 18 18 18
or 1/1 13 13 13 13 18 18 18 18
1/2 13 13 30 30 18 18 35 35
16 16 21 22 21 21 26 27
2/2 20 20 33 33 27 27
16 16 21 22 21 21
23 26 o f S 1 28 31
1/3 18 19} o 23 2%
23 26 : e 1 31
2/3 18 21 | S 23 26
2 27 -] 2 32
3/3 19 21 |° E 24 26
23 26 1o {1 28 31 :
1/4 18 19 23 % |
21 24 26 29 g
2/4 16 21 [21 26 |
23 26 5 28 31 -
3/4 18 22 23 27 "»fif
24 27 29 32 L
bl4 19 21 2% 26}
NOTE : 23
Computer cycles to store ————mm 17 —s—— Computer cycles to retrieve

Att ributes of the fifth ITEM would consist of the fifth entries in a number
of different one—dimensional arrays.

An Attribute of a pair of Permanent Entities, such as transit times from
one depot to another, would be stored as a two—dimensional array. Ragged
Tables are also stored as two—dimensional arrays.

An unsubscripted or System Attribute is, in effect, a zero—dimensional
array.

Each type of Permanent Attribute must be assigned an "Array Number' in
Cols. 32 through 34 of the Definition Form (the units position must be in
Col. 34). This Array Number is also used to identify each type of

-110-

Permanent Attribute on the Initialization Cards discussed in Chapter 14.
The Array Number never appears in the source program.

If two or more types of Permanent Attributes are to be packed in the same
word of storage, they must be given the same Array Number. As dis—
cussed later in the present Chapter, "equivalent'" Permanent Attributes
must also have the same Array Number. Otherwise, the Array Number
must be unique for each type of Permanent Attribute.

Array Numbers need not be sequential on the Definition Form; however,
numbers that are skipped must be included in the Initial Conditions deck
just as though they had been assigned. They also use at least one word
of storage each during execution of the object program.

DEFINITION OF PERMANENT ENTITIES

For each kind of Permanent Entity, an "E'" is inserted in Col. 41. The
name of the Entity type is inserted in Cols. 35 through 39; it may consist
of one to five letters or numbers, one of which must be a letter. It may
not end in "F" or contain "XX" or a special character. As discussed in
Chapter 11, the translator automatically defines an unsubscripted Perma—
nent Attribute with the name "NEntity name. "

An Array Number for the System Attribute "NEntity name" is assigned in
Cols. 32 through 34 of the line used to define the type of Permanent En—
tity. In setting the initial conditions for object program execution, this
Array Number identifies the Attribute "NEntity name' on the Initializa—
tion Card.

The Array Number assigned to "NEntity name" must have a lower value
than the Array Numbers assigned to any Attributes of the Permanent
Entity.

DEFINITION OF PERMANENT ATTRIBUTES

The Array Number for each kind of Permanent Attribute is assigned in
Cols. 32 through 34.

The name of the Attribute is inserted in Cols. 35 through 39. The name
may consist of one to five letters or numbers, one of which must be a
letter. It may not end in "F" or contain "XX'" or a special character.

To indicate the number of subscripts the Attribute is to have, "0," "1, " or
"2" is inserted in Col. 4l. A blank in Col. 4l is treated as a zero.

-111-

Unsubscripted Permanent Attributes (System Attributes) are always stored
in a full word, i.e., packing is not allowed. Single-subscripted Perma—
nent Attributes may be packed into the same word provided that they de—
scribe the same Permanent Entity. If the Attribute's value is to be stored
in a fractional word, the desired packing is indicated in Cols. 42 and 44.

If packing is not required, these columns may be left blank. Packing codes
for single—subscripted Permanent Attributes and the permissible Attribute
values were previously shown in Table 2.

If a particular kind of Permanent Attribute is assigned to the packing code,
of say, ''1/2," each successive value in the Attribute Array will be stored
in the first half of each of a sequence of storage words. The number of
words equals the number of Entities of the type that the Attribute describes.
It also equals the value of the translator—defined System Attribute, "NE—
ntity name. ' In the above example, a different type of Permanent At—
tribute could be stored in the second half of each word by giving it the

same Array number and assigning the packing code "2/2." Any of the
other fractional word assignments may also be made so long as they do not
overlap.

Packing for double—subscripted Permanent Attributes is specified by plac—
ing a '"2" or '"4" in Col. 44, indicating that each entry is to be assigned a
half or fourth of a word respectively (one—third packing is not permitted).
Entries from successive columns of the two—dimensional Attribute Array
will then be packed into the same word. Different types of double—
subscripted Permanent Attributes are never packed together; therefore each
has a unique Array Number and Col. 42 must be left blank.

The storage and retrieval of unsubscripted Permanent Attribute values
each require six computer cycles. Storage and retrieval times for single—
and double—subscripted Permanent Attributes are shown in Table 4.

If a Permanent Attribute is to be signed, a mark is placed in Col. 45;
otherwise it is always assumed to be non—negative.

In Col. 46, the mode of the Attribute is indicated by inserting an "I" for
integer or an "F'" for floating point.

If the initial values of a particular type of Permanent Attribute are not to
be changed during execution of the object program, the generated subpro—
gram for storing the values can be deleted from the object program by in—
serting a mark in Col. 47.

DEFINITION OF RANDOM ATTRIBUTES

Permanent Attributes whose values are to be automatically obtained by
one of the random look—up table procedures described in Chapter 11

-112-

Table 4

STORAGE AND RETRIEVAL TIMES FOR SUBSCRIPTED
PERMANENT ATTRIBUTES

Single~Subscripted Double-Subscripted
Integer Floating Point Integer Floating Point
Packing
Code |Unsigned] Signed |Unsigned | Signed JUnsigned] Signed |Unsigned | Signed
Blank 14 14 14 14 20 20 20 20
or 1/1 14 14 14 14 20 20 20 20
2 | 14 14 31P b 26 26 444 444
17 17 22¢ 23¢ 32 32 39¢ 40¢
22 | B3 23 36° 36° 33 33 464 469
17 17 22¢ 23¢ 32 32 39¢ 39€
25 282 ’ o
1/3 19 20
a
2/3 25 28
o 19 22
a
3/3 | %6 29 S e
20 22 - b
25 282 42 458
1/ 19 20 8 /////gg/ 36
23 262 4 41 448
2/4
/ 17 22 /////gg/ /////g;/‘
n 25 28° 42 452
34 19 23 /////g;/ /////g;’
a a
4/4 26 29 43 46
20 22 37 38
NOTE:
Computer cycles to store — - 25 |.a@—— Computer cycles to retrieve
14

'Storage requires 2 cycles less than indicated if value is non-negative,
bScarlge requires 12 cycles less than indicated if value is zero.

€ Retrieval requires 4 cycles less than indicated if value is zero.

d Storage requires 6 cycles less than indicated i{f value is zero.

€ Retrieval requires 5 cycles less than indicated if value is zero.

are defined in the manner described above, except as specified below. In—
stead of specifying the number of subscripts in Col. 41, indicate whether
the Attribute is to be subscripted or unsubscripted by inserting "'S" or "y
in Col. 48. If there is an entry in Col. 48, Col. 4l must be blank. Double—
subscripted Attributes are not permitted with random look—up table
procedures.

-113-

In Col. 49, indicate whether the step function or the linear interpolation
procedure is desired by inserting "S" or "L."

If a random look—up procedure is not desired, Cols. 48 and 49 are left
blank.

EQUIVALENCE

As might be inferred from the preceding discussion, the same Temporary
or Permanent Attribute may be assigned more than one name. '

With Temporary Attributes, "equivalence' is achieved by assigning the
same "Record, " "Word, " and "Packing" codes to the equivalent Attributes.
With Permanent Attributes, "equivalence' is achieved by assigning the
same Array Number and Packing code to equivalent Attributes.

DEFINITION OF SETS

Each kind of Set must be defined in the third panel of the Definition Form.

The name of the Set is inserted in Cols. 51 through 54 starting in Col. 51,
It may consist of any one to four letters or numbers except that it may
not end in "F" or contain "XX" or a special character. The Set name is
limited to four characters because it must be given a one—letter prefix

to form the names of certain required Attributes. These Temporary or
Permanent Attributes must in turn be defined for the types of Entities
owning and belonging to the Set.

Column 55 indicates the number of subscripts the Set is to have (0, 1, or
2).

The type of Set organization is indicated in Col. 56, 57, or 58. If the
member Entities are to be inserted and removed on a last—in—first—out,
first~in—first—out, or ranked basis, a mark is inserted under LIFO, FIFO,
or Ranked, respectively.

If the Set is a Ranked Set, the name of the Attribute according to whose
value the member Entities are to be ranked is inserted in Cols. 59 through
63 starting in Col. 59. This Temporary or Permanent Attribute must also
appear among the Attribute definitions for the member type of Entity. Any
Attribute may be used for this purpose. If the Set is ranked, it is further
indicated in Col. 65 whether a high or a low value of the "priority" At—
tribute is considered best (insert "H'' for high, "L' for low).

A reminder of the special Attributes that must be defined for the member
and owner types of Entity has been printed at the bottom of the Definition
Form. The Attribute names that are formed by prefixing a letter to the
Set name are enumerated. The check marks below the columns marked

-114-

LIFO, FIFO, and Ranked indicate which of these Attributes are required
for each type of Set organization.

DEFINITION OF FUNCTION NAMES

For each written Function subprogram, the name and mode of the Func—
tion must be defined in the last panel of the Definition Form. The names
are formed according to the same rules as those for naming System Vari—
ables; the mode is indicated by inserting '"I" for integer or "F'" for float—
ing point.

~-115-

Chapter 14

INITIAL CONDITIONS DECK

The specification of initial conditions at the start of a simulation could
vary in complexity from the input of a complete status description at one
extreme to the mere specification of the initial values of Permanent At—
tributes at the other extreme. The Initial Conditions Deck does the latter. ¥

The Initialization Deck consists of Data Cards plus Initialization Cards
punched from the Initialization Form shown in Fig. 24. Every Array
Number from "1" up to the largest appearing in Cols. 32—34 of the Defini—
tions Deck must be accounted for in sequential order in the Initialization
Cards. The complete sequence of Array numbers must be accounted for,
even though some may have been omitted from theDefinitions Deck or may
have appeared out of sequence.

Procedures for preparing the Initial Conditions Deck are discussed under
the following headings:

Unsubscripted Permanent Attributes
Single—Subscripted Permanent Attributes
Double—Subscripted Permanent Attributes

Ragged Tables

Random Look—Up Tables for Unsubscripted Attributes
Random Look—Up Tables for Subscripted Attributes

UNSUBSCRIPTED PERMANENT ATTRIBUTES

Each unsubscripted Permanent Attribute (System Attribute) defined on the
Definition Form must have its initial value read in or set equal to zero.
It is also necessary to read in values for each of the translator—defined
Attributes with the name ''NEntity name'', thereby establishing the num—
ber of each type of Permanent Entity. The procedure for specifying the

values of the translator—defined Attributes "NAttribute name (I)"'is de-—

scribed in this Chapter under the discussion of Ragged Tables. Other

If a more complete initial status description is desired, a representative
mix of each type of Temporary Entity and Event Notice in various stages of
their life spans may be specified and values assigned to their Attributes.
The Set relationship among the various Entities in existence at the given
point in time may also be specified., Such a snapshot of a complete system
Status might be obtained either from an analysis of empirical data or from
the results of a previous simulation run. A special Exogenous Event rout-
ine can be written for the purpose of setting these various conditions at
the start of the simulation.

~116-

translator—defined Attributes described in Chapter 11, suchas TIME,
PAGE, RANDM, etc., do not require initial values although some of them
may be specified by means of the System Specification Card.

Initial values of unsubscripted Permanent Attributes may be separately
specified by means of individual Initialization Cards. They may also be
handled in groups by means of a single Initialization Card followed by Data
Cards. To be initialized as a group, the System Attributes in the group
must have consecutive Array Numbers. Their values must also be read
in by using the same FORMAT statement Field Description.

Figure 25 shows the entries required to read in the initial value of a single
System Attribute.

The initial value can be set to zero by inserting a zero in Cols. 50through
66, or by leaving Col. 12 blank and inserting a "Z'" in Col. 13. A Format
Field Description and Data Card can also be used to specify the initial
value as described below for the case of more than one System Attribute.

LIST AND TABLE ODYMENSIONS

3 ramie meap-w |] NAN05% L)

INITIRL VALUVE

L 1
o
RoWS coLumns HARRE i § é or
ey weace PR HHAME HERL FORMAT FIELD DESCRIPTION
wumsex o arTasure | womsex o arreiaurs ¥4 LA ; 3 I
o mows [t o wommee | o couumns [Eus B 5 2 3 R|E1Y
o tows o DL »irkaln slsiL
16[17[18{29120121 (22 |23 (24]25 28|27 |20 34]35]36(37:38 [39: a0 141} 42]43 a4 a5 a8 sois1[82]53}5alss)58 /57 88 (59 [s0l61[62]63164]85 68
/1811315
v

1 - Enter Array Number in Cols., 1 through 4. The units
position of the Array Number must be in Col, 4.

2 - Enter a zero in Col. 10.
3 - Enter an "R" in Col. 12.

4 - Enter the Initial Value as an integer or decimal
number anywhere in Cols, 50 through 66, Formats
other than integer or decimal (e.g., hours or alpha-
numeric) must be read from Data Cards as shown in
Fig. 26,

Fig. 25 — Initialization Card Entries for a Single Unsubscripted
Permanent Attribute

PROGRAIOZR SIMSCRIPT INITIALIZATION FORM

PROBLEM -117-
SYSTEM SPECIFICATION CARD

PATE
~) : INITTA EVENTS ;
gt i HONRS PER 14Y aapon poor | B T | RO AP LINES PER PAGE COMMENT TIENTIFICATION
01102101 04| 05106 0710 0a] 101 11[12 [13] 1416 [15]17] 10 [10] 20| 21[eo 2 j2a los fon fer fon Prajaa i e s [sal s fa o [pindac far ez [0 | aalas fan Tarfan o [en[1[s2 [<3 [aa s [aninr|sn]snenier |2 62| nalas |sa a2 [an [sa[70[73 |72] 73 |74 7575 77 |77 |70
5 5 14— These values are automatically in-
- seried {f the field iw lert blank
INITIALIZATION CARDS
% B ¥ T
ARRAY HEP LIST AND TABLE DIMENSIONS TABLE READ-I] - {RANEOM Lo0k-07)
1% b - -
5
NUMBER g A3ile oS COLUMNS d A AIENRRAEHABE INITIAL VALUE cOMME
& Mk oaexine] Q|3 lexls g I} NN or MENT | 1DENTIFICATION
B R AeRay wumeER seiay wosneR AR R bl |8 |2 kR FORMAY FIELD DESCRIPTION
FROM 7o ¥ '3 5 womaer | o armeieore | wumaer | or arrainure Slanyslsistils E{ S RY
b % |8 or rows |rquat. 1o sunser] oF coLumws FQUAL DM MALK deia e IRt |El:
el 0F Rows VF COLUMNT / ricinlrbairnt jois|s|t
01]02]03|04l05] 06] 07]on 03] 10] 11 12[13]14[18] 16|17 {1 J10l20 21 [e2 23] 2a[25 [[27 [2a 2n [an ar [ae] 39] aafastae]37) s faafav (a1 faol a3 [aefas | as}ar [an o i} ncfafso]sals alenfan] st nntaalenfar ealnalea]ax]redra[nn]ral 70l [oo § ool 9a] 78] 76] 1717 179
e Ay _./
B 5 .
LI ,,__,«_,‘.; =N
‘_] 1/
RN
/ : !
- W e o b - N
/ i
Lo - % T e] L L e :
/ i

Fig. 24 —SIMSCRIPT Initialization Form (actual sigze)

-119-

The Initialization Card entries required for reading in the initial values
of a series of unsubscripted Permanent Attributes with consecutive Array
Numbers are shown in Fig. 26.

ARRAY TR LIST AND TABLE DVMENSIONS 1 rame mEAD- AnvDou Loowvrk
B &
NUMBER v ; : P coromms T /A//rmilvnwf
. HEH
' e wosrae e nomse $R§IE FORMAT FIELD DESCRIPTION
reom | o Fl: womsen o arreaire | wmsen o arresmort M
3 f oF mows |sauc owumse | o cocums [emat B wmart] $ I3 §
2HE o kows or counmws | ' 1y
01 02/ 03| 04]05: 061 07{ 08|29} 10 16;17[30139:20121 22123 24125 (20 {21 ({28 29 I8 (3% 4C 808115215254 85]86 157 18R [5G [60(81/52{63 164(6¢ |88
/el 23f ol AREAGE
g . oy v

- Enter the smallest Array Number in Cols, 1 through 4.
- Enter the highest Array Number in Cols. 5 through 8.
Enter a zero in Col. 10 (or leave blank).

- Enter an '"R" in Col. 12.

v W N
1

- Enter a single FORMAT statement Field Description en=-
closed in parentheses in Cols. 50 through 66, The
initial values will be read according to this Field
Description from Data Cards following the Initiali-
zation Card.

Fig. 26 — Initialization Card Entries for a Series of Unsubscripted
Permanent Attributes

Although only one Field Description is permitted, the field may be re—
peated across the Data Card by prefixing the optional constant to the field
Description in the manner described in Chapter 7. The first field of each

Data Card starts in Col. 1, and data may appear in all columns up through
Col. 72.

If all the values of a group of consecutively numbered System Attributes
are to be set initially to zero, the lowest and highest Array Numbers are
indicated in Cols. 1 through 8, and a "Z" is inserted in Col. 13. The re—

mainder of the Initialization Card is left blank and Data Cards are not re—
quired.

SINGLE-SUBSCRIPTED PERMANENT ATTRIBUTES

If the initial values are to be read in, a separate Initialization Card fol—
lowed by Data Cards is required for each list of single—subscripted Per—
manent Attributes. If the initial values are to be set equal to zero, one

-120-

or more lists of single—subscripted Permanent Attributes may be handled
by a single Initialization Card, provided the lists are of the same length
and have consecutive Array Numbers.

To read in the initial values of a list of single—subscripted Permane nt
Attributes, the Initialization Card entries shown in Fig. 27 are required.

N

LIST AND TABLE DVMENS/IONS A TABLE READ-INE

INITIAL VALVE

I O

Enter the Array Number in Cols. 1 through 4
Enter a "1'" in Col. 10.
Enter an "R'" in Col. 12.

In Cols. 15 through 18, enter the largest value the subscript is
to take on.

In Cols. 19 through 22, enter the Array Number of the System
Attribute "NEntity name" corresponding to the type of Entity
that the Attribute list describes. The value of "NEntity name"
must have been previously read in from an Initialization Card
or Data Card. This value must be the same as that of the larg-
est subscript as specified in Cols. 15 through 18, These two
values are automatically compared as a consistency check.

If fractional word packing was called for on the Definition
Form, enter this same packing code in Cols. 32 and 34,

In Cols. 50 through 66, enter a single FORMAT statement Field
Description enclosed in parentheses and preceded by an optional
constant, if desired., This Field Description tells how the
initial values of the list are to appear in the subsequent Data
Cards. Each Data Card will be read starting in Col. 1. If
desired, successive values may appear across the Data Card as
described in the discussion of Field Descriptions in Chapter 7.

Fig. 27 — Initialization Card Entries for Reading In a
Single—subscripted Permanent Attribute List

Row$ coLumns 11k ibitis ! i or
3 3
pom— sonrr mmore B3 § tlakdaiz|d 533 FORMAT FIELD DESCRIPTION
somsen o arressare | muoes Jor arvesure | HHLUE 3 HERE
o mows | mwnece]| o cowees e » 3 3 §. 2 i SER%w E H
| iy o counms | *NHARYH HBHEL
1sf16]17]1n]19 20 22 122 28 f24 25 26|27 |20 |29 {30 1323!!43535373839Acll4?43«45“l’llﬁ505]52935‘5556575!5950‘15163 8% 168
| [6lo 3 {i1/2F 1]ojci1]6]
Rpp———— —— v

-121-

One or more lists of single-subscripted Permanent Attributes describing
the same Entity and having consecutive Array Numbers can be initially
set equal to zero by the Initialization Card entries shown in Fig. 28.

Inserting the letter "Z" in Col. 13 causes zeros to be stored in the entire
word, irrespective of any packing that may have been called for on the
Definition Form. To initialize packed, floating point variables see the
discussion at the end of the Chapter.

LIST ANO TABLE DNVMENSIONS

INITIAL VALUE
or
FORMAT FIELD DESCRIPTION

ROWS LOLUMNS

!

3
axay masste sennr womecn §
wusmpER oF aTTRiBTE | MomBER or arTeisuTE 3z
of mows e o womrs | oF couums |souar » 3 §
> eows or counmws b ¢

1611711019 [20121 2223 [24]25 [26 |27 28 |29 |3c [31] a2 17

NET IO AY
angen
L canp

Fu
s F moave

.
I~

<
8
3

52[53/54155(%8|57158 |59 [6C |61 62(63 (64165 |68

1 - Enter the lowest Array Number in Cols. 1 through 4.

2 - Enter the highest Array Number in Cols. 5 through 8.
(If there is only one list, leave columns blank).
3 - Enter a "1" in Col. 10.
4 - Enter a "Z" in Col. 13.
5 - Indicate largest subscript value in Cols. 15 through 18,
6 - Enter the Array Number of the appropriate System Attribute

"NEntity name' in Cols. 19 through 22.

Fig. 28 — Initialization Card Entries for Setting Single—subscripted
Permanent Attribute Lists to Zero

DOUBLE-SUBSCRIPTED PERMANENT ATTRIBUTES

If non—zeroinitialvalues are to be readin for a table of double—subscripted
Permanent Attributes, each table requires a separate Initialization Card
followed by Data Cards containing the values. However, a single Initiali—
zation Card may serve to zero out one or more Attribute tables, provided
they all describe the same pair of Permanent Entities and have consecutive

Array Numbers. The procedure for setting Ragged Tables equal to zero
is described below. '

Figure 29 shows the Initialization Card entries required for reading in the
initial values of a table of double—subscripted Permanent Attributes.

-122-

LIST AND TABLE DYMENSIONS { 7amie mear-m
: : AL
NUMBER RowS coLumn's y ik 3 £ i ,‘V‘ws
H £
aear wasate s womsaes LE] § tlafe3s FORMAT FIELD DESCRIPTION
£ROM 70 womsen Vo6 arvrimere | wwoea [or areisure IIHLINE i '
o mws (Eoun m s | or cocomws (EQUAL B wawen 1ids |3 g “F 2
o0 tows & cows | 4 g be lwly PE & s
03[02] 03{04]05{ 0610 1711e[19f20)|21 {2223 124 (25 8|27 |28 B 31363735394(}4112 ad ®1[52i53[54[55]56 57158 [59{60]|81)62(81]84)65 86
5 715 16| |1jolo bR IN] 2] B /a1
S v v v v -— v v

1 - Enter the Array Number in Cols, 1 through 4.
2 - Enter a '"2" in Col. 10,

3 - Enter an "R" in Col. 12,
4

- In Cols, 15 through 18, indicate the largest value the row subscript
will take on, (The first subscript of a double-subscripted Permanent
Attribute always designates the row of the table.)

5 = In Cols. 19 through 22, enter the Array Number of the System Variable
"NEntity name', the value of which is equal to the value of the larg-
est row subscript,

6 - In Cols, 23 through 26, indicate the largest column subscript.

7 - In Cols. 27 through 30, enter the Array Number of the System Variable
"NEntity name', the value of which is equal to the value of the larg-
est column subscript,

8 - Indicate the order in which the Attribute values are to be read from
Data Cards by entering an "R" in Col. 36, if the values are to be
read across rows, or entering a ''C" in Col. 37 if they are to be read
down columns,

9 - If the beginning of each new row or column is to start on a new Data
Card, enter '"N" in Col. 38. 1If, instead of starting on a new card,
the first entry in a new row or column immediately follows the last
entry in the preceding row or column, put an "F" in Col. 39.

10 - If the Table entries are to be packed into a half or a fourth of a
storage word, inset "2" or '"4" respectively in Col. 40. Leave this
column blank if packing is not desired. The packing designation must
agree with that indicated on the Definition Form. (Columms 32-34 of
the Initialization Card are ignored in the case of double-subscripted
Permanent Attributes.)

11 - In Cols. 50 through 66, enter a FORMAT statement Field Description
enclosed in parentheses indicating how the table entries are to
appear in subsequent Data Cards.

Fig. 29 — Initialization Card Entries for Reading In a Double—subscripted
Permanent Attribute Table

~123-

Figure 30 shows the initialization entries required to zero out one ormore
tables of Permanent Attributes describing the same pair of Permanent
Entities and having consecutive Array Numbers.

To initialize packed, floating point variables, see the discussion atthe end
of the chapter.

] TanE mEaD-m | 1RANOIY LooN-vP

LIST AND TABLE DVMENSIONS TamiE

RowsS COLUMNS Nlr/“o VALUE

-
FORMAT FIELD DESCRIPTION

LAY e | amner womecr
wusBcn Lok ATTRISUTE | mUMBER oF ATTRISUTE

sRean

be cuLe camn
A DXIAL

il

0 AROSS pov
0

WV AT

i STEP FUMCTION

8 e whERGron

1§ susscaieree

»
g H
: o mows oM Weomses | oF cocumens (Bt B . H § g
8 : o sows o coumaws B clin o
01 o8 1051 10f 11112 [13[1aJasT26 17 Tue 1020 21 [o2 [2s T24j2s [oe er fam f2s Tac [saj a2 36137138 |35 40 |41 4214344]48|4¢] 47| @ [es]s0is1152]53(5ais5 065715k so [ecia162]6 64 86 (88
[iz} | 3lo] | | s | [3io
——— ——— v = = v

1 2 3 4 5 6 7 8

1 - Enter the lowest Array Number in Cols., 1 through 4.

2 - Enter the highest Array Number in Cols, 5 through 8.
(If there is only one table, leave columns blank.)

3 - Enter a "2" in Col. 10,
4 - Enter a "Z" in Col., 13,
5 - Enter the number of rows in Cols. 15 through 18.
6 - Enter the Array Number of '"NEntity name' for the
first dimension in Cols. 19 through 22,
7 - Indicate the number of colummns in Cols. 23 through 26.

8 - Enter the Array Number of the corresponding System
Attribute "NEntity name" in Cols. 27 through 30.

Fig. 30 — Initialization Card Entries for Setting Double—subscripted
Permanent Attribute Tables to Zero

RAGGED TABLES

Permanent Entities may be described by Attributes having more than one
value, in which case the Attributes are treated as a two—dimensional
"Ragged Table' with rows of variable length. Each Ragged Table requires
one Initialization Card followed by Data Cards containing its initial values.
If a Ragged Table is to be initially set to zero, zeros must be read infrom
Data Cards.

-124-

Figure 31 shows the Initialization Card entries required to read in a Rag—
ged Table.

Since row—length varies, Cols. 23 through 30 of the Initialization Card are
left blank, and the length of each row is indicated in the Data Cards. The
letter "C" is punched in Col. 72 of the Data Card if the row is continued on
the following card. In the Data Card containing the end of the row, the
numher of fields to be read is punched in Cols. 7l and 72. In reading
Ragged Tables, Cols. 7l and 72 of the Data Cards may never be used for
data. Values are always read across rows, and each row starts on a new
card. To initialize packed floating point variables see the discussion at
the end of the Chapter.

ArRAY LIST AND TABLE OYMENSIONS T Tee miaow | N i
NUMBER RowS COLUMNS 2 !g g E ?E é E ! . IA//fIll;(VﬂLﬂE
Feom | 1O RN mptiopesinlt IR soppibooparid | “i% : i i 3: {5 FORMAT FIELD DESCRIPTION
s oo wmamer | o comms [qn mamert 2 e §5 5? E §ig€'ig 5
SHE > sows o coumws B3 cluly R yistsitizle
0)0!!)!04050607(!@XC]ll?)ll‘lS\5)71!“?071722!11?57‘772! ll3530373!39‘0414243“‘5&‘700505151535455565750595()‘!5263.455“
713 2Fig| b 25 17 3 21k 51(Dle]-6])
1 2 3 4 5 67 8
1 - Enter the Array Number in Cols. 1 through 4.
2 - Enter "2" in Col. 10,
3 - Enter '"R" in Col. 12,
4 - Enter the number of rows in Cols. 15 through 18.
5 - Enter the Array Number of the corresponding System

Attribute "NEntity name" in Cols. 19 through 22.

6 - If a half-word or quarter-word packing is desired,
put "2" or '4" respectively in Col. 40,

7 - Enter '"R" in Col. 41.

8 - Enter a Field Description in Cols, 50 through 66,
specifying how the table values are to appear in
the Data Cards.

Fig. 31 — Initialization Card Entries for Reading In a Ragged Table

RANDOM LOOK-UP TABLES FOR UNSUBSCRIPTED ATTRIBUTES

Permanent Attributes whose values are to be determined by one of the
random look—up procedures described in Chapter 11 do not have initial
values, of course; however, the look—up tables from which their values

=125~

will be determined must be input as part of the Initial Conditions Deck.
Each look—up table requires one Initialization Card followed by Data
Cards describing the particular table. Figure 32 shows the Initialization
Card entries required to input a look—up table for an unsubscripted Per—
manent Attribute.

LIST AND TABLE OYMENSIONS A rasce miaoWE " Taniie
: ' NITIAL VALVE
Row'S COLUMN'S q ust | ik } § ‘R g B INIT .
3 U0 & % B 3
U P—— { Eig = § 3 3 FORMAT FIELD DESCRIPTION
o arrisvts | mussea Jor arreieuTe B % g 3 i 3 5 § B3
eouic 0wz | o cocms | S ¥ & 3 §§ 2 (4% & E fl‘
ki o oums 11/ Fniclplrbalr gy s |S L]
1912012122 |2324]25 (28|27 (28|29 30 132!!!43!36113!?9&)4)4243“4!‘641 52535‘5!!6!1505950615263&465“
/lE Vi iS S1(In]i]. [4H, [L14)
- v \J

1 - Enter the Array Number of the Attribute in Cols. 1 through 4.
2 - Enter 'R" in Col. 12.

3 - Enter "U" in Col. 43.
4

- If the Random Attribute values are to be generated by the
step function procedure, put "S'" in Col. 45; if by linear
interpolation, put "L" in Col. 46.

5 - Indicate whether the look-up table is expressed in terms of
individual or cumulative probabilities by placing "I" in
Col. 47 or "C" in Col. 48, respectively. (Only cumulative
probabilities may be used for the linear interpolation pro-
cedure,)

6 = Enter a pair of FORMAT statement Field Descriptions enclosed
in parentheses in Cols. 50 through 66.

Fig. 32 — Initialization Card Entries for a Random Look—up Table
for an Unsubscripted Permanent Attribute

The first of the two Field Descriptions in Cols. 50 through 66 must de—
scribe a decimal field; it indicates how the individual or cumulative prob—
abilities are to appear in the subsequent Data Cards. The second Field
Description describes how the values corresponding to the probabilities
are to appear in the Data Cards. In the case of the step function pro—
cedure, the value may be of any mode other than alpha—numeric. In the
case of the linear interpolation procedure, the value must be floating point
(i. e., decimal, decimal hours, or days, hours, and minutes). See the
discussion of packed, floating point variables at the end of the chapter.

-126-

A s described under the discussion of FORMAT statement in Chapter 7,
these pairs of entries maybe repeated across aData Card by prefixing to
the Field Descriptions the number of cases (pairs of entries) per card.
Pairs of entries may not be split at the end of a Data Card.

The end of the look—up table is indicated in the Data Cards in the same mamn—
ner as that described for Ragged Tables. The letter "'C" is punched in
Col. 72 of all but the last Data Card. The number of pairs of entries to
be read from the last Data Card is punched into Cols. 71 and 72 of that
card; these columns may not be used for any other purpose.

Cumulative probabilities must appear in the Data Cards in order of in—
creasing cumulative value. If individual probabilities are read in, they
will be automatically accumulated in the order in which they appear. In
either case, the final cumulative probability is automatically set equal to
1. 0 irrespective of the probability values in the Data Cards. In the linear
interpolation procedure, the input of individual probabilities is not permit—
ted, and the value of the first cumulative probability must be 0. 0.

RANDOM LOOK-UP TABLES FOR SINGLE-SUBSCRIPTED ATTRIBUTES

If a random look—up procedure is to be used to determine the values of a
single—subscripted Permanent Attribute, a separate look—up table is re—
quired for each value the subscript can take on. One Initialization Card
followed by Data Cards containing this subscripted series of look—up tables
must be included in the Initialization Deck. The required Initialization
Card entries are shown in Fig. 33.

Each look—up table in the subscripted series must be gin on a new Data
Card. The end of each table is indicated by punching the number of paired
entries to be read from the last Data Card in Cols. 71 and 72 of that card.
The letter "C'" is punched in Col. 72 of the other Data Cards. Columns 71
and 72 may not be used for any other purpose.

INITIALIZATION OF PACKED, FLOATING POINT VARIABLES

The binary representation of a decimal number packed into half of a word
depends on whether or not provision is made for negative values. For
example, the number 1.0 is represented by ''010 001100 000 000 000" if
the half—~word represents a ""signed' floating point variable, and by
"100 001 100 000 000 000" if the half—word represents an "unsigned" float—
ing point variable.

If "half" packing and a ""D'" FORMAT statement field description are
specified on the Initialization Form, the initialization routine assumes
that signed floating point variables are to be read in and packed. In the

-127-

LIST AND TABLE DIMENSIONS] rascE meao-m |]

INITIAL VALVE
o
FORMAT FIELD DESCRIPTION

RowsS LOLUMN'S

e ooum womscs g H

wumsEn | of aTTEIBUTE wmder lor ATreisuTE z M

SEE or mws lexmimwomet | o cocumws Touas B & 13 3 i
: o aows OF COLMNS K i ¥ 2.4

18116127112 [19120121 122123/ 24(25 |26 |27 3 £1182[83)5415818615786 [59]80(61 62636‘5ﬂu
Vol 1. 13, D 1. 3D

Q0 4

1 - Enter the Array Number in Cols. 1 through 4.

2 - Enter '"R" in Col. 12. |

3 - Enter the maximum subscript value in Cols. 15 through 18,

4 - Indicate the Array Number of the System Attribute 'NEntity
name' whose value is equal to the maximum subscript value,

5 - Enter "S" in Col. 44.

6 - Enter either "S$" in Col. 45 for ''step function", or "L' in
Col, 46 for "linear interpolation'.

7 - Enter "I'" in Col. 47 for "individual probabilities' or ''C"
in Col, 48 for '"cumulative probabilities"

8 - Enter a pair of Field Descriptions enclosed in parentheses
in Cols. 50 through 66. (Two separate Field Descriptions
must be specified, In the above example, 10(2D1.3) is not
permitted,)

Fig. 33 — Initialization Card Entries for a Random Look—up Table
for a Single—subscripted Permanent Attribute

case of "unsigned', packed floating point variables, a ''U'" must be used in
place of the D

The specifications on the Initialization Form must agree with those of the
Definition Form (in other words, if Col. 45 is not marked on the Definition
Form, the U format must be used on the Initialization Form and converse—
ly). The U format is used only on the Initialization Form and is not re—
quired or permitted in FORMAT statements in the source program. Deci—
mal-hours and days, hours, and minutes field descriptions may be used on
the Initialization Form-just as they are used in FORMAT statements since
time values must be positive and are stored as unsigned floating point
numbers.

In specifying the two fields of a random look—up table, the first field (which
always contains the probability) may be described by either a D or U field

-128-

description (D and U are equivalent here). The second field containing
the value of the random variable must be described by a D field descrip—
tion if the value is to be a signed floating point number; it must be des—
cribed by a U field description if the value is to be an unsigned floating
point number.

-129-

Chapter 15

MEMORY LAYOUT

While it is not essential for the programmer to know how memory is ar—
ranged in SIMSCRIPT object programs, an explanation of memory layout
may be of interest in itself, may help clarify certain restrictions in the
source language, or may be of use to the experienced programmer in—
tending some unconventional application. *

The object program generated by SIMSCRIPT divides memory into four
main regions, as illustrated in Fig. 34.

Region I, the Program Region, contains the various FORTRAN object sub—
programs generated by the SIMSCRIPT translator; the lower part of Re—
gion I is used by the FORTRAN system. The various kinds of subprograms
described in Chapter 9 and any specified FORTRAN Library Routine are
stored in the upper part of Region I, above the "FORTRAN Break. " Local
Variables are stored in this region in their respective subprograms.

Skipping Regions II and IIl for the moment, consider Region IV located at
word 31,000 to the end of memory at 32, 767. The upper part of Region IV
is reserved for the standard use of FORTRAN. The lower part of Region
IV from the beginning of "COMMON, " at 32, 561, down to 31,000 is used for
various data needed by the object programs but not defined by the SIM—
SCRIPT programmer. It includes two input buffers for the Exogenous
Event Tape, the current value of TIME, the times and types of the most
imminent Exogenous and Endogenous Events, and the like. The only in—
formation in this region which the SIMSCRIPT programmer may refer to
are certain pre—defined variables, such as TIME, LINES, PAGE, etc.

Region III is used to store all Permanent Attribute Arrays and Random
Look—Up Tables, including:

Zero—dimensional arrays: individual numbers, referred to in the source
program by unsubscripted Permanent Attributes (sometimes called Sys—
tem Attributes).

One—dimensional arrays: lists of numbers referred to in the source pro—
gram as single—subscripted Permanent Attributes.

* In debugging, it should rarely ever be necessary to dump memory.
Instead, interim results should be progressively checked by special

""diagnostic' Reports which are easily obtained by means of the Report
Generator

-130-

32,767 T
}Region IV -Reserved for SIMSCRIPT and FORTRAN
31,000 -5
cRegion III -Permanent Attributes
- 7
3
“Region II -Temporary Attributes
>Region I -Object Programs and FORTRAN Storage
00 -*°

Fig. 34 — SIMSCRIPT Memory Layout

Two—dimensional arrays: tables of numbers referredto as double—
subscripted Permanent Attributes. These may be regular tables in which
all rows have the same length, or "ragged' tables with rows of different
length.

Random Look—Up Tables: probability distributions for randomly determin—
ing the values of unsubscripted or single—subscripted Permanent Attributes
as described in Chapter 11,

The amount of space allocated to one— or two—dimensional arrays and to
Random Look—Up Tables is not specified when the object program is com—
piled. Instead, it is specified as part of the initial conditions at the time
the object program is executed. Thus, an array may contain five entries
for one run and 100 entries for a second run without loss of space or need
to recompile in either case. This facility requires that the memory lay—
out scheme for Region IIT allow a particular list to start in different places
depending on the length of the preceding lists.

Suppose, for concreteness of discussion, that there are 37 arrays, i.e.,
that 37 is the maximum Array Number appearing on the Definition Form.
Memory word number 310001 (i.e., word 30999) would be used on behalf
of Array Number 1, word 31000—2 on behalf of Array Number 2, and so on
through word 31000—37, used on behalf of Array Number 37. If the first
array is zero—dimensional — in other words, a single number—then this

-131-

number is stored at 30999. Ifthe fifth array is a one—dimensional list, and
word 30995 (i.e., 31000-5) should happento contain the number 29,000 in
the address portion of the word, this would indicate that the first element
of the fifth array is at 28999, the second element at 28998, the third at
28997, and so on. *

In general, if C(y) represents the contents of word y, then (C(31000-L)—1I)
is where the Ith element of the Lth list is to be found.

If the sixth array happens to be a two—dimensional table, then C(31000—6)
is once again the location immediately above the array. The first element
of the table, however, is not at C(31000—6) — 1; rather, C(30994)—1 con—
tains the zero—th location of the first row of the table, C(30994)-2 contains
the zero—th location of the second row, and so on. ** This organization is
used for both regular and ''ragged' tables.

In the case of a Random Look—Up Table for an unsubscripted Permanent
Attribute with Array Number "A", C(31000—A) contains the location im—
mediately above the location of the start of the distribution. The distri—
bution itself is represented by storing cumulative probability and value of
outcome in the manner described in Chapter 11 and 14.

Random Look—Up Tables for subscripted Permanent Attributes are stored
in a manner somewhat akin to Ragged Tables with C(31000—A)-I equal to
the location immediately above the first work of Ith distribution.

The various data references described above are accomplished automati—
cally on the basis of the contents of the Initialization Cards and need not
concern the programmer.

In simulation programs, three additional one—dimensional arrays used by
the Timing Routine are also stored at the lower end of Region III.

Consider next the organization of Region II, which is used for storing the
Attributes of Temporary Entities and Event Notices. All available space
from the end of the last array at the bottom of Region III to the end of the

* The number indicating .the zero-th location of a one- or two-dimensional
array is always preceded by a tag of "2'". 1In the above example, the

contents of word 30995 would consist of the octal representation of
29000 preceded by the number '2',

** These locations are stored in the decrement, and the length of the row
is stored in the address portion of the word. There are no tags.

-132-

last subprogram at the top of Region I is used for storing Temporary At—
tributes. * The number of each type of Temporary Entity in existence
changes during the course of program execution. The memory arrange—
ment in Region II must therefore be capable of allocating space when a
Temporary Entity or Event Notice is created during the course of the sim—
ulation. It must also be able to reclaim such space for subsequent use
when a Temporary Entity or Event Notice is destroyed.

The values of Temporary Attributes are held in "records". An Entity may
have as many as nine records for its Attributes, and each record may con—
sist of either one, two, four, or eight consecutive words of core storage.
Of the one or more records which characterize an Entity, one record is
referred to as the Master Record, and the other records, if any, are re—
ferred to as Satellites.

Every Entity of a particular type has the same configuration of records.
Thus if a FLITE is a Temporary Entity with an eight-word Master Record
and one four—word Satellite, every FLITE created during program execu—
tion is assigned an eight~word Master and a four—word Satellite. Two
FLITEs in existence at the same time will of course be given different
words of memory for their records.

The identification number of a Temporary Entity is equal to the zero—th
location of its Master Record, e. g., the statement CREATE DOG CALLED
FIDO finds available space to form the records required to characterize a
DOG as specified on the Definition Form. It also sets the variable FIDO
equal to the identification number of the DOG just created. The location
of the first word of the Master Record is at FIDO-1, the second word is
at FIDO~—2 and so on. It is not necessary for the programmer to refer to
FIDO-2 since each Attribute's position within the Record is specified on
the Definition Form. If an Attribute called BDAY (for Birthday) is as—
signed in the first half of the second word of the Master Record describ—
ing a DOG, the mention of BDAY(FIDO) in any subprogram will result in
the computer retrieving or storing the desired value from the second half
of the word located at FIDO-2.

Satellite Records will not necessarily be adjacent to their Master Records.
The location of the Ith Satellite is to be found in the second half of the Ith
word of the Master Record. More precisely, if there is an Ith Satellite
then the second half of the Ith word of the Master Record contains the
zero—th location of the Satellite Record. Consequently, if there is an Ith

*After the Initialization Cards have been read in, that portion of the
System Package which accomplishes the Initialization is set to zero and
this space is included as part of Region II.

-133-

Satellite, the second half of the Ith word of the Master Record is not
available for storing Attribute values. The linkages between the Master
Record and its Satellites are automatically set up whenever a CREATE
statement is executed. '

It is not necessary for Satellite Records to be consecutive. In other words,
it is permissible to have a '"'Satellite 8' for a particular type of Entity even
though it has no Satellites 1 through 7. It is mandatory, of course, that
there be an eight—word Master Record if there is a ''Satellite 8." In gen—
'e'r':ill, if there is a Satellite '"I'' the Master Record must contain at least

I" words.

The identification number based on the location of the Master Record is
always used as a subscript even when referring to information stored in a
Satellite record. Thus, the source program would refer to SIZE (FIDO),
whether the Attribute SIZE is stored in the Master Record or in a Satellite
Record of the DOG called FIDO.

Since each Master and Satellite Record must be 1, 2, 4, or 8 words long,

it is necessary for the CREATE routines to have access to unused memory
sections of 1, 2, 4, and 8 consecutive words in length. The method by which
the SIMSCRIPT object program keeps track of available—ones, available—
twos, available—fours, and available—eights is described next.

First consider the available—eights, pretending for the moment that rec—
ords of other sizes are never called for. At the beginning of object pro—
gram execution (after Region III has been set up and its initial values read
in) Region II is, in effect, broken into available—eights. A variable in
Region IV is set equal to the location immediately below the location of the
first available eight. The first word in this available—eight record is set
equal to the location of a second available—eight. The first word of the
second record similarly contains the location of a third available—eight,
etc., and the first word of the last available—eight contains a zero rather
than a location, thus indicating the end of the set available—eights. When
an eight is requested during the course of a run, the first available—eight
(as indicated by the pointer stored in Region IV) is made available to the
requesting routine. This ''first—available—eight—pointer' is then set equal
to the next available—eight, as indicated by the first word of the previous
first—available—eight. When an eight—word record is returned to available
storage, the reverse occurs. The record just returned becomes first,
while the original first is noted in its first word as its successor available—
eight.

Suppose now that a four—word record is requested. The program will check
a memory location in Region IV which contains the location immediately be—
low the first available—four. The first time an available—four is requested,

-134-

the "four—pointer' will equal zero, indicating that no four—w o rd records
are available. In this case, the first "eight” will be removed from the
available—eights and split into two "fours.' One of these will be given to
the routine as a "four", and the other will be put into the set of available—
fours. In general, whenever a "four' is requested it is supplied from the
set of available—fours. If the set is empty, an "eight" is splitintwo.
Whenever a "'four" is returned, the program determines whether its
"brother—four'" (the "other four' that was made out of the same "eight'' as
the one being returned) is in the set of available—fours. If it is, the two
"fours' are combined into an "eight' and returned to the set of available—
eights.

Similarly, "twos'' are made from ''fours' whenneeded, and returned to
"fours" whenever a pair of '"brother—twos'' become available. Available—
ones in turn are made from and returned to available—twos.

This dividing and recombining of records is facilitated by two conventions.
First, inoriginally forming the set of available—eights a few words of
memory are wasted, if necessary, so that every "eight' can have a zero—th
location whose binary representation ends in "111." Consequently, the
binary representation of "“fours' ends in "111" or 011." The "brother" of
any ''four'" may be determined by complementing the third bit from the
right. The "eight' from which a "four'' was originally obtained and whence
it goes, may be determined by setting this third bit equal to one. A simi-
lar situation holds for "twos' and ""ones', with the second and first bits,
respectively, playing the crucial roles.

A second convention facilitating the recombining of records is that the first
bit of the first word of an available "one, " "two, " or "four" is set equal to
one if the record is not in use. Thus, the DESTROY routines can quickly
find, by checking a bit, whether the brother of a record is available ornot.
As a consequence, however, this bit may never be used for data (see the
discussion of this restriction in Chapter 13).

To facilitate the removal of an available "one, " "two, " or "four' from the
middle of its respective sets of available records when its brother alsobe—
comes free, the preceding available record in the set, as well as the suc—
ceeding available record, is noted in the decrement and address portions
of the first word of each available record.

